
 

 

 University of Groningen

Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging
Kroger, A. Pia P.; Paulusse, Jos M. J.

Published in:
Journal of Controlled Release

DOI:
10.1016/j.jconrel.2018.07.041

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kroger, A. P. P., & Paulusse, J. M. J. (2018). Single-chain polymer nanoparticles in controlled drug delivery
and targeted imaging. Journal of Controlled Release, 286, 326-347.
https://doi.org/10.1016/j.jconrel.2018.07.041

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1016/j.jconrel.2018.07.041
https://research.rug.nl/en/publications/03aec306-88c9-4d1f-a388-98338f9be7c7
https://doi.org/10.1016/j.jconrel.2018.07.041


Contents lists available at ScienceDirect

Journal of Controlled Release

journal homepage: www.elsevier.com/locate/jconrel

Review article

Single-chain polymer nanoparticles in controlled drug delivery and targeted
imaging

A. Pia P. Krögera, Jos M.J. Paulussea,b,⁎

a Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science
and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
bDepartment of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands

A R T I C L E I N F O

Keywords:
Single chain polymer nanoparticles
Intramolecular cross-linking
Biomedical applications
Targeted imaging
Controlled drug delivery

A B S T R A C T

As a relatively new class of materials, single-chain polymer nanoparticles (SCNPs) just entered the field of
(biomedical) applications, with recent advances in polymer science enabling the formation of bio-inspired na-
nosized architectures. Exclusive intramolecular collapse of individual polymer chains results in individual na-
noparticles. With sizes an order of magnitude smaller than conventional polymer nanoparticles, SCNPs are in the
size regime of many proteins and viruses (1–20 nm). Multifaceted syntheses and design strategies give access to a
wide set of highly modular SCNP materials. This review describes how SCNPs have been rendered water-soluble
and highlights ongoing research efforts towards biocompatible SCNPs with tunable properties for controlled
drug delivery, targeted imaging and protein mimicry.

1. Introduction

Polymer nanoparticles based on individual polymer chains, coined
Single-Chain Polymer Nanoparticles (SCNPs) have been developed over
the past two decades [1–4]. SCNPs are accomplished by exclusive in-
tramolecularly collapsing/folding of the polymer, which leads to ex-
ceptionally small polymer nanoparticles in the sub-20 nm size range.
The collapse is either achieved by self-assembly or by covalent cross-
linking of functional groups on the precursor polymer or rather medi-
ated by external cross-linkers [1]. SCNPs have been prepared via mul-
tiple ways, including via irreversible and dynamic covalent cross-
linking reactions such as thermal cycloaddition [5, 6], Cu(I)-mediated
click chemistry [7–9], olefin metathesis [10], disulfide [11] and hy-
drazone [12] formation as well as via non-covalent cross-linking in-
teractions, including hydrogen-bonding motifs and metal coordination,
which have been comprehensively reviewed earlier [1–4, 13–18].
Whereas SCNP formation was originally carried out under very harsh
conditions [5, 19], orthogonal and click-chemistry techniques allowed
mild reaction conditions, complex design strategies and upscaling of the
synthesis [20–22]. Furthermore, a variety of single-chain architectures
has been introduced from single block and multiblock to star particles,
hairpins and tadpole molecules, in part aimed at approaching naturally
occurring materials, such as proteins [23–26].

Proteins occur in biological organisms and display a wide variety of

functions including for example structural support, transport, and cat-
alysis. Proteins in nature are directly translated from the corresponding
RNA, one amino acid after another, by ribosomes resulting in perfectly
defined structures (PDI= 1) with exquisite control over composition
and (dynamic) function. In situ synthesis of proteins is limited by the
number of amino acids, sequence length and/or maintained function of
the proteins [27]. Therefore, not only synthetic proteins, but also pro-
tein-like materials are highly sought after, for example aiming at in-
creasing biocompatibility of materials. Moreover, the substrate speci-
ficity of proteins is not surpassed by synthetic means and is therefore of
great interest in catalysis applications or in cell targeting. To achieve
such functions, cooperative binding effects are pivotal, which may be
provided by synthetic polymer analogues.

A wide range of design strategies for SCNPs has been developed to
adjust the properties of polymers and particles. Next to broadening the
synthetic toolbox and achieving control over size and SCNP folding,
recent work has focused on designing SCNPs towards (biomedical)
applications. In particular their small size can be expected to cause
unusual biodistribution behavior [28]. For nanoparticles below 6 nm,
full renal clearance is to be expected, which would certainly increase
biocompatibility, but also limit their potential to short-time applica-
tions [29]. When regarding distribution studies of nanomaterials in
general, size plays a major role. Whereas liposomes of< 200 nm have
been reported to accumulate in the spleen, liposomes below 70 nm are
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predominantly found in the liver after IV administration to mice [30].
For gold nanoparticles, series of differently sized nanoparticles
(10–250 nm [31] and 15–200 nm [32]) were intravenously adminis-
tered to mice and rats respectively and only the smallest species (10 nm
and 15 nm respectively) were detected in the rodents’ brains [31, 32].
Further, 15–100-nm-sized gold nanoparticles were also evaluated in
terms of tumor uptake and penetration depth in vitro and in vivo, and
accompanied by simulations, showing increased tumor penetration
depths for smaller nanoparticles with increased tumor tissue size [33].
In general, size plays a central role in the biodistribution and lifetime in
the body of nanomaterials [28]. The exact size of polyamidoamine
dendrimers has for example been demonstrated to play a crucial role in
their cell uptake and blood-circulation times [34]. Whereas dendrimers
of 6.7 nm accumulated in the brains of dogs, dendrimers of 4.3 nm were
undetectable. Consequently, proper size determination and tuning is
crucial for in vivo analysis.

The intramolecular interactions in SCNPs, which establish their 3D-
structure, and the exceptionally small sizes of SCNPs, may give unique
advantages in these biomedical applications, in particular in targeting
elusive or difficult to reach tissues, such as the brain or dense tumors,
while harnessing a therapeutic cargo. This review focuses on the design
parameters for SCNPs to ready them for biomedical applications, such
as protein mimicry, controlled drug delivery, and targeted imaging
applications.

2. Characterization of SCNPs

The unusually small size of SCNPs may complicate their char-
acterization. However, a combination of characterization techniques
ranging from size exclusion chromatography (SEC), to light scattering
and NMR techniques, have been successfully used to determine SCNP
sizes, their size reduction and the particles’ morphologies.

The relative size reduction from polymer to collapsed SCNP is ty-
pically observed by SEC as an apparent size reduction due to the re-
duced hydrodynamic radius of SCNPs [35]. Additionally, SEC coupled
detectors such as refractive index (RI), UV-vis, multi-angle light scat-
tering (MALS)/static light scattering (SLS), fluorescence and visc-
ometers can provide further information about the SCNPs. Self-as-
sembled SCNP structures can be even more challenging to analyze via
chromatography methods, as supramolecular interactions are con-
centration and solvent dependent and comparable reference polymers
are not always available. Berda and co-workers demonstrated the use-
fulness of a SEC coupled MALS detector, which was sensitive to multi-
chain aggregates, which were not detectable with an RI detector [11,
36]. MALS analysis further confirms a preserved (absolute) molecular
weight of polymer and SCNP, despite differing elution times/hydro-
dynamic radii. The SCNP radius of gyration (Rg) cannot be determined
by MALS as SCNPs are usually smaller than 10 nm. Instead, intrinsic
viscosity ([η]) obtained by a SEC coupled viscometer reveals RH, which
should be in line with the elution order from the column. Additionally,
viscometric data yield the Mark–Houwink–Sakurada parameter a,
which is related to the excluded volume parameter or scaling exponent
(ν) from the Flory mean field theory of a self-avoiding polymer chain
[37]. Both parameters provide information on the coiling degree of the
polymer or SCNP and can also be estimated in the bulk [37–39].

Commonly, sizes of polymers and nanoparticles in solution are ob-
tained from dynamic light scattering (DLS) based on their diffusion in
solution, which influences the fluctuation in scattering intensity.
Intensity of the scattered light is dependent on particle radius to the 6th
power, and hence more sensitive for larger particles. To circumvent this
influence of bigger structures on scattering intensity, DLS in material
science is often transported to number or even volume plots under the
assumption of the Mie theory, which makes the distribution more error-
prone and larger particles are neglected [40, 41]. As these assumptions
are not necessarily fulfilled for SCNPs, one must make careful use of
such plots and only as complementary information. Similar to DLS,

diffusion ordered spectroscopy (DOSY) NMR determines sizes based on
the diffusion of particles, and hence, can be used by to verify DLS data
without the influence of scattering [16, 42]. Additionally, viscometric
measurements provide also the hydrodynamic radius (RH), as well as
[η], which drops in case of merely intramolecular cross-linking.

In contrast to MALS, small-angle neutron scattering (SANS) and
small-angle X-ray scattering (SAXS) measurements can provide Rg also
for structures< 10 nm. Additionally, ν is obtained via the form factor
[38]. Fitting of theoretical form factors can attribute geometrical
shapes, such as coils and spheres, to the SCNP structure and emerging
minima in the intensity profile gives further information about how
monodisperse and defined the SCNP structure is [43–47]. However,
access to small angle facilities and instruments limits the practicality for
routine experiments of this approach.

High resolution imaging techniques, such as atomic force micro-
scopy (AFM) and transmission electron microscopy (TEM), have en-
abled detailed imaging of SCNPs. However, these methods image the
particles in the dry state and are usually at their resolution limits for
such small particles, and therefore only of limited use in determining
size differences. Nonetheless, AFM was successfully applied to support
SCNP size differences observed by other methods such as SEC and DLS
and is even suitable for dynamic systems [13, 42, 48–51]. For this
purpose, the measured height and radius of the particle can be used to
deduce sizes of spherical particles, assuming globular particles in so-
lution.

Conventionally, SCNP formation is conducted under ultra-high di-
lution conditions (≪1mg/mL) to avoid multi-chain constructs.
However, this technique limits the feasibility of SCNP formation in
particular with regard to scalability for industrial applications. Hawker
and coworkers introduced the continuous addition technique for SCNP
preparation, where the polymer is slowly added to a solution suitable
for cross-linking [5, 20]. In this procedure, the polymer is collapsed
upon an external stimuli, such as temperature or a cross-linker molecule
and the slow addition allows a low local concentration in the moment
of cross-linking, enabling much higher concentrations in total (up to
10mg/mL) [52–54]. Essential for this approach is a fast, efficient and
stable cross-linking technique and it is hence, not applicable for dy-
namic or self-assembled systems. Alternatively, application of bulky,
shielding polymer moieties, such as PEG, allowed SCNP formation at up
to 100mg/mL for both cross-linked [55, 56] and self-assembled systems
[16, 57, 58]. Both approaches allow SCNPs in gram-scale, as long as the
nanoparticles itself are stable.

