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a b s t r a c t 

We consider two-stage recourse models in which only limited information is available on the probabil- 

ity distributions of the random parameters in the model. If all decision variables are continuous, then 

we are able to derive the worst-case and best-case probability distributions under the assumption that 

only the means and mean absolute deviations of the random parameters are known. Contrary to most 

existing results in the literature, these probability distributions are the same for every first-stage deci- 

sion. The ambiguity set that we use in this paper also turns out to be particularly suitable for ambiguous 

recourse models involving integer decisions variables. For such problems, we develop a general approxi- 

mation framework and derive error bounds for using these approximatons. We apply this approximation 

framework to mixed-ambiguous mixed-integer recourse models in which some of the probability distri- 

butions of the random parameters are known and others are ambiguous. To illustrate these results we 

carry out numerical experiments on a surgery block allocation problem. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Many practical decisions are made while key information is

uncertain. Consider, for example, customer demand in production

planning, supply of renewable energy in unit commitment prob-

lems, the precision of physical devices in engineering design, and

the return on investment in finance. All these problems can be

modelled as stochastic programming (SP) problems, or recourse

models, in which the uncertain information is represented by

random parameters; see, e.g., the textbooks Birge and Louveaux

(1997) , Prékopa (1995) and Shapiro, Dentcheva, and Ruszczy ́nski

(2009) . Practical applications may add two difficulties to tradi-

tional or standard recourse models. First, instead of the probability

distributions of the random parameters being known, only limited

information may be available so that it is more realistic to assume

that their distributions are ambiguous, i.e., only partly known

( Knight, 1921 ). Second, some of the recourse (later-stage) decision

variables can be integer. In this paper we consider the even more

difficult situation when both of these difficulties are present, that

is, we consider ambiguous two-stage recourse models, possibly
∗ Corresponding author. 
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nvolving integer decision variables. For such problems, we derive

n approximation framework so that we can efficiently obtain

ood approximating solutions for them, even for large-scale in-

tances. By deriving error bounds for the approximations we

uarantee the performance of the approximating solutions. 

Ambiguous recourse models were first considered by Scarf

1958) and Žáčková (1966) . In the SP literature they are called min-

max problems (see also Kemperman, 1968; Shapiro & Kleywegt,

0 02 ; Shapiro & Ahmed, 20 04 ), whereas in the robust optimization

RO) literature they are called distributionally robust optimization

roblems (see, e.g., Delage & Ye, 2010 and Wiesemann, Kuhn, &

im, 2014 ). The above references all minimize worst-case expected

osts over all admissible probability distributions, whereas in this

aper in addition also the best-case expected costs will be mini-

ized. In fact, we will determine worst-case and best-case proba-

ility distributions (distinct from each other) that are, contrary to

ost of these references, the same for all first-stage decisions. This

s more intuitive for practitioners and also convenient for stress

esting. 

The ambiguity set we use contains information on the sup-

orts, means, and mean absolute deviations (MADs) of the ran-

om parameters, and the probabilities that they are greater than or

qual to their mean. These values are easy to estimate using, e.g.,

he procedures given in Postek, Ben-Tal, Hertog, and Melenberg

2018) . Under this information on the random parameters, we can

https://doi.org/10.1016/j.ejor.2018.10.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.10.008&domain=pdf
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se a result of Ben-Tal and Hochman (1972) , referred to as BTH72,

o prove that the worst-case and best-case probability distribu-

ions are discrete with at most three possible realizations per ran-

om parameter if all decision variables in the model are contin-

ous. The difference between the worst-case and best-case ex-

ected costs gives an easy-to-calculate upper bound on the value

f distributional information (VDI); see, e.g., Delage, Arroyo, and Ye

2015) . The VDI is particularly relevant in a data-driven environ-

ent where it can be used to assess the costs of gathering more

ata. 

The ambiguity set also turns out to be useful for ambiguous

ecourse models involving integer decision variables. Such prob-

ems are extremely challenging, since they combine the difficul-

ies of having (i) integer decision variables, and (ii) random pa-

ameters with (iii) probability distributions that are partly known.

uch problems have been studied only limitedly in the litera-

ure; see, e.g., Hanasusanto, Kuhn, and Wiesemann (2016) and Xie

nd Ahmed (2017) for recent contributions in RO and SP, respec-

ively. For example, the latter consider distributionally robust sim-

le integer recourse models in which only the means and supports

f the random parameters are known. Ambiguous recourse mod-

ls generalize standard integer recourse models that have been

tudied by, e.g., Laporte and Louveaux (1993) , Carœ and Schultz

1999) , Ahmed, Tawarmalani, and Sahinidis (2004) , Sen and Higle

2005) , and Gade, , and Küçükyavuz (2014) (see also the surveys

y Schultz, 2003, Klein Haneveld & van der Vlerk, 1999 , and Sen,

005 ). We refer to Bertsimas and Georghiou (2015) , Hanasusanto,

uhn, and Wiesemann (2015) , and Postek and Hertog (2016) for

tudies in adjustable RO involving integer decision variables. 

The reason why even these standard mixed-integer recourse

odels are so hard to solve is that they are generally non-convex.

or this reason, van der Vlerk (2004) , Klein Haneveld, Stougie,

nd van der Vlerk (2006) , Romeijnders, van der Vlerk, and Han-

veld (2015) , Romeijnders, van der Vlerk, and Klein Haneveld

2016b) , and Romeijnders, Schultz, van der Vlerk, and Haneveld

2016a) have proposed convex approximations for several classes

f mixed-integer recourse models. For these approximations er-

or bounds have been derived that depend on the total variations

f the probability density functions of the random parameters in

he model. Inspired by these results we derive an approximation

ramework for ambiguous mixed-integer recourse models. This is

he main contribution of this paper. 

We derive error bounds for using convex approximations

or ambiguous mixed-integer recourse models, minimizing both

orst-case and best-case expected costs. For the convex approxi-

ating models, we can apply the results of BTH72, obtaining the

ame worst-case and best-case probability distributions as for con-

inuous recourse models. This explains why our ambiguity set is

uitable when using these approximations. Interestingly, we are

lso able to derive error bounds for incorrectly assuming that the

orst-case and best-case probability distributions are, respectively,

he same for ambiguous mixed-integer recourse models as for con-

inuous recourse models. 

We apply the approximation framework to two-stage mixed-

mbiguous mixed-integer recourse models in which some distri-

utions of the random parameters are known and others are am-

iguous. For such models we can use the existing convex approx-

mations of Romeijnders et al. (2016a , 2016b) and Romeijnders,

orton, and van der Vlerk (2017) with corresponding error bounds

or standard mixed-integer recourse models. We apply these con-

ex approximations to a surgery block allocation problem. Using

umerical experiments we illustrate that these convex approxi-

ations are indeed good approximations. In fact, we obtain sur-

risingly good performance guarantees for the approximating so-

utions given that ambiguous mixed-integer recourse models are

xtremely hard to solve and we are unable to obtain the exact
ptimal solution. The performance guarantees are obtained by

ombining the multiple replications procedure (MRP) of Bayraksan

nd Morton (2006) with new tighter error bounds for convex ap-

roximations of simple integer recourse models. 

Summarizing, the main contributions of our paper are 

• Introducing a mean-MAD ambiguity set for continuous recourse

models, for which the worst-case and best-case probability dis-

tributions are the same for every first-stage decision; 
• Deriving a general approximation framework for ambiguous

mixed-integer recourse models; 
• Applying this approximation framework to mixed-ambiguous 

mixed-integer recourse models, and using numerical experi-

ments to show that it yields good solutions. 

The structure of our paper is as follows. In Section 2 we intro-

uce our approach for two-stage ambiguous recourse models with

ontinuous decision variables. Section 3 includes our new approxi-

ation framework for two-stage ambiguous recourse models with

nteger decision variables. In Section 4 we apply this framework to

 surgery block allocation problem and we carry out numerical ex-

eriments. For reasons of space, several proofs of propositions and

heorems are relegated to Appendix A. 

. Two-stage ambiguous continuous recourse models 

In this section we describe our approach for solving ambigu-

us recourse models in case all decision variables are continuous.

e only consider two-stage models here. However, the results can

asily be generalized to a multi-stage setting. Although the results

n this section appear to be known in the SP literature ( Ben-Tal &

ochman, 1976 ), we are the first – to our knowledge – to make

hese results explicit in a two-stage setting. Moreover, in this sec-

ion we will set the stage for our new results on ambiguous mixed-

nteger recourse models. 

The ambiguous recourse model that we consider is 

nf 
 ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + v (x, z)] , (1)

here X = { x ∈ R 

n 1 + : Ax = b} represents the set of feasible first-

tage solutions, P z is the ambiguity set for probability distribu-

ions, and v (x, z) is the second-stage value function defined as a

unction of the first-stage variables x and the random parameters

 = (ξ , ω) : 

 (x, z) = inf 
y ∈ Y 

{ q (ξ ) � y : W y = h (ω) − T (ω) x } . (2)

ere, y are the second-stage (or recourse) variables and Y ⊂ R 

n 2 + is

 polyhedral set. The second-stage costs q ( ξ ), the technology ma-

rix T ( ω), and the right-hand side h ( ω) depend on the random vec-

or z = (ξ , ω) . Moreover, since the recourse matrix W is determin-

stic, we say that the problem has fixed recourse (see, e.g., Shapiro

t al., 2009 ). Throughout the paper, we take the following assump-

ion. 

ssumption 1. We assume that q , T , and h are affine functions of

 and that all components of z are independent . Thus, in particular,

 ( ξ ) is independent from T ( ω) and h ( ω). 

