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Abstract

This paper documents the growing share of non-routine jobs in the labour force of

thirty-seven advanced and emerging countries over the period 1999-2007. To examine the

role of offshoring and technological change in driving this labour market development, we

develop a task-based model of production in global supply chains and propose a decompo-

sition of changes in occupational labour demand. In the setup of the model, technological

change affects the total number of workers with a certain occupation throughout the pro-

duction chain, while task relocation consists of a shift in occupational labour demand

from one location to another. For the empirical implementation we combine harmonised

cross-country occupations data with world input-output tables. The results of our decom-

position suggest that technological change increased the number of non-routine relative

to routine occupations in all countries. Task relocation increased demand for non-routine

occupations in advanced countries, but its effect is much weaker compared to technological

change.
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1 Introduction

A striking feature of the labour market in advanced countries is the growing share of non-

routine occupations in the labour force. This increase is often attributed to two key driving

forces. The first is routine-biased technological change. Computers, robots, artificial intelli-

gence, and other recent technological developments tend to displace labour in the performance

of routine and non-cognitive tasks, but they are complementary to many non-routine abstract

tasks (Autor et al. 2003; Goos et al. 2014). The second driving force is trade in tasks, or

offshoring. Tasks that are relatively easy to offshore are those that require codifiable informa-

tion rather than tacit knowledge (Leamer and Storper 2001); can be summarised in a set of

well-specified rules (Levy and Murnane 2004); and do not require face-to-face contact (Blin-

der 2009).1 As such, offshoring mostly affects workers in routine occupations. How can we

empirically disentangle the role of trade in tasks from that of technological change in driving

the rise of non-routine jobs?

This paper proposes a novel cross-country approach to study changes in occupational em-

ployment. We outline a task-based model of production in Global Supply Chains (GSCs

from now on) in which tasks are associated with occupations and these tasks are performed

somewhere in the global economy. We use this model to motivate a decomposition of changes

in occupational labour demand into the effects of technological change, task relocation and

other factors. For the empirical implementation, we collect occupational data for a set of ad-

vanced and emerging countries, harmonise this data by mapping it to a common occupational

classification, and link it to international input-output tables.

We empirically conceptualise a GSC as all activities that are directly or indirectly needed to

produce an end-product that is used for final consumption (Timmer et al. 2014). An example

of a global supply chain is the production of a car that has its final assembly stage in Germany

(we will return to the example of cars finalised in Germany throughout the paper to illustrate

1. For the growing empirical literature on offshoring and tasks, see e.g. Becker et al. (2011), Baumgarten
et al. (2013), and Ebenstein et al. (2014).
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and provide intuition).2 The main advantage of our GSC approach is that it encompasses all

countries and products in the world.3 Since we create a common occupational classification

we can determine both the total demand for workers with a certain occupation in a supply

chain and its distribution across countries worldwide.

We make two contributions. First, we document an increase in the share of non-routine

jobs in total employment for a group of advanced and major emerging countries during the

period 1999-2007. The countries covered are the 27 members of the European Union (per

January 2007), Australia, Brazil, Canada, China, India, Indonesia, Japan, Mexico, Russia,

South Korea, Taiwan, Turkey and the United States. In 37 out of these 40 countries (with

the exception of Bulgaria, Latvia and Estonia) the share of non-routine occupations in the

labour force went up.

Second, we provide new evidence on the role of technological change and task relocation in

explaining the rise of non-routine jobs. Our GSC approach allows us to disentangle the two.

Intuitively, automation affects the use of a certain task throughout the supply chain, while

task relocation consists of a shift in demand from one location to another. For example, if

robots replace workers in some of the routine production tasks in the supply chain of German

cars then this will lower the number of routine jobs in the supply chain. If instead the number

of routine jobs is unchanged but fewer workers are employed in Germany and more in Poland,

then we call this task relocation.4

The results from our decomposition analysis show that technological change increased the

number of non-routine relative to routine occupations in all countries. In advanced countries

this effect was much stronger than that of task relocation, suggesting that routine-biased

technological change is the main driving force behind the rise of non-routine jobs. Several

offshore destination countries, such as China, Poland and Turkey, saw a decrease in the relative

2. Think of, for example, Porsche cars finalised in Leipzig or Volkswagens that rolls out of the factory in
Wolfsburg.

3. We can think of any good or service as being produced in a global supply chain, although for some
products (such as a car) the chain will be more ‘global’ than for others (such as the haircut provided by a local
hairdresser).

4. In the empirical implementation we will account for differences in productivity of workers across countries.
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number of non-routine jobs due to task relocation. But also for these (and other emerging)

countries, technological change was the dominant force behind employment changes.

There are several related empirical studies that examine the role of trade and technology in

driving the demand for labour. Regressions based on cost functions are common in earlier

literature that examined the demand for high versus low-skilled workers (e.g. Hansson 2000;

Morrison and Siegel 2001; Hijzen et al. 2005), and in more recent studies on the demand for

routine versus non-routine jobs (Michaels et al. 2014). Other studies exploit initial differences

in exposure to (Chinese) import competition and automation across local labour markets

(e.g. Autor et al. 2015; Pierce and Schott 2016; Acemoglu and Restrepo 2017). Our global

supply chain perspective allows for the joint analysis of advanced and emerging countries, and

determines the contribution of trade and technology in accounting for the growing share of

non-routine jobs. One other important related study is by Goos et al. (2014), who estimate

the parameters of a task-based model for West-European countries. Their findings suggest

that routine-biased technological change has a significant effect on labour demand in Europe,

whereas the effect from offshoring is insignificant. In contrast, we find that offshoring does

affect labour demand although its effect is small compared to the effect from technological

change. A potential reason for this difference is that Goos et al. (2014) use a proxy of the

potential offshorability of occupations in their regression analysis, while we measure actual

shifts in labour demand across countries.

Our measurement of labour demand in global production networks builds upon earlier re-

search by Timmer et al. (2014), and Reijnders et al. (2016). These studies examine the

demand for jobs in production networks, but classify jobs by the level of education of the

workers and do not provide a decomposition. We instead make use of occupations data,

which allows us to determine whether workers are predominantly engaged in routine or non-

routine tasks. Importantly, routine tasks are not exclusively performed by workers with a low

or middling level of education, and vice versa it is also not true that only highly educated

workers hold non-routine occupations as there are many non-routine low-skilled services oc-

cupations (Baumgarten et al. 2013; Autor 2015; Marcolin et al. 2016). We aim to shed new
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light on the recent changes in labour demand within global supply chains and the nature of

technological change.

This paper proceeds as follows. In Section 2 we describe the occupations database and show

how the employment share of non-routine jobs has evolved over time. Section 3 lays down

an analytical task-based model of production in global supply chains and explains how we

can measure occupational labour demand in GSCs by combining the occupations data with

international input-output tables. In Section 4 we use the model to propose a decomposition

of changes in occupational labour demand in GSCs. Section 5 shows how the decomposition

results can help us understand the driving forces of employment changes. Section 6 provides

concluding remarks.

2 The rise of non-routine jobs

In this section we describe our data sources and measures of employment, and document

that the employment share of non-routine jobs in the workforce has increased in thirty-seven

advanced and emerging countries over the time period 1999-2007.