3. Design of SCNPs as biomaterials

Selection of the polymer precursor determines the majority of the
final SCNP properties and is therefore crucial in its design as bioma-
terial. A thermoresponsive polymer will result in a thermoresponsive
SCNP [42]. Moreover, size and density of SCNPs are defined by the
length of the polymer and its degree of collapsing as will be discussed in
Section 3.3. Consequently, control over the properties of the precursor
polymer results in control over the SCNPs. For this reason, living/
controlled polymerizations, such as reversible addition−fragmentation
chain-transfer (RAFT) polymerization, atom transfer radical poly-
merization (ATRP), ring-opening metathesis polymerization (ROMP),
nitroxide-mediated polymerization (NMP) are most commonly em-
ployed in precursor polymer synthesis. Furthermore, controlled poly-
merization techniques provide control over composition, e.g. random
vs. multiblock vs. gradient copolymers. However, biosynthetic poly-
mers based on dextran [52] and poly(γ-glutamic acid) (γ-PGA) [43, 59,
60] have also been successfully utilized as SCNP precursors. Such well-
established and approved biological precursors introduce naturally
occurring motifs to the particles and increase adoption of biocompatible
SCNPs. Another way of resembling naturally occurring motifs has been
recently approached by equipping SCNPs with synthetic sugar moieties
– either by employing carbohydrate glycomonomers for the precursor
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[61] or by functionalization after SCNP formation [62].
Finally, also the SCNP formation technique influences its final

properties. Stability of the SCNP structure is basically determined by
the employed cross-linking technique, whether the interaction is irre-
versible covalent, dynamic covalent or supramolecular. Dynamic cross-
links are stable under certain conditions, and vice versa can be cleaved
under different conditions and hence introduce a trigger, such as pH
[63], temperature [12], redox [64], and light [65, 66] for formation
and opening of the SCNP in water, which may aid controlled drug re-
lease from the particles or provide structural changes that promote
retention in tissues of interest. In a similar manner, supramolecular
interactions can be tuned, as seen in examples of β-cyclodextrins (β-
CD), which can be thermoresponsive [67] or redox-responsive [68].
Even permanent cross-linkers can introduce further properties to the
particles, such as pH-responsiveness, metal complexation or fluores-
cence [8, 11, 69].

3.1. Towards water

The first requirement to developing SCNPs into a biomaterial is to
render them water-soluble or water-dispersible. In principal, four gen-
eral strategies can be distinguished in achieving water-soluble SCNPs:
1.) preparation of SCNPs in organic media and post-formation func-
tionalization of these particles; 2.) direct cross-linking of water-soluble
polymers in water or from amphiphilic random copolymers – 3.) either
to equip SCNP with amphiphilic properties or 4.) to induce unim-
olecular self-folding in water. These design strategies are discussed
below (Fig. 1).

3.1.1. Post-formation modification of SCNPs
Covalently cross-linked water-soluble systems based on water-in-

soluble precursors have been successfully obtained by post-formation
modification (Table 1). In one of the earliest examples of water-soluble
SCNPs, a benzothiophene derivative, 5-vinyl-1,3-dihydrobenzo[c]thio-
phene 2,2-dioxide, was utilized as cross-linkable unit and copolymer-
ized with benzyl acrylate via nitroxide-mediated polymerization in
DMF [19]. The cross-linking to form SCNPs occurred at 250 °C and
subsequent to the formation, benzyl units were cleaved off with H2 over
Pd/C to yield carboxylic acid-functionalized SCNPs. In a follow-up
study, the carboxylic acid moieties were further modified with amines
for conjugation of fluorophores, dendritic structures and peptides,
achieving the first SCNPs for biomedical purposes as validated in cel-
lular uptake experiments [70]. Likewise, benzyl acrylate SCNPs, pre-
pared via Bergman cyclization, were rendered water-soluble [71]. After
cleaving the benzyl moiety, the water-soluble SCNPs served as a size-
tuning template for ZnS and CdS quantum dot (QD) formation.

In a similar manner, t-butyl protected copolymers were applied to
prepare carboxylate SCNPs [8]. In acetone, t-butyl methacrylate was
polymerized with 2-chloroethyl methacrylate, which was later con-
verted into an azide for Cu(I)-catalyzed click cross-linking. The em-
ployed diazide cross-linker enabled Gd(III) complexation for potential
use as contrast agent in magnetic resonance imaging (MRI). After SCNP
formation, the t-butyl group was removed by trifluoroacetic acid (TFA)
to render them water-soluble. A similar deprotection strategy was used
for cross-linking of an ABA block copolymer with a semiconducting B
block and t-butyl acrylate/cross-linking unit A block [72]. The pro-
tecting group was cleaved of before nanoparticle formation; however,
the carboxylic acid groups were not sufficient to obtain water solubility.
After SCNP formation via benzocyclobutene cross-linking, the car-
boxylic acid groups were functionalized with polyethylene glycol (PEG)
amines to render them water-soluble.

Two approaches to render SCNPs water-soluble were demonstrated
on polymers of norbornene dicarboximides derivates by ROMP to yield
unsaturated moieties [73]. Polyolefins were cross-linked via ring-
closing metathesis (RCM), producing even more unsaturated bonds.
Water solubility of the SCNPs was achieved by hydroxylation of the
alkene bonds in the backbone with osmium tetroxide and N-methyl-
morpholine N-oxide, as well as by copolymerizing solketal functiona-
lized norbornene dicarboximides and cleaving the acetal groups under
acidic conditions after SCNP formation. These RCM SCNPs were used as
a platform for systematical investigation of the effect of surface mod-
ification on cellular uptake as discussed in Section 3.4 [74]. To over-
come the harsh reaction conditions (i.e. K2OsO4), Zimmerman and co-
workers optimized their protocol by increasing the amount of solketal
groups in the particle via using a polysolketal dendritic monomer, re-
placing potassium osmate completely with TFA [75]. The optimized
protocol was compatible with an array of fluorescent co-monomers.

Recently, solketal methacrylate was employed to achieve water-
soluble SCNPs via two strategies. RAFT polymerization of a xanthate
methacrylate with solketal methacrylate yielded a copolymer with
protected thiol and glycol moieties [76]. Whereas the thiol moieties are
liberated by amines, the acetal group was cleaved off at low pH. Besides
cross-linking the deprotected glycol polymer directly in aqueous en-
vironment, the reversed order, i.e. preparing SCNPs in dichloromethane
and subsequently deprotecting the acetal groups for water solubility,
was demonstrated as well. Both strategies were demonstrated to be
effective in drug encapsulation. Consequently, formation of comparable
SCNP can be carried out both in apolar and polar solvents, which de-
creases the effects of drug lipophilicity on the encapsulation process.

3.1.2. SCNP formation in water
As summarized in Table 2, several strategies for covalently cross-

Fig. 1. Schematic overview of employed strategies to prepare water-soluble SCNPs.
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linking SCNPs directly in water have been developed, for example
based on amidation of carbonyl groups [12, 59]. All water-tolerant
intramolecular cross-linking techniques have in common their mild
reaction conditions. As such, carboxyl groups of biosynthetic γ-PGA
were cross-linked at basic pH with (ethylenedioxy)diethylamine acti-
vated by a carbodiimide, aiming for novel drug carriers [59].

Dynamic cross-linkers, in the form of acyl hydrazones, were in-
troduced into a PEG-MA copolymer with aromatic aldehydes to prepare
responsive SCNPs (Fig. 2) [12]. At pH 4.5, SCNPs displayed gel for-
mation upon heating above the lower critical solution temperatures
(LCSTs, 40–60 °C) and, importantly, the process was reversible upon
cooling. SCNPs were reobtained after days to months, as confirmed by
SEC and DLS measurements. At pH 7, however, the hydrazine linkages
were stable and, hence, SCNPs and gels, formed at pH 4.5, did not in-
terconvert upon temperature changes. Also, for irreversible cross-linked
SCNPs, no hydrogel formation with increasing the temperature above
the LCST was observed. Double stimuli-responsiveness makes such
systems interesting for drug release materials with hydrogels serving as
a constantly releasing nanoparticle reservoir.

A similar aldehyde amidation technique was further utilized by
Fulton and co-workers to functionalize benzaldehyde moieties of
polyacrylamide polymers with either mannose or galactose benzoyl
hydrazides [62].Via transamination with succinic dihydrazide, in-
tramolecular cross-link were introduced. SCNPs with specific molecular
recognition by surfaces coated with Concanavalin A or with Escheria coli
(E. coli) heat labile toxin, respectively, were successfully developed. The
carbohydrate functionalized SCNPs formed a film on the com-
plementary surfaces, whereas on the mismatched surfaces no film for-
mation was observed by AFM. Likewise, dynamic cross-linking was
crucial in formation, highlighting the importance of interchain cross-
links in film formation.

Functional SCNPs were prepared from poly(methacrylic acid) con-
jugated with alkoxyamine groups, which were reacted with aldehyde
groups of a diethylenetriaminepentaacetic acid (DTPA) derivate at pH 6
[77]. DTPA further served to chelate 67Ga for single-photon emission

computed tomography (SPECT) imaging in vivo, and activated car-
boxylic acids were utilized for amide formation with a peptide targeting
agent against pancreatic cancer.

In a completely different fashion, amphiphilic mono-tethered
SCNPs, based on a poly(ε-caprolactone)-s-s-poly(2-(dimethylamino)
ethyl methacrylate (PCL-S-S-PDMAEMA) block copolymer, were ap-
plied to act as surfactant for suspension polymerization of styrene in
water [78]. In this procedure, 1,4-diiodobutane intramolecularly qua-
ternizes the tertiary amine of the PDMAEMA block and hence, produ-
cing a cationic head, which aligns to the aqueous phase in suspensions.

Recently, Barner-Kowollik and co-workers transferred their pre-
viously developed SCNP formation by nitrile imine-mediated tetra-
zole–ene cycloaddition (NITEC) to water [69, 79]. Via light-induced
cross-linking between tetrazole (Tet) and maleimide (Mal) derivates
under high dilution (0.017mg/mL), fluorescence arises upon SCNP
formation due to the pyrazoline adduct. Applying poly(acrylic acid)
(PAA) as the backbone for water-soluble precursors, led to a competing
reaction between the tetrazole and the carboxylic acid moieties, re-
ferred to as nitrile imine-carboxylic acid ligation (NICAL). In contrast to
reactions between polymers and small molecules, NITEC was preferred
over NICAL as intramolecular cross-linking reaction, resulting in a
fluorescence emission max. of ~560 nm. On the other hand, SCNPs
prepared from PAA with conventional triazole functionalization, and
therefore formed exclusively by NICAL cross-linking, displayed blue
shifted fluorescence properties with an emission max. of ~520 nm.
Further, the Tet and Mal functionalities were conjugated on a mannose
methacrylate polymer to form glycopolymeric SCNP [61]. For this
purpose, acetyl-protected mannose methacrylate was RAFT poly-
merized, and after deprotecting Tet and Mal acids were conjugated to
the polymer via EDC coupling to enable SCNP formation. Inspired by
viruses, the obtained carbohydrate SCNPs were coated on nanodia-
monds to promote cellular uptake of the nanodiamonds.