In problem (1) , the here-and-now decisions x have to be made

hile the parameter z is unknown, and after the uncertain param-

ter z is revealed we are allowed to take recourse actions y to com-

ensate for possible violations of the constraints T (ω) x = h (ω) .

he objective is to minimize the sum of the direct costs c � x and

he worst-case expected costs sup P ∈P E P z [ v (x, z)] . 

z z 
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Here, the ambiguity set P z is defined as 

P z = { P z : supp (z i ) ⊆ [ a i , b i ] , E P z 
[ z i ] = μi , E P z | z i − μi | = d i , 

P z { z i ≥ μi } = βi , z i ⊥ z j , i 	 = j} , (3)

where z i ⊥ z j means that z i and z j are stochastically independent.

Postek et al. (2018) explain procedures to estimate these param-

eters from historical data. Moreover, BTH72 show that the ambi-

guity set P z is non-empty if for all i we have a i < μi < b i , 0 ≤ d i ≤
2(b i −μi )(μi −a i ) 

b i −a i 
, and 

d i 
2(b i − μi ) 

≤ βi ≤ 1 − d i 
2(μi − a i ) 

. 

Throughout this paper we refer to the ambiguity set P z in (3) as

a ( μ, d , β) ambiguity set. 

2.1. Worst-case expectation 

In general in problem (1) , the worst-case probability distribu-

tion P z ∈ P z will differ for a different first-stage decision x ∈ X .

However, for the ( μ, d , β) ambiguity set P z in (3) , the worst-case

distribution P z̄ turns out to be the same for every first-stage deci-

sion so that the ambiguous recourse model in (1) reduces to 

inf 
x ∈ X 

E P z̄ 
[ c � x + v (x, ̄z )] , 

where each component of z̄ follows a known discrete distribu-

tion with at most three realizations. This result is summarized in

Proposition 1 below. Its proof combines the fact that the second-

stage value function v (x, z) is convex in ω and concave in ξ (see,

e.g., Fiacco & Kyparisis, 1986 ) with results from BTH72, who pro-

vide closed-form expressions for the worst-case expectations max-

imizing and minimizing the expectations of convex and concave

functions. 

Proposition 1. The two-stage ambiguous continuous recourse

model 

inf 
x ∈ X 

sup 

P z ∈P z 
E P z 

[
c � x + inf 

y ∈ Y 

{
q (ξ ) � y : W y = h (ω) − T (ω) x 

}]
with ( μ, d , β) ambiguity set P z for z = (ξ , ω) ∈ R 

n ξ × R 

n ω as defined

in (3) is equivalent to 

inf 
x ∈ X 

E P z̄ 

[
c � x + inf 

y ∈ Y 

{
q ( ̄ξ ) � y : W y = h ( ̄ω ) − T ( ̄ω ) x 

}]
, (4)

where the worst-case random vector z̄ = ( ̄ξ , ω̄ ) ∈ R 

n ξ × R 

n ω has in-

dependent components with marginal distributions 

P 

{
ξ̄i = μi −

d i 
2(1 − βi ) 

}
= 1 − βi , and 

P 

{
ξ̄i = μi + 

d i 
2 βi 

}
= βi , i = 1 , . . . , n ξ , 

and 

P { ̄ω i = a n ξ + i } = 

d n ξ + i 
2(μn ξ + i − a n ξ + i ) 

, P 

{
ω̄ i = b n ξ + i 

}
= 

d n ξ + i 
2(b n ξ + i − μn ξ + i ) 

, P 

{
ω̄ i = μn ξ + i 

}
= 1 − d n ξ + i 

2(μn ξ + i − a n ξ + i ) 
− d n ξ + i 

2(b n ξ + i − μn ξ + i ) 

for i = 1 , . . . , n ω . 

Proof. Follows directly from BTH72 since the second-stage value

function v (x, z) defined in (2) is convex in ω and concave in ξ for

every feasible first-stage solution x ∈ X . �
emark 1. Note that the worst-case distribution ω̄ does not de-

end on the parameter β . This means that for the random param-

ters ω we do not have to estimate the probability that ω i exceeds

ts mean to obtain the worst-case expectation. In Proposition 2 , we

how that we do require β to obtain the best-case distribution ω
f ω. 

emark 2. Observe that the worst-case probability distribution ω̄
s not necessarily feasible. Indeed, we may have P { ̄ω i ≥ μn ξ + i } <

n ξ + i for some 1 ≤ i ≤ n ω . However, by slightly adjusting the prob-

bility distribution of ω̄ i we may obtain arbitrarily close approxi-

ations of ω̄ i that are feasible, see BTH72. Hence, it makes sense

o refer to ω̄ as the worst-case distribution. 

.2. Best-case expectation 

Similar as for the worst-case expectation we can obtain the

est-case expectation over all probability distributions in the ( μ,

 , β) ambiguity set P z by using results of BTH72. Again, the best-

ase distribution P z is a discrete distribution with at most three re-

lizations per component that does not depend on the first-stage

ecision x . 

roposition 2. The two-stage ambiguous continuous recourse

odel 

inf 
 ∈ X 

inf 
P z ∈P z 

E P z 

[
c � x + inf 

y ∈ Y 

{
q (ξ ) � y : W y = h (ω) − T (ω) x 

}]
ith ( μ, d , β) ambiguity set P z for z = (ξ , ω) ∈ R 

n ξ × R 

n ω as defined

n (3) is equivalent to 

inf 
 ∈ X 

E P z 

[
c � x + inf 

y ∈ Y 

{
q ( ξ ) � y : W y = h ( ω ) − T ( ω ) x 

}]
, (5)

here the best-case random vector z = ( ξ , ω ) ∈ R 

n ξ × R 

n ω has inde-

endent components with marginal distributions 

P 

{
ξ

i 
= a i 

}
= 

d i 
2(μi − a i ) 

, P 

{
ξ

i 
= b i 

}
= 

d i 
2(b i − μi ) 

, 

P 

{
ξ

i 
= μi 

}
= 1 − d i 

2(μi − a i ) 
− d i 

2(b i − μi ) 

or i = 1 , . . . , n ξ and 

P 

{
ω i = μn ξ + i −

d n ξ + i 
2(1 − βn ξ + i ) 

}
= 1 − βn ξ + i , 

P 

{
ω i = μn ξ + i + 

d n ξ + i 
2 βn ξ + i 

}
= βn ξ + i . 

or i = 1 , . . . , n ω . 

roof. Follows directly from BTH72 since the second-stage value

unction v (x, z) defined in (2) is convex in ω and concave in ξ for

very feasible first-stage solution x ∈ X . �

Notice that since v (x, z) is concave in ξ and convex in ω the

orst-case distribution of ξ has the same structure as the best-

ase distribution of ω. 

emark 3. One can argue that the distribution parameters a , b , μ,

 and β of the ( μ, d , β) uncertainty set P z in Propositions 1 and 2

re subject to estimation and thus, uncertainty, and that it should

e accounted for. On this note, we state that the dependence of

he worst- and best-case expectations on parameters a , b , and μ
epends on the problem at hand and hence, the only way to ac-

ommodate for this uncertainty is to try multiple values. With re-

pect to dependence on d , the worst-case expectation of a convex

unction is nondecreasing in d and hence, the maximum value of

he expectation in Proposition 1 is attained at the largest possible
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alue of d . With respect to uncertainty in β , the worst-case expec-

ation of the recourse function of Proposition 1 (best-case expecta-

ion of Proposition 2 ) is concave (convex) w.r.t. to each component

i separately. Thus, in case of uncertainty about β , one can use

his fact to obtain more (less) conservative upper (lower) bounds

n the worst-case (best-case) expectations by alternatingly opti-

izing the decisions and maximizing (minimizing) the recourse

unction w.r.t. β i . 

.3. Value of distributional information 

Best-case expectation is a useful complement to the worse-case

xpectation, since the difference between the two can be inter-

reted as an upper bound on the value of distributional information

VDI, Delage et al., 2015 ). The VDI is the price one pays for not

nowing the true probability distribution P 

� 
z of z . Thus, it is the

ifference in expected costs between implementing the worst-case

xpectation solution and the optimal solution when the probabil-

ty distribution P 

� 
z is known. At the same time, it can also be inter-

reted as the amount we are willing to pay for complete knowl-

dge of the probability distribution of z , and thus a maximum on

he amount we are willing to invest in gathering more information

n this probability distribution. 

efinition 1. Consider the ambiguous recourse model 

nf 
 ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + v (x, z)] , (6)

nd assume that P 

� 
z ∈ P z is the true probability distribution of the

andom parameters z . Then, the value of distributional information

s defined as 

DI := E P 
� 
z 
[ c � x̄ + v ( ̄x , z)] − inf 

x ∈ X 
E P 

� 
z 
[ c � x + v (x, z)] , 

here x̄ ∈ X denotes the optimal solution to (6) . 

