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Robotic Path Following in 3D Using a Guiding Vector Field

Weijia Yao, Yuri A. Kapitanyuk, Ming Cao

Abstract— Path following serves as one of the most basic
functions for industrial or mobile robots used in different
scenarios. In this paper, a general 3D guiding vector field (GVF)
is analyzed rigorously that extends the existing results on 2D
GVFs. The desired 3D path is described by the intersection
of two zero-level surfaces in their implicit forms, which can be
used to describe various desired paths. Although the same path
can be represented by the intersection of different surfaces,
convergence to the path is not always guaranteed. However,
under some mild assumptions, the existence of solutions and
the local and global convergence results are proved rigorously
for both bounded and unbounded desired paths. Examples
and counter-examples from simulations further validate the
theoretical results.

I. INTRODUCTION

The robotic path following problem, as its name suggests,
is to design appropriate control laws so that the output
of the robotic system can follow the desired path. This is
particularly useful in many applications involving industrial
or mobile robots [1]. There are a number of approaches to
solving the path following problem [2], e.g. pure pursuit,
line-of-sight (LOS), nonlinear guidance law (NLGL), lin-
ear quadratic regulator (LQR) and vector-field-based path
following. Based on the detailed analysis and thorough
comparison of these methods, [2] concludes that the vector-
field algorithm solves the path-following problem with the
lowest cross-track error and requires the least control efforts
among several tested algorithms.

The use of vector-field methods for guidance has been
studied extensively during the last decade [3]–[9]. With these
methods, a vector field is designed so that its integral curves
approach the desired path and thus guide a robot to the
predefined path asymptotically. The corresponding algorithm
is practically easy to implement and can be intuitively
understood. Despite the simple implementation, the rigor-
ous analysis remains complicated and challenging. This is
demonstrated in [6], [8] only for the conventional trajectories
in the two-dimensional (2D) space, such as the circular
and straight-line paths. The recent work [10] proposes and
analyzes rigorously a 2D guiding vector field (GVF) for
a nonholonomic robot to follow a smooth desired path
defined in the implicit form. With additional assumptions,
such as assuming fixed height for flying drones, the results
developed for the 2D case can be used for the inherently
three-dimensional (3D) robotic systems, such as aerial and
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underwater robots, but it greatly restricts its potential appli-
cations.

The problem of 3D vector-field path following has been
considered in works [3]–[5], [9]. The general approach
on how to design the vector field for navigation in n-
dimensional space was proposed in [5]; however, the authors
consider only the case that the set of critical points is
repulsive. The works [3], [4], [9] present similar approaches
to designing the 3D vector field for the control of the spatial
motion. Although in these works, there are various seemingly
different representations of the desired path and the vector-
field, in general, the desired path can be described as an
intersection of two surfaces and the vector-field consists of
two components. The first component is orthogonal to the
desired path, and it vanishes once the robot reaches the path.
The second component is tangential to the path and, usually,
it is calculated as the cross product of the gradient vectors
normal to the surfaces defining the path. In all of these works
[3], [4], [9], it is assumed that the workspace is free of critical
points at which the gradient vectors degenerate. Generally
speaking, this can only be guaranteed locally near the desired
path.

Motivated by the discussion above, the main goal of this
paper is to provide a unified approach to the local and global
rigorous analysis of the 3D vector field for both bounded
and unbounded desired paths. The focus is on the less-
investigated questions of the existence of solutions and the
convergence of the integral lines generated by the 3D vector
field.

The remainder of this paper is organized as follows.
Section II presents the problem formulation, with the in-
troduction of the 3D guiding vector field and assumptions.
Section III analyzes the convergence of trajectories based on
the guiding vector field. In Section IV, several illustrative ex-
amples along with simulation results are elaborated. Finally,
Section V concludes the paper and indicates the future work.