As thiol-Michael addition can take place in organic media as well as
in (basic) water, it has also been employed as intramolecular cross-
linking technique in water - using both acrylate- and thiol-containing

Table 1
Overview of post-formation functionalization methods to render SCNPs water-soluble.
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polymer precursors [52, 76, 80]. For the first, the biopolymer dextran
was decorated with methacrylates and cross-linked via a dithiol. Al-
ternatively, thiol-protected monomers were copolymerized with water-
compatible monomers via RAFT polymerization and after deprotection,
reacted with a diacrylate cross-linker. In both cases, mono reactive
species were utilized for post-formation functionalization – either for

fluorescence labeling or for radiolabeling as applied in initial in vivo
studies [52, 76]. Likewise, an antigen mimetic was added to the dextran
SCNPs in order to trigger immune response [80].

Proteins fold in water mainly due to supramolecular interactions in
water. Supramolecular assembly of polymers, using host-guest inter-
actions with nor-seco-cucurbit[10]uril (CB[10]) or with cucurbit[8]uril

Table 2
Intramolecular cross-linking methods for SCNP formation in water.
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(CB[8]) as cross-linking method, is readily performed in water [50, 81].
Poly(N-hydroxyethylacrylamide) (pHEAA) was prepared by ATRP and
functionalized with methyl viologen as a guest. By addition of CB to the
aqueous polymer solution (with ≤0.1 mg/mL), nanoparticles between
30 and 50 nm in hydrodynamic radius were obtained. Higher con-
centrations of the polymer resulted in multi-chain assemblies. Further,
β-CD as an established host, conjugated onto acrylamides, resulted in
SCNP folding in water. In this procedure, pHEAA, partially reacted with
tosyl β-CD, self-assembled upon addition of bridged bis(ferrocene) in
ethanol solution to yield redox-responsive SCNPs [68]. In a different
class of supramolecular SCNPs, metal-coordination in water is exploited
(Table 3). 2-Hydroxypropylmethacrylamide (HPMAA), as either block
or random copolymer with an imidazole acrylamide, were prepared via
aqueous RAFT polymerization and have shown to form SCNP com-
plexes with copper(II) at low pH [82, 83]. The lower the pH, the more
imidazolium units were ionized, which caused weaker Cu(II) co-
ordination and simultaneously, increased electrostatic repulsion be-
tween the particles. Above pH 5.5, the block copolymer SCNPs started
to assemble into larger structures, such as micelles, and larger net-
works, whereas the SCNPs from random copolymers with 9% imidazole
monomer units formed stabled nanoclusters of 18 nm, which proved to
be redox-responsive. Furthermore, Cai and co-workers demonstrated a
dual folding of an ABC HPMAA block copolymer with an imidazolium
and a quaternary amine moiety block, resulting in two individual Cu(II)
coordinating compartments [84]. A less pH sensitive approach towards
SCNP folding via copper complexation was demonstrated by Bai et al.
[85]. Cu2+ was chelated by aspartate, whereas imidazolium alkyl
groups permit hydrophilic particles with hydrophobic compartments.
Reduction to Cu(I) was performed to furnish the particles with catalytic
activity in cellular environment with reasonable cell viabilities. Besides
copper, Fe2+ ions were also successfully applied to induce SCNPs col-
lapse [86]. Addition of pHEAA containing 5 or 10% terpyridine func-
tionalized ethyl acrylate to a 60 °C heated FeCl2 solution led to SCNP
formation as was accompanied by a color change. Metal-coordinating
SCNPs resemble metal-coordinating proteins and may therefore have
useful applications as biomaterials for catalysis. Despite metal asso-
ciated toxicity, primary cell toxicity studies did not reveal cytotoxic
effects of the tested materials as will be discussed below.

3.1.3. SCNPs from amphiphilic random copolymers
In addition to polymer cross-linking in water, amphiphilic random

copolymers (ARPs) are i.a. utilized to covalently cross-link polymers
intramolecularly in organic solvents and endowing them with amphi-
philic solubility. For example, Cu(I) catalyzed click chemistry was
performed in DMF on a NIPAM copolymer with alkyne and azide
functionalities, resulting in water-soluble SCNPs [42]. pNIPAM further
supported intramolecular photodimerization of coumarin-moieties in
THF [66]. THF is a good solvent for coumarin, hence preventing for-
mation of multi-chain aggregates, but also slows down cross-linking.
Contraction of SCNPs was observed upon dialysis to water, which was
assigned to the hydrophobicity of coumarin. PEG methyl ether metha-
crylate (PEG MA) even granted water solubility when employed as a
comonomer to polystyrene SCNPs with benzimidazolium cross-links
[87]. Poly(PEG acrylate)-(ε-caprolactone acrylate) copolymers were
further intramolecular cross-linked by ring-opening polymerization in
chloroform and achieving water-soluble SCNPs, which were further
tested on cells with a view to application as drug delivery agent [55]. In
addition, 4-acryloylmorpholine and hydroxyethyl acrylate (HEA) co-
polymer was employed to allow isocyanate cross-linking in di-
chloromethane and still prepare water-soluble SCNPs [88].

After Berda and co-workers employed redox-responsive disulfide
containing cross-linkers for SCNPs in THF [11], the group of Thayu-
manavan developed water-soluble SCNP that were formed through
formation of disulfide bridges [64, 89]. In the presence of dithiothreitol
(DTT), pyridyldisulfide units in a hydroxyethyl methacrylate (HEMA)
copolymer underwent disulfide exchange in methanol to form SCNPs as
will be discussed in Section 4.2. The concentration of DTT determined
the extent of disulfide-thiol exchange and the size of the formed SCNPs.
In contrast, SCNP formation was found to be reversible at high levels of
DTT. According to the authors, the selection of a good (organic) solvent
is important to avoid multi-chain aggregation and to allow SCNP
synthesis at concentrations of up to 10mg/mL. Nevertheless, the in-
corporation of HEMA moieties was sufficient to render the disulfide
SCNPs water-soluble.

Furthermore, ARPs can undergo solvent-driven self-sorting into
unimolecular particles without site-specific interactions (ARP-SCNPs).
These self-sorting interactions can be classified into two types: self-
folded SCNPs (for predominantly hydrophilic ARPs) [90–93] and

Fig. 2. Formation of dynamic covalently cross-linked single-chain polymer nanoparticles in water, and reversible gel formation upon heating. Adapted from ref. [12]
with permission of John Wiley Sons, Inc. (2012).
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collapsed, so-called colloidal unimolecar polymers (CUPs) (for pre-
dominantly hydrophobic ARPs) [94–96].

3.1.3.1. Self –folding amphiphilic random copolymers. Whereas
amphiphilic diblock copolymers usually undergo formation of multi-
chain structures for phase separation, ARPs can self-fold into
unimolecular solubilized micelles, and are likewise also considered
SCNPs [91]. If in an appropriate ratio, the hydrophobic/hydrophilic
interactions of the amphiphilic monomers drive the copolymer to
intramolecular self-assembly. To yield amphiphilic, water-soluble
random copolymers, either hydrophilic/ionic or amphiphilic
monomers, such as NIPAM or PEG MA, as extensively studied by

Sawamoto and co-workers, are polymerized with lipo- or fluorophilic
monomers [90–93]. For water-compatible SCNPs, the polymerization is
usually conducted in organic environment, whereupon the self-folding
takes place in aqueous environment. Whereas ionic ARPs may display
pH-responsiveness, PEG and NIPAM monomers introduce thermo-
responsiveness [97]. Alternatively, the group of Akashi grafted γ-PGA
with phenylalanine, resulting in polymers of 140 kg/mol, which form
SCNPs in water [43, 60]. Another ARP grafting approach was shown by
Baglioni and co-workers with grafting PEG with poly(vinyl acetate)
(pVAc), which has been utilized for encapsulation of small molecules as
will be discussed later [98].

Considering that these ARP SCNPs consist primarily of the employed

Table 3
Self-complementary supramolecular interactions for SCNP assembly in water.
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copolymers without additional steps, it is the most straightforward
SCNP synthesis - especially since even free radical polymerized copo-
lymers have yielded unimer aggregates [57, 93]. However, con-
centrating these unimolecular micelles has limitations, as larger ag-
gregates will form, even though PEG ARPs were stable at 100 mg/mL
for over 4 months [57]; and the stability of these SCNPs depends
strongly on environment and temperature. Combination of self-folded
copolymers with cross-linking techniques fixates the folding of the
polymer or pre-folds the polymer for cross-linking. In this respect, PEG
MA increased the stability of micelles when equipped with a dodecyl
methacrylate core and enabled radical cross-linking of methacrylate-
decorated HEMA at rather high concentration (10 wt%) [25]. In a si-
milar matter, aromatic groups in a poly(N-phenyl)/acrylamide/acrylic
acid ARP supported the amidation with hexamethylenediamine of
carboxylic acids in acetonitrile and higher incorporation ratios of
phenyl groups resulted in denser SCNPs [99].

Pomposo and co-workers studied copper-induced SCNP folding with
an amphiphilic random PEG MA copolymer in both THF and water
[100, 101]. 2-Acetoacetoxy ethyl methacrylate (AAEMA) was utilized
to chelate copper and provided the polymer with hydrophobic units.
Further, they demonstrated through SAXS measurements and molecular
dynamics simulations, that cross-linking in water as a bad solvent for
AAEMA, led to more globular SCNPs than formation in THF.

Furthermore, self-sorting has been applied successfully to support
hydrogen-bonding motifs in SCNP formation in water. Sawamoto and
co-workers demonstrated the self-assembly of hydrophobic urea- and
urethane-functional motifs in random PEG MA copolymers into SCNPs
[44]. Similarly, self-complementary sextuple hydrogen-bonded uracil-
diamido-pyridine (U-DPy) motifs form dimers in such PEG MA copo-
lymers [102, 103]. Random incorporation of methacrylate functional
chiral benzene-1,3,5-tricarboxamide (BTA) moieties even resulted in
the formation of helical aggregates with hydrophobic cavities and de-
monstrated catalytic activity in water upon incorporation of a ruthe-
nium complex [16]. In order to prepare water-soluble BTA ARPs with
controlled composition by post-polymerization functionalization, the
PEG was replaced with polyetheramines (Jeffamine) [104]. These BTA
ARP SCNPs were further utilized in several enzyme-mimicking catalysis
studies in water [104–109].