In general, the VDI can only be determined when the true prob-

bility distribution P 

� 
z is known. However, for ( μ, d , β) ambiguity

ets P z it is possible to upper bound the VDI without knowing P 

� 
z ,

ince the worst-case and best-case distributions are the same for

very first-stage decision x . 

emma 1. Consider the ambiguous recourse model 

nf 
 ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + v (x, z)] , 

ith P z , denoting the ( μ, d , β) ambiguity set as defined in (3) . Then, 

DI ≤ E P z̄ 
[ c � x̄ + v ( ̄x , ̄z )] − E P z 

[ c � x + v ( x , z )] , 

here x̄ and x are the optimal worst-case and best-case solutions of

4) and (5) , respectively. 

roof. Follows directly from the definition of VDI and the inequal-

ties 

 P 
� 
z 
[ c � x̄ + v ( ̄x , z)] ≤ E P z̄ 

[ c � x̄ + v ( ̄x , ̄z )] , 

nd 

nf 
 ∈ X 

E P 
� 
z 
[ c � x + v (x, z)] ≥ inf 

x ∈ X 
E P z 

[ c � x + v (x, z )] = E P z 
[ c � x + v ( x , z )] , 

hat hold since the worst-case and best-case distributions P z̄ and

 z are the same for every first-stage decision x . �

.4. Solution methods for continuous recourse models 

Propositions 1 and 2 show that we can obtain the worst- and

est-case expectation, respectively, by solving a standard continu-

us recourse model. That is why we review techniques for solv-

ng such models in this section. We consider the standard recourse

odel 

nf 
 ∈ X 

{
c � x + E P z 

[ v (x, z)] 
}
, (7) 
here all decision variables are continuous and the probability dis-

ribution P z has finite support. Enumerating all K scenarios of z , we

an rewrite the problem in (7) as 

nf 
 ∈ X 

E P z 
[ c � x + v (x, z)] = inf 

x ∈ X 

K ∑ 

k = 1 
p k [ c 

� x + v (x, z k )] , 

here p k denotes the probability of scenario z k , k = 1 , . . . , K. The
atter problem can be rewritten in its deterministic equivalent
orm, yielding 

inf 
 ∈ X,y k ∈ Y 

{ 

c � x + 

K ∑ 

k = 1 
p k q (ξ

k ) y k : W y k = h (ω 

k ) − T (ω 

k ) x, k = 1 , . . . , K 

} 

. 

Observe that the worst-case and best-case probability distribu-

ions P z̄ and P z have K := 2 n ξ × 3 n ω and K := 3 n ξ × 2 n ω scenarios,

espectively. Hence, the number of scenarios is exponential in the

umber of random parameters. From a robust optimization point

f view this means that the problem in (7) is intractable. Indeed,

yer and Stougie (2006) show that these recourse models are # P -

ard. Nevertheless, there has been a vast amount of work in the SP

iterature that deals with this kind of problems, yielding efficient

approximate) solution methods to these recourse models. The fact

hat the size of the problem grows exponentially in the number of

andom parameters is common in SP, and many SP approaches are

imed at reducing the number of scenarios. 

One of the most frequently used solution methods is the sam-

le average approximation (SAA), discussed in, e.g., Shapiro et al.

2009) . The idea of this method is to replace the original distri-

ution of z in (7) by a sample z s , s = 1 , . . . , N s , where N s is much

maller than the number of scenarios of z , yielding 

nf 
 ∈ X 

{ 

c � x + 

1 

N s 

N s ∑ 

s =1 

v (x, z s ) 

} 

. (8) 

f the sample size N s is small, then the approximation in (8) is eas-

er to solve than the original model in (7) . We may solve (8) for

everal different samples of z yielding (possibly) different first-

tage solutions x , and use an out-of-sample test to determine the

est among them (or average them, see Sen & Liu (2016) ). 

Alternatively, we may use other approaches to reduce the

umber of scenarios. For example, Dupa ̌cová, Gröwe-Kuska, and

ömisch (2003) and Heitsch and Römisch (2003) do so by com-

ining similar scenarios. Pflug (2001) uses the Wasserstein metric

o construct a discrete probability distribution (with few scenar-

os) that minimizes the distance between the original and approxi-

ating distribution. His method can also be applied to multi-stage

ecourse models. Approximations relying on a reduced scenario

et are justified by stability results of, e.g., Römisch (2003) which

hows that a small change in the distributions of the random pa-

ameters only result in a small change in the optimal first-stage

olutions. 

For two-stage recourse models with only a modest number

f scenarios efficient solution methods are available. Most of

hem rely on decomposition of the problem and are variants of

he L-shaped algorithm of van Slyke and Wets (1969) ; see, e.g.,

uszczy ́nski (1986) and Higle and (1991) for well-known exam-

les. We refer to Zverovich, Fábián, Ellison, and Mitra (2012) for a

ecent survey comparing several decomposition methods. 

So far we have only discussed how to obtain a first-stage so-

ution. However, when this solution is obtained by solving an ap-

roximation of the original recourse model, then we may use sam-

ling to assess the quality of the solution; see, e.g., the Multiple

eplications Procedure (MRP) of Bayraksan and Morton (2009) . Dif-

erent sampling methods, such as Latin Hypercube sampling, may

e used to reduce the bias and sample variance of the optimality

ap of the approximating solution. We use the MRP to assess the
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quality of a surgery-to-OR assignment in the surgery block alloca-

tion problem of Section 4 . 

3. Two-stage ambiguous mixed-integer recourse models 

In this section we consider the two-stage ambiguous mixed-

integer recourse model 

η∗ := inf 
x ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + v (x, z)] . (9)

Similar as in Section 2 , the set P z represents the ( μ, d , β) ambi-

guity set defined in (3) , and v (x, z) the second-stage value func-

tion defined in (2) . The difference with the models in Section 2 is

that here the feasible sets X and Y may also impose integrality re-

strictions on the first- and second-stage decision variables x and y ,

respectively. 

The difficulty of having integer decision variables in the second-

stage is that the second-stage value function v (x, z) is generally not

convex in ω so that the results of BTH72 cannot be applied. To deal

with this difficulty we develop a general approximation framework

for two-stage ambiguous mixed-integer recourse models. The key

idea in developing this framework is to approximate v (x, z) by a

value function 

ˆ v (x, z) that is concave in ξ and convex in ω so that

the results of BTH72 do apply. We derive error bounds for two

types of approximations, one with v (x, z) replaced by ˆ v (x, z) in (9) ,

and one in which we keep the v (x, z) but incorrectly assume that

P z̄ is the worst-case probability distribution in (9) . 

The fact that we are also able to (approximately) obtain the

best-case expectation for ambiguous mixed-integer recourse mod-

els illustrates that our approximation framework is very suitable

for combination with the ( μ, d , β) ambiguity set. We apply the ap-

proximation framework to mixed-ambiguity models in which some

of the distributions of the random parameters in the model are

known and others are ambiguous. In this setting we can use ex-

isting convex approximations for standard mixed-integer recourse

models from the literature. 

In Section 3.1 we introduce the approximation framework

for two-stage ambiguous mixed-integer recourse models and in

Section 3.2 we apply this framework to the mixed-ambiguous set-

ting. 

3.1. General approximation framework 

Similar as in Section 2 , we consider the worst-case and best-

case expectation separately in Sections 3.1.1 and 3.1.2 , respectively.

3.1.1. Worst-case mixed-integer expectation 

We develop a general approximation framework for ambiguous

mixed-integer recourse models by approximating v (x, z) by a func-

tion 

ˆ v (x, z) which satisfies the assumptions for applying BTH72.

We call such functions convex approximations . 

Definition 2. We call ˆ v (x, z) a convex approximation of the second-

stage value function v if 

(i) ˆ v (x, z) is convex in x for every given z = (ξ , ω) , 

(ii) ˆ v (x, z) is convex in ω for every given ξ and x ∈ X , 

(iii) ˆ v (x, z) is concave in ξ for every given ω and x ∈ X . 

Remark 4. Observe that the continuous second-stage value

function defined in Section 2 , satisfies properties (i)–(iii) of

Definition 2 . 

Remark 5. To be able to apply BTH72, we do not need property (i)

in Definition 2 . However, for optimization purposes it is highly de-

sirable that ˆ v (x, z) is convex in the first-stage decision vector x . 
If ˆ v (x, z) is a convex approximation of v (x, z) , then, we may ap-

roximate (9) by replacing v (x, z) by ˆ v (x, z) , obtaining 

ˆ := inf 
x ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + ̂

 v (x, z)] (10)

 inf 
x ∈ X 

E P z̄ 
[ c � x + ̂

 v (x, ̄z )] , (11)

here the equality in (11) follows from applying the result of

TH72 to (10) . The approximating problem is an optimization

roblem for which the distributions of the random parameters are

nown. Since ˆ v (x, z) is convex in x for every z , the optimization

roblem can be solved efficiently using existing solution methods

rom convex optimization. To guarantee the quality of the approx-

mate solution ˆ x obtained from solving the optimization problem

n (11) , we derive an error bound on the optimality gap G ( ̂  x ) − η∗,
here G ( ̂  x ) represents the true objective value of the solution ˆ x : 

 (x ) := sup 

P z ∈P z 
E P z 

[ c � x + v (x, z)] , x ∈ X. (12)

n fact, we show in Theorem 1 below that | ̂  η − η∗| ≤ ‖ v − ˆ v ‖ ∞ 

and

 ( ̂  x ) − η∗ ≤ 2 ‖ v − ˆ v ‖ ∞ 

, where 

 v − ˆ v ‖ ∞ 

:= sup 

x,z 

{| v (x, z) − ˆ v (x, z) | : x ∈ X 

}
. 

Interestingly, we may approximate the optimization model in

11) by replacing ˆ v (x, z) by the original mixed-integer recourse

unction v (x, z) to obtain the approximating model 

˜ := inf 
x ∈ X 

E P z̄ 
[ c � x + v (x, ̄z )] . (13)

his model indirectly approximates the original mixed-integer re-

ourse model (9) , but it can also be derived directly from (9) by as-

uming that P z̄ is the worst-case distribution in that model. How-

ver, using the interpretation of an indirect approximation via the

onvex approximating model in (11) , we can derive an error bound

or the approximate solution ˜ x obtained from solving (13) . 

heorem 1. Consider the two-stage ambiguous mixed-integer re-

ourse model defined in (9) and let ˆ v (x, z) be a convex approxima-

ion, conform Definition 2 , of the second-stage value function v (x, z)

efined in (2) . Let ˆ x and ˜ x denote optimal solutions of the approxi-

ating models defined in (11) and (13) , respectively. Then, 

(i) | ̂  η − η∗| ≤ ‖ v − ˆ v ‖ ∞ 

and G ( ̂  x ) − η∗ ≤ 2 ‖ v − ˆ v ‖ ∞ 

, 

(ii) 0 ≤ η∗ − ˜ η ≤ 2 ‖ v − ˆ v ‖ ∞ 

and G ( ̃  x ) − η∗ ≤ 2 ‖ v − ˆ v ‖ ∞ 

. 