II. PROBLEM FORMULATION

Notations: We denote the distance between a point p0 ∈
R3 and a set S ⊂ R3 by dist(p0,S) = inf{||p − p0|| : p ∈
S}. In addition, the distance between two sets A,B ⊂ R3 is
defined as dist(A,B) = inf{||p1−p2|| : p1 ∈ A, p2 ∈ B}. A
solution ξ(t) converges to a set A as t approaches infinity if
for each ε > 0, there exists T > 0 such that dist(ξ(t),A) <
ε, ∀t > T . In addition, a solution ξ(t) converges to a set A
as t approaches t∗ <∞ if for each ε > 0, there exists δ > 0
such that dist(ξ(t),A) < ε when |t− t∗| < δ.
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A. 3D Guiding Vector Field

A desired 3D path P 6= ∅ is described by the intersection
of two surfaces [11]:

P = {(x, y, z) : φ1(x, y, z) = 0, φ2(x, y, z) = 0} ⊂ R3,
(1)

where φi ∈ C2 : R3 → R, i = 1, 2. The 3D guiding vector
field is designed as follows

v(ξ) = n1(ξ)× n2(ξ)− k1e1(ξ)n1(ξ)− k2e2(ξ)n2(ξ) (2)

in R3, where ni(ξ) = ∇φi(ξ), ei(ξ) = ψi[φi(ξ)] and ki > 0
are constants, for i = 1, 2. In particular, ψi ∈ C1 : R → R
is an arbitrarily chosen strictly increasing function, namely
ψ′i(·) > 0 with additionally ψi(0) = 0. Therefore, P =
{ξ ∈ R3 : e(ξ) = 0}, where e(ξ) = [e1(ξ) e2(ξ)]T .
It is convenient to choose ψi(s) = s, which satisfies the
conditions mentioned above.

Let τ(ξ) = n1(ξ) × n2(ξ), N(ξ) =
[
n1(ξ) n2(ξ)

]
3×2

and K =

[
k1 0
0 k2

]
. Now (2) can be re-written compactly

as
v(ξ) = τ(ξ)−N(ξ)Ke(ξ). (3)

The integral curves of (3) correspond to the trajectories of the
following autonomous ordinary differential equation (ODE):

d

dt
ξ(t) = v(ξ(t)), t ≥ 0, (4)

where ξ(t) : t 7→ (x, y, z). Since the differentiability class of
the right part of (4) is C1, the local existence and uniqueness
of the solution of (4) is guaranteed. We want to investigate
the properties of the integral curves of the vector field (3)
corresponding to the solution of (4).

Remark 1: Note that the definition of P in (1) does
not imply that the intersection of two surfaces is a single
connected curve. In fact, P may represent several disjoint
curves or even a plane. Nevertheless, the proofs in the
following text are still valid as long as the assumptions are
satisfied. In fact, under Assumption 1 discussed later, P is
guaranteed to be a one-dimensional embedded submanifold
in R3 as Lemma 1 states. However, in the context of the path
following problem, we tend to choose suitable φi such that
this manifold is of single branch too.

Remark 2: The reason to introduce the error function ψ(·)
is that it may be desirable that ψ′i(s)|s=φi are topologically
similar so that the trajectory can approach the given two
surfaces at a similar rate, and thus converge to the desired
path. However, for conciseness and simplicity, in this paper,
we assume ψi(s) = s. In other words, the error function is
described by ei(ξ) = φi(ξ).

B. Assumptions

We define a set

M = {ξ ∈ R3 : N(ξ)Ke(ξ) = 0}. (5)

This set contains the desired path P , i.e., P ⊂M. Further-
more, a critical set is defined as

C = {ξ ∈M : rank(N(ξ)) ≤ 1}. (6)

At these critical points (the elements of the critical set), the
vector field degenerates, i.e., v(ξ) = 0. Also note that C
equals the set of the equilibrium points of (4), that is, C =
{ξ ∈ R3 : ξ̇(t) = v(ξ) = 0}. This can be seen from the fact
that if n1(ξ) and n2(ξ) are linearly independent, then they
are also linearly independent with n1(ξ)× n2(ξ). Since the
coefficient of n1(ξ)×n2(ξ) is non-zero, it can be concluded
that ξ̇(t) = v(ξ) 6= 0. Therefore, the linear dependence of
n1(ξ) and n2(ξ) is a also necessary condition for ξ to be an
equilibrium point of (4).

Since the set T = {ξ ∈ M : rank(N(ξ)) = 2} ⊂ P , it
follows that P∪C =M. However, it is desirable that T = P
so that the desired path does not contain any points from the
critical set. So we make the following assumption.