2.1 Occupational employment data

The main data sources we use for occupational employment are annual Labour Force Surveys

and/or quinquennial or decadal Population Censuses. The availability of detailed and reli-

able occupations data limits the time period we examine from 1999 to 2007. The countries

covered are the 27 members of the European Union (per January 2007), Australia, Brazil,

Canada, China, India, Indonesia, Japan, Mexico, Russia, South Korea, Taiwan, Turkey and

the United States. These are the same countries as included in the World Input-Output

Database (WIOD), which is essential for the analysis we wish to perform later on. Through-

out this paper we use persons employed as the measure of employment and not hours worked
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because the latter is often not available for the emerging countries included in our dataset.5

For the United States we use the same data sources as Autor (2015), namely the 2000 Cur-

rent Population Census and the annual American Community Surveys. Data for European

countries comes from the harmonised individual level European Union Labour Force Surveys,

which are also used by Goos et al. (2014). For the remaining countries we obtain the data

from national statistical offices. In Appendix Table A.1 we list the main sources of data for

each country.6

To harmonise the data across countries, we make two mappings. First, national industry

classifications are mapped to a common set of 35 ISIC revision 3.1 industries covering the

overall economy. These include agriculture, mining, construction, utilities, 14 manufacturing

industries, telecom, finance, business services, personal services, 8 trade and transport services

industries and 3 public services industries (see Timmer et al. 2015). These industries are

chosen so that they coincide with those distinguished in the WIOD.

Second, national occupation classifications are mapped to a single classification consisting

of 11 different occupations, see Table 1.7 The main challenge in constructing a common

occupational classification for a large set of countries is that national classifications need not

be based on the same set of guiding principles. For example, the International Standard

Classification of Occupations (ISCO) first categorises workers by level of skill and thereafter

by the area of specialisation. Other classifications, such as the Chinese and Brazilian one,

focus mostly on the area of expertise and less on the skill level. As a consequence, it is

often not possible to separate professionals from associate professionals with a similar field

of expertise, craft workers from machine operators, and workers in elementary occupations

from more skilled workers in the same area. These restrictions have guided our choice of

11 occupations: they allow us to have as much detail as possible while at the same time

minimising the amount of classification errors. Our classification relates most natural to the

5. Whenever possible we aim to measure jobs in full-time equivalents. For Europe, results in Goos et al.
(2014) appear similar when using persons employed or hours worked.

6. The data sources and methodology are discussed in more detail in Vries et al. (2016).
7. Agricultural occupations, armed forces, and the so-called ‘occupations not elsewhere classified’ are not

included.

6



ISCO 88, and the corresponding 2-digit (and occasionally 3-digit) codes are listed in Table

1. For example, the occupation ‘Managers’ corresponds to ISCO 88 codes 12 and 13, and

‘Clerical workers’ to 41 and 42. Where possible, we have used crosswalks from national

classifications to ISCO 88 as provided by statistical offices to guide our mapping.8

The structure of Table 1 is based on Autor et al. (2003), in that it classifies occupations as

either routine or non-routine and manual or analytic / interactive.9 The distinction between

routine and non-routine is based on the so-called Routine Task Intensity (RTI) index devel-

oped by Autor et al. (2015) and mapped into the ISCO 88 occupational classification by Goos

et al. (2014). The RTI index is positive for production and clerical workers (e.g. it is 2.24 for

office clerks, ISCO 88 code 41), suggesting that routine tasks are relatively prevalent in these

jobs. In contrast, the RTI index is negative for drivers, support services workers, professionals

and managers (e.g. it is -1.52 for managers of small firms, ISCO 88 code 13). We assume

that the (relative) task content of occupations is both constant over time and across countries

(and identical to the one of the United States), so that the analysis focuses on changes in em-

ployment patterns across occupations.10 Production and clerical jobs are considered routine,

whereas the other occupational groupings shown in Table 1 are non-routine.

For each country, industry and year in our dataset we calculate employment shares by occu-

pation. For most countries we either have a time series or data for a year close to the starting

year (1999) and ending year (2007) of the analysis, see Appendix Table A.1 for an overview. If

we do not have information for a given year then we use interpolation or extrapolation while

making sure that the employment shares always sum to one. These shares are subsequently

8. Concordance tables are available from the authors upon request.
9. To analyse changes in employment shares of routine and non-routine jobs it is convenient to associate

tasks with occupations, such that more routine task-intensive occupations are considered routine jobs. In
practice, there is considerable variation in task intensity across occupations such that all jobs involve some
degree of routine and non-routine tasks. It is difficult to address this type of heterogeneity in our analytical
framework.
10. Dicarlo et al. (2016) use cross-country worker-level survey data and find that the ranking of occupations

along the task dimension is stable across countries. Marcolin et al. (2016) use OECD PIAAC surveys to develop
a routine intensity indicator. Managerial jobs always tend to involve more analytical and interpersonal tasks
compared to plant operators, which tend to have a higher routine task content. Akçomak et al. (2016) examine
changes in the task content within occupations and find that shifts in the intensive-margin can be explained
by technological improvements but not by offshoring.
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Table 1: Classification of occupations

Routine Non-routine

Manual Production workers Support services workers
[71-74, 81-82, 93] [51, 910, 912-916]

Drivers
[83]

Analytic / Clerical workers Legislators
Interactive [41-42] [11]

Managers
[12-13]
Engineering professionals
[21, 31]
Health professionals
[22, 32]
Teaching professionals
[23, 33]
Other professionals
[24, 34]
Sales workers
[52, 911]

Notes: The numbers in brackets refer to ISCO 88 codes. The four different
groups are based on Autor et al. (2003).

multiplied with the number of persons employed by country-industry-year taken from the

WIOD socio-economic accounts (Timmer et al. 2015).

2.2 Changes in employment shares between 1999 and 2007

In order to provide an aggregate picture of the type of jobs prevalent in a given country we

sum over the different industries and calculate the employment share of routine and non-

routine occupations. Figure 1 shows the percentage point change in the employment share of

non-routine jobs (relative to routine jobs) for selected countries between 1999 and 2007. These

countries represent economies in our dataset at two different levels of economic development,

advanced and emerging.11

11. Appendix Figure D.1 shows all countries included in the analysis. In 37 out of these 40 countries (with
the exception of Bulgaria, Latvia and Estonia) we find an increase in the employment share of non-routine
jobs.

8



Figure 1: Change in the employment share of non-routine jobs between 1999 and 2007

0 2 4 6
Percentage points

Emerging

Advanced

Mexico
Indonesia

Brazil
Russia

Hungary
Turkey

India
Poland
China

United Kingdom
France
Taiwan

United States
Germany
Australia
Canada

Japan
South Korea

Source: Harmonized cross-country occupations database, see main text. Notes: Selected

advanced and emerging countries. Appendix Figure D.1 shows the results for all countries

included in the analysis.
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The top panel of Figure 1 shows that there is an increase in the employment share of non-

routine relative to routine jobs in all 9 advanced countries. This increase appears faster in

France and the United Kingdom compared to South Korea and Japan, with the United States

in between. Since many routine jobs tend to be in the middle of the wage distribution in

advanced countries, whereas non-routine jobs are often either low-skilled low-wage or high-

skilled high-wage services jobs, the decreasing employment share of routine jobs has been

interpreted as evidence for job polarisation (Autor et al. 2006; Ikenaga and Kambayashi

2016; Goos et al. 2014; Harrigan et al. 2016). Studies of job polarisation typically focus on an

individual country or a homogeneous set of countries. In contrast, we examine a heterogeneous

sample of advanced and emerging countries. We argued above that the classification of routine

task-intensive and non-routine task-intensive occupations is stable across countries. However,

the ranking of occupations along the wage distribution, necessary to identify whether labour

markets polarised, is likely to differ across countries depending among others on their level

of economic development and wage-setting institutions. Therefore, we do not further pursue

analysis of job polarisation in the current paper, but will focus on explaining the demand for

routine versus non-routine jobs.