Furthermore, since the upper bound on G ( ̃  x ) − η∗ holds for every

pproximation ˆ v , it actually holds for the best convex approximation: 

G ( ̃  x ) − η∗ ≤ 2 inf 
ˆ v 

{ 

‖ v − ˆ v ‖ ∞ 

: ˆ v (x, z) is a convex 

approximation of v (x, z) 
} 

. 

roof. See Appendix A. �

emark 6. The error bounds in Theorem 1 do not only hold for

he mixed-integer second-stage value function v (x, z) defined in

2) , but for all functions v of x and z in general. We use this in

ection 3.2 for mixed-ambiguity models where we replace v (x, z)

y an expected value function Q ( x , z ). 

The error bounds in Theorem 1 depend on the maximum dif-

erence between v (x, z) and 

ˆ v (x, z) over all feasible first-stage solu-

ions x ∈ X and random parameters z . However, as can easily be in-

uced from the proof of Theorem 1 , the error bound actually only

epends on the maximum difference between v (x, z) and 

ˆ v (x, z)

ver the random parameters z in the optimal solution x ∗ and the

pproximating solution ˆ x . Since we generally are not able to ob-

ain the exact optimal solution x ∗, the error bound in Theorem 1 is
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ypically more convenient. However, we may obtain tighter bounds

han in Theorem 1 , since we can compute the approximating so-

ution ˆ x and evaluate the maximum difference between v ( ̂  x , z) and

ˆ 
 ( ̂  x , z) over z . 

orollary 1. Consider the setting of Theorem 1 , and let ˆ x be a feasible

rst-stage solution. Then, 

 ( ̂  x ) − η∗ ≤ ˆ G ( ̂  x ) − ˜ η + sup 

P z ∈P z 
E P z 

[
v ( ̂  x , z) − ˆ v ( ̂  x , z) 

]
, 

here ˆ G ( ̂  x ) equals G ( ̂  x ) with v (x, z) replaced by ˆ v (x, z) . 

roof. Follows directly from the fact that 

 ( ̂  x ) ≤ ˆ G ( ̂  x ) + sup 

P z ∈P z 
E P z 

[ v ( ̂  x , z) − ˆ v ( ̂  x , z)] 

nd ˜ η ≤ η∗ by Theorem 1 . �

emark 7. The bound in Corollary 1 holds for all first-stage so-

utions ˆ x , and thus also for the optimal solutions ˆ x and ˜ x of the

pproximating models in (11) and (13) , respectively. 

To bound the optimality gap in Corollary 1 we need to ob-

ain an upper bound on 

ˆ G ( ̂  x ) − ˜ η. The advantage of dealing with

his difference, rather than G ( ̂  x ) − η∗, is that ˆ G ( ̂  x ) and ˜ η corre-

pond to the objective value at ˆ x and the optimal objective value

f (13) , respectively, of standard mixed-integer recourse models in

hich the distributions of all random parameters are known. In

he numerical experiments of Section 4 we will use the MRP to

btain an upper bound on 

ˆ G ( ̂  x ) − ˜ η. Moreover, in these experi-

ents we will show that we may obtain a very tight bound on

up P z ∈P z E P ζ
[ v ( ̂  x , z) − ˆ v ( ̂  x , z)] . 

.1.2. Best-case mixed-integer expectation 

So far we have only discussed how to approximate the worst-

ase expectation of mixed-integer recourse models. However, in an

naloguous way we can deal with the best-case expectation 

∗ := inf 
x ∈ X 

G (x ) , (14) 

here 

 (x ) := inf 
P z ∈P z 

E P z 

[
c � x + v (x, z) 

]
. 

imilar as for the worst-case expectation, we approximate (14) by

eplacing v (x, z) by a convex approximation 

ˆ v (x, z) , yielding 

ˆ := inf 
x ∈ X 

inf 
P z ∈P z 

E P z 
[ c � x + ̂

 v (x, z)] (15) 

 inf 
x ∈ X 

E P z 
[ c � x + ̂

 v (x, z )] , (16) 

here again the equality in (16) follows from applying the results

f BTH72 to (15) . Moreover, we can also approximate (14) by as-

uming that P z is the best-case distribution: 

˜ := inf 
x ∈ X 

E P z 
[ c � x + v (x, z )] . (17)

n Theorem 2 we give error bounds for using the convex approxi-

ations in (16) and (17) . 

heorem 2. Consider the two-stage ambiguous mixed-integer re-

ourse model defined in (14) and let ˆ v (x, z) be a convex approxima-

ion, conform Definition 2 , of the second-stage value function v (x, z)

efined in (2) . Let ˆ x and ˜ x denote optimal solutions of the approxi-

ating models defined in (16) and (17) , respectively. Then, 

(i) | ̂  η − η∗| ≤ ‖ v − ˆ v ‖ ∞ 

and G ( ̂  x ) − η∗ ≤ 2 ‖ v − ˆ v ‖ ∞ 

, 
∗ ∗
(ii) 0 ≤ η − ˜ η ≤ 2 ‖ v − ˆ v ‖ ∞ 

and G ( ̃  x ) − η ≤ 4 ‖ v − ˆ v ‖ ∞ 

. t
Furthermore, since the upper bound on G ( ̃  x ) − η∗ holds for every

pproximation ˆ v , it actually holds for the best convex approximation: 

G ( ̃  x ) − η∗ ≤ 4 inf 
ˆ v 

{ 

‖ v − ˆ v ‖ ∞ 

: ˆ v (x, z) is a convex 

approximation of v (x, z) 
} 

. 

roof. See Appendix A. �

The computational complexity of the approximating models in

16) and (17) for the best-case expectation are similar to those for

he worst-case expectation. The approximating models in (11) and

16) , obtained by replacing v (x, z) by ˆ v (x, z) , are the easiest to

olve since they are convex optimization problems. In contrast, the

pproximating models in (13) and (17) , obtained by assuming that

 z̄ and P z are the worst- and best-case distributions, respectively,

re non-convex standard two-stage mixed-integer recourse model

or which the distributions of the random parameters are known.

hese models are significantly harder to solve than convex opti-

ization problems, but at the same time easier to solve than their

mbiguous counterparts. 

In addition, the error bounds for these latter approximating

odels seem twice as large as for the convex approximating mod-

ls in (11) and (16) . However, this is only true for the best con-

ex approximation 

ˆ v (x, z) . If no good convex approximation 

ˆ v (x, z)

f v (x, z) is known, then we can still approximate the ambiguous

ixed-integer recourse models by (13) and (17) , and obtain a good

rst-stage solution ˜ x as long as there exists a good convex approx-

mation 

ˆ v (x, z) . In the numerical experiment of Section 4 we show

hat indeed a good convex approximation 

ˆ v (x, z) of v (x, z) may ex-

st. 

.2. Mixed-ambiguity stochastic mixed-integer programs 

In this section we consider so-called mixed-ambiguity prob-

ems. In these problems, the distributions of some of the random

ariables are ambiguous and others are known. This is useful to

odel practical problems in which there are different sources of

ncertainty in the problem. For example, in multi-product produc-

ion and inventory problems there may be products for which a

ong history of demand data is available, so that their demand

istributions can be accurately estimated, whereas other products

ay be relatively new, so that limited demand data for these prod-

cts is available. 

Similar as in the previous sections we let z = (ξ , ω) denote the

mbiguous random variables. However, we also introduce random

ariables ζ of which the distributions are known. 

ssumption 2. We assume that q , T , and h are affine functions of

 z , ζ ) and that all components of z and ζ are independent. 

The mixed-ambiguous mixed-integer recourse model that we

onsider is 

∗ := inf 
x ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + Q(x, z)] , (18)

here Q ( x , z ) is defined as 

(x, z) = E P ζ

[
inf 
y ∈ Y 

{
q (ξ , ζ ) � y : W y = h (ω, ζ ) − T (ω, ζ ) x 

}]
. (19)

he problem in (18) is similar to the ambiguous mixed-integer re-

ourse model (9) of Section 3.1 , but with v replaced by Q . We use

 here instead of v to emphasize that it is not just a second-stage

alue function, but an expected value function, where the expecta-

ion is taken over all random variables ζ with a known distribu-

ion. 
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This expected value function Q is key to solving (18) , since if Q

is convex in ω and concave in ξ , then we may apply the result of

BTH72 to obtain the worst-case distribution P z̄ of z . For example,

Klein Haneveld et al. (2006) show that this may be true for simple

integer recourse models. In general, however, Q ( x , z ) is not convex

in ω, and we have to resort to the approximation framework of

Section 3.1 . This is possible, since there exist convex approxima-

tions ˆ Q (x, z) of Q ( x , z ) in the literature with corresponding error

bounds on ‖ Q − ˆ Q ‖ ∞ 

. 

