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Conditionally complete sponges: new results on
generalized lattices

Jasper J. van de Grondea, Wim H. Hesselinka

aUniversity of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Abstract

Sponges were recently proposed as a generalization of lattices, focussing on
joins/meets of sets, while letting go of associativity/transitivity. In this work we
provide tools for characterizing and constructing sponges on metric spaces and
groups. These are then used in a characterization of epigraph sponges: a new
class of sponges on Hilbert spaces whose sets of left/right bounds are formed
by the epigraph of a rotationally symmetric function. Finally, the so-called
hyperbolic sponge is generalized to more than two dimensions.

Keywords: lattice, hyperbolic space, Hilbert space, mathematical morphology,
orientation, sponge

1. Introduction

Sponges are generalizations of lattices that were recently introduced by van
de Gronde [1, 2, 3], as a possible solution to the long-standing problem of
applying mathematical morphology to nonscalar data. Morphological theory
is based on lattices, but these are fairly restrictive when it comes to defining
group-invariant instances on vector spaces or manifolds [4, 5], and are utterly
incompatible with periodic spaces (assuming we wish to somehow preserve the
periodicity in the lattice structure). As a result, over the years several schemes
have been suggested for morphological purposes that let go of lattices, or that
try to work around the issue, while retaining something resembling a lattice’s
join and meet [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Unfortunately most of these
schemes lack(ed) a supporting body of theory, making it hard to say much about
the behaviour of the resulting filters. Sponges are meant to provide exactly
such a framework, and have already been shown to encompass two schemes for
vector spaces and hyperbolic spaces [7, 14], to allow the processing of angles in
a natural way (without breaking the periodic nature of angles), and to support
joins/meets on (hemi)spheres with a designated “lowest” point. While we will
give various new examples of sponges, the main goal of this work is to provide
additional tools to analyse and identify sponges.

Roughly speaking, an orientation is a partial order without transitivity and
a sponge is a set with an orientation that has meets and joins for all subsets
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satisfying certain conditions. The relevance of a meet or join of a set in the
absence of transitivity is due to preservation under isometries (or other kinds of
automorphisms) that permute the elements of the set. Indeed, long before the
introduction of sponges, the meet of the inner-product sponge was already used
for this purpose [17, 18].

As examples of sponges, van de Gronde and Roerdink [3] present the inner-
product sponge [7], the one-dimensional angle sponge, and a two-dimensional
hyperbolic sponge [14]. These examples are generalized and treated in Sections 3,
5 and 7, respectively. Note that sponges on spheres and hemispheres were also
given in [3], but these are (essentially) isomorphic to the inner-product sponge,
so we do not treat these here.

In this work we first give a short overview of the main definitions concerning
orientations and sponges in Section 2. In Section 3 we briefly revisit the inner-
product sponge [7, 3]. Next, in Section 4 we derive a new result that makes it
easier to identify sponges in metric spaces. In Section 5 we discuss sponge groups,
and in Section 6 we introduce and characterize a new class of sponge (groups)
called epigraph sponges. In Section 7 we generalize the hyperbolic sponge to
the higher dimensional case (previously, only the 2D case was treated [14, 3]).
Finally, Section 8 contains a comparison of the various sponges in terms of the
geometry of their sets of left and right bounds, as well as the existence of extreme
points.

2. Definitions

Let S be a set. An orientation of S is a binary relation � on S that satisfies:

reflexivity: x � x for all x ∈ S, and
antisymmetry: x � y ∧ y � x =⇒ x = y for all x, y ∈ S.

The pair (S,�) of a set S with an orientation � is called an oriented set. A
transitive orientation is a partial order. If the orientation � is not transitive,
we may consider its reflexive-transitive closure �∗. The orientation � is called
acyclic iff it contains no cycles, which is equivalent to �∗ being a partial order.