The bottom panel of Figure 1 shows changes in the employment share of non-routine occu-

pations in emerging countries. In emerging countries we also document an increase in the

share of non-routine jobs, with the exception of Bulgaria, Latvia and Estonia (see Appendix

Figure D.1). In some emerging countries, such as Brazil, Indonesia and Mexico, the increase

in the employment share of non-routine occupations is more than 4 percentage points. In

other countries, the change in the employment share is moderate, in particular in China and

Poland. Both China and Poland are known to be prominent offshore-destination countries

and may thus have benefited from the relocation of routine jobs. During the period we anal-

yse, Poland integrated in European production networks in the run-up and after its accession

to the European Union in 2004, whereas China’s integration in global production networks

accelerated after joining the WTO in 2001 (Marin 2006). Yet, also in Poland and China there

was an increase in the employment share of non-routine jobs. This is suggestive evidence that
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routine task relocation is not the main driving force of employment structure changes, but

rather technological change.

3 Occupational employment in global supply chains

What accounts for the increase in the share of non-routine jobs? To answer this question we

proceed in two steps. First, in this section we outline a simple task-based model of occupa-

tional labour demand in global supply chains. In addition we show how we can empirically

identify the jobs involved in a given supply chain by combining our occupational employment

data with international input-output tables. In the next section we will use this model to

propose a decomposition of changes in occupational labour demand into the contribution of

technology, trade and other factors.

3.1 A task-based Global Supply Chain model

In line with recent literature (see e.g. Acemoglu and Autor 2011; Goos et al. 2014), we model

the production process of a global supply chain as consisting of different tasks. The process

then requires two steps. First, task output is produced in different countries worldwide using

labour and other primary inputs. Second, the total output of each task across countries is

used as an input into the production of a good that is sold to consumers. To be precise, we

write the production function of GSC v as:

Yv = Fv(T1v, . . . Tjv, . . . , TJv), (1)

where Yv is total output and Tjv is the input of task j. Following Baldwin and Robert-Nicoud

(2014) we assume that within a GSC tasks are perfect complements. That is, in order to create

a final product a fixed amount of each task is required and it is not possible to use a bit more

of one in order to make up for a smaller amount of the other. For example, a car only works if

it has 4 wheels, and not with 3 wheels and an additional hood. We denote by αjv the amount

of task j necessary to produce one unit of output for GSC v, so that Tjv = αjvYv.
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As tasks can be performed in different countries, the total use of task j can be written as:

Tjv =
∑

c

T c
jv, (2)

where T c
jv is the amount of task j produced in country c on behalf of this GSC. We do not

model the way in which the production of a certain task is allocated across countries but take

this as observed by the data.12 In each country task output is created under constant returns

to scale with labour and capital as inputs.13 The technology to produce a specific task is

the same in all countries but there are Hicks-neutral differences in the ‘efficiency’ with which

production factors are employed. We write:

T c
jv = AcGjv(K

c
jv, N

c
jv), (3)

where Kc
jv and N c

jv are the input of capital and labour, respectively. The function Gjv is

common across countries (but can differ by task and supply chain) while Ac captures the

country-specific level of Total Factor Productivity (TFP). Arguably, a multinational firm

that decides to offshore a certain task to a different country but within the own organisation

might be able to produce at the TFP level of its home country. This is the assumption made

by Baldwin and Robert-Nicoud (2014), but as they admit themselves it is hard to maintain

with aggregate (industry-level) data only, as one cannot observe whether a task is outsourced

to a related or an unrelated firm. We simplify by imposing that the relevant TFP level is

that of the country in which a task is performed.

In the context of this model there are three types of ‘technology’ that affect production in a

supply chain. The first is the Total Factor Productivity (TFP) in each country, as captured

by Ac. The second is the overall production function Fv and the third are the task production

functions Gjv. These latter two together will be referred to as ‘GSC technology’ because they

12. This task allocation may for example depend on how easy it is to trade or communicate with certain
countries.
13. This does not mean that there are no intermediate goods in the production process, but that task output

is equal to value added.
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are specific to a supply chain. We will return to the distinction between country TFP en GSC

technology in Section 4.2.

We follow the modelling approach in Goos et al. (2014) and assume that there is a one-to-

one mapping between occupations and tasks, so that each task requires labour of a certain

occupation and each occupation only performs that specific task. It follows that j is an

index of both tasks and occupations and that N c
jv is the demand for labour of occupation

j in country c by supply chain v. A given country c perform tasks for global supply chains

worldwide so that the total demand for workers with occupation j is given by:

Lc
j =

∑

v

N c
jv. (4)

Below we will use the model to determine to what extent the relocation of tasks across

countries and changes in GSC technology affect occupational labour demand.

3.2 Global Supply Chain data

We combine the occupations data described in Section 2.1 with data from the World Input-

Output Database (Timmer et al. 2015) in order to find occupational employment in GSCs.

In particular, we calculate the total number of workers with a given occupation j in country

c that are employed on behalf of each supply chain v, defined as N c
jv above.

The WIOD covers the same 35 industries in 40 countries as our occupations data, plus ‘the

rest of the world’.14 The world input-output table for a certain year shows how the output of

a given industry in a given country is divided between final consumption and intermediate use

by all other industries worldwide. Following Timmer et al. (2014) we identify a global supply

chain by the combination of a country and an industry in which the last stage of production

takes place, which means that there are 1435 GSCs (41 times 35) in total. An example of

14. We estimate the occupational employment shares for the Rest of the World as an unweighted average for
each of the occupation-industry-year shares of China, India, Indonesia, Brazil, Russia, and Mexico. Results
for the Rest of the World are not reported. Different assumptions to estimate the occupation-industry-year
shares for the Rest of the World, such as using a weighted average, do not qualitatively affect our results on
the role of task relocation and technological change in driving demand for non-routine jobs.
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one such GSC which was referred to in the Introduction is final output from the transport

equipment industry in Germany (or ‘German cars’ in short).

We employ the method outlined in Timmer et al. (2014) to split up the value of output for

final consumption of every GSC into the contribution made by each country-industry pair in

the world. Intuitively, this means that we iteratively substitute out for the use of intermediate

inputs. If a given GSC sources intermediate inputs from country-industry a, which in turn

uses intermediate inputs from b, then both a and b show up as performing tasks for this

supply chain. Using occupational employment per dollar of output by country-industry, we

then translate task output into a number of workers with a given occupation, for details see

Appendix B. Finally, we sum over the industries within each country to obtain N c
jv. Since we

have substituted our for intermediate inputs in terms of the labour that was used to produce

them, we can now think of the production process of a GSC in terms of labour only. Note

that in principle we could do the same for the use of capital within a GSC, but this is not

necessary for our purposes (see further below).

Table 2 shows the structure of the dataset that we obtain. For each GSC (columns) we have

the number of workers with a given occupation employed in a given country (rows). Adding

up across columns we obtain occupational employment in a given country Lc
j. Because we

have harmonised the national occupational classifications to a common one, we can directly

compare the demand for a certain occupation across countries within a given supply chain.

3.3 Illustration: The supply chain of German cars

We illustrate our approach using occupational labour demand for the global supply chain of

cars that have their final stage of assembly in Germany. This supply chain has undergone

major changes in its organisational and geographical structure during past decades (Sturgeon

et al. 2008). Final vehicle assembly is largely kept close to end markets, mainly because of

political sensitivities but increasingly also to customise products. At the same time, there has

been a rapid increase in the international sourcing of parts and components. The availability
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Table 2: Data structure

GSC 1 GSC 2 · · · GSC v Total

Occupation 1

Country 1 N1
11 N1

12 N1
1v L1

1

Country 2 N2
11 N2

12 N2
1v L2

1

...
Country c N c

11 N c
12 N c

1v Lc
1

Occupation 2

Country 1 N1
21 N1

22 N1
2v L1

2

Country 2 N2
21 N2

22 N2
2v L2

2

...
Country c N c

21 N c
22 N c

2v Lc
2

...