In Section 3.2.1 we discuss the case where the simple integer

recourse function Q ( x , z ) is convex in ω and concave in ξ , and in

Section 3.2.2 we discuss existing and new error bounds for con-

vex approximations ˆ Q (x, z) of this simple integer recourse function

Q ( x , z ). Although we only discuss simple integer recourse models in

Sections 3.2.1 and 3.2.2 , we want to stress that there are other con-

vex approximations for more general standard mixed-integer re-

course models in the literature that can easily be embedded in the

mixed-ambiguous setting of this section using the approximation

framework of Section 3.1 . We refer to Romeijnders, Stougie, and

van der Vlerk (2014) for an overview on these convex approxima-

tions for standard mixed-integer recourse models. 

3.2.1. Mixed-ambiguous simple integer recourse models 

The one-sided simple integer recourse model, introduced in

Louveaux and van der Vlerk (1993) , is a special case of (18) for

which a closed-from expression for the second-stage value func-

tion can be obtained. Assuming that q and T are ambiguous and

the distribution of h is known, so that we can write h (ζ ) = ζ , the

expected value function Q ( x , z ) is given by 

Q(x, z) = 

m ∑ 

i =1 

E P ζi 

[
q i (ξ )  ζi − T i (ω) x � + ], x ∈ R 

n 1 , (20)

where  s � + := max { 0 ,  s �} , s ∈ R and T i ( ω) is the i th row of the

matrix T ( ω). It is not hard to verify that Q is concave in ξ . Interest-

ingly, however, Klein Haneveld et al. (2006) show that this simple

integer recourse function Q may also be convex in the tender vari-

ables u = T (ω ) x, and thus in ω , if the underlying random vector ζ
is continuously distributed and every marginal probability density

function f i of ζ i can be expressed as 

f i (s ) = H i (s + 1) − H i (s ) , s ∈ R, (21)

for some cumulative distribution function H i with finite mean. This

implies that under these conditions the worst-case distribution P z̄ 

of z can be derived using the results of BTH72 (this worst-case dis-

tribution is the same for every first-stage decision x ). 

Proposition 3. Consider the mixed-ambiguous simple integer re-

course model 

inf 
x ∈ X 

sup 

P z ∈P z 
E P z 

[ c � x + Q(x, z)] , (22)

where Q is defined in (20) and the ambiguity set P z for the distri-

butions P z of z is defined as in (3) . If each random variable ζ i has

a probability density function f i satisfying (21) , then the optimization

problem in (22) is equivalent to 

inf 
x ∈ X 

E P z̄ 
[ c � x + Q(x, ̄z )] , 

where the worst-case distribution P z̄ of z is defined as in

Proposition 1 . 

Remark 8. We can derive an analogue result for the best-case ex-

pectation of a mixed-ambiguous simple integer recourse model if

each random variable ζ i has a pdf f i satisfying (21) . 

If a probability density function f i of some random parameter

ζ i does not satisfy (21) , then a natural approach is to approximate

it by a density function 

ˆ f that is approximately the same as f , but
i i 
oes satisfy (21) , yielding a convex approximation 

ˆ Q (x, z) of Q ( x ,

 ). This is the main idea behind the so-called α-approximations

erived in Klein Haneveld et al. (2006) , and their generalization

o complete integer recourse models by van der Vlerk (2004) . We

escribe this convex approximation and its corresponding error

ound in the next section. 

.2.2. Convex approximations and error bounds 

The α-approximations of Klein Haneveld et al. (2006) can be

btained using ˆ H i (s ) := F i (  s − αi � + αi ) in (21) to generate approx-

mate probability density functions ˆ f i . For every α ∈ R 

m , this yields

he approximating expected value function 

ˆ 
 α(x, z) = 

m ∑ 

i =1 

E P ζi 

[
q i (ξ ) (  ζi − αi � + αi − T i (ω) x ) + 

]
, x ∈ X. 

(23)

imilarly, the so-called shifted LP-relaxation approximation of

omeijnders et al. (2016b) 

ˆ 
 (x, z) = 

m ∑ 

i =1 

E P ζi 

[
q i (ξ ) ( ζi + 1 / 2 − T i (ω) x ) + 

]
, x ∈ X, (24)

an be derived using ˆ H i (s ) := F i (s − 1 / 2) in (21) . The result of both

pproximations is that we simultaneously remove the round-up

perator in the expression for Q ( x , z ) in (20) and adjust the ran-

om parameters ζ i . For the shifted LP-relaxation approximation of

24) , we add 1/2 to the random parameter ζ i since on average this

s (approximately) the effect of rounding. 

For these convex approximations upper bounds have been de-

ived on ‖ Q − ˆ Q α‖ ∞ 

and ‖ Q − ˆ Q ‖ ∞ 

using the total variations of the

robability density functions of the random parameters ζ . 

efinition 3. Let f : R → R be a real-valued function, and let I ∈ R

e an interval. Let 	( I ) denote the set of all finite ordered sets

 = { x 0 , x 1 , . . . , x N+1 } with x 0 < x 1 < · · · < x N+1 ∈ I. Then, the total

ariation of f on I , denoted | 
| f ( I ), is defined as 

 
| f (I) = sup 

P∈ 	(I) 

N ∑ 

i =0 

| f (x i +1 ) − f (x i ) | . 

e write | 
| f = | 
| f (R ) . 

roposition 4. Consider the simple integer expected value function

 ( x , z ) defined in (20) and the convex approximations ˆ Q α(x, z) and
ˆ 
 (x, z) defined in (23) and (24) , respectively. Then, 

‖ Q − ˆ Q α‖ ∞ 

≤ sup 

ξ

{ 

m ∑ 

i =1 

q i (ξ ) h (| 
| f i ) 
} 

and 

‖ Q − ˆ Q ‖ ∞ 

≤ 1 

2 

sup 

ξ

{ 

m ∑ 

i =1 

q i (ξ ) h (| 
| f i ) 
} 

, 

here h : [0 , ∞ ) �→ R is defined as 

 (t) = 

{
t/ 8 , t ≤ 4 , 

1 − 2 /t, t ≥ 4 , 
(25)

nd where | 
| f i are the total variations of the marginal density func-

ions f i of ζ i for i = 1 , . . . , m . 

roof. See Romeijnders et al. (2016b) . �

The error bounds on ‖ Q − ˆ Q α‖ ∞ 

and ‖ Q − ˆ Q ‖ ∞ 

in

roposition 4 can be used in Theorem 1 to obtain an error

ound for when 

ˆ Q α(x, z) and 

ˆ Q (x, z) are used as convex approxi-

ations for the mixed-ambiguous model in (18) . The error bounds

re small, and thus the convex approximations are good, if the

otal variations | 
| f of the probability density functions f of the
i i 
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andom parameters ζ in the model are small. This is for example

he case if ζ i , = 1 , . . . , m are normally distributed with large

ariances. 

The error bounds in Proposition 4 may be tightened for a

xed first-stage solution ˆ x ∈ X, conform Corollary 1 . Below in

roposition 5 we present such a tighter bound for the shifted

P-relaxation approximation 

ˆ Q (x, z) only, since the error bound

or this approximation was already twice smaller than for the α-

pproximations. 

roposition 5. Consider the simple integer expected value function

 ( x , z ) defined in (20) and the convex approximation ˆ Q (x, z) defined

n (24) . Then for every feasible first-stage solution ˆ x ∈ X, we have 

sup 

P z ∈P z 
E P z 

[
Q( ̂  x , z) − ˆ Q ( ̂  x , z) 

]
≤ 1 

2 

sup 

P z ∈P z 
E P z 

×
[ 

m ∑ 

i =1 

q i (ξ ) h 

(
2 | 
| f i ([ T i (ω) ̂  x − 1 / 2 , + ∞ )) 

)] 

, 

here h is defined in (25) . 

roof. See Appendix A. �

Contrary to the error bounds in Proposition 4 , the bound in

roposition 5 is new and may also be used to improve exist-

ng error bounds for convex approximations of standard two-stage

ixed-integer recourse models. 

. Surgery block allocation 

In this section we apply the approximation framework that we

ave derived in Section 3 for ambiguous mixed-integer recourse

odels to an adapted version of the surgery block allocation prob-

em introduced by Denton, Miller, Balasubramanian, and Huschka

2010) . We are able to obtain surgery-to-OR allocations with lim-

ted computational effort but with surprisingly good performance

uarantees, given the fact that ambiguous mixed-integer recourse

odels are extremely difficult to solve exact. 

.1. Problem formulation 

In the surgery block allocation problem, several surgeries with

andom durations have to be assigned to ORs before the durations

f these surgeries are known. The problem can be formulated as

 two-stage recourse model, where in the first stage we have to

etermine how many ORs to open and we have to assign the surg-

ries to the ORs. With N denoting the number of surgeries that

ave to be performed, we define π ij for every i, j = 1 , . . . , N, as a

inary variable equal to 1 if surgery j is assigned to the i th OR, and

 otherwise. Thus, we assume that there are N ORs available. Ac-

ordingly, we define θ i for every i = 1 , . . . , N, as a binary variable

qual to 1 if the i th OR is opened, and 0 otherwise. Furthermore,

or every opened OR we incur fixed costs c f and for every hour of

vertime exceeding a regular workday of T hours we incur variable

osts c v per OR. Let ζ represent the random vector of surgery du-

ations and y i the hours of overtime in the i th OR. Then, in case

he surgery durations ζ would be deterministic, the surgery block

llocation problem reads 

in 

,π,y 

N ∑ 

i =1 

c f θi + 

N ∑ 

i =1 

c v y i 

s.t. 