3.1.3.2. Colloidal unimolecular polymers (CUPs). Colloidal unimolecular
polymers (CUPs) are unimolecular aggregates of polymers collapsed
due to the hydrophilic/hydrophobic interactions between polymer and
solvent [94–96]. Contrary to self-folding amphiphilic random
copolymers (vide supra), CUPs are ARPs that are insoluble in water
and situated as a suspension in water. Formation via stripping of
organic solvent from a water/organic solvent polymer solution leads to
a collapse of the hydrophobic core. Whereas the self-folding of ARPs
leads to sparse structures, the collapse of hydrophobic copolymers
results in compact particles with a water-free core. In this process, a
hydrophobic to hydrophilic balance of around 9:1, as well as slow
addition of water to the organic phase are crucial. Usually
methacrylates are employed as a hydrophobic backbone, while a
cationic comonomer serves as the hydrophilic counterpart, resulting
in a hydration shell and stabilization of the particles by electrostatic
repulsions [110, 111]. However, CUPs have not yet been consider for
medical applications and will not be further considered here.

3.2. Post-polymerization/-formation modification

An extensive toolbox for post-polymerization functionalization has
been developed over the years and has been applied to SCNPs as well
[112]. Post-polymerization is often used to render SCNPs water-soluble
or to add functionality and complexity either to the polymer or to the
SCNPs, to circumvent interference with the polymerization or SCNP
formation technique. A popular approach for SCNP functionalization is
amidation of carboxylic acids with functional amines, such as in the

addition of gadolinium(III)-chelating groups [72]. For protein con-
jugation to SCNPs, N-hydroxysuccinimide ester (NHS) and pyridyl
disulfide end groups were utilized to respectively attach amine or thiol
groups on the protein to fluorous ARPs for potential protein targeting
[113].

Also, pentafluorophenol-ester (PFP) polymers offer an excellent
platform for modifications with amines or alcohols and have been uti-
lized to ease the SCNP precursor preparation [104, 114]. Although the
pentafluorophenol-ester is very suitable for post-modification, until
now it was only utilized to prepare precursors for SCNPs, but not yet to
functionalize SCNPs or to render them water-soluble.

Fluorescent nanoparticles greatly facilitate their tracking in in vitro
and in vivo models. Besides a selection of SCNPs systems where fluor-
escence arises from the cross-linking procedure, the polymer or the
nanoparticle itself can be decorated with fluorescent labels as reviewed
in detail elsewhere [115]. Many different fluorophores, covering a
broad range of emission wavelengths (300–700 nm), have been em-
ployed in SCNP formation. Alternatively, radiolabeling of SCNPs has
been successfully carried out with chelators, such as DTPA and 1,4,7-
triazacyclononane-1,4-diacetic acid (NODA), binding gallium-67
(67Ga), and were used in in vivo imaging of SCNPs [52, 77]. However, as
the different SCNP systems are based on different chemistries that
generally require a high degree of orthogonality, labeling still requires
individual adjustment of each SCNP system.

Another important application of post-formation functionalization
of SCNPs is in the incorporation of targeting moieties. For example, the
addition of a pancreatic cancer targeting peptide onto carboxylic acid
SCNPs via lysine moieties resulted in increased targeting in mice with
induced pancreatic cancer as discussed in Section 4.2 [77]. Similarly, as
pancreatic cancer vaccines, a mimic of the carbohydrate α-Tn antigen
was added via a fluorinated amine spacer to carboxylic acid modified
dextran SCNPs [80].

A pioneering example of SCNP post-functionalization to tune it for
biomedical purposes is given by Harth and co-workers [70]. First,
benzyl acrylate SCNPs were deprotected to yield water-soluble, car-
boxylate-functional SCNPs, which were further conjugated with ethy-
lenediamines and maleimide PEG hydrazides. The maleimide was re-
acted with a mono-thiol dendrimeric unit for targeting; whereas NHS
coupling was utilized for fluorescent labeling and addition of PEG
groups. Finally, thiol-disulfide exchange was used to functionalize these
SCNPs with fluorescently labeled peptides to study intracellular peptide
delivery.

3.3. Size and density of SCNPs

Whereas size is an important factor for the nanoparticle distribu-
tion, the degree of compactness and the shape of the nanoparticles play
a role when it comes to function of the nanoparticles for application
such as drug delivery. The transition from a flexible chain to a compact
particle is crucial for cargo encapsulation. Further, creating of cavities
and compartments gives the opportunity for catalytic environments and
also for space cargos. The following section will discuss how to tune
SCNP in term of size, morphology, and density.

The properties of SCNPs directly originate from their polymer pre-
cursors and the employed cross-linkers. In general, larger polymer
precursors lead to larger, relative size reduction and to larger particles
[5, 20, 49, 116]. For UPy-based supramolecularly folded SCNPs, pre-
cursor length did not influence the relative size reduction, but resulted
in bigger SCNPs with longer polymer precursors as visualized by AFM
[116]. Further, it is predicted that stiffer precursor chain collapse
without an explicit cross-linker leads to more globular structures as
short loops are more restricted by the bending energy of the polymer
[117].

Besides polymer precursor length and stiffness, also the techniques
of chain collapse determine the final size of the particles. For cross-
linked SCNPs, the amount of cross-links determines the degree of
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folding, as well as the density of particles [118] (Fig. 3). Higher degrees
of cross-linking usually yield smaller SCNPs [20, 49]. AFM analysis of
SCNPs prepared by olefin metathesis revealed that with increasing
degree of cross-linking, the volume of the particles remained constant,
but the extension on the surfaced was reduced, indicating more glob-
ular structures less prone to deformation [10]. Further increase of the
compactness of SCNPs was demonstrated by combining two orthogonal
cross-linking techniques [119, 120]. Not only the degree of cross-
linking determines the density of cross-linked SCNPs, but also the
nature of the cross-links - especially for cross-linker-mediated chain
collapse. Longer cross-linkers are predicted to fold the polymer pre-
cursor more efficiently, as short cross-linkers are assumed to cause too
short range loops for efficient compaction [121]. For dynamic cross-
linking, however, increasing the compactness by the number of cross-
links is limited by multi-chain aggregation [59]. Reversible assembly of
SCNPs into superstructures may bring advantages for example as in-
jectable macrogels that break down to smaller, structures and deliver
drug-loaded particles to the site, and may thus prevent premature ex-
cretion from the body.

Similar to cross-linking density in cross-linked particles, the

composition between hydrophilic and hydrophobic groups determines
the compactness of ARPs [44, 91]. For supramolecular-assembled
polymers, too many supramolecular motifs lead to multi-chain ag-
gregates [122]. Furthermore, longer polymer chains can lead to elon-
gated, less spherical structures as observed with the ellipsoidal particle
form factor in SANS measurements [47]. The solubility, aggregation
number, size and compactness for self-folded ARPs are tuned by com-
position ratio and length/molecular weight of the polymer, as well as
by the length of side-chain and choice of comonomer [57, 123]. Longer
copolymers lead to more compactness and likewise, more hydrophobic
groups end up in denser SCNPs. The group of Sawamoto employed SEC
coupled MALS supported by DLS and SAXS experiments to show that
with an increasing degree of polymerization (DP) of PEG ARPs, the
aggregation number decreases down to 1 and with increasing hydro-
phobicity, higher DPs are required. In another example with γ-PGA
ARPs, an increased amount of grafting with phenyl groups increased
density of the particles as shown by comparing DLS and SLS data [60].
In this case, the aggregation number was influenced by the salt con-
centration, as salt reduces the electrostatic repulsions and more chains
aggregate together.

Fig. 3. Schematic representation and SEC traces of polymers and corresponding SCNPs prepared by olefin metathesis. Increased number of cross-linkable units on the
polymer results in smaller and compacter particles. Reproduced with permission from ref. [118] with permission of The Royal Society of Chemistry (2016).

Fig. 4. Schematic representation of solvent dependency on size and compactness of bipyridine-substituted benzene-1,3,5-tricarboxamides SCNPs. Reproduced with
permission from ref. [45] with permission of American Chemical Society (2015).
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The polarity of the solvent is crucial to form self-assembled SCNPs,
and the resulting structure and compactness stays solvent-depending
(Fig. 4) [15, 124, 125]. Whereas differential solvents plays only a minor
role in biological systems, the solvent during covalent cross-linking/
folding process influences the steady morphology of SCNPs, as well as
the encapsulation efficiency of cargos [101, 118, 126]. As extensively
studied with SAXS experiments and simulations by Pomposo and co-
workers, two types of morphologies can be obtained for cross-linked
SCNPs: globular protein-like structures and sparse structures, which
resemble intrinsically disordered proteins [101, 126]. Especially,
globular structures are of interest for enzyme-mimicking behavior and
efficient drug encapsulation, but ideal globular SCNPs have been rarely
achieved [38]. Cross-linking under theta solvent conditions resulted in
a sparse form, whereas cross-linking in a bad solvent caused a pre-
coiling and hence resulted in a more globular form. Simulations led to
the conclusion that the cross-linkable unit should be solvophobic to
support formation of globular structures, whereas the backbone should
be solvophilic to prevent aggregation.

As to the inner structure of SCNPs, π-π stacking in organic solvents
of a pentafluorostyrene and a styrene block in a triblockcopolymer, was
identified by 2D NMR spectroscopy and described as single chain
folding mimicking a β-hairpin motif [23]. Although this folding took
place in organic solvent, 2D NMR offers potential for further in-
vestigation of inner structures of water-tolerant SCNP.

SCNPs in the wide size range of 2–50 nm in diameter have been
reported over the years. Careful design of the precursor polymers and
the employed intramolecular cross-linking techniques enables easy
adjustment of SCNPs with respect to size, density and even morphology.
In order to approach larger SCNP-like systems, controlled polymeriza-
tion of e.g. multi-vinyl monomers yield in branched and intramolecular
cross-linked nanoparticles that growth with reaction time – coined as
Single-Chain Cyclized/Knotted Polymer Nanoparticles [127–130].

A critical comparison between the ‘true’ size of SCNPs and its
characterization techniques applied in literature is presented by the
group of Barner-Kowollik [131]. Evidently, not all above mentioned
characterization methods reveal the same size as they rely on different
aspects, such as motion in solution, collapsing on surfaces, scattering
and rheological behavior. In addition, the wide range of different
synthesis techniques will also result in different outcomes. Nonetheless,

the large variation in size is rather surprising and it is doubtful whether
all of these systems are indeed true SCNPs. To distinguish between
slightly modified polymers, SCNPs and multi-chain clusters, a careful
choice of characterization methods is required. In view of future ap-
plications, exclusive single-chain systems are not always essential. Even
more so, small multi-chain nanoparticles may also offer advantages,
provided their properties can be controlled.