Occupation j

Country 1 N1
j1 N1

j2 N1
jv L1

j

Country 2 N2
j1 N2

j2 N2
jv L2

j
...

Country c N c
j1 N c

j2 N c
jv Lc

j
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of cheap workers has been one of the main attractions for German firms to offshore tasks to

Asia and Eastern Europe (Marin 2006).

Table 3 shows the number of jobs involved in the supply chain of German cars in 1999 and

2007 for 4 out of the 11 occupations. Each of these occupations represents one cell of Table 1.

In the interest of space we only list employment in the major contributing countries Germany,

China and Poland and in bold the total number of jobs. Not surprisingly, most workers in the

GSC of cars finalised in Germany are production workers, amounting to roughly 1.4 million

in 1999. This number increased by about 15 percent to 1.6 million in 2007. In Germany

itself there was a decrease of 108 thousand production workers, while in China and Poland

their numbers increased by 95 and 27 thousand, respectively. A similar pattern is observed

for clerical workers: their number increased by 27 thousand (7 percent) between 1999 and

2007 in the GSC as a whole, with a decrease of 3 thousand in Germany but an increase

of 6 thousand in China and 5 thousand in Poland. In contrast, the number of workers in

two non-routine occupations shown in Table 3 (engineering professionals and support service

workers) has increased in Germany.

One might interpret these findings as a relocation of production and back-office activities from

Germany to emerging countries, decreasing the relative demand for routine occupations in

Germany but increasing it in the offshore-destination countries. However, these employment

changes are aggregate outcomes and are driven by trade, technological change, consumer pref-

erences and other factors. Note also that in the GSC, the employment of workers performing

routine tasks grew slower than for those performing non-routine tasks. This can be observed

by comparing the increase in production and clerical jobs (15 and 7 percent respectively) to

the increase in support services workers and engineering professionals (37 and 23 percent).

Hence, there might be an important role for routine labour-saving technological change in

explaining these changes in employment.
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Table 3: Employment in the global supply chain of cars finalized in Germany, by occupation

1999 2007 Change % Change

Production workers 1,401 1,605 204 15%

Germany 685 577 −108 −16%
China 95 189 95 100%
Poland 35 63 27 77%

Clerical workers 376 404 27 7%

Germany 221 218 −3 −1%
China 17 23 6 34%
Poland 6 11 5 85%

Support services workers 230 315 85 37%

Germany 72 88 16 22%
China 43 63 19 44%
Poland 5 6 1 25%

Engineering professionals 355 436 80 23%

Germany 237 261 24 10%
China 5 12 7 126%
Poland 6 11 5 82%

Total 3,353 4,030 677 20%

Germany 1,664 1,671 7 0%
China 252 403 151 60%
Poland 74 133 59 79%

Notes: Employment in thousands of jobs. Numbers may not sum due to rounding. This illustration
shows results for 4 out of the 11 occupational groupings and total employment. The numbers in bold
show overall employment of each occupation in the GSC of cars finalized in Germany. The contribu-
tion from 3 countries, namely Germany, China and Poland, by occupation is distinguished.
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4 Decomposition of changes in occupational employment

This section outlines a decomposition of the rise in non-routine jobs that we documented in

Section 2, based on the task-based model of supply chain production introduced in Section

3. First we separate the employment changes that have occurred within global supply chains

from shifts between GSCs. This between effect captures changes in the share of a GSC in

world demand (for example due to changes in consumer preferences). We also distinguish an

income effect as world income increased during the period considered. Thereafter, we further

decompose the effect within GSCs into the contributions of technological change and task

relocation. Figure 2 provides an overview of the proposed decomposition.

Figure 2: Decomposition

Change in

occupational

employment

Between GSCs

Within GSCs

TFP

GSC technology

Location

Income

4.1 Within, between and income effects

Starting from equation 4, we write the demand by GSC v for labour of occupation j in country

c as:

N c
jv =

N c
jv

pvYv

pvYv

W
W, (5)
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where pv is the price of GSC v, pvYv the output value of GSC v, and W =
∑

v pvYv world

income. This allows us to decompose changes in occupational labour demand into three

distinct components:

(1) within: changes in occupational labour per dollar of output N c
jv/[pvYv].

(2) between: changes in the GSC share of world demand pvYv/W .15

(3) income: changes in world income W .

Two remarks are in order. First, as this is an accounting exercise we do not mean to imply

that these components are independent of each other. For example, changes within a GSC

might lead to cost savings and lower prices, which results in a shift in demand between

GSCs (Grossman and Rossi-Hansberg 2008). Second, a potential concern is that the relative

magnitude of each component could be driven by changes in output prices instead of changes

in employment and output volumes. To avoid this we use input-output tables in previous’

year prices and do the decomposition year-by-year before we add up to arrive at the final

result.16

4.2 Disentangling technological change and task relocation

In order to be able to further decompose the effects on occupational labour demand from

changes within GSCs we need to specify the task production function Gjv in (3). In par-

ticular, we assume that for each task the production factors capital and labour are perfect

complements. In other words, they have to be used in fixed proportions. This implies that

the required amounts do not vary across countries when we correct for differences in factor

productivity, irrespective of differences in relative factor prices. We make this correction by

expressing factor demands in terms of ‘efficiency units’. For example, AcN c
jv is the number

of efficiency units of occupation-j labour from country c used in GSC v. Note that the actual

15. Changes in the GSC share are partly related to the relocation of final assembly stages. We extended
the framework to take this into account. This increased the contribution from task relocation in driving
employment structure changes, but only marginally so. It did not qualitatively change the results.
16. To compute the volume growth of output between 1999 and 2000, we subtract the 1999 output in current

prices from the 2000 output in previous years’ prices. Similarly, we use output expressed in 2000 current prices
and in 2001 previous years’ prices, which provides the volume growth between 2000 and 2001, and so on.
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number of workers coincides with the number of efficiency units only if TFP is equal to 1.

We can then write:

N c
jv =

ejvT
c
jv

Ac
, (6)

where ejv is the number of efficiency units of labour required to create one unit of output of

task j in GSC v, which is the same for all countries. We implement the efficiency correction

empirically by constructing a measure of TFP for each country and each year in our dataset

using the Penn World Tables (PWT), release 9.0 (Feenstra et al. 2015). From the PWT we

take a cross-sectional TFP measure in 1995 and extrapolate it over time using the country-

specific TFP series at constant national prices.17 TFP in the United States in the initial

year is normalised to unity, so that ‘efficiency units’ essentially correspond to ‘United States

workers in 1999’.

Using (6), the within effect of the decomposition presented in equation (5) can be written as:

N c
jv

pvYv

=
1

Ac

ejvTjv

pvYv

T c
jv

Tjv

. (7)

This allows us to distinguish three separate components of the within effect:

(1a) TFP : changes in Total Factor Productivity Ac

(1b) GSC technology : changes in occupational efficiency units per dollar of output ejvTjv/[pvYv]

(1c) Location: changes in the task share T c
jv/Tjv

We will discuss each of these in turn. First, if the level of Total Factor Productivity in a

country increases then this ceteris paribus leads to a loss of labour demand. As workers

become more efficient, fewer of them are required to produce a given amount of task output.