Assumption 1: dist(C,P) > 0.
This assumption implies that for any point ξ ∈ P , n1(ξ)
and n2(ξ) are linearly independent. Specifically, we have
the following lemma.

Lemma 1: Under Assumption 1, P is a C2 embedded
submanifold in R3.

Proof: Denote Φ(ξ) = [φ1(ξ) φ2(ξ)]T . So Φ : R3 →
R2, and P = Φ−1(0) is the preimage of Φ due to the
definition in (1). Under Assumption 1, for any ξ ∈ P , the
Jacobian matrix dΦ

dξ = NT (ξ) is of full rank. Therefore, 0 is
a regular value of Φ and P is a C2 embedded submanifold
in R3 [12, Corrollary 5.14].

The second assumption guarantees that the signed error
function e(p), p ∈ R3, can be used to measure how “close”
a trajectory is to the desired path. Thus, the vanishing of the
error, lim

t→∞
||e(p(t))|| = 0, implies the convergence to the

path lim
t→∞

dist(p(t),P) = 0.
Assumption 2: For any given constant κ > 0 and p ∈ R3,

it follows that

inf{||e(p)|| : dist(p,P) ≥ κ} > 0. (7)
Similarly, as can be seen from the definition of the setM

in (5), we also require that the vanishing of the error, i.e.,
lim
t→∞

||N(p(t))Ke(p(t))|| = 0, implies the convergence to
the set M. This is formulated in the following assumption.

Assumption 3: For any given constant κ > 0 and p ∈ R3,
it follows that

inf{||N(p)Ke(p)|| : dist(p,M) ≥ κ} > 0. (8)

III. CONVERGENCE OF TRAJECTORIES

In this section, the convergence results of the integral
curves of (4) for bounded and unbounded desired 3D path
are discussed.

A. Bounded Desired Path

For the bounded desired path, it is proved that the integral
curves of (4) converge to either the desired path or the critical
set as the solution is prolonged to infinity. Note that in this
case, only Assumption 1 and 2 are adopted.

Theorem 1 (Local convergence): Let ξ(t) be the solution
to (4). If P is bounded, ξ(t) will converge to the set M =
{p ∈ R3 : N(p)Ke(p) = 0} as t → ∞. Particularly, two
outcomes are possible:
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1) lim
t→∞

dist(ξ(t),P) = 0, that is, the solution converges
to the desired path as t→∞,

2) lim
t→∞

dist(ξ(t), C) = 0, that is, the solution converges
to the critical set as t→∞.

Proof: The derivative of e with respect to t is:

ė(ξ(t)) = NT (ξ(t))ξ̇(t)

= NT (ξ(t))v(ξ(t))

= −NT (ξ(t))N(ξ(t))Ke(ξ(t)).

(9)

Note that the above result has utilized the property that
NT (ξ(t))τ(ξ(t)) = 0. Now we define a Lyapunov function
candidate by

V (e(ξ(t))) = 1/2 eT (ξ(t))Pe(ξ(t)), (10)

where P is a symmetric positive definite matrix. Then V > 0
on R3\P . Taking the derivative of V with respect to t we
obtain:

V̇ (e(ξ(t))) = 1/2 (ėT (ξ(t))Pe(ξ(t)) + eT (ξ(t))P ė(ξ(t)))

= −1

2
eT (ξ(t))Qe(ξ(t)),

(11)

where Q = KTNT (ξ(t))N(ξ(t))P+PNT (ξ(t))N(ξ(t))K.
Let P = K, which is positive definite, then V̇ (ξ(t)) =
−||N(ξ(t))Ke(ξ(t))||2 ≤ 0 on R3\P .

Given r > 0, a ball is defined by Br = {ξ ∈ R3 :
||ξ|| ≤ r} ⊂ R3. Since P is bounded, r can be chosen
sufficiently large such that ξ(t)|t=0 ∈ Br, P ⊂ Br, and
α = min

||ξ||=r
V (e(ξ)) > 0. Take β ∈ (0, α) and let

Ωβ = {ξ ∈ Br : V (e(ξ)) ≤ β}. (12)

Obviously, Ωβ is in the interior of Br and it is compact.
Hence, (4) has a unique solution defined for all t ≥ 0
whenever ξ(0) ∈ Ωβ . Moreover, Ωβ is positively invariant
since V̇ (ξ(t)) ≤ 0. Let A = {ξ ∈ Ωβ : V̇ (ξ) = 0} = {ξ ∈
Ωβ : N(ξ)Ke(ξ) = 0} ⊂ M. Next we are going to prove
that the largest invariant set in A is itself. Note that A is the
union of two sets, i.e., A = A1 ∪ A2, where A1 = {ξ ∈
A : rank(N(ξ)) ≤ 1} and A2 = {ξ ∈ A : rank(N(ξ)) = 2}.
We consider the solutions of (4) starting from these two sets
respectively.