If P and Q are subsets of an oriented set (S,�), we write P � Q to denote
that p � q holds for all p ∈ P and q ∈ Q. A subset P of S is called right bounded
iff P � {s} for some s ∈ S; it is called left bounded iff {s} � P for some s ∈ S.1

Let the set of all right bounds of P be denoted by R(P ), and the set of all left
bounds by L(P ). We abbreviate R({x}) by R(x).

Let J(P ) and M(P ) be subsets of S defined by

x ∈ J(P ) ≡ P � {x} ∧ (∀y ∈ S : P � {y} =⇒ x � y) ,

x ∈M(P ) ≡ {x} � P ∧ (∀y ∈ S : {y} � P =⇒ y � x) .

1Left and right, rather than lower and upper, are used to warn the reader about the lack of
transitivity.
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If x, y ∈ J(P ), then P � {x} and P � {y}, and hence x � y and y � x, and
therefore x = y by antisymmetry. This proves that J(P ) is always empty or a
singleton set [19]. A similar argument proves that M(P ) is always empty or a
singleton set. If J(P ) or M(P ) has an element, its unique element is called the
join or meet of P , respectively.

A sponge is defined to be an oriented set (S,�) in which every finite, nonempty,
right-bounded subset has a join, and every finite, nonempty, left-bounded subset
has a meet. If the property holds for joins but not necessarily for meets, we have
a join-semisponge (we can define a meet-semisponge analogously). Note that in
the original introduction of sponges, J and M were considered partial functions
returning a particular element rather than a set of elements. Given that in an
orientation J and M always return either the empty set or a singleton set, these
views are equivalent.

Alternatively, a sponge can be defined algebraically as a set S with functions
J and M , with a domain that includes (at least) all finite, nonempty subsets of
S and a range that includes no more than all singleton subsets of S, as well as
the empty set. To be a sponge, J and M should satisfy (with y ∈ S and P a
finite, nonempty subset of S):

absorption: ∀x ∈ P : M({x} ∪ J(P )) = {x},
part preservation: [∀x ∈ P : M({x, y}) = {y}]

=⇒ M(P ) 6= ∅ ∧M(M(P ) ∪ {y}) = {y},
and the same properties with the roles of J and M reversed.

Note that compared to the original algebraic definition [2, §4.2], absorption is
now defined slightly more elegantly, and idempotence now follows from the two
absorption laws:

M({x}) = M({x} ∪ {x}) = M({x} ∪ J({x} ∪M(P ))) = {x}

for any (finite) P ⊇ {x} (the analogous statement J({x}) = {x} also holds). In
contrast, part preservation needs to explicitly claim that M(P ) is nonempty.
These changes occur because the empty set behaves differently from the “unde-
fined” value used in the original definition. It has been shown [2, §4.3] that the
orientation-based and algebraic definitions are equivalent.

Compared to the algebraic definition of a lattice, the main difference is
that we have the somewhat weaker property of part preservation rather than
associativity. On the other hand, given that J and M operate on sets rather
than being binary operators, commutativity is implied. It should be noted that
sponges are closely related to the concept of a weakly associative lattice (WAL)
or trellis [20, 21, 22]. However, a WAL requires the join and meet to be defined
for all pairs rather than all (finite and nonempty) bounded sets. It is known
that the former by no means implies the latter [19], and this makes WALs less
suited for use in mathematical morphology, as this field relies heavily on the
existence of joins and meets of sets. Conversely, in mathematical morphology
it often suffices to guarantee the existence of joins and meets of bounded sets,
again making sponges a better fit than WALs. Often, it is convenient to be able
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to consider joins/meets not just over finite sets, but also infinite sets. This is
part of our motivation to focus on conditionally complete sponges in the current
work (the other part being that all practical examples examined so far belong to
this category).

An oriented set (S,�) is called a conditionally complete sponge (or cc sponge
for short) iff, for every nonempty right-bounded subset P of S, the set J(P ) is
nonempty and, for every nonempty left-bounded subset P of S, the set M(P )
is nonempty. It is clear that a cc sponge is a sponge. As the next lemma
shows, the requirement on M(P ) can be omitted (alternatively, by symmetry,
the requirement on J(P ) can be omitted).