17. We have performed two robustness checks with different measures of TFP but our main conclusions
remained unchanged. First we used the cross-sectional TFP measure of the PWT in each year and multiplied
it by the TFP level at constant national prices of the United States in the same year. Second we took the
measure developed by Inklaar and Diewert (2016). The advantage of the latter is that it is consistently
estimated across time and across space. A disadvantage is that Luxembourg and Indonesia are not included,
which is why it is not our preferred measure.
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Second, we have summarised the production technology of a supply chain by the total use of

efficiency units of occupational labour (per dollar of output). We can write this as:

ejvTjv

pvYv

=
ejvαjv

pv
. (8)

As explained in Section 3.1 above, there are two components to GSC technology. The first

is the task production function Gjv, which is captured by the number of efficiency units of

labour ejv that are needed to produce one unit of task output. For example, if labour is

replaced by machines then ejv decreases (while the required amount of capital goes up). The

second component of GSC technology is the overall production function Fv as reflected in

the task weights αjv. For example, if over time the production process relies more strongly

on service tasks then the corresponding αjv goes up. We are not able to separate the two

types of technology with the data that we have, and for each occupation the overall effect of

changes in GSC technology can go in either direction. Importantly, we do not make any a

priori assumptions about the nature of technological change in a GSC (for example whether

it is biased against the use of a certain occupation), but instead let the data speak for itself.

To illustrate, Figure 3 shows how changes in GSC technology have affected the demand for

labour of different types of occupations. It plots the number of efficiency units employed per

100 dollar of output in 1999 versus 2007 for each GSC (at constant prices).18 Although there

is clearly a lot of heterogeneity among GSCs, a general pattern can be observed. The simple

regression line in each plot gives an indication to what extent the use of labour has decreased

(slope parameter β lower than 1) or increased (β > 1). Note that for most occupations

the slope parameter is below unity which means that GSC technological change tends to

be labour-saving. The only exception is non-routine manual occupations, suggesting that on

average GSC production made more use of the type of tasks associated with these occupations

in 2007 than it did in 1999. The pattern of technological change across occupations indicates

that it is ‘routine-biased’ in the sense that the demand for occupations that are intensive

18. To be precise, we first compute the number of efficiency units per 100 dollar of GSC output in 1999.
Then we calculate the yearly changes for 2000 up to 2007 based on input-output tables in previous year prices
and add these up to arrive at the number for 2007.
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in routine tasks (β = 0.85 and β = 0.86), has decreased more than that for non-routine

occupations (β = 1.01 and β = 0.96).

Figure 3: Technological change within Global Supply Chains, 1999-2007

(a) Routine, Manual (β = 0.85) (b) Non-routine, Manual (β = 1.01)
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(c) Routine, Analytic/Interactive (β = 0.86) (d) Non-routine, Analytic/Interactive (β = 0.96)
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Notes: The number of efficiency units in each year are given per 100 dollar of output. The solid line shows the

regression line, with its slope given in brackets. To calculate the regression coefficient, all observations below

the 1st and above the 99th quantile were removed. The dotted line is a 45◦ line.

The final term in (7) is the share of country c in the total output of task j within supply

chain v. We refer to this as ‘location’ because the distribution of these task shares across

countries shows where the activity of a supply chain is located. Empirically we can identify

the task share by dividing the number of efficiency units of labour of occupation j employed
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Figure 4: Task relocation within Global Supply Chains, 1999-2007

(a) Routine, Manual (β = 1.30) (b) Non-routine, Manual (β = 1.17)
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(c) Routine, Analytic/Interactive (β = 1.21) (d) Non-routine, Analytic/Interactive (β = 1.24)
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Notes: Each observation represents a GSCs ending in an advanced country.
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in country c by the total number throughout the chain:

T c
jv

Tjv

=
AcN c

jv
∑

c′ A
c′N c′

jv

. (9)

As the shares sum to one, it follows that relocation of tasks is a zero-sum game: If one

country gains then another one loses out. Figure 4 illustrates one of the important trends

in task relocation: a shift in task production from advanced to emerging countries.19 For

each GSC ending in an advanced country it plots the total task share of emerging countries

in 2007 against the initial share in 1999. For almost all occupations the simple regression

line has a slope greater than 1, so that there is indeed a tendency for the share of emerging

countries to increase. Task relocation to emerging countries appears strongest for routine

manual jobs (β = 1.30). This suggests routine jobs are more likely to be offshored compared

to non-routine jobs.

4.3 Illustration: The supply chain of German cars

The task-based model of production in Global Supply Chains motivates a decomposition of

changes in occupational labour demand into the effects of technological change, task relocation

and other factors. Here, we illustrate the decomposition by returning to the example of the

supply chain of cars that have their final stage of assembly in Germany. In Table 4 we

report the decomposition results for 4 of the 11 occupations and total employment, and the

contribution from 3 of the 40 countries.

The first column shows the change in employment attributed to TFP (this is the first term in

equation (7)). For the German car GSC as a whole this effect is negative. This suggests that

on average countries participating in this supply chain have become more productive, which

ceteris paribus would result in a loss of employment. Since TFP is defined at the country

level, the sign of this effect is necessarily the same for all occupations within a given country.

19. The ‘rest of the world’ is also included in the share of emerging countries.
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Table 4: Decomposition results for the global supply chain of cars finalized in Germany

Within Between Income Total

TFP GSC technology Location

Production workers −193 −216 189 52 371 204

Germany −47 −91 −141 17 155 −108
China −43 −18 116 7 32 95
Poland −9 −8 28 2 13 27

Clerical workers −40 −62 19 12 98 27

Germany −17 −35 −13 6 55 −3
China −6 −3 10 1 5 6
Poland −1 −1 5 0 2 5

Support services workers −42 28 17 11 72 85

Germany −6 9 −10 3 21 16
China −18 5 17 2 14 19
Poland −1 1 0 0 1 1

Engineering professionals −42 −13 19 15 102 80

Germany −20 −7 −23 9 65 24
China −3 −1 8 0 2 7
Poland −1 0 4 0 2 5

Total −460 −224 303 132 926 677

Germany −128 −100 −239 51 422 7
China −101 −16 177 15 76 151
Poland −18 −8 53 5 27 59

Notes: In thousands of jobs. Numbers may not sum due to rounding. The numbers shown in the final col-
umn match with those reported in Table 3. The decomposition shows results for 4 out of the 11 occupational
groupings and total employment. The numbers in bold show overall employment changes of each occupation in
the GSC of cars finalized in Germany due to the different factors. The contribution from 3 countries, namely
Germany, China and Poland, by occupation is distinguished.

25



The GSC technology effect (the second term in (7)) is reported in the second column and is

negative for 3 of the 4 occupations shown, with support services workers as the exception.20

This coincides with our findings in the previous section regarding the pattern of technological

change. Technological change within the GSC is such that less labour is needed per unit

of final output, except for non-routine manual occupations (which include support services

workers).

The effect of location in column 3 (the final term in (7)) reveals that tasks in the German

car GSC have been relocated from Germany towards China and Poland. For example, the

number of production workers in Germany decreased by 141 thousand while it increased by

116 and 28 thousand in China and Poland, respectively. Note that although changes in the

task allocation across countries sum to zero in terms of efficiency units (as explained in the

previous section), in terms of the actual number of jobs this need not be the case. In this

example, tasks have on average moved to countries with a lower TFP level such that the

overall location effect is an increase in labour demand for this GSC.