1) When the trajectory starts from A1, i.e., ξ(0) ∈ A1,
n1(ξ(0)) and n2(ξ(0)) are linearly dependent (this
includes the case where either of them is zero). Thus
(4) indicates that ξ̇(t)|t=0 = 0. Since the solution of
(4) exists and is unique, ξ(0) ∈ A1 ⇒ ξ(t) ≡ ξ(0) ∈
A1, t ≥ 0.

2) When the trajectory starts from A2, i.e., ξ(0) ∈ A2,
n1(ξ(0)) and n2(ξ(0)) are linearly independent. Then
(4) becomes ξ̇(t)|t=0 = τ , which is the tangent vector
of P at ξ(0). According to Lemma 1 and the existence
and uniqueness of solutions of ordinary differential
equations on manifolds (e.g. [11]), the trajectory ξ(t)
will not leave P , or A2. That is, ξ(0) ∈ A2 ⇒ ξ(t) ∈
A2, t ≥ 0.

The above discussion concludes that A is itself the largest
invariant set. Then according to LaSalle’s invariance princi-
ple (e.g. [13, Theorem 4.4]), every solution ξ ∈ R3 starting in
Ωβ approaches A ⊂M as t→∞. Since A1 ⊂ C, A2 ⊂ P
and dist(C,P) > 0 (by Assumption 1), it follows that
dist(A1,A2) > 0 and particularly, the solution converges
either to the desired path or the critical set as t→∞.

Theorem 2 (Global convergence): Let ξ(t) be the solu-
tion to (4). If P is bounded and either φ1(ξ) or φ2(ξ)
is radially unbounded with respect to ξ, ξ(t) will globally
converge to the set M = {p ∈ R3 : N(p)Ke(p) = 0} as
t→∞. Particularly, two outcomes are possible:

1) lim
t→∞

dist(ξ(t),P) = 0, that is, the solution globally
converges to the desired path,

2) lim
t→∞

dist(ξ(t), C) = 0, that is, the solution globally
converges to the critical set.

Proof: The proof is similar to that of Theorem 1.
However, since φi(ξ) is radially unbounded with respect to
ξ, that is, φi(ξ)→∞ as ||ξ|| → ∞, V (e(ξ)) is also radially
unbounded with respect to ξ. Then the set Ωβ is bounded for
all values of β > 0. Therefore, for any initial state ξ(0), no
matter how large ||ξ(0)|| is, the solution ξ(t) of (4) globally
approaches M as t → ∞. Then due to Assumption 1, the
solution converges globally either to the desired path or the
critical set.

B. Unbounded Desired Path

The analysis presented before for the bounded desired path
cannot be directly applied to the unbounded desired path
since for any ball Br containing part of the desired path,
α = min

||ξ||=r
V (e(ξ)) = 0, so the set Ωβ is not available.

Moreover, in this case, the maximum prolonged time of the
solution to (4) cannot be readily derived. Nevertheless, under
an additional condition and with different analysis, similar
results can still be obtained.

1) Maximum Prolonged Time: Assume that ||τ || = ||n1×
n2|| is upper bounded by κb, it can be proved that the
solution can be prolonged to infinity as Lemma 2 shows.
This assumption is satisfied by carefully choosing φi with
bounded ‖∇φi‖. For instance, φ1 = y− sin(x) and φ2 = z.

Lemma 2: If ||τ || is upper bounded by κb > 0, the
maximum interval of existence of the solution to (4) is
[0,∞).

Proof: Due to page limits, the proof will be given in
the full version of this paper.

Corollary 1: Assume that ||τ || is upper bounded, then∫ ∞
0

||N(ξ(t))Ke(ξ(t))||2dt = −
∫ ∞

0

V̇ (ξ(t))dt < +∞.
(13)

Proof: Due to page limits, the proof will be given in
the full version of this paper.