3.4. Cellular uptake

Size of nanomaterials has been demonstrated on multiple occasions
to matter on a cellular level. For example, Williams et al. demonstrated
that smaller sized cadmium-based quantum dots (QDs) of 2 nm pass
into the nuclei and concentrate around the nucleoli of several cell-
types, but with increasing size, cell penetration was hampered.
Therefore, the QDs ended up in the cytoplasm or were not taken up by
the cells at all [132]. The size cut-off and cellular uptake kinetics are
cell-type dependent, and nanoparticle size affects cellular uptake me-
chanisms [133].

Extensively modified carboxylic acid particles of the group of Harth
were found to show no significant uptake to 3T3 cells after 30min of
incubation [70]. However, modification of the SCNPs with a guanidinyl
dendrimeric unit yielded a strong fluorescent signal distributed over the
cell. Disulfide-coupled peptide as a cargo was also successfully deliv-
ered into the cell, but the signal did not fully co-localization with the
nanoparticles. Likely, disulfide bonds were cleaved, but different
fluorophore lifetimes impeded the measurements and the final desti-
nations of nanoparticles and cargo could not be identified.

Codelivery of cargo and SCNPs to hCMEC/D3 cells was further
shown by Paulusse and co-workers [76]. Glycol SCNP of ~10 nm were
taken up by the cells within 20 h without ending in the lysosomes.
When Nile red was encapsulated as a model drug, nanoparticles and
Nile red co-localized within the cells.

Zimmerman and co-workers studied the cellular uptake behavior of
their SCNPS prepared by ring-opening and ring-closing metathesis on
HeLa cells [73, 74]. With confocal microscopy and FACS measure-
ments, uptake of 15-nm-sized SCNPs was observed following 6 h of
incubation, whereupon the SCNPs were found in the lysosomes [73].
Despite cellular uptake, no cytotoxic effects of smaller sized particles

Fig. 5. Cellular uptake comparison of polyolefin SCNPs by a) surface-modification with alcohol groups; and b) on nanoparticle size. Reproduced with permission
from ref. [74] with permission of American Chemical Society (2015).
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(15 nm) and only minor effects of larger particles (50 nm) were ob-
served when exposing HeLa cells to the SCNPs at a concentration of
10 μM (0.5–1.0mg/mL), which might also be assigned to residual os-
mium and ruthenium ions in the samples as a result of the synthetic
procedure, according to the authors. Subsequently, the size-dependence
of uptake (7–40 nm), as well as the dependence on particle surface
chemistry were systematically investigated in a follow-up study (Fig. 5)
[74]. After 3 h of incubation, the smallest particles displayed 3-fold
higher uptake as compared to the largest particles and a clear overall
size trend was revealed. Further, monomers with different hydro-
philicities were employed in the formation of ~10 nm SCNPs. Increased
alkyl chain length and reduced alcohol moieties, i.e. increased hydro-
phobicity, promoted cell uptake of SCNPs. Addition of serum to the
particles to provide a protein corona yielded comparable polarity
trends, but with diminished cell uptake. Because of the lysosomal up-
take in the initial studies, receptor-mediated endocytosis was postu-
lated. Therefore, cell-uptake experiments were also conducted at 4 °C.
At these decreased temperatures, hardly any uptake was detected,
which further supports that receptor-mediated endocytosis takes place.
With an adjusted protocol excluding osmium ions, rather using den-
dronized glycerol units, a series of SCNPs with different fluorophores
was evaluated on HeLa cells with high cell viabilities in all observed
cases (≥85% at 0.1mg/mL) [75]. Furthermore, the fluorescent signal
was detected mainly in endosomes after 4 h, as was also the case in the
previous studies, but appeared also in the cytoplasm of the HeLa cells.
Further investigations of the cell uptake mechanism are pending.

Zimmerman and co-workers further demonstrated an indirect way
to observe cellular uptake of metal-complexing SCNPs through in-
tracellular catalysis [85]. The SCNPs based on alkyl imidazole ROMP
copolymers containing copper(II)-aspartate complexes as catalytic sys-
tems were able to catalyze a click reaction to convert a non-fluorescent
compound into a fluorescent dye. SCNPs of 10 nm were administered to
human non-small-cell lung carcinoma (NCL-H460) and human breast
cancer (MDA-MB-231) cells and only the highest concentrations
(0.03 mg/mL) affected cell viabilities, though these concentrations
were considered sufficient for intracellular catalysis studies with cells.
Subsequently to washing the cells that were incubated with SCNPs, the
non-fluorescent precursor was added to the cells, after which strong
fluorescent signals were detected in the entire cell except for in the
nuclei. The Cu(II)-loaded SCNPs were also used to catalyze a click re-
action to produce an antimicrobial agent inside E. coli cells. While mere
SCNPs did not influence cell viabilities of E. coli bacteria, the particles
in combination with the substrates for the formation of the anti-
microbial, reduced E. coli viability. Combining this intracellular reac-
tion concept with cell-specific targeting properties, may enable labeling
or killing cells of interest, such as cancer cells or bacteria.

Intracellular reactions with SCNPs were also demonstrated by
Palmans and co-workers, who exposed self-assembled BTA Jeffamine
SCNPs to HeLa cells [109]. Encapsulation of a solvatochromic naph-
thalimide dye confirmed intact folding of the ARP-type SCNPs in the
presence of serum. As the particles ended up in the lysosomes, cells
were electroporated to avoid endocytic uptake and to permit nano-
particles to enter the cytosol. BTA self-assembled Jeffamine polymers
incubated on HeLa cells did not show any cytotoxic effects, even at the
highest evaluated concentration of 2.5mg/mL [109]. In case of elec-
troporation of the cells for increased cell uptake, partial cell death was
observed as may be expected. However, this effect was not increased by
the presence of the particles. This approach promotes nanoparticle
uptake by cells, but is not applicable to complex biological systems. In
order to prevent aggregation pf porphyrins for photodynamic light
therapy, PEG BTA SCNPs were also equipped with a porphyrin, which
can generate single oxygen upon light irradiation. In the dark, these
lysosome-located particles did not affect the cells at any of the tested
concentrations. Upon irradiation with blue light, cell viabilities
dropped dramatically for particle concentrations above 0.1mg/mL.
Also, catalytic carbamate cleavage reactions in cellular environment

were performed with BTA SCNPs with bipyridine or phenanthroline to
complexate Cu(I)/Pd(II). Successful cleavage was confirmed by fluor-
escence from the reaction product. The complexation of the metals with
SCNPs was crucial in order to obtain their catalytic activity within the
cell medium. Although the SCNPs were only applied to the extracellular
matrix, fluorescence was arising from within the cells as the product
presumably diffused into the cells. The catalytic reaction did not reduce
cell viability below 80%, though cell morphology was altered in the
case of Cu(I) catalysis.

The group of Zimmerman demonstrated how cell uptake of SCNPs
may be influenced by particle properties, such as size and polarity.
However, so far only a limited number of studies reports the effects of
SCNP structure and composition on cellular uptake. As increased stiff-
ness has been shown to promote cell uptake [134], uptake behavior of
SCNPs is likely to differ from conventional polymer uptake mechan-
isms, and more detailed studies into the uptake behavior are therefore
desired.

3.5. Toxicity and biocompatibility

Successful translation of SCNP technology to the clinic requires
critical evaluation of a nanoparticle’s toxicity. As SCNPs are prepared
based on different materials, their commonality is a reduced size re-
lative to conventional polymer nanoparticles. Consequently, SCNPs
present a higher surface to volume ratio and an increased curvature,
which increases the contact area of these materials with fluid en-
vironments, while decreasing the adhesion energy with membranes
[135]. Furthermore, the curvature of a nanoparticle can also influence
its apparent pKa [136]. Finally, small nanoparticles are less prone to
accumulation in the body due to renal clearance, which reduces pos-
sible long-term risks [137]. Prior to in vivo studies, cell viability studies
are most commonly performed with methods such as the MTT tetra-
zolium reduction assay, which assesses metabolic activity of the cells in
comparison to non-treated cells, or live/dead staining, comparing the
population of live and dead cells depending on their membrane per-
meability [138]. Also, hemolysis assays are conducted as safety eva-
luation by measuring the hemoglobin content in blood plasma assigned
to red blood cell lysis [139]. Over the last years, a couple of such via-
bility studies have also been performed on SCNPs based on a variety of
different materials as will be discussed in the below.

3.5.1. ARPs
For self-folded and self-assembled ARPs, cytotoxicity is expected to

arise mainly from the hydrophilic monomer, which is assumed to be at
the exposed outside of the particle. Several PEG ARPs have been tested
for their effects on different cell lines. As seen in the previous section,
BTA self-assembled Jeffamine polymers did not show cytotoxic effects
when incubated with HeLa cells [109]. Also no cytotoxic effects on
embryonic kidney HEK 293 cells were observed after 24 h incubation
with U-DPy self-assembled PEG polymers with concentrations as high
as 0.2mg/mL [103]. Similarly, perfluorinated PEG/PEG ARPs did not
reveal any effects on NIH 3T3 (mouse embryo fibroblast) cells or
HUVEC (human umbilical vein endothelial cells), with tested con-
centrations up to 1.0 mg/mL [113].

Series of ethyl- and butylamine containing PEG ARPs with different
amounts of variable hydrophobic comonomers were designed to ap-
proach the amphiphilic nature of antimicrobial peptides that are be-
lieved to disrupted cell membranes. The obtained particles were
screened for their antimicrobial activity and cytotoxicity towards H4IIE
liver cells [140]. Biocompatibility was described in terms of the half
maximal inhibitory concentration (IC50), i.e. the concentration at which
cell viability decreased to 50%. The butylamine ARPs demonstrate
strongly increased toxicity as compared to ethylamine ARPs, with a
drop in the IC50 values from 0.32–1.40 to 0.15–0.24mg/mL. Even
though the shorter, ethylamine ARP series displayed 20–70% cell via-
bility after 24 h at a concentration of 1.0 mg/mL, this cytotoxic effect
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was negligible in comparison to the effect of the tested antibiotic with
an IC50 of 0.05mg/mL. Hence, the therapeutic index (TI), relating an-
timicrobial effects to toxicity, was in favor of the polymeric materials.
None of the samples displayed hemolytic activity. Furthermore, re-
duction of PEG content in the ARPs further increased toxicity.