The positive between effect (the second term in (5)) suggests that cars that have been finalised

in Germany capture a larger share of world demand in 2007 than they did in 1999. Finally,

the pen-ultimate column shows that the largest increase in employment comes from an overall

rise in world income (the last term in (5)). Adding up all terms results in the total change in

employment by occupation between 1999 and 2007, as shown in the final column of Table 4.

This number coincides with that reported in Table 3.

5 The rise of non-routine jobs: trade or technology?

In this section we shift our focus from employment changes within global supply chains to

those occurring at the country level. This requires summation over countries of the decompo-

sition results for the 1435 GSCs in our data. For example, if we look at Germany then we do

not only take into account the employment of German workers in the German car GSC (as

20. Since for each occupation GSC technology is defined at the supply chain level, the sign of this effect is
necessarily the same for all countries within a given occupation.
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in Table 4 above), but also in the French car GSC, the Japanese electronics GSC, etcetera.

We narrow our focus in two directions. First, although the decomposition is still performed

at the most detailed level our occupations classification allows (the 11 different occupations

given in Table 1), we aggregate the results so that they apply to routine and non-routine jobs.

Second, we only discuss the effect of changes in GSC technology and task relocation on the

demand for labour and relegate full decomposition results to Appendix C.

Panel (a) of Figure 5 shows the percentage change in the number of routine jobs (horizontal

axis) and non-routine jobs (vertical axis) that is attributed to GSC technological change.

Each observation is a country (40 in total) with emerging countries indicated by white dots

and advanced countries by black dots. The first thing to notice is that there is substantial

heterogeneity among countries in the effects of technological change on employment. The

reason for this is that GSCs differ in the nature and extent of technological change (recall

Figure 3) and that countries differ in the extent of their involvement in each supply chain.

For example, the number of German workers involved in the GSC of German cars is greater

than that involved in the GSC of French cars, and therefore employment in Germany will be

more strongly affected by technological change in the former than in the latter. From Figure

5(a) it is clear that technological change within GSC is related to reduced demand for routine

workers in nearly all countries. For non-routine jobs the pattern is less clear, with most

countries showing an increase and some a decrease. For every country, the percentage change

in routine jobs is always lower than that in non-routine jobs, consistent with the routinisation

hypothesis put forth in Autor et al. (2003). We will come back to the effect of technological

change on the relative demand for the two types of jobs in Section 5.1 below.

The role of task relocation is illustrated in panel (b) of Figure 5. There is a positive relation-

ship between the percentage change in routine and non-routine jobs. For advanced countries

both are usually negative (an exception is Germany, which saw a small increase in non-routine

employment). Among the emerging countries there is a subset which has attracted both rou-

tine and non-routine jobs. Nevertheless, for typical offshore destinations such as China and

Poland the percentage increase in routine jobs is greater than that in non-routine jobs. Per-
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haps surprisingly, Mexico does not seem to benefit from task relocation (it is located in the

south-west quadrant, together with advanced countries such as the United States and the

United Kingdom). A possible reason for this is that Mexico already became integrated in

global supply chains in the early 1990s following the signing of the North American Trade

Agreement (NAFTA) in 1994.

Figure 5: Percentage change in routine and non-routine jobs

(a) Due to GSC technological change (b) Due to task relocation

Notes: Each observation is a country.

5.1 The relative demand for non-routine and routine jobs

In Section 2 we highlighted an important trend in the labour market of both advanced and

emerging countries: the increasing employment share of non-routine jobs. In this section we

show how our decomposition results can shed light on whether and to what extent techno-

logical change and offshoring have contributed to this trend.

We do so by calculating hypothetical changes in employment shares under the assumption

that the total change in the number of jobs equals that attributed to GSC technological

change or to task relocation by the decomposition. For example, the decomposition results

show that in the United States, task relocation resulted in a loss of 2.2 million routine jobs

and 2.7 million non-routine jobs. Given an initial employment level of 54.6 million routine and
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88.3 non-routine jobs, this corresponds to an increase in the employment share of non-routine

jobs from 61.80% to 62.05% or 0.25 percentage points.

Figure 6: The contribution of task relocation and GSC technological change to changes in
the employment share of non-routine jobs
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Source: Decomposition result using the harmonized cross-country occupations database

and the World Input-Output Tables. Notes: Selected advanced and emerging countries

appear in ascending order of the percentage point change in the employment share of

non-routine jobs due to task relocation between 1999 and 2007. Appendix Figure D.2

shows the results for all countries included in the analysis.

Figure 6 shows the results for the same countries as in Figure 1. Three main conclusions

emerge. First, technological change within GSCs increases the demand for non-routine jobs

relative to routine jobs. This is true for nearly all countries included in our analysis, see

Appendix Figure D.2 for the complete list.21 Thus, both in advanced and emerging countries

we find that technological change is routine-biased.

Second, offshoring has lowered the relative demand for routine jobs in most major advanced

countries, including France, Germany, the United Kingdom, and the United States. The

21. The only exception is Greece, but the decrease in the employment share of non-routine workers is very
small.
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opposite effect is observed in several emerging countries that benefited from the relocation of

routine tasks, such as China, Hungary, Poland and Turkey.

Third, GSC technological change has a much greater impact on the employment share of

non-routine workers than task relocation.22 For example, in the United States technological

change can account for a 2.7 percentage points increase in the share of non-routine jobs, but

task relocation only for a 0.25 percentage point increase. The dominance of technology over

trade in explaining labour market trends is in line with previous findings by Autor et al.

(2003) and Goos et al. (2014) for advanced countries. Its role in accounting for the rise of

non-routine jobs helps explain why most countries in our dataset experience an increase in the

share of non-routine jobs, even though some countries in our analysis are important offshore

destinations for routine tasks.

5.2 Global supply chains of manufactured goods

In the analysis above we have treated the production of any good or service as a global supply

chain, regardless of how ‘global’ the production process actually is. This might bias our results

against the role of trade in explaining changes in the demand for labour. To investigate this,

we restrict attention to a subset of GSCs in which offshoring is most common, namely the

global supply chains of manufactured goods. Recall that we identify a global supply chain

by the industry and country in which the final stage of production takes place, but that it

includes all contributing industries as well. Hence, employment in manufacturing GSCs does

not only consist of workers in manufacturing industries, but also in service industries that

deliver output for intermediate use to these industries (which means that they perform one of

the required tasks). For example, when we consider employment in the GSC of German cars

then this includes employees in the UK financial services sector when they provide financial

business services to this supply chain.

22. Results for all countries suggest that only in Latvia the increase in demand for routine jobs due to task
relocation is larger than technological change biased in favour of demand for non-routine jobs (see Appendix
Figure D.2).
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Figure 7: Percentage change in routine and non-routine jobs in manufacturing GSCs

(a) Due to GSC technological change (b) Due to task relocation

Notes: Each observation is a country. Only employment in manufacturing global supply chains is included.