Lemma 1. Let (S,�) be an oriented set such that, for every nonempty right-
bounded subset P of S, the set J(P ) is nonempty. Then (S,�) is a conditionally
complete sponge.

Proof. It suffices to prove that, for every nonempty left-bounded subset P of
S, the set M(P ) is nonempty. Let P be a nonempty left-bounded subset of
S. Define Q = {x | {x} � P}. As P is left bounded, Q is nonempty. As P is
nonempty, Q is right bounded. Therefore J(Q) is nonempty. Choose x ∈ J(Q).
This means that Q � {x} and that

∀y ∈ S : Q � {y} =⇒ x � y.

We claim x ∈M(P ). For every y ∈ P , we have Q � {y} and hence x � y; this
proves {x} � P . Now let y ∈ S have {y} � P . Then y ∈ Q and hence y � x.
This proves x ∈M(P ).

Example 1. The set R of the real numbers with ≤ as orientation is a cc
sponge (a cc lattice in fact), because every nonempty bounded subset of R has a
supremum.

3. The inner-product sponge

Let E be a real Hilbert space with the inner product denoted by ( , ). Let
relation � on E be defined by [3, §5.1]

x � y ≡ (x, x) ≤ (x, y).

It is clear that x � x always holds. See Fig. 1 for an illustration of the orientation.

Example 2. Assume E = R2 with the standard inner product. Consider the
four vectors w = (1, 0), x = (2, 0), y = (2, 1), and z = (1, 3). Then we have
w � {x, y, z}, and x � y, and y � z, but x 6� z. It follows that, x ∈ M({x, y})
and y ∈M({y, z}), but x /∈M({x, y, z}).

Lemma 2. Let x � y and x 6= y. Then ‖x‖ < ‖y‖.
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Figure 1: Illustration of the inner-product orientation. We have x � y, as well as y � z, but x
and z are incomparable. The origin is marked as O. Sets of lower bounds are disks (illustrated
for x and z). Sets of upper bounds are closed half-spaces (illustrated for y).

Proof. If x = 0, the assertion holds trivially. We may therefore assume that
x 6= 0. Therefore ‖x‖ > 0. By Cauchy-Schwarz, |(x, y)| ≤ ‖x‖ · ‖y‖ with equality
if and only if y is a multiple of x. On the other hand, ‖x‖2 = (x, x) ≤ |(x, y)|
because x � y. It remains to consider the case that y is a multiple of x, say
y = λx. As ‖x‖ > 0 and (x, x) ≤ (x, y), this implies λ ≥ 1, and hence y = x or
‖x‖ < ‖y‖.

Corollary 1. Relation � is an acyclic orientation on E.

Theorem 1. The pair (E,�) is a cc sponge with a least element.

Proof. It can be verified that 0 is less than (or equal to) every element in E. By
Lemma 1, It therefore suffices to show that every nonempty subset of E has a
meet. Let P be a nonempty subset of E. It suffices to show that P has a meet.
We have

{x} � P ≡ P ⊆ R(x), .

If x = 0 then R(x) = E. In all other cases, R(x) is the closed halfspace
{y | (x, x) ≤ (x, y)}. The intersection of all closed halfspaces that contain P is
the closed convex hull cv(P ) of P , i.e., the topological closure of the convex hull
of P .

We distinguish two cases. First, assume there is no x 6= 0 with {x} � P .
Then it is easily seen that 0 is the meet of P . Otherwise, there exists x 6= 0 with
{x} � P . Then all elements of cv(P ) are farther from the origin then x. As
cv(P ) is closed, convex, and nonempty in the Hilbert space E, there is a unique
point z ∈ cv(P ) with smallest distance ‖z‖ to the origin. We claim that z is the
meet of P .