3.5.2. Cross-linked SCNPs
Most cytotoxic studies on cross-linked SCNP are reported for SCNPs

composed of biocompatible moieties, such as glycol or PEG. Likewise to
the PEG ARPs, covalently cross-linked PEG SCNPs with degradable ester
linkers had no significant effects at concentrations of up to 0.12mg/mL
on cell viabilities of HEK-293T cells within 1–3 days incubation [55].
Also, dextran and glycol methacrylate SCNPs, cross-linked via thiol-
Michael addition, showed no discernible cytotoxic effects to HeLa cells
after 48 h incubation at concentrations of up to 0.05mg/mL and
0.2 mg/mL, respectively [52, 76]. Even modifying the dextran with a
Tn antigen moiety did not affect metabolic activity or morphology of
HeLa cells [80]. Glycol SCNPs were further tested on human brain
endothelial cells, hCMEC/D3, and neither cell viability, nor cell mor-
phology was noticeably influenced by incubation with the particles. As
described above, the group of Zimmerman investigated the cellular
uptake behavior of differently sized and glycol modified polyolefin
SCNPs prepared by ring-opening and ring-closing metathesis [73–75,
85]. The observed cell-uptake to HeLa cells did not influence their
viability considerably. Furthermore, different surface modified particles
were tested on human liver cancer HepG2 cells and cell viabilities also
remained above 80% at concentrations up to 15 μM for all samples
(0.3–0.4 mg/mL) [74]. Even the copper-complexing SCNPs had only
moderate effects on HEK-293 and MDA-MB-231 cells [85]. Despite
minimal toxicity, a hydrogen peroxide assay revealed production of
peroxides, presumable due to the copper in the SCNPs. Additionally, a
hemolytic activity study did not show any unexpected hemolytic be-
havior of the SCNPs.

A detailed study into the cytotoxic effects of diamine cross-linked
poly(N-phenyl)/acrylamide/acrylic acid SCNPs as potential protein
mimic of ocular lens crystallins was conducted via electric cell-substrate
impedance sensing (ECIS), which allows real-time measurement of cell
monolayer resistance [99]. SCNPs incubated at concentrations of
0.1–30mg/mL with primary porcine retinal epithelial cells (ppRPE)
and with primary porcine lens epithelial cells (ppLE) were tracked over
6 days. These rather high concentrations were chosen to evaluate
SCNPs as lens material with aimed concentrations of 300mg/mL. Ef-
fects on ppRPE cell were noticeably dependent on nanoparticle con-
centration. Concentrations above 1mg/mL resulted in reduced re-
sistance at every evaluated time point, implying toxic effects, although
up to concentrations of 5mg/mL, cells continued to grow. At higher
concentrations, cell growth stagnated, with full cell death observed
after 6 days at 30mg/mL. Microscopy images supported the particles’
influence on cell morphology for concentrations of 15mg/mL and
higher after 6 days of incubation. ppLE cells were not nearly as much
influenced by the SCNPs, with cell resistance reducing only at con-
centrations of 15mg/mL and higher. Considering the high concentra-
tions evaluated here and the presence of primary amines on the SCNPs,
cytotoxicity was comparably low and only noticeable after prolonged
exposure. Furthermore, ECIS online measurements were shown to give
a more complete insight into the cell behavior and represent an inter-
esting alternative characterization technique for cell viability, in com-
parison to mere metabolic activity assays, which are invasive and only
represent the cell status at explicit time points.

So far in vivo toxicity studies of SCNPs were limited by work of
Loinaz and co-workers on poly(methacrylic acid) SCNPs [77]. After
finding no noticeable effects on the viabilities of six pancreatic cell lines
after 72 h of incubation with 0.2 mg/mL SCNPs, the particles were
tested on mice via intravenous injection of 12.5mg/kg, 25 mg/kg and
100mg/kg of SCNPs. For 100mg/kg, all three and for 12.5 mg/kg, one
out of five mice had developed thrombosis at the injection side. Apart

from small fluctuations in the concentrations of liver enzymes, other
tissues and organs were not found to be affected after 24 h of nano-
particle exposure, and no change in behavior was reported.

Until now, these initial series of in vitro toxicity evaluations gen-
erally reveal only minimal toxicities that are primarily related to the
presence of external contaminants, such as metal ions, or primary
amines, which are known (and also designed) to cause toxicity.
Nonetheless, in vitro evaluations are only the first step and additional
detailed in vivo studies are required to gain a general understanding of
SCNP-related toxicity, especially as long-term and accumulative effects
of such nanoparticles are still unknown. Consequently, evaluation stu-
dies should consider the aspect of size.

4. Medical application of SCNPs

The number of potential applications for SCNPs is increasing rapidly
– ranging from antimicrobial agents [140], sensors [141, 142], protein
storage [113], and eye lens implants [99]. As discussed in the previous
section, SCNPs have been designed to exhibit promising characteristics
in terms of biocompatibility, distribution and stability. In this section,
the potential of water-soluble SCNPs in medical applications will be
discussed in view of the findings in Section 3.

4.1. Biodistribution

Almost a magnitude smaller than conventional polymer nano-
particles, their size is the most prominent feature of SCNPs with the
potential of unique in vivo behavior. Via SPECT, 15-nm-sized 67Ga-
chelating dextran SCNPs (13 nm in diameter in TEM) were detectable in
the lungs directly after pulmonary administration of the aerosol to rats
and 67Ga-chelating poly(methacrylic acid) SCNPs (15 nm in diameter in
TEM) have been found mainly in the liver and in the bladder, but also in
tumor tissue after intravenous injection to a pancreatic cancer mouse
model (Fig. 9) [52, 77]. However, detailed biodistribution studies for
SCNPs are still lacking.

4.2. SCNPs as drug delivery systems

4.2.1. Encapsulation & release of cargos
In order to use polymer nanoparticles as drug delivery vehicles,

drugs may be either linked to the particle or encapsulated. Sensor (dye)
molecules, such as Reichardt's dye [91], pyrene [64], Nile red [64,
106], and naphthalimide [109], have been encapsulated into SCNPs to
evaluate the encapsulation process. Further, encapsulation of a number
of different therapeutic cargos has been demonstrated, including vi-
tamin B9 [46, 143], and 5-fluorouracil [103]. The cargos are commonly
directly added to the reaction mixture during the SCNP formation
process and randomly entrapped, often supported by hydrophobic in-
teractions. Modern SCNP preparation methods allow concentrations of
up to 100 mg/mL during the formation, which facilitates passive en-
capsulation processes [55]. Solvatochromic properties of dyes, such as
Nile red, are highly suited for monitoring hydrophilicity inside parti-
cles. Addition of the hydrophobic dye Nile red to self-folding PEG/BTA
ARPs resulted in a blue shift in the emission spectrum, which was in-
terpreted as evidencing the presence of hydrophobic pockets inside the
folded ARPs [106]. Likewise, a naphthalimide-based dye, as well as
Reichardt's dye were employed to verify folding of PEG/Jeffamine ARPs
[57, 91, 109].

The encapsulation of molecules inside ARPs has also been utilized to
entrap drug molecules and drug models. The fragrants terpinyl acetate
(0.1 wt%), R-limonene (0.5 wt%) and 4-anisaldehyde (1.0 wt%, no
phase separation observed) were separately added to pVAc grafted PEG
ARP until phase separation occurred [98]. Successful encapsulation was
concluded from a decreased cloud point and from particle swelling as
observed by DLS. ARP sizes increased from 22 nm in diameter to 52 nm
in the case of anisaldehyde, which was related to the decreased
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hydrophobicity, allowing the entrapped molecules to be located closer
to the outside of the SCNPs. Sato and co-workers concluded from their
SAXS experiments on self-folded ionic ARPs that 1-dodecanol, despite
being hydrophobic, locates in the intermediate section of the particle,
between core and outside [144].

Likewise, drug loading with the hydrophilic chemotherapeutic 5-
fluorouracil changed the size of PEG U-DPy ARPs from 20-nm- to 100-
nm-sized vesicles as observed by DLS and TEM measurements [103].
Drug loading of up to 19.6 wt% was achieved and a combination of
high temperature and low pH was needed to break the U-DPy hydrogen
bonds and thus to release the drug in water. Whereas at 37 °C and pH 4
only 20% of the drug was released, 91% of the drug was released at
47 °C. The authors suggest application of these ARP drug delivery sys-
tems in chemotherapy as cancer tissues provide a more acidic en-
vironment and (slightly) elevated temperatures.

For intramolecularly folded diaminotriazine styrene based SCNPs,
the competitive binding mechanism with small molecules by com-
plementary hydrogen motifs and π-stacking was studied in apolar sol-
vents by 1H NMR spectroscopy (Fig. 6) [145, 146]. Whereas flavin with
a 3-point hydrogen binding site revealed only a low association con-
stant of 36M−1 in titration experiments, which was assigned to com-
petitive binding accompanied by unfolding the assembled polymer, the
electroactive 6-ferrocenyluracil, endowing a 4-point hydrogen binding
side, showed an over 13-fold increased association constant, interpreted
as favorable for internalization of the compound. This way of en-
capsulation even prevented precipitation of oxidized ferrocenium
during cyclic voltammetry experiments.

Covalently cross-linked methacrylate SCNPs, containing 41 wt% of
vitamin B9 (i.e. folic acid), were obtained by Michael addition cross-
linking [46]. As these particles are not water-soluble, they were placed
into water to release the entrapped drugs. Release took 5–6 h and
comparison with the power law model specified release by Fickian
diffusion [147]. In another study, folic acid was loaded together with
the potential anti-cancer drug hinokitiol with a total drug load of 51 wt
%, corresponding to 170 molecules of folic acid and 410 molecules of
hinokitiol per nanoparticle [147]. When testing the combined release of
both drugs at pH 6 and 8, initial, burst release was slightly faster at pH
8, but the total release took 4 h for both conditions (Fig. 7).

Disulfide-linked SCNPs were loaded separately with pyrene and Nile
red (each 1 wt% in methanol) [64]. Low amounts of DTT used to create
free thiols for nanoparticle formation and the particles were stable up to
5 μM DTT with no significant amount of Nile red releasing. However, at
higher DTT concentrations (5 mM), disulfide bridges were cleaved, and
Nile red was released when dialyzing the particles in water (Fig. 8).
After 24 h, release stagnated with 89% of the dye released. Hence, re-
lease from SCNPs is not limited to passive diffusion alone, but can also
be in response to for example a reducing environment. Related work on
disulfide nanogels showed the potential of these materials in doxor-
ubicin encapsulation and intracellular delivery [89].

Nile red was also encapsulated in covalently cross-linked glycol
methacrylate SCNPs [76]. Shifts in the fluorescence spectra of Nile red
and increased solubility in water confirmed encapsulation. Importantly,
SCNP loading could be performed both in organic as well as aqueous
environment, offering new ways for polarity-independent drug en-
capsulation. Confocal microscopy suggested co-delivery of particles and
cargo to hCMEC/D3 cells. Additionally, the antibiotic Rifampicin was
encapsulated and in a subsequent dialysis study to water, release of
Rifampicin from SCNPs was decelerated as compared to free Ri-
fampicin.