Figure 7 is the counterpart of Figure 5 but restricts attention to employment in manufacturing

GSCs. By comparing panel (b) in the two figures we see that task relocation plays indeed a

more important role in manufacturing GSCs: the percentage change in the number of routine

and non-routine jobs is larger (in absolute terms) for most countries. However, this is also

true for the effect of technological change in panel (a). What does this mean for the relative

importance of trade and technology? Figure 8 shows that our conclusion that technology is

more important than trade in explaining the increased employment share of non-routine jobs

is unchanged when we restrict attention to manufacturing GSCs.
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Figure 8: The contribution of task relocation and GSC technological change to changes in
the employment share of non-routine jobs in manufacturing GSCs
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Source: Decomposition result using the harmonized cross-country occupations database

and the World Input-Output Tables. Notes: Selected advanced and emerging countries

appear in ascending order of the percentage point change in the employment share of

non-routine jobs due to task relocation between 1999 and 2007.
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6 Concluding remarks

In many countries, there has been an increase in the share of non-routine jobs in the labour

force. For advanced countries these changes in occupational employment have been widely

documented and analysed (e.g. Autor et al. 2003; Goos et al. 2014). This paper uses a

cross-country harmonised occupations database and shows that the employment share of

non-routine jobs increased in thirty-seven advanced and emerging countries during the period

1999-2007. We examine these changes through the lens of a global supply chain model. In

particular, for each supply chain we look at changes in the use of occupational labour per

dollar of output (defined as ‘GSC technology’) and shifts in the share captured by each country

(‘task relocation’). Our findings suggest that technological change within global supply chains

tends to drive down the demand for routine relative to non-routine jobs. The relocation

of routine tasks further contributed to increased relative demand for non-routine jobs in

advanced countries, although this effect was smaller compared to the effect from technological

change. In several emerging countries, including China and Poland, task relocation increased

the demand for routine jobs, but also in these countries the effect from technological change

biased against routine jobs was stronger.

Our findings are based on a decomposition that is essentially an ex-post accounting exercise.

The results are useful empirical findings, but we do not claim to have determined a causal

effect. The decomposition analysis abstracts from the inter-relatedness of technological change

and task relocation. For example, an improvement in information technology may reduce

demand for routine jobs throughout the supply chain, but it may also affect the ease at which

a routine task can be relocated. One approach to better understand these type of interactions

is by using detailed firm level data as in Fort (2017).

The harmonised occupations database presented in this paper opens up avenues for future

research. First, it is possible to determine in what type of tasks countries specialise within

global supply chains and how these specialisation patterns change over time. Another inter-

esting research area to explore are complementarities between different activities in GSCs. So

far researchers have looked at complementarities between production factors, such as capital
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and skilled labour, but there might also exist complementarity between certain tasks, for

example between production and R&D activities (Defever 2012). Finally, an important open

research question is the extent to which the employment changes documented here are helpful

for understanding changes in wage inequality.
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A Data sources

Table A.1: Sources of occupational data by country

Country Source(s) Years

Australia Labour Force: Employed Persons Quarterly Large
Source Dataset

1999-2007

Brazil National Household Sample Survey (PNAD) 1999-2007

Canada Canadian Labour Force Survey 1999-2007

China Population census 2000, 2010

EU members∗ Labour force survey 1999-2007†

India National Sample Survey 2000, 2004-2006, 2008

Indonesia National Labour Force Survey (Sakernas) 2000-2007‡

Japan Population census 1995, 2000, 2005, 2010

Mexico Population census 2000, 2010

Russia Labor force survey 2000, 2008

South-Korea Korea Labor and Income Panel Study (KLIPS) 1999-2007

Taiwan Manpower survey 1999-2007

Turkey Labour force survey 2007

United States Population census 2000
American community surveys 2000-2007

Notes:
∗ We examine the 27 countries that are a member of the EU (per January 2007).
† Bulgaria and Malta from 2000 onwards; Poland from 2004 onwards.
‡ We drop 2000-2002 because of anomalies in the data.
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B Methodology

B.1 World input-output tables

TheWorld Input-Output Database (WIOD, November 2013 release) provides data onmi = 35

industries and mc = 41 countries, including one that captures ‘the rest of the world’. The

basic structure of the world input-output table for a given year is given in Figure B.1. The

units of observations are the mimc = 1435 unique country-industry pairs. The mimc×mimc

matrix Z records the flows of output for intermediate use between industries worldwide. The

entry in row a and column b equals the use (in United States dollars) by industry-country b

of intermediate inputs provided by a. The mimc×mcmf matrix F contains for each country-

industry the output for final use in every country and in mf = 5 different categories: final

consumption expenditures by households, non-profit organisations and the government, and

investment in fixed capital and inventories by firms. Gross output for each country-industry

pair is given by the mimc × 1 supply vector s. Because total supply is by necessity equal to

total intermediate and final use, the following equation has to hold:

s = Z1mimc + F1mcmf
, (B.1)

where 1 is a vector of ones and the subscript denotes its dimension. In other words, if we sum

up over the elements of Z and F in a given row, then we arrive that the corresponding value of

s. Similarly, if we sum up over a column of Z to obtain the total worth of intermediate inputs

used in a given country-industry and include its value added (an element of the 1 × mimc

vector v′) then we also arrive at total output of this country-industry.

We use this data to construct two new matrices. The first is the mimc × mimc matrix

A = Zdiag(s)−1 of intermediate use coefficients, where diag(s) is the mimc × mimc matrix

with the successive elements of the output vector s on the diagonal. A typical element of A

is the dollar value of the intermediate input use of one industry (row) per dollar of output of

another (column). Second, we add up across final demand categories and countries to derive

the mimc × 1 vector f = F1mcmf
of final demand. The identity given in (B.1) can then be
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Figure B.1: Structure of a World Input-Output Table
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Notes: The data consists of mi industries, mc countries and mf final demand
categories. Z is the matrix of intermediate use, F is the matrix of final
demand, s is the vector of gross output and v is the vector of value added.
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rewritten as:

s = As+ f . (B.2)

Under the assumption that the coefficients in A are the same for every dollar of output

produced, we can solve for s to obtain:

s = Bf , (B.3)

where B = [I−A]−1 is the so-called Leontief inverse with I the mimc×mimc identity matrix.

A given column of B contains the dollar value of output of all industries in all countries

required to produce one dollar of final output for the corresponding industry-country pair.

As in Timmer et al. (2014) we define a global supply chain as a country-industry pair that

delivers a product for final use. This means that each GSC corresponds to a column of the

matrix B and that we can think of each cell within a column as the task output that the

corresponding industry delivers to this GSC. The dollar value of final demand for each GSC

(pvYv in the main text) is given by the elements of the vector f .

B.2 Occupational employment

To go from task output to employment levels we use occupations data to find the mimc × 1

vector qj of labour with occupation j employed per dollar of gross output in each industry-

country pair. It follows that Qj = diag(qj)B is the matrix that gives for each GSC (columns)

the amount of labour that has been used to perform the tasks allocated to the different

industries worldwide (rows) per dollar of final output. By summing over all industries in a

given country we find the mc ×mimc matrix Nj , of which the element in row c and column

v corresponds to N c
jv/[pvYv]: the demand for occupational labour in country c by GSC v per

dollar of final output.
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In this notation, occupational employment in a given country can be written as:

Lc
j =

∑

v

N c
jv

pvYv

pvYv = i′cNjf , (B.4)

where ic is a mc × 1 selection vector which equals 1 for country c and 0 otherwise.

B.3 Decomposition

We can express final demand for each global supply chain as a share of world GDP W (a

scalar) by defining d = f/W so that we obtain:

Lc
j =

∑

v

N c
jv

pvYv

pvYv

W
W = i′cNjdW. (B.5)

which corresponds to equation (5) aggregated over all GSCs for a given country. In the

decomposition exercise we separate changes in the labour requirements matrix Nj from those

in the final demand shares d and world income W . For two consecutive years, say year t and

t+1, we use an input-output table in current year prices for t and in previous year prices for

t+ 1 so that both use the prices of year t. The three-way decomposition is then given by:

Lc
j,t+1 − Lc

j,t = i′cNj,t+1dt+1Wt+1 − i′cNj,tdtWt

= i′c[Nj,t+1 −Nj,t]dt+1Wt+1
︸ ︷︷ ︸

within

+ i′cNj,t[dt+1 − dt]Wt+1
︸ ︷︷ ︸

between

+ i′cNj,tdt[Wt+1 −Wt]
︸ ︷︷ ︸

income

. (B.6)

This decomposition is not unique as it alters with the weights applied to the expressions. For

that reason, we also compute its polar form (obtained by switching the initial and final year

weights) and then take the average of the two. Dietzenbacher and Los (1998) demonstrate

that the average of all the potential decompositions is close to the average of the two polar

decompositions.
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We perform the decomposition for all consecutive years between 1999 and 2007 and add up

the corresponding elements to arrive at the total presented in Appendix C and discussed in

the main text.