N ∑ 

i =1 

πi j = 1 , j = 1 , . . . , N, (26) 

i j ≤ θi , i, j = 1 , . . . , N, (27) 
 i ≥
N ∑ 

j=1 

ζ j πi j − T θi , i = 1 , . . . , N, (28) 

i ∈ { 0 , 1 } , πi j ∈ { 0 , 1 } , y i ∈ Z + , i, j = 1 , . . . , N. (29) 

onstraint (26) means that every surgery j is assigned to exactly

ne OR, constraint (27) models that surgery j can only be assigned

o the i th OR if it is opened, and constraint (28) defines y i as the

ours of overtime for the i th OR. Notice that we assume y i to be

nteger, meaning that we have to pay overtime in full hours even if

t actually was a few minutes. This is one of the small differences

ompared to the model of Denton et al. (2010) . 

We let X denote the set of feasible first-stage decisions x =
(θ, π) satisfying (26), (27) , and (29) . In addition, we assume that

 includes several symmetry breaking constraints introduced in

enton et al. (2010) . For example, we assume without loss of gen-

rality that θ1 ≥ ��� ≥ θN . 

Similar as Denton et al. (2010) we assume that the random

urgery durations ζ are unknown when the surgery-to-OR assign-

ent has to be made, and that we know the probability distri-

ution of ζ . Contrary to this reference, however, we assume that

here is also uncertainty in the regular work day duration T i , de-

oted T i ( ω i ) of the i th OR. This duration may be interpreted as the

ffective time spent on performing surgeries and may be smaller

or larger) than the targeted 8 h due to inefficiency (or efficiency)

f the OR staff. We assume that the distribution P z of the random

ector z = ω is unknown and belongs to a ( μ, d , β) ambiguity set

 z as defined in (3) . The objective is to find a surgery-to-OR assign-

ent, i.e., to determine x = (θ, π) ∈ X, that minimizes the worst-

ase expected total costs: 

∗ := inf 
x ∈ X 

sup 

P z ∈P z 
E P z 

[ 

N ∑ 

i =1 

c f θi + Q(x, z) 

] 

, (30) 

here 

(x, z) := E P ζ

[ 

inf 
y ∈ Z N + 

{ 

N ∑ 

i =1 

c v y i : y i ≥
N ∑ 

j=1 

ζ j πi j − T i (ω i ) θi , i = 1 , . . . , N 

} ] 

. 

(31) 

.1.1. Convex approximation for the surgery allocation problem 

We can obtain an exact expression for the expected value func-

ion Q ( x , z ) given by 

(x, z) = E P ζ

[ 

N ∑ 

i =1 

c v 

⌈ 

N ∑ 

j=1 

ζ j πi j − T i (ω i ) θi 

⌉ + ] 

. 

ere, the round-up operator ensures that overtime wages are paid

n full hours. Observe that Q ( x , z ) is the same as the simple inte-

er expected value function in (20) of Section 3.2.1 with m := N ,

 i (ξ ) := c v , ζi := 

∑ N 
j=1 ζ j πi j , and x := θ . In fact, the only difference

etween the surgery allocation problem and the simple integer re-

ourse model of Section 3.2.1 is that in the latter model we assume

hat the distributions of right-hand side random vector h ( ζ ) were

nown and the technology matrix T ( ω) ambiguous, whereas in this

roblem the right-hand side random vector equals zero and the

istributions of the technology matrix corresponding to the first-

tage variables π and θ , are partly known and partly ambiguous.

evertheless, we can use a similar reasoning as in Section 3.2.2 for

he shifted LP-relaxation approximation to obtain the convex ap-

roximation 

ˆ 
 (x, z) = E P ζ

[ 

N ∑ 

i =1 

c v 

( 

N ∑ 

j=1 

ζ j πi j − (T i (ω i ) − 1 / 2) θi 

) 

+ 

] 

. (32)
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Here, we simultaneously relax the integrality of the overtime hours

and subtract half an hour from the work day duration (if the i th OR

is opened). Again, the rationale of doing so is that on average we

have to pay approximately half an hour of additional overtime if

overtime is paid in full hours. 
The convex approximating model with Q ( x , z ) replaced by

ˆ Q (x, z) equals 

inf 
x ∈ X 

{ 

N ∑ 

i =1 

c f θi + E P z̄ [ ̂  Q (x, ̄z )] 

} 

= inf 
x ∈ X 

{ 

N ∑ 

i =1 

c f θi + E P z̄ 

[ 

E P ζ

[ 

N ∑ 

i =1 

c v 

( 

N ∑ 

j=1 

ζ j πi j − (T i (ω i ) − 1 / 2) θi 

) 

+ 

] ] } 

. 

(33)

This model can be solved, e.g., using SAA yielding an approximat-

ing surgery-to-OR assignment ˆ x = ( ̂  θ, ˆ π) . 

4.1.2. Error bounds for the convex approximation of the surgery 

allocation problem 

In this section we apply the error bounds of Section 3 to the

approximating surgery-to-OR allocation ˆ x = ( ̂  θ, ˆ π) . We will use the

resulting error bounds in the numerical experiments of Section 4.2 .

We derive three error bounds. The first is an upper bound on

‖ Q − ˆ Q ‖ ∞ 

which can be used in combination with Theorem 1 . To

derive this bound, we fix x and z , and bound | Q(x, z) − ˆ Q (x, z) | us-

ing Proposition 4 . Interestingly, the resulting bound depends sig-

nificantly on the surgery-to-OR assignment x . For example, if every

surgery is carried out in a separate OR then the bound reduces to

| Q(x, z) − ˆ Q (x, z) | ≤ 1 

2 

N ∑ 

j=1 

c v h (| 
| f j ) , (34)

where f j is the marginal density of the random surgery duration

ζ j . In contrast, if all surgeries are carried out in a single OR, then

the error bound reduces to 

| Q(x, z) − ˆ Q (x, z) | ≤ 1 

2 

c v h (| 
| ̄g ) , (35)

where ḡ is the probability density function of the sum of all surgery

durations. It turns out that the bound in (34) is actually the largest

bound over all surgery-to-OR allocations x . 

Lemma 2. Let Q ( x , z ) denote the expected value function of the

surgery allocation problem defined in (31) , and ˆ Q (x, z) its convex ap-

proximation defined in (32) . Then, 

‖ Q − ˆ Q ‖ ∞ 

≤ 1 

2 

N ∑ 

j=1 

c v h (| 
| f j ) , 

where f j is the marginal density function of the random surgery dura-

tion ζ j for j = 1 , . . . , N. 

The bound in (34) , and thus in Lemma 2 , is much larger

than the bound in (35) . In fact, in the numerical experiments in

Section 4.2 the error bound of Lemma 2 turns out to be too large

for practical purposes. However, the actual error will only be so

large if either the optimal or approximating surgery-to-OR alloca-

tion, x ∗ or ˆ x , respectively, is to open all ORs. In practice we do

not expect such an extreme surgery-to-OR allocation to be op-

timal. However, since we cannot verify this because we cannot

compute the optimal surgery-to-OR allocation x ∗, we will also use

Corollary 1 to compute an upper bound on the optimality gap

G ( ̂  x ) − η∗ using 

G ( ̂  x ) − η∗ ≤ ˆ G ( ̂  x ) − ˜ η + sup 

P z ∈P z 
E P z 

[
Q( ̂  x , z) − ˆ Q ( ̂  x , z) 

]
. 

To bound the first term 

ˆ G ( ̂  x ) − ˜ η on the right-hand side, we use

the MRP. For the second term, we use Proposition 5 to derive
ighter error bounds than in Lemma 2 since we only need to bound

he difference between Q( ̂  x , z) − ˆ Q ( ̂  x , z) for a fixed surgery-to-OR

llocation ˆ x . 

emma 3. Let Q ( x , z ) denote the expected value function of the

urgery allocation problem defined in (31) , and ˆ Q (x, z) its convex ap-

roximation defined in (32) . Then, for a fixed surgery-to-OR allocation

ˆ  , we have 

sup 

P z ∈P z 
E P z 

[
Q( ̂  x , z) − ˆ Q ( ̂  x , z) 

]
≤ 1 

2 

sup 

P z ∈P z 
E P z 

×
[ 

N ∑ 

i =1 

c v h ( 2 | 
| g i ( [ T i (ω i ) − 1 / 2 , + ∞ ) ) ) ̂  θi 

] 

, (36)

here g i is the marginal density function of the total surgery duration
 N 
j=1 ˆ πi j ζ j in the ith OR. 

The right-hand side of (36) may be much smaller than the error

ound in Lemma 2 . For one, since ˆ θi may be zero for many ORs.

n addition, since g i is the probability density function of the sum

f several independent random variables ζ j , and its total variation

s decreasing in the number of surgeries in the i th OR. The final

eason why the error bound in Lemma 3 is tighter than that of

emma 2 is that it only considers the total variation of g i on the

nterval [ T i (ω i ) − 1 / 2 , + ∞ ) . The intuition is that if the total surgery

uration in the i th OR does not exceed T i (ω i ) − 1 / 2 , then both the

riginal and approximating model have zero overtime costs in this

R. 
A difficulty of the error bound in (36) of Lemma 3 is that

e have to take the supremum over all probability distribu-
ions P z ∈ P z . To avoid this difficulty we can replace T i ( ω i ) by
nf ω i ∈ [ a i ,b i ] T i (ω i ) for i = 1 , . . . , N. For notational convenience we as-

ume that T i (ω i ) = ω i so that the infimum is attained at a i . An al-
ernative error bound to Lemma 3 is then 

sup 
 z ∈P z 

E P z 

[
Q( ̂ x , z) − ˆ Q ( ̂ x , z) 

]
≤ 1 

2 

N ∑ 

i =1 

c v h ( 2 | 
| g i ( [ T i (a i ) − 1 / 2 , + ∞ ) ) ) ̂  θi . 