After demonstrating successful coupling of a lysozyme to PEG ARPs
via disulfide and NHS coupling, Sawamoto and Maynard and co-
workers also presented encapsulation of proteins in fluorous PEG ARPs
[113, 148]. Two model proteins, lysozyme and α-chymotrypsin, were
lyophilized, dispersed in 2H,3H-perfluoropentane (HPFP) and, after 24
h, extracted back to the aqueous phase in the presence and absence of
fluorous PEG ARPs. Circular dichroism (CD) spectroscopy and enzyme
activity studies revealed that the proteins remained stable when in the
presence of ARPs. Surprisingly, α-chymotrypsin remained active with
the ARPs in HPFP, whereas storage in water alone decreased its activity
significantly. In case of dissolving the proteins/ARP in chloroform in-
stead of HPFP, the perfluorinated PEG ARPs were no longer able to
protect the enzymes and activity was lost, underlining the importance
of the amphiphilicity of the ARPs in protecting the proteins. Accord-
ingly, ARPs are suitable in stabilizing and protecting enzymes in or-
ganic solvents and could be of use for protein storage. Furthermore, the
fluorous ARPs are also anticipated to act as oxygen carriers, as

Fig. 6. Schematic representation of supramolecular recognition of 6-ferrocenyluracil (4-point hydrogen binding guest) and flavin (complementary hydrogen bonding
motif) in diaminotriazine folded nanoparticles. Adapted from ref. [146] with permission of American Chemical Society (2000).
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fluoropolymers are known to efficiently dissolve oxygen [113, 149].
Overall, drug encapsulation with rather high drug loading and, in

combination with passive and triggered release, has been demonstrated
for SCNPs [64, 76, 103]. Likely, hydrophobic interactions will facilitate
the encapsulation of hydrophobic drug, especially for self-assembled
SCNPs. Even so, Nile red was efficiently encapsulated in SCNPs in
water, as well as in organic solvent.

4.2.2. Prospected applications
Besides encapsulation, drugs may also be coupled to nanoparticles,

either with retention of their reactivity or through a degradable linker.
Proteins were conjugated onto fluorous PEG ARPs via disulfide bridges
and NHS ester coupling for targeting purposes, in which oxygen was
proposed as a cargo for the fluorophilic core [113]. Both therapeutic
and targeting peptides have been conjugated onto SCNPs in a post-
formation step [70, 77]. In the first case, a model peptide was coupled
to SCNPs by a disulfide bridge that appeared to be cleaved in the cel-
lular environments, whereas a guanidine dendritic unit was irreversibly
added by thiol-Michael addition as targeting moiety. In the latter,
PTR86, a peptide with high affinity to receptors overexpressed in
pancreatic tumors, was covalently bound to radiolabeled SCNPs.
SPECT-CT imaging revealed that the particles mainly accumulated in
the liver 3 h after intravenous administration (Fig. 9). Further, the ratio
of the distribution between tumor and muscle tissues was regarded.
Interestingly, even the non-targeted particles accumulated in tumor
tissues to comparable extents as the targeted SCNPs within 24 h, which

was assigned to the enhanced permeability and retention (EPR) effect.
After 48 h, however, the amount of targeted SCNPs in the tumor side
increased, resulting in a significantly higher amount than the non-tar-
geted controls.

Above mentioned examples demonstrate the applicability of SCNPs
as drug delivery platform in combination with targeting moieties. Small
particles are generally rapidly cleared from the body, hence, the time
frame is designated to rather short applications. However, integration
of SCNPs in degradable hydrogel scaffolds to tune the release profile of
SCNPs could broaden this application window. Fulton and co-workers
demonstrated for SCNPs with dynamic covalent cross-links reversible
switching between SCNP and hydrogel state by temperature changes
[12].

Dynamically cross-linked carbohydrate SCNPs were also in-
vestigated in film formation with molecular recognition motifs [62].
The authors suggested for these dynamically cross-linked films appli-
cations of covering 3D surfaces such as bacteria, virus, or also artificial
surfaces. In a similar fashion, Barner-Kowollik and co-workers coated
mannose-based covalently cross-linked SCNPs on nanodiamonds of
100 nm, which are themselves considered as potential drug delivery
and imaging systems [61, 150]. Nanodiamonds decorated with fluor-
escent mannose SCNPs were incubated with RAW 64.7 macrophage
cells, which are known to express mannose receptors. Fluorescent signal
was observed by confocal microscopy in the cytosol without reduction
of the cell viability at 0.1 mg/mL. Both examples represent how car-
bohydrate SCNPs can be applied to cover surfaces and hence provide

Fig. 7. Simultaneous release of folic acid (open symbols) and hinokitiol (filled symbols) from MMA SCNPs to water at pH 6 (blue) and pH 8 (red) (Ct=concentration
of drug released at time t, Cf=total concentration of drug released). Adapted from ref. [143] with permission of John Wiley Sons, Inc. (2016).

Fig. 8. a) Schematic representation of SCNP formation by thiol-disulfide exchange; b) release from disulfide SCNPs of entrapped Nile red at different 5 μM and 5mM
DTT. Reproduced with permission from ref. [64] with permission of The Royal Society of Chemistry (2015).
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them with biological function such as targeting.

4.3. SCNPs as drug conjugates

Next to encapsulation or conjugation of drugs, the polymer itself can
also act as a drug [151, 152]. For example, the anti-inflammatory effect
of glatrimer acetate (Copaxone®), a random copolymer based on four
amino acids, is applied in the treatment of multiple sclerosis [153].
However, many applications of polymeric drugs are targeted against
the membranes of bacteria and viruses. In case of SCNPs, amine con-
taining PEG ARPs, which were inspired by the structure of amphiphilic,
antimicrobial peptides, showed antimicrobial activity to Pseudomonas
aeruginosa and E.coli strains [140]. The authors correlated increased
hydrophobicity of the ARPs with the membrane disruption efficiency
towards gram negative bacteria. Although less efficient than the com-
pared antibiotics (colistin), cytotoxic effects on rat liver cells were de-
creased, resulting in a better therapeutic index (TI) for the ARP SCNPs,
which are assumed to disrupt the membranes. Similar to reference
antibiotics, strains developed resistance to the ARPs after several days,
which is a commonly observed problem with antibiotics. Further, the
ARPs were tested against biofilms, which are usually formed by mi-
croorganisms on surfaces. Within 1 h, the bacteria were killed by the
tested ARPs and most strikingly, the films were dispersed. This was in
strong contrast to colistin, which did not disperse the film within that
time and even resulted in further increased biofilm mass. Consequently,
these SCNPs could find application, where common antibiotics fail.

Differently, α-Tn antigen mimetic moiety was coupled to dextran
SCNPs to trigger immune-responses similar to immune proteins on
human PBMC cells [80]. Since the α-Tn antigen is a tumor-associated
carbohydrate antigen (TACA) and hence overexpressed in cancer cells,
it is under investigation as anticancer vaccine. However, the native
antigen has limitations in terms of stability and antibody response. The
immune response of the targeted nanoparticles in human peripheral
blood mononuclear (PBMC) cells was investigated. Like the positive
controls, the targeted particles triggered cross-talk between Tn-antigen
receptors as observed by upregulation of interleukin-6 and -10. Non-
targeted SCNPs did not stimulate secretion of the interleukins. There-
fore, SCNPs decorated with α-Tn antigen mimetic offer a promising
alternative to vaccine proteins.

4.4. SCNPs as imaging agent

For in vivo imaging agents a wide distribution in the body is desir-
able, without long-term accumulation, while ensuring stability and
contrast of the label remains highly important.

Odriozola and co-workers investigated a Gd(III)-chelating cross-
linker for SCNP as MRI contrast agent [8]. After SCNP formation, the
cross-linkers were still accessible for the paramagnetic Gd ions and
decreased relaxation times in comparison to commercial MRI contrast
agents were found. However, in terms of relaxivity SCNPs did not
outperform other Gd(III)-containing macromolecules. Comparable re-
laxivity values were obtained from semiconducting SCNPs with ca-
techol moieties for Gd(III)-chelation developed by Harth and co-
workers [72]. These semi-conducting SCNPs further display fluorescent
properties with an increased quantum efficiency upon SCNP formation
(5.1%) enabling multimodal imaging. By intramolecular cross-linking,
the luminescence properties improved as compared to a linear pre-
cursor, attributed to site-isolation effects. Similarly, conjugated poly-
electrolyte ARPs achieved quantum yields of 26% [154]. In this process,
single-chain aggregates exhibited elongated fluorescence lifetimes and
increased quantum yields in comparison to multi-chain structures.

Also, Loinaz and co-workers utilized SCNPs with the 67Ga(III)-che-
lating moieties, DTPA and NODA, for SPECT-CT in vivo imaging [52,
77]. Whereas SPECT was used to monitor the distribution of the
radiometal, CT provided anatomical information of the tested rodents.
With radiolabeling efficacy of 50–60%, dextran SCNPs were visualized
in rat lungs and targeted carboxylic acid SCNPs were tracked in a
pancreatic cancer mouse model [77]. Although the authors found ap-
preciable stabilities of the radiolabeling (< 90%), detachment of the
radiometal needs to be taken into account.

Further, SCNPs have also been used as template for size-controlled
formation of QDs [71, 155] and gold nanoparticles [66, 156], which
introduce luminescence properties and contrast to the nanoparticles
with potential (medical) imaging applications [157–159]. Modification
of the SCNPs with DNA led to gold nanoparticles attached with a single
DNA strang [156]. Hence, SCNPs might be used as QD-like material or
as nanoreactors for such, but also to introduce in a controlled manner
functional moieties onto metal particles, for example for targeting
purposes.

Fig. 9. SPECT-CT images of pancreatic tumor mice injected with Ga67 labelled carboxylic acid SCNPs that are targeted against pancreatic cancer (recorded 3 h, 24 h,
and 48 h after injection). The red arrows point to the tumor site. Reproduced with permission from ref. [77]. with permission of American Chemical Society (2016).
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4.5. Protein mimicry

4.5.1. Protein structure
When considering proteins as self-folding dynamic polymers where

the assembly process is driven by hydrophobic interactions, ARPs ap-
proach the protein assembly process most closely. However, in order to
provide functionality, site-specificity is required to define the SCNP
structure. In proteins, such structural control starts with the primary
structure. The development of powerful controlled radical poly-
merization techniques has enabled the preparation of polymers with
excellent control over molecular weight and narrow polydispersities,
more closely approximating protein monodispersity [160]. As the
amino acid sequence determines a protein’s secondary structure, char-
acterized by non-covalent folding motifs, which in turn gives way to the
tertiary structure, recent efforts are focusing on achieving sequence
control in polymers [161–165]. By positioning the cross-linkable groups
in a polymer, intramolecular point-folding leads to differently shaped
SCNPs [166]. Through substitution of positioned pentafluorophenol
moieties in polystyrene copolymers with cysteine moieties, in-
tramolecular cross-linking via disulfide bonds was achieved [167].
Combining this approach with disulfide bridged SCNPs in water, would
resemble the assembly process of the tertiary structure of proteins [64].
In order to further add sequence control to SCNPs, Berda and co-
workers cross-linked a styrene random copolymer with a sequence-
defined cross-linking technique, i.e. isocyanide-based multicomponent
reaction (IMCR), resulting in depsipeptide and dipeptide linkages in the
polymer [168]. In case of dipeptide linkages, intramolecular interac-
tions were observed, presumably as a result of hydrogen bonding.