C Decomposition results for all countries

Table C.1 and Table C.2 show the decomposition results for non-routine and routine occu-

pations, respectively. All numbers reported are in thousands of jobs (note that agricultural

occupations, armed forces, and the so-called ‘occupations not elsewhere classified’ are not

included). The first column gives the employment level in 1999, and the second column the

change in employment between 1999 and 2007. This change is subsequently decomposed into

a ‘within’, a ‘between’ and an ‘income’ component, of which the ‘within’ component is further

decomposed by ‘TFP’, ‘GSC technology’ and ‘location’, see Section 4.

D Changes in employment shares for all countries

Figure D.1 shows the change in the employment share of non-routine jobs for all countries

in our sample (similar to Figure 1). Figure D.2 reports the hypothetical change in the em-

ployment share of non-routine jobs attributed to technological change within GSCs and task

relocation for all countries in our sample (similar to Figure 6).
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Table C.1: Decomposition for non-routine occupations

Initial Change Within Between Income

TFP GSC technology Location

Australia 5,108 1,320 −400 487 −367 136 1,464
Austria 2,224 368 −131 42 57 −210 612
Belgium 2,535 436 −36 91 −74 −228 683
Bulgaria 1,762 228 −38 −347 −59 215 457
Brazil 34,743 16,659 −1,459 5,667 1,215 76 11,160
Canada 9,049 1,819 −58 −425 −211 0 2,514
China 190,511 54,368 −73,363 −51,645 5,498 119,145 54,733
Cyprus 182 56 −19 2 10 9 53
Czech Republic 2,913 367 −852 267 61 127 764
Germany 23,710 2,217 −1,899 1,727 121 −4,024 6,293
Denmark 1,751 260 −53 69 −99 −129 472
Spain 8,715 3,919 367 489 −242 615 2,690
Estonia 376 54 −122 7 −6 77 99
Finland 1,467 254 −179 118 −55 −31 402
France 14,294 2,741 −702 967 −386 −1,111 3,973
United Kingdom 18,446 3,360 −2,138 1,133 −672 −100 5,137
Greece 2,241 587 −280 3 −107 341 630
Hungary 2,310 166 −429 102 −2 −114 610
Indonesia 28,270 8,334 −3,586 −1,279 1,958 3,819 7,422
India 89,130 23,801 −14,207 −18,106 2,798 26,516 26,800
Ireland 996 355 −63 −15 −10 147 296
Italy 12,970 2,903 723 332 −197 −1,622 3,667
Japan 30,822 221 −989 −1,033 −744 −4,669 7,655
South Korea 10,923 2,321 −1,565 −273 39 1,037 3,082
Lithuania 819 127 −329 85 57 104 210
Luxembourg 152 57 −8 16 −6 9 46
Latvia 576 123 −347 95 24 197 154
Mexico 18,304 7,227 345 2,391 −722 −337 5,550
Malta 86 14 1 −5 −7 2 23
Netherlands 5,497 653 −314 −74 −11 −415 1,468
Poland 7,254 911 −1,259 248 −20 86 1,856
Portugal 2,408 430 1 159 −30 −365 665
Romania 3,237 528 −1,343 248 −40 806 857
Russia 40,041 6,671 −16,532 3,565 275 8,408 10,955
Slovakia 1,244 133 −355 61 28 71 326
Slovenia 452 109 −96 48 2 26 128
Sweden 2,828 423 −461 275 −13 −151 773
Turkey 7,589 1,843 −1,407 −596 192 1,492 2,163
Taiwan 4,671 934 −575 92 262 −128 1,283
United States 88,315 10,499 −7,969 −112 −2,672 −2,213 23,465

Notes: In thousands of jobs.
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Table C.2: Decomposition for routine occupations

Initial Change Within Between Income

TFP GSC technology Location

Australia 3,234 383 −234 −141 −204 114 849
Austria 1,355 −60 −68 −147 −86 −81 322
Belgium 1,400 −77 −17 −205 −128 −77 351
Bulgaria 932 236 −20 −284 −13 302 251
Brazil 21,366 4,430 −760 −165 201 −714 5,867
Canada 5,065 543 −37 −627 −202 54 1,353
China 162,521 45,163 −59,261 −56,734 11,002 105,883 44,274
Cyprus 109 20 −11 −7 4 5 29
Czech Republic 1,919 −71 −518 −242 25 197 466
Germany 13,774 −856 −1,003 −1,077 −122 −1,941 3,286
Denmark 835 −63 −22 −87 −96 −52 194
Spain 5,906 1,252 231 −640 −362 358 1,665
Estonia 175 33 −59 −20 −2 66 47
Finland 647 4 −73 −53 −38 6 162
France 8,366 −589 −393 −1,158 −679 −411 2,052
United Kingdom 10,345 −1,051 −1,039 −1,491 −809 −134 2,421
Greece 1,265 148 −154 4 −90 51 338
Hungary 1,573 −76 −276 −188 20 −14 383
Indonesia 22,605 801 −2,823 −5,505 601 2,868 5,662
India 74,525 18,241 −11,103 −22,828 −500 31,055 21,616
Ireland 591 153 −37 −48 −12 84 166
Italy 8,545 −85 419 −1,082 −632 −938 2,147
Japan 29,216 −1,445 −921 −2,408 −357 −4,911 7,152
South Korea 7,124 1,361 −1,033 −376 −55 790 2,035
Lithuania 396 56 −157 −17 24 106 101
Luxembourg 93 25 −4 −6 −2 11 27
Latvia 262 76 −168 27 37 105 74
Mexico 12,943 902 196 −1,599 −861 −170 3,336
Malta 55 1 0 −7 −4 −2 14
Netherlands 2,222 5 −119 −287 43 −185 553
Poland 4,385 506 −736 −295 208 243 1,086
Portugal 1,911 −116 5 −175 −30 −385 468
Romania 2,966 −220 −1,133 −448 −73 722 711
Russia 15,827 −335 −6,009 −2,497 −601 4,809 3,963
Slovakia 772 −6 −200 −122 −40 170 186
Slovenia 337 −19 −58 −60 −6 26 80
Sweden 1,248 −66 −180 −144 −45 6 298
Turkey 5,655 762 −953 −1,624 220 1,637 1,482
Taiwan 4,025 126 −441 −339 −7 −97 1,010
United States 54,580 −2,185 −4,610 −6,056 −2,204 −2,632 13,316

Notes: In thousands of jobs.
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Figure D.1: Change in the employment share of non-routine jobs between 1999 and 2007,
all countries
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Source: Harmonized cross-country occupations database, see main text. Notes: Coun-

tries are grouped in advanced and emerging countries and appear in ascending order of

the change in the employment share of non-routine jobs between 1999 and 2007.
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Figure D.2: Changes in the employment share of non-routine jobs due to technological
change and task relocation, all countries
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Source: Decomposition result using the harmonized cross-country occupations database

and the World Input-Output Tables. Notes: Countries appear in ascending order of

the percentage point change in the employment share of non-routine jobs due to task

relocation between 1999 and 2007.
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