We first prove {z} � P . Indeed, for any p ∈ P , the line segment between z
and p is contained in cv(P ); therefore all its points have a distance to the origin
≥ ‖z‖; therefore the angle between the vectors p− z and 0− z is not sharp, i.e.
(p− z, 0− z) ≤ 0, and hence (z, z) ≤ (z, p), i.e. z � p.

It remains to observe that, for any vector y with {y} � P , we have z ∈
cv(P ) ⊆ R(y), so that z � y. This proves that z is the meet of P .
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We remark that although every nonempty subset of E has a meet, not every
nonempty subset also has a join. In particular, the subset needs to be contained
in a ball with the origin on its boundary to even be right bounded. It is, however,
possible to extend E with an extra element so that every nonempty set is right
bounded [3, §5.3].

4. A sponge in a complete metric space

We consider a topological orientation to be a topological space S with an
orientation, such that the orientation relation is a closed subset of the product
space S×S. In other words, if limn→∞ xn = x and limn→∞ yn = y, and xn � yn
for all n ∈ N, then x � y. This is in line with the concept of a topological
lattice used by Birkhoff [23, §X.11], but slightly stricter than the analogous
concept of a partially ordered topological space considered by Ward [24] (who
only requires sets of left and right bounds to be closed). Note that Birkhoff
shows that the weaker concept is equivalent to the stronger concept in complete
lattices; Lemma 3 below shows that at least in some cases something similar
holds for orientations as well.

Let S be a complete metric space with distance function d. Let � be a
topological orientation on S. A function h : S → R is called a discriminator iff

∀ε > 0 ∃δ > 0 ∀x, y ∈ S : x � y ∧ h(y) < h(x) + δ =⇒ d(x, y) < ε.

This condition implies that h is strictly monotonic, in the sense that x �
y ∧ x 6= y implies h(x) < h(y). The following theorem shows how in a complete
metric space cc sponges can be characterized by the existence of meets of all
left-bounded pairs rather than all left-bounded nonempty sets. This is similar
in spirit to what Birkhoff has shown for lattices [23, §X.10 Thm. 16].

Theorem 2. Assume that S is a complete metric space, that (S,�) is a topolog-
ical orientation, that every left-bounded pair in S has a meet, and that h : S → R
is continuous and a discriminator. Then (S,�) is a cc sponge.

Proof. Let P be a nonempty right-bounded subset of S. It suffices to prove that
P has a join. Write Q = {x | P � {x}}. As P is right bounded, Q is nonempty.
For every p ∈ P , q ∈ Q, we have h(p) ≤ h(q). Every pair of elements of Q is left
bounded (by an element of P ), and therefore has a meet, which is easily seen to
be in Q.

Let H be the infimum of h(q) over all q ∈ Q. It holds that −∞ < H < ∞
because Q is nonempty and left bounded. This implies that there is an infinite
sequence (qn)n∈N in Q with limn→∞ h(qn) = H. We first prove that this
sequence is a Cauchy sequence. Let ε > 0 be given. As h is a discriminator, there
is a number δ > 0 such that, for all x, y ∈ Q with x � y and h(y) < h(x) + δ,
d(x, y) < 1

2ε. As limn→∞ h(qn) = H, there is a number m such that h(qn) <
H+δ for all n ≥ m. For indices i, j ≥ m, the pair {qi, qj} in Q has a meet zij ∈ Q.
Therefore, H ≤ h(zij). It follows that both h(qi) and h(qj) are less than h(zij)+δ.
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As {zij} � {qi, qj}, this implies that d(qi, qj) ≤ d(qi, zij) + d(zij , qj) < ε. This
proves that (qn)n∈N is a Cauchy sequence.

Because S is a complete metric space, the Cauchy sequence has a limit, say r.
As function h is continuous, h(r) = H. On the other hand, r ∈ Q holds because
relation � is topologically closed. For every q ∈ Q, the pair q, r has a meet
z ∈ Q, with h(r) = H ≤ h(z). As h is strictly monotonic and z � r, it follows
that r = z � q. This proves {r} � Q, and hence that r is the join of P .