The secondary structure of proteins is determined by intramolecular
supramolecular folding motifs such as α-helices and β-sheets. Folding of
triblock copolymer SCNPs by π-π interactions between styrene and
pentafluorostyrene blocks in chloroform under high dilution, was
compared with a β-hairpin motif, introducing secondary structures to
SCNPs. Alternatively, folding of PEG ARPs in water via self-structuring
of chiral BTA moieties, resulted in a Cotton effect in CD measurements,
related to chiral helical aggregates [16, 23]. Additionally, free fluor-
escently labeled BTA-molecules were also incorporated into BTA-as-
sembly inside the SCNPs [169]. In combination with ruthenium(II)-
coordinating diphenylphosphino-functional styrene, PEG BTA ARPs
formed hydrophobic pockets that allowed ruthenium(II)-catalyzed
oxidations in water [16, 107]. As such, aided by L-proline moieties, PEG
BTA ARPs mimicked the catalytic properties of aldolase enzymes in
water [105, 169]. A later study revealed that the BTA moieties are not
essential to forming the pockets in ARPs, but rather the balance be-
tween hydrophobic and hydrophilic moieties was crucial [106].

Among other factors, hydrophobic pockets in the protein are crucial
for enzymatic activity. In this respect, the inner structure of SCNPs
plays a significant role. Whereas globular SCNPs are expected to form
single, large compartments, sparse SCNPs are expected to exhibit sev-
eral, individual pockets [101, 170]. Since a multitude of interactions
determines the overall structure of proteins, controlled orthogonal
multistep folding was investigated in SCNPs. Dimerization of the hy-
drogen-bonding unit, i.e. Hamilton wedge (HW)/cyanuric acid (CA)
proved to be orthogonal towards thymine (THY)/diaminopyridine (AD)
dimerization for dual point single-chain folding [171, 172] and towards
crown ether/cation host-guest interactions in a multi-block copolymer
(Fig. 10a) [173]. Likewise, BTA and photo-sensitive protected UPy-
moieties were combined in an ABA block copolymer, resulting in
stepwise polymer folding, with BTA-units providing helical assemblies
and light-induced UPy folding giving rise to sheet-like assemblies [14].
Moreover, as the blocks were individually folded, compartments were
created within the SCNP, as visualized by AFM (Fig. 10b). Likewise,
combining BTA and HW-CA dimerization in an ABC block copolymer,
enabled orthogonal self-assembly into SCNPs containing α-helix and β-
sheet mimics [174]. However, apart from BTA folding, none of these
strategies were demonstrated in water, most likely due to water

interacting with (and disrupting) the hydrogen bonding motifs.
An example of covalent orthogonal folding was demonstrated via

sequential folding of an anhydride functional polyolefin via nucleo-
philic addition of diamine and subsequent thiol-ene “click” reaction
with a dithiol, as well as by Michael reaction of methyl methacrylate
based copolymers with sequential metal complexation [119, 175]. In-
terestingly, multi-folding resulted in smaller, more spherical SCNPs
[120]. Independently, sequential collapse of a ABC block copolymer
containing pentafluorophenol and alkyne moieties via cross-linking
through diamine substitution and through Eglinton alkyne dimeriza-
tion, led to two distinct compartments within the SCNPs [176]. In
nature, the consecutive addition of amino acids by the ribosome in-
fluences the folding of proteins. Similarly, Zhang et al. alternated RAFT
copolymerization and intramolecular isocyanate cross-linking to
achieve three individual subdomains (Fig. 11) [88]. 1H-NMR spectro-
scopy and SEC analysis suggested hydrogen-bonding interactions
caused by urea and amine functions assisted the cross-linking.

UV cross-linking of a diluted diblock copolymer in the presence of a
L-phenylalanine anilide (L-PheA) template, yielded tadpole-type SCNPs
with high binding affinity for L-PheA as opposed to the D-isomer [26].
The so-called chiral imprinting offers a further possibility of inducing
specific binding and catalytic cavities inside to polymer particles.

Most of the mentioned examples of orthogonal folding and com-
partmentalization were carried out in organic solvent; in particular
when hydrogen bonding motifs were employed. Recently, orthogonal
folding of a ABC HPMAA block copolymer in water was shown by two
blocks that both complexate copper(II), yielding SCNPs with two dis-
tinct domains [84]. Whereas copper coordination with the imidazolium
block is relatively pH independent, the folding of the second, qua-
ternary ammonium block is pH responsive. Therefore, the SCNP ar-
chitecture is pH dynamic as observed also in natural proteins.

4.5.2. Approaching natural proteins
Combining sequence-control, self-recognizing motifs, point folding

and orthogonal cross-linking enables carefully modeling SCNPs into
well-defined, protein-like structures. However, even intrinsically dis-
ordered proteins are not without function and thus, structure definition
may not always be necessary. Moreover, the protein-like appearance of
polymers is readily endowed with amino acid functionalities. This can
be achieved either by post-formation functionalization of particles with
amino acids/peptides or by directly applying amino acid-like mono-
mers in the preparation of precursor polymers. An example of this ap-
proach is the case of phenylalanine grafted γ-PGA ARPs [43, 60]. The
resulting SCNPs featured hydrophobic domains as detected by the
emission of pyrene. Interestingly, cross-linked (N-phenyl)/acrylamide/
acrylic acid SCNPs were investigated to match optical and mechanical
properties of β-crystallins, i.e. globular structural proteins in the lens
and cornea of the eye, and to serve as an ingredient for eye lens im-
plants as replacement of aggregated crystallins in case of cataract [99].
In a different fashion, SCNPs approximated glyco-proteins by equipping
them with carbohydrate functionalities, either post-formation or by
applying glycomonomers [62, 80]. These glyco-SCNPs exhibited mo-
lecular recognition and triggered specific cell response.

4.5.3. Metallo-proteins & enzymes
Metal-coordinating proteins enable functionalities such as oxygen

binding in the case of porphyrin-Fe(II) coordination in hemoglobin.
Addition of protein-like moieties, such as the mono-addition of an
azadithiolate-bridged Fe2S2 unit, which is based on the active site of
[Fe-Fe] hydrogenase to poly(styrene-co-methacrylate) SCNPs, high-
lights the potential of enzyme mimicry (Fig. 12a) [177]. A type of
binding pocket, composed of hydrogen bonding and π-stacking motifs,
was created for encapsulation of 6-ferrocenyluracil in intramolecularly
assembled diaminotriazine-functional polystyrenes (Fig. 5) [145, 146].
The combination of hydrophobic pockets and metal coordination may
endow SCNPs with catalytic activities. For example, imitation of a
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polymerase reaction was achieved with glycidyl methacrylate SCNPs
bearing B(C6F5)3, which catalyzed cationic ring opening polymeriza-
tion, yielding for example polytetrahydrofuran [178]. Enzymatic ac-
tivity of metal-coordinating SCNPs is a popular topic of research in the
SCNP field and has been demonstrated for several metals as extensively
reviewed elsewhere [170, 179, 180]. In contrast, in biologically re-
levant surroundings SCNP catalysis has been rarely exploited. The
groups of Zimmerman and Palmans demonstrated copper and palla-
dium catalysis by SCNPs in the cellular environment as discussed in
Section 3.4. [85, 109]. In this context, also porphyrin SCNPs were de-
veloped for light-triggered singlet oxygen generation in cells [109].
Previously, Fe(III)-porphyrin star SCNPs were designed as an analogue

of heme protein with preserved ligand binding and redox activity of the
porphyrin group in a DMSO/water mixture (Fig. 12b) [181].

The numerous synthetic routes towards SCNPs provide increasing
levels of control over molecular composition, dynamics, size, inner
structure and morphology, offering a multitude of possibilities for
preparing protein-like materials, and including functionalities in them
such as catalytic activity, site-specific inhibitors and targeting proper-
ties. For further reading of polymer synthesis techniques for protein
mimicry, the authors recommend a recent review by Berda and co-
workers [180].

Fig. 10. Schematic representation of orthogonal folding of SCNPs a) by reversible Hamilton wedge (HW)/cyanuric acid (CA) dimerization and reversible host-guest
interaction of benzo-21-crown-7 with a secondary alkylammonium salt; b) by BTA and UPy binding motifs. AFM images before (c) and after (d) light activation. a)
Reproduced from ref. [173] with permission from John Wiley Sons, Inc (2016); b-d) reproduced from ref. [14] with permission from American Chemical Society
(2013).

Fig. 11. Compartmentalization by sequential chain growth and intramolecular isocyanate cross-linking of HEA copolymers. Reproduced with permission from ref.
[88] with permission of American Chemical Society (2016).
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5. Conclusions

A tremendous toolbox of orthogonal chemistry is nowadays avail-
able for SCNP construction. Their size in particular, sets SCNPs in
context with proteins and viruses, which is synthetically otherwise only
achieved by dendrimer-like structures. Beyond that, SCNPs possess the
tremendous variability of polymer chemistry, so that the question arises
how to design SCNPs to suit (medical) applications, such as drug de-
livery and targeted imaging. SCNPs may provide comparable or en-
hanced therapeutic potential as existing polymer-based therapeutics,
including polymer-drug candidates and bioactivity by the polymer it-
self. Definition of the 3-dimensional structure enables hydrophobic
domains in water-soluble SCNP, which can not only be utilized for drug
encapsulation, but also for catalytic activities. The structure of SCNPs is
reminiscent of proteins and smart polymer design has brought mi-
micking of natural macromolecules within reach. Depending on SCNP
design, initial toxicity evaluations attribute high biocompatibility to
SCNPs and, depending on their size, extraordinary distribution beha-
vior is prospected. Combining all this with targeting properties is a
powerful approach towards new biomaterials. Systematic investigations
into in vitro and in vivo behavior are, however, required in order to
understand and predict biodistribution behavior, biocompatibility and
drug release of SCNPs under realistic conditions, and to take full ad-
vantage of their potential.
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