2) Convergence Results: As for unbounded desired path,
we need Assumptions 1, 2 and 3 to draw a similar conclusion.
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First we need the absolute continuity of the Lebesgue integral
(Lemma 3) to reach Corollary 2 for further discussion.

Lemma 3 (absolute continuity of Lebesgue integrals [14]):
If f is Lebesgue integrable on Rn, then for any ε > 0, there
exists δ > 0 such that for all measurable sets D ⊂ Rn with
measure m(D) < δ, ∫

D
|f |dm < ε. (14)

Now we are ready to prove the following results.
Corollary 2: For any ε > 0, there exists 0 < δ ≤ ε such

that for all intervals with length |∆| < δ,∫
∆

||N(ξ(t))Ke(ξ(t))||dt < 2ε.

Proof: Due to page limits, the proof will be given in
the full version of this paper.

Fig. 1. The illustration of the proof of Theorem 3.

Theorem 3 (Global convergence): Let ξ(t) be the solu-
tion to (4). If P is unbounded and ||τ || is upper bounded
by κb > 0, ξ(t) will converge to the set M = {p ∈ R3 :
N(p)Ke(p) = 0} as t→∞. Particularly, two outcomes are
possible:

1) lim
t→∞

dist(ξ(t),P) = 0, that is, the solution converges
to the desired path as t→∞,

2) lim
t→∞

dist(ξ(t), C) = 0, that is, the solution converges
to the critical set as t→∞.

Proof: Define the Lyapunov function candidate V (ξ(t))
as in Theorem 1 and denote η(ξ(t)) = ||N(ξ(t))Ke(ξ(t))||.
Suppose ξ(t) does not converge to M, then there exists a
sequence {tk}, and tk → ∞ as k → ∞, such that (due to
Assumption 3)

dist(ξ(tk),M) > δ > 0⇒ η(ξ(tk)) > ε > 0. (15)

Therefore, V̇ (ξ(tk)) = −η2(ξ(tk)) < −ε2. According to As-
sumption 3, there exists ε′ > 0 such that when dist(ξ,M) >
δ/2, one has η(ξ) > ε′. Since dist(ξ(tk),M) > δ, given a
ball B(ξ(tk), δ/4), then for any y ∈ B(ξ(tk), δ/4), it follows
that (see Fig. 1)

dist(y,M) > δ/2⇒ V̇ (y) < −ε′2. (16)

Taking ε = δ
2(2+κb) in Corollary 2, then there exists an

interval ∆ with length |∆| < ε such that∫
∆

||ξ̇(t)||dt =

∫
∆

||τ(ξ(t))−N(ξ(t))Ke(ξ(t))||dt

≤
∫

∆

||τ(ξ(t))||dt+

∫
∆

||N(ξ(t))Ke(ξ(t))||dt

≤ (κb + 2)ε <
δ

2
.

Then it follows that ξ[tk −∆/2, tk + ∆/2] ⊂ B(ξ(tk), δ/4).
Therefore, ∫ tk+∆/2

tk−∆/2

V̇ (ξ(t))dt < −ε′2∆. (17)

This leads to∫ ∞
0

V̇ (ξ(t))dt ≤
∞∑
k=1

∫ tk+∆/2

tk−∆/2

V̇ (ξ(t))dt

≤ −
∞∑
k=1

ε′2∆ ≤ −∞,
(18)

which contradicts Corollary 1. Therefore, ξ(t) converges to
M as t → ∞. Then due to Assumption 1, the solution
converges either to the desired path or the critical set.

Remark 3: For the case of unbounded desired path, the
results presented above is valid under the condition that ||τ ||
is upper bounded by κb. This seems restrictive. However,
by introducing a smooth bounding operator fb : Rn → Rn,
||fb(τ)|| can be guaranteed to be bounded and additionally,
fb(τ) is smooth. For example, fb(ξ) = ξ

1+||ξ||2 , where
ξ ∈ R3 and the upper bound is 1/2. However, ||fb(ξ)||
vanishes as ||ξ|| → ∞. Another better choice of the smooth
bounding operator contains a bump function. Note that the
smooth bounding operator neither changes the direction of
n1×n2 nor affects the speed of the convergence to the desired
path, which is dominated by the unmodified latter term as can
be seen from the time derivative of the Lyapunov function in
Theorem 1. Nevertheless, for practical reasons, it is desirable
to normalize the original guiding vector field, albeit possibly
leading to finite escape time. Due to page limits, the analysis
will be given in the full version of this paper.