Note that the above proof implies that r in no way depends on the precise
choice of the sequence (qn)n∈N. Also, it should be clear that we could just as
easily have shown the dual statement, so for completeness:

Corollary 2. Assume that S is a complete metric space, that (S,�) is a topolog-
ical orientation, that every right-bounded pair in S has a join, and that h : S → R
is continuous and a discriminator. Then (S,�) is a cc sponge.

Corollary 3. Let � be a topological orientation on R, which implies ≤. Assume
every left-bounded pair for � has a meet in R, and that the distance function is
given by d(x, y) = |x− y|. Then (R,�) is a cc sponge.

Proof. Theorem 2 is applied to S := R with for h the identity function. It is
clear that h is continuous. It is a discriminator because x ≤ y < x+ ε implies
d(x, y) < ε.

5. Sponge groups

In this section, we investigate the possibility to combine the structures of
sponges and groups in a useful manner. For the sake of generality, the theory is
developed for not necessarily commutative groups. In such a group, the group
operation is denoted by ·, and the neutral element by 1. Note that some of the
results shown here have been shown earlier for weakly associative lattices by
Rach̊unek [25].2

5.1. Oriented groups and sponge groups

An oriented group G is defined to be a group with an orientation �, such
that

∀x, y, z ∈ G : x � y =⇒ x · z � y · z ∧ z · x � z · y. (1)

It is called a cc sponge group iff moreover (G,�) is a cc sponge. Note that
inversion reverses the orientation: x � y ≡ y−1 · x � 1 ≡ y−1 � x−1.

In an oriented group (G,�) with unit element 1, the positive cone is the
subset C of G of the elements x ∈ G with 1 � x. It is easy to see that this set
satisfies

C ∩ C−1 = {1},
∀x ∈ G, y ∈ C : x · y · x−1 ∈ C.

(2)

2Rach̊unek referred to orientations as semi-orders; unfortunately, this term is also used for
other concepts.
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The second condition says that C is invariant under conjugation.
Conversely, if G is a group with a subset C that satisfies the properties in

Eq. (2), then one can define the orientation � on G by

x � y ≡ x−1 · y ∈ C.

This makes (G,�) an oriented group. Indeed, relation � is reflexive because
1 ∈ C. It is antisymmetric because, if x � y and y � x, then x−1 ·y ∈ C∩C−1 =
{1}, so that x = y. Equation (1) is easily seen to hold. This proves that (G,�)
is an oriented group. The orientation is a partial order if and only if C · C ⊆ C.

In a commutative group G, the operation is usually written as addition +,
with neutral element 0. By the commutativity of the group operation (+),
Eq. (1) reduces to

x � y =⇒ x+ z � y + z. (1’)

The positive cone C is characterized by

C ∩ −C = {0}. (2’)

So (G,�) is an oriented additive group if and only if there is a set C that satisfies
Eq. (2’).

Example 3. The easiest example is the additive group (R,+). The order ≤ is
an orientation that satisfies condition (1) because x ≤ y implies x+ z ≤ y + z.
The triple (R,+,≤) is a cc sponge, because every nonempty left-bounded subset
of R has an infimum and every nonempty right-bounded subset has a supremum.

Similarly, the vector space Rn becomes a cc sponge when x ≤ y is defined to
mean ∀i : xi ≤ yi.

Example 4. Most interesting sponge groups are commutative. A noncommuta-
tive one is the group G of the real matrices

g(s, t, u) =

(
s u
0 t

)
with s, t > 0. Let C be the subset containing the matrices g(1, 1, u) with u ≥ 0.
Then (G,�) is a sponge: a nonempty subset V of G is left bounded iff there
are s, t > 0 and a ∈ R with V ⊆ {g(s, t, u) | a ≤ u}. Its meet is g(s, t, b) for
b = inf{u | g(s, t, u) ∈ V }.