(37)

Interestingly, we may obtain a tighter bound if the error bound in

36) of Lemma 3 is convex in ω i for ω i ∈ [ a i , b i ] since it allows us

o apply the result of Ben-Tal and Hochman (1972) in a surprising

ay. Indeed, if the bound is convex in z i = ω i ∈ [ a i , b i ] , for all i =
 , . . . , N, then 

sup 

P z ∈P z 
E P z 

[
Q( ̂  x , z) − ˆ Q ( ̂  x , z) 

]
≤ 1 

2 

E P z̄ 

×
[ 

N ∑ 

i =1 

c v h ( 2 | 
| g i ( [ T i ( ̄ω i ) − 1 / 2 , + ∞ ) ) ) ̂  θi 

] 

. (38)

f course, the bound h (2 | 
| g i ([ T i (ω i ) − 1 / 2 , + ∞ )) is in general

ot convex in ω i , but it may be in special cases. Notice, for ex-

mple, that h is linear on [0,4] so that the bound is convex if

 
| g i ([ t − 1 / 2 , + ∞ )) is convex in t ∈ [ a i , b i ] and this total variation

s small enough. In our numerical experiments, these requirements

ight be satisfied since g i is the pdf of the sum of several inde-

endent lognormal random variables. By the Central Limit Theo-

em this is asymptotically a normal pdf which has a convex de-

reasing right tail. Since this argument only holds asymptotically,

e will check numerically for every opened OR i whether convex-

ty holds in the numerical experiments of Section 4.2 . If not, then

e will replace ω̄ i by a i in the error bound of (38) . 

.2. Numerical experiments 

We carry out numerical experiments on problem instances

f similar size as in Denton et al. (2010) , i.e., with N = 10 and
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Table 1 

Means and standard deviations (in minutes) of the 

lognormal surgery durations ( Gul et al., 2011 ). 

Surgical group μ σ

Oral Maxillofacial procedure 36.00 33.88 

Pain Medicine 20.93 15.08 

Ophthalmology 41.63 16.43 

Urology 138.16 56.77 
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N  
 = 15 . In all experiments we assume that c f = 1 and c v = 2 or

 v = 0 . 5 , similar as in Denton et al. (2010) , who provide estimates

f surgery duration distributions from Gul, Denton, Fowler, and

uschka (2011) . In this reference, estimates of surgery duration

istributions for several types of surgeries are given. Table 1 shows

he parameters of the four types of surgeries that we consider in

ur experiments; all surgery durations are lognormally distributed.

oreover, we set T i (ω i ) = ω i where ω i is contained in a ( μ, d ,

) ambiguity set with a i = 7 , b i = 9 , μi = 8 , d i = 0 . 5 , and βi = 0 . 5 .

his means that the regular work day duration T i ( ω i ) will be be-

ween 7 and 9 h. 

For all four combinations of N and c v we generate 10 prob-

em instances by randomly selecting N surgery types from Table 1 .

or each problem instance, we compute six different approximat-

ng surgery-to-OR allocations. The first three are obtained by solv-

ng the large-scale deterministic equivalent formulation (LSDE) of

n SAA of the convex approximating model in (11) with 

ˆ v (x, z) :=
ˆ 
 (x, z) as defined in (32) for sample sizes ˆ N s = 10 , 100 , and 10 0 0,

espectively. The next three are obtained by solving the LSDE of

n SAA of the approximating model in (13) with v (x, z) := Q(x, z)

s defined in (31) for sample sizes ˜ N s = 10 , 100 , and 10 0 0. In fact,

or each value of ˆ N s and 

˜ N s we repeatedly solve an SAA model

 rep = 10 times, yielding N rep approximating solutions and we take

he best among these solutions using an out-of-sample test with

ample size 10,0 0 0. Next, we apply the MRP with N MRP = 30 repli-

ations using a sample size N s = 10 0 0 to obtain an upper bound

n 

ˆ G ( ̂  x ) − ˜ η that holds with 95% confidence. 

The experiments were carried out on 15 Intel Xeon 2.5 GHz

ores of the Peregrine HPC cluster of the University of Groningen.

ultiple replications of the SAAs of the approximating models and

he MRP were carried out in parallel. 

For all six approximating solutions, we report the following per-

ormance criteria: 

• The fixed costs (FC) of an approximating solution, i.e., how

many ORs are opened, 
• An expected lower bound E [ ̃  ηN s ] , obtained by the MRP, on ˜ η

and thus on η∗, 
• An upper bound on the objective value G ( ̂  x ) of ˆ x that holds

with 95% confidence, 
• A 95% upper bound on the relative optimality gap 

G ( ̂ x ) −η∗
η∗ ×

100% , 

• The contribution to this 95% upper bound by applying the MRP

to ˆ G ( ̂  x ) − ˜ η, 

• The contribution to this 95% upper bound by the total variation

bound in (38) , 
• The error bound (EB-2) of (37) relative to E [ ̃  ηN s ] , 
• The error bound (EB-3) of Lemma 2 relative to E [ ̃  ηN s ] , 
• The average run time (RT) of a single SAA run over all N rep runs.

We only report results for N = 15 in Tables 2 and 3 , since re-

ults for N = 10 are similar. From these tables we observe that on

verage we open between 2 and 3 ORs. Moreover, the 95% upper

ounds on the objective values G ( ̂  x ) of the approximating surgery-

o-OR allocations are close to the expected lower bound E [ ̃  ηN s ] on

he optimal objective value η∗. This indicates that ˆ Q (x, z) is a good

onvex approximation of Q ( x , z ), and thus both the surgery-to-OR
llocations ˆ x and ˜ x , obtained by replacing Q ( x , z ) by ˆ Q (x, z) and by

ssuming that P z̄ is the worst-case distribution, respectively, are

lose to optimal. Indeed, the 95% upper bounds on the optimal-

ty gap are surprisingly small, i.e., between 2% and 3% for c v = 2

nd around 1% for c v = 0 . 5 , given that these ambiguous mixed-

nteger recourse models are extremely hard to solve and we are

ot able to calculate the exact optimal objective values. In fact, it is

ot unlikely that the actual optimality gaps of the approximating

olutions are even smaller than the values presented in Tables 2

nd 3 . 

The difference in solution quality over the six approximating

urgery-to-OR allocations is very small. As expected, the solutions

btained by using a smaller sample size are slightly worse. This is

ypically not because we open a different number of ORs in these

olutions, but because we divide the surgeries over the same num-

er of ORs in a slightly worse way. There is however a large dif-

erence in the running times required to obtain the six approxi-

ating surgery-to-OR allocations. For small sample sizes of ˆ N s and
˜ 
 s equal to 10 both approximations models run within seconds, 

hereas solving the second approximating model for ˜ N s = 10 0 0

ay take more than half an hour. The first approximating model,

n the other hand, only requires 3 min of computation time. This

llustrates the difference in nature between the two approximat-

ng models since the second is a standard mixed-integer recourse

odel with integer second-stage variables whereas the first ap-

roximating model is a standard mixed-integer recourse model

ith continuous second-stage variables. Given that both approxi-

ating models yield very similar solutions we prefer the first ap-

roximating model for this application. 

The most computational effort for obtaining Tables 2 and 3 does

ot go in obtaining the approximating surgery-to-OR allocations

ut in assessing their quality. This is because to apply the MRP we

ffectively have to solve the second approximating model N rep =
0 times with a sample size of N s = 10 0 0 , requiring on average

ore than half an hour per replication. The contribution of the

RP, applied to ˆ G ( ̂  x ) − ˜ η, on the 95% upper bound on the op-

imality gap 

G ( ̂ x ) −η∗
η∗ × 100% is also given in Tables 2 and 3 , to-

ether with the contribution of the total variation error bound on

up P z ∈P z E P z [ Q( ̂  x , z) − ˆ Q ( ̂  x , z)] . Here, we have used the error bound

n (38) where we replace ω̄ i with a i if the bound in Lemma 3 is not

onvex in ω i on [ a i , b i ]. In Tables 2 and 3 we also show what the

ontribution to the optimality gap would have been if we would

ave used alternative total variation error bounds. Here, EB-2 refers

o the bound in (37) , where ω̄ i is always replaced by a i , and EB-

 to the bound on ‖ Q − ˆ Q ‖ ∞ 

from Lemma 2 . We observe that

B-2 is only slightly larger than the tightest bound, whereas EB-

 is much larger. This is because the bound on ‖ Q − ˆ Q ‖ ∞ 

from

emma 2 takes into account the extreme surgery-to-OR allocation

n which all 15 ORs are opened and every surgery is carried out in

 separate OR. However, from Tables 2 and 3 we conclude that for

hese experiments the optimal number of ORs to open seems to be

t most three. 

.3. Out of sample tests 

In this section we compare our approximation with several al-

ernative solution methods using out of sample tests. Since we do

ot compute optimality gaps as in Section 4.2 , we are able to solve

roblems with up to N = 30 surgeries. 

We compare four different surgery-to-OR allocations. The first

s denoted WC and is the same as in Section 4.2 , obtained by

olving the LSDE of an SAA of the convex approximating model

n (11) with 

ˆ v (x, z) := 

ˆ Q (x, z) as defined in (32) for sample size
ˆ 
 s = 100 . We use ˆ N s = 100 since similar results were obtained for

ˆ 
 s = 100 as for ˆ N s = 10 0 0 , but the computation times with 

ˆ N s =
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Table 2 

Average results for the surgery allocations problem over 10 random problem instances with N = 15 surgeries and c v = 2 . The 

surgery types for each problem instance are randomly selected from Table 1 . 