IV. ILLUSTRATIVE EXAMPLES

In the previous sections, we have proved that based on
Assumptions 1, 2 and 3, the trajectory either converges to
the desired path or the critical set. However, it is desirable
that the set of trajectories which converge to the critical set
is of measure zero. Then in this case, convergence to the
desired path is almost globally guaranteed. For the 3D path
following problem, it is still difficult to draw this conclusion
without given explicit forms of φ1 and φ2. Even for the
same desired path, different choices of φ1 and φ2 will lead
to contrary results. In this section, examples are provided to
illustrate the idea and verify the previous theorems. First, a
definition and a lemma are provided for further discussion.

Definition 1 ( [10], stable manifold): Let ξ∗ ∈ C be a
critical point, and thus an equilibrium point of (4). The stable
manifold of ξ∗, denoted by W(ξ∗), is the set of all points
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ξ0 such that the solution of (4), starting at ξ(0) = ξ0, exists
for all t ≥ 0 and lim

t→∞
ξ(t) = ξ∗.

The following lemma is a corollary of the center manifold
theorem [15]. It provides an approach to determine whether
the stable manifold of a critical point is of measure zero.

Lemma 4: If there is at least one strictly unstable eigen-
values of the Jacobian matrix J(ξ∗) = ∂v(ξ)

∂ξ

∣∣∣
ξ=ξ∗

, i.e., ∃ i,
such that Re(λi(J(ξ∗))) > 0, thenW(ξ∗) is of measure zero.
Furthermore, if all of the eigenvalues are strictly unstable,
then W(ξ∗) = {ξ∗}.

Examples of a bounded desired path and an unbounded
desired path are provided. In addition, a counter-example rep-
resenting the same unbounded desired path is also discussed,
albeit with divergent trajectories. We use the normalized
guiding vector field for the simulations.

A. Bounded Desired Path

Consider

φ1(x, y, z) = (x− a)2 + (y − b)2 − r2,

φ2(x, y, z) = y2 + z2 −R2,

where a, b, R, r ∈ R and R > r > 0. φi = 0, i = 1, 2, is the
surface of a cylinder, which we refer to as the first and second
surface here. The shape of the desired path varies subject
to different values of b. In this example, it is assumed that
b ∈ (−R−r,−R+r)∪(R−r,R+r), and thus, for example,
the intersection 3D curve is a closed black line in Fig. 2(a).
In this case, the critical set C consists of a finite number of
isolated points. By definition, n1 = 2

[
x− a y − b 0

]T
and n2 = 2

[
0 y z

]T
. According to the definition of C,

one considers the set of points which satisfies rank(N(ξ)) ≤
1. In fact, they are three straight lines, denoted by L1, L2 and
L3, whose points satisfy respectively (a, b, z), (x, 0, 0) and
(a, y, 0), where x, y, z are to be determined. L1 and L2 turn
out to be the symmetric lines of the surfaces of the cylinder.
In addition, at each point of L3, the nonzero gradient vectors
are parallel, i.e., n1(ξ) ‖ n2(ξ).

Suppose now a = 0, b = 1.5, R = 2, r = 1 and k1 =
k2 = 1. It can be calculated that there are three isolated
critical points in total, with two points on L1 and one point
on L3 (see red plus signs in Fig. 2(a) and Fig. 2(b)). For each
of the critical points, the eigenvalues of the corresponding
Jacobian matrix have at least one strictly unstable eigenvalue.
Then it can be concluded that the stable manifold of each of
the critical points is of measure zero. So the trajectory will
almost globally converge to the desired path. In particular,
in Fig. 2(a), the trajectory starts from (a,−2, 0) on L3, then
it will converge to the critical point on that line. In fact, for
each point ξ except for the critical point on L3, the vector
field v(ξ) is parallel to this line, and thus once the trajectory
starts from a point on this line, it will not leave it. One may
assume that this is also true when the trajectory starts from
a point on L1 or L2. However, this is in fact not true for L1

or L2 (see Fig. 2(b)). In this case, taking L1 for example, for
each point ξ except for the critical point on L1, the vector
field is not parallel to L1. Instead, it “pulls” the trajectory to

(a)

(b) (c)

Fig. 2. Example 1: a bounded desired path. Trajectories (pink) converge
to a critical point (a) and to the desired path (b) respectively.

(a) (b)

Fig. 3. Example 2: an unbounded desired path. The trajectories (pink)
converges to the desired straight line. The blue circle is the starting point.

get closer to the second surface. In Fig. 2(b), the trajectory
starts from (a, b, 2.5) but converges to the desired path. Fig.
2(c) illustrates the error.

B. Unbounded Desired Path

Consider a simple unbounded desired path - a straight line
described by the intersection of two zero-level surfaces.

φ1(x, y, z) = y, φ2(x, y, z) = z.

It is easy to find out that in this case, the critical set is empty.
So the trajectory will always converge to the desired path as
t → ∞. Fig. 3(a) shows that the trajectory starting from
(−2,−2, 1) converges to the desired line, and the errors are
plotted in Fig. 3(b). Note that for clarity, only the vector
field in the z = 0 plane is plotted. However, given the same
desired path, but with different φi, i = 1, 2, the result can be
distinctly different. Consider

φ1(x, y, z) = ye−x, φ2(x, y, z) = z.
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(a) (b)

Fig. 4. Example 3: the same unbounded desired path as Example 2.
However, the trajectories (pink) does not converge to the desired straight
line. The blue circle is the starting point.

The desired path described by (φ1(ξ) = 0)∩ (φ2(ξ) = 0) is
the same straight line as the previous one. Nevertheless, when
the trajectory starts from (−2,−2, 1), it will not converge the
desired path though the norm of the error ||e|| is vanishing
(see Fig. 4(a) and Fig. 4(b)). Note that this does not conflict
with the theorems in this paper, because this case does not
satisfy Assumption 2 and 3. From this example it can be
manifested that given the same desired path, with different
φi, the convergence results can be even opposite. The as-
sumptions somehow provides criteria to choose “suitable” φi.
Another interesting example is an unbounded spiral, where
we can choose φ1 = x − cos(z) and φ2 = y − sin(z).
Since there are no critical points, the trajectory will globally
converge to the desired path.

V. CONCLUSION AND FUTURE WORK

This paper has provided a unified approach to the local and
global analysis of the 3D vector field for both bounded and
unbounded desired paths. The questions of the existence of
solutions and the convergence of the integral lines generated
by the 3D vector field are rigorously and comprehensively
studied. It has been proved that, under the assumptions
proposed in this paper, the trajectory will converge either to
the desired path or to the critical set, while for the normalized
3D vector field, it will possibly converge to the critical set
in finite time. Note that if the stable manifold of a critical
point is of measure zero, then the path-convergence is almost
globally guaranteed. Interestingly, a critical point happens
to be an equilibrium point of (4), so the path following
problem is converted to proving that these equilibrium points
are unstable.

Note that the investigation of the solution to the ODE
(4) is significant for robotics application. This is justified
as follows. Typically, a path-following controller contains
two sub-controllers, the outer one (kinematics) which takes
the states of the robot as input and calculates the desired
generalized velocities as output to the inner controller, and
the inner one (dynamics) which takes the desired generalized
velocities as input and computes the corresponding force
or toque as output to the robot. Assume that the inner
(dynamics) controller is sufficiently fast and precise, we may
consider the generalized velocities as the control inputs to
the robot. Therefore, the robot model can be described by a

simple kinematics model, such as a single-integrator model:
d
dtξ(t) = u(t), where ξ(t) ∈ R3 is the coordinate of the robot
and u(t) is the control input at time t. Let u(t) = v(ξ(t)),
where v is the vector field function as discussed before, and
then we only need to study the solution to (4). Even for a
nonholonomic robot model, this result is still useful [5].

Although Lemma 4 can be used to check the stability of
the critical points, a general analytic approach related to the
forms of φi remains challenging. A more realistic model
of the robot, such as a nonholonomic model with constant
moving speeds, and the effects of different error functions
ψ(·) will also be considered in the future work.
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