Sample size FC E [ ̃ ηN s ] 95% UB G ( ̂ x ) 95% Opt. gap MRP contr. EB contr. EB-2 EB-3 RT (in sec) 

ˆ N s = 10 2.6 3.09 3.19 2.9% 1.2% 1.7% 3.3% 217% 0.6 
ˆ N s = 100 2.6 3.09 3.17 2.5% 0.9% 1.7% 3.2% 217% 7.1 
ˆ N s = 10 0 0 2.7 3.09 3.15 2.0% 0.5% 1.5% 2.9% 217% 183 
˜ N s = 10 2.6 3.09 3.21 3.7% 2.0% 1.7% 3.2% 217% 0.6 
˜ N s = 100 2.6 3.09 3.17 2.5% 0.8% 1.7% 3.1% 217% 51 
˜ N s = 10 0 0 2.6 3.09 3.17 2.6% 1.0% 1.6% 3.2% 217% 1831 

Table 3 

Average results for the surgery allocations problem over 10 random problem instances with N = 15 surgeries and c v = 0 . 5 . 

The surgery types for each problem instance are randomly selected from Table 1 . 

Sample size FC E [ ̃ ηN s ] 95% UB G ( ̂ x ) 95% Opt. gap MRP contr. EB contr. EB-2 EB-3 RT (in sec) 

ˆ N s = 10 2.2 2.57 2.60 1.3% 0.5% 0.8% 1.1% 64% 0.7 
ˆ N s = 100 2.2 2.57 2.60 1.1% 0.3% 0.8% 1.1% 64% 6 
ˆ N s = 10 0 0 2.2 2.57 2.60 1.1% 0.3% 0.8% 1.1% 64% 172 
˜ N s = 10 2.2 2.57 2.60 1.3% 0.5% 0.8% 1.1% 64% 1.0 
˜ N s = 100 2.2 2.57 2.60 1.1% 0.3% 0.8% 1.1% 64% 59 
˜ N s = 10 0 0 2.2 2.57 2.59 1.0% 0.2% 0.8% 1.1% 64% 2210 
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100 are significantly smaller. For the same reason, we use the first

type of approximation from Section 4.2 and not the second. 

Secondly, we also compute the best-case solution, referred to

as BC, by solving the LSDE of an SAA with sample size ˆ N s = 100 of

the convex approximating model in (16) with 

ˆ v (x, z) := 

ˆ Q (x, z) as

defined in (32) . 

Third, we incorrectly assume that 

P z = 

{
P z : supp (z i ) ⊆ [ a i , b i ] , E P z 

[ z i ] = μi , z i ⊥ z j , i 	 = j 
}
. 

That is, only the mean and support of each random parameter

is known. This is the same ambiguity set as in Xie and Ahmed

(2017) for ambiguous simple integer recourse models with fixed

technology matrix. We use this ambiguity set in combination with

the convex approximation 

ˆ v (x, z) so that the worst-case distribu-

tion can be computed exactly, conform Edmundson (1956) and

Madansky (1959) . Based on these references, we refer to this so-

lution as EM. 

Finally, we also consider the LPT heuristic from Denton et al.

(2010) that iteratively assigns the surgery with the longest mean

duration to the OR with the current lowest total mean surgery du-

ration. Since the number of ORs is prespecified in this heuristic,

we carry out the heuristic for all possible values for the number of

opened ORs, and we select the value leading to lowest costs under

the assumption that the surgery durations and work day duration

attain their mean values. 

The remaining parameters are similar as in Section 4.2 . We use

c v = 0 . 5 and c v = 2 , randomly select N = 30 surgery duration dis-

tributions from Table 1 , and let a i = 6 , b i = 10 , μi = 8 , d i = 1 , and

βi = 0 . 5 . In our out of sample test we use N oos = 10 0 , 0 0 0 scenarios

from the worst-case (WC) distribution P z̄ , the uniform (U) distri-

bution on [ a , b ], and the best-case (BC) distribution P z . We expect

the WC and BC solutions to perform best under the distributions

P z̄ and P z , respectively. However, this is not necessary true, since

the WC and BC solutions are computed using a convex approxima-

tion for the expected overtime costs, whereas in this out of sample

test we report the real expected overtime costs. Moreover, for the

original integer problem, P z̄ and P z are not necessarily the worst-

case and best-case distribution. 

For all four approximating solutions WC, BC, EM, and LPT, we

report the following performance criteria: 

• The fixed costs (FC) of an approximating solution, i.e., how

many ORs are opened, 
• The expected overtime costs (EOC) of an approximating solu-

tion under the BC, U, and WC distribution, respectively, 
• The expected total costs (ETC), similar as for the EOC, 
• The maximum total costs (MTC), similar as for the EOC and ETC,
• The average run time (RT) of a solution method. 

Table 4 shows the results of our out of sample test. Notice that

e do not report fixed costs (FC) for every out of sample distribu-

ion. This is because the fixed costs are directly determined by the

umber of opened ORs, and do not depend on the expected over-

ime costs determined by the out of sample distribution. Moreover,

bserve that the differences in fixed costs, and also in EOC, ETC,

nd MTC, between the four solution methods are larger for c v = 2

han for c v = 0 . 5 . This makes sense intuitively, since the solution

ethods deal with expected overtime costs in different ways, e.g.,

onsidering worst-case or best-case expected overtime costs, and

hus the differences between these methods are larger if these

osts are relatively larger, i.e., if c v = 2 . 

The conclusions, however, are similar for c v = 2 and c v = 0 . 5 :

ur solution method WC outperforms EM and LPT in terms of ex-

ected total costs (ETC). As can be observed from the average num-

er of ORs that are opened, the LPT heuristic is too optimistic and

pens too few ORs leading to larger expected overtime costs (EOC),

hereas the EM method is too conservative and opens too many

Rs leading to larger fixed costs (FC). The LPT heuristic does so

ecause it ignores the uncertainty, and thus variability, in both the

urgery durations and the work day durations. The EM method, on

he other hand, ignores the restriction on the MAD of the random

arameters, and thus has a larger ambiguity set to take into ac-

ount. For this reason, it is not surprising that the EM method

enerally performs best in terms of maximum total costs (MTC).

omparing the EM method and the WC method, we observe that

or c v = 2 there is considerable value in knowing the MAD. 

The differences in expected total costs (ETC) between the

orst-case (WC) and best-case (BC) approximating solutions are

mall. As expected, the BC solution is more optimistic and typically

pens fewer ORs, in particular for c v = 2 . In this way, its fixed costs

FC) are smaller but its expected overtime costs (EOC) are larger

han for the WC solution, and these effects approximately cancel

ut. Interestingly, the WC solution performs best for c v = 2 , also

nder the BC distribution. This is possible since both WC and BC

re approximate solutions and P z̄ and P z are not necessarily the ex-

ct worst-case and best-case distributions, respectively. The same

pplies to the BC solution under the WC distribution for c v = 0 . 5 . 
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Table 4 

Out of sample test for the surgery allocation problem with N = 30 surgeries and both c v = 0 . 5 and c v = 2 . Averages over 

10 random problem instances are reported. 

Out of sample distribution 

BC U WC 

Method c v FC EOC ETC MTC EOC ETC MTC EOC ETC MTC RT 

WC 0.5 4.5 0.874 5.374 15.10 0.943 5.443 15.40 1.080 5.580 16.25 2160 

BC 0.5 4.5 0.873 5.373 15.15 0.940 5.440 15.35 1.077 5.577 15.85 2860 

EM 0.5 4.6 0.796 5.396 14.85 0.861 5.461 14.50 0.996 5.596 16.10 688 

LPT 0.5 4.2 1.246 5.446 15.70 1.312 5.512 15.60 1.449 5.649 16.15 0.002 

WC 2 5.9 0.891 6.791 41.46 1.031 6.931 45.46 1.328 7.228 43.26 1657 

BC 2 5.5 1.296 6.796 44.06 1.475 6.975 44.26 1.844 7.344 43.06 1933 

EM 2 6.3 0.650 6.950 41.66 0.762 7.062 44.26 0.997 7.297 41.46 1954 

LPT 2 4.4 3.965 8.365 48.56 4.236 8.636 51.15 4.788 9.188 49.36 0.005 

5

 

w  

a  

a  

t  

m  

e  

u  

b  

s  

a  

t  

e  

a  

t  

n  

b  

t

A

 

c  

v  

P  

m  

p  

c  

b

S

 

f

R

A  

 

B  

B  

B  

B  

B  

 

B  

C  

D  

D  

 

D  

 

D  

 

D  

E  

F  

 

G  

 

G  

 

H  

H  

 

H  

H  

 

K  

K  

 

K  

K
L  

 

L  

M  

P  

P  

 

P  

 

P  

R  

 

. Conclusion 

We have considered two-stage ambiguous recourse models and

e have shown that under mean-MAD information, continuous

mbiguous recourse models admit a closed-form reformulation as

 standard recourse model with a worst- or best-case distribu-

ions consisting of 2 or 3 points per random parameter in the

odel. These worst- and best-case distributions are the same for

very first-stage decision. The mean-MAD ambiguity set that we

se in this paper also turns out to be particularly suitable for am-

iguous recourse models involving integer decisions variables. For

uch problems, we develop a general approximation framework

nd derive corresponding error bounds. We apply this approxima-

ion framework to mixed-ambiguous mixed-integer recourse mod-

ls in which some of the distributions of the random parameters

re known and others are ambiguous. We illustrate the developed

heory by applying it to a surgery block allocation problem. The

umerical experiments show that good approximations for am-

iguous mixed-integer recourse models exist for which we can ob-

ain surprisingly good performance guarantees. 
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