Example 5. Let G = GLn(R), the group of the invertible real n× n matrices.
Let C be the set of diagonalizable matrices with all eigenvalues real and ≥ 1.
The set C satisfies the properties in Eq. (2). It therefore induces an orientation
� that makes (G,�) an oriented group.

If n > 1, then (G,�) is not a sponge. For n = 2, this is shown as follows.
Assume that it is a sponge, and consider the elements

h(u) =

(
1 u
0 1

)
g(t) =

(
1 0
0 t

)

8



For 1 < t, we have h(u) � g(t) because h(u)−1 · g(t) ∈ C. As (G,�) is a
sponge, the pair h(0) and h(1) has a join, say k. For all t > 1, we have
1 = h(0) � k � g(t). This implies that k ∈ C and det(k) = 1. The identity is
the only element of C with determinant 1. This proves that k = 1. This implies
h(1) � 1, a contradiction.

The following result is used in the next section.

Lemma 3. Assume that G is a topological group and that (G,�) is an oriented
group (but not necessarily a topological orientation). Then, the positive cone C
is closed if and only if the relation � is closed.

Proof. If a function g is continuous, the preimage of a closed set under g is closed
as well. Now, note that� can be identified with the set {(x, y) ∈ G2 | x−1·y ∈ C},
the preimage of C under the function g1(x, y) = x−1 · y. Owing to G being a
topological group, g1 is continuous, and � is closed if C is closed. Next, note
that C = {x ∈ G | 1 � x} = {x ∈ G | (1, x) ∈ �}, the preimage of � under the
continuous function g2(x) = (1, x). We thus also have that C is closed if � is
closed. This concludes the proof.

5.2. Refining the orientation

Let (G,�) be an oriented group. Refining the orientation � means replacing
its positive cone by a subset of it. The following lemma gives a sufficient (but
not necessary) condition that refining preserves cc sponge groups. For a subset
C of G, consider the condition

y ∈ C ∧ 1 � x � y =⇒ x ∈ C for all x, y ∈ G (3)

One might rephrase this condition as “C has no gaps”.

Lemma 4. Let (G,�) be a cc sponge group. Let C be a subset of G, invariant
under conjugation, with 1 ∈ C and {1} � C. Assume that Eq. (3) holds. Let v
be the relation on G defined by x v y ≡ x−1 · y ∈ C. Then (G,v) is a cc sponge
group.

Proof. The first formula of Eq. (2) holds because of 1 ∈ C and {1} � C, and
antisymmetry of �. The second one holds by assumption. Therefore, (G,v) is
an oriented group.

By Lemma 1, it remains to consider a nonempty subset P of G with {x} v P
for some x, and to prove that P has a meet with respect to v. By Eq. (1), we
may assume that x = 1.

Assume P is nonempty and satisfies {1} v P . It suffices to prove that P has
a meet for v. By the definition of v, we have P ⊆ C. As (G,�) is a cc sponge
and 1 � C, the set P has a meet for �, say y. We claim that y is the meet of P
for v.

To prove {y} v P , let p be an arbitrary element of P ⊆ C. Then 1 � y � p
and p ∈ C. From 1 � y it follows that y−1 � 1, and thus y−1 ·p � p. From y � p

9



it follows that 1 � y−1 · p. Combining, we have 1 � y−1 · p � p. Equation (3)
therefore implies that y−1 · p ∈ C, so that y v p. This proves {y} v P .

For any z with {z} v P , we need to prove z v y. The assumption {z} v P
means that z−1 · P ⊆ C. For every p ∈ P , we therefore have z−1 · p ∈ C, and
hence 1 � z−1 · p, and hence z � p. As y is the meet of P for �, this implies
z � y. It follows that 1 � z−1 · y � z−1 · p ∈ C for all p ∈ P . Equation (3)
implies that z−1 · y ∈ C and hence z v y. This concludes the proof that (G,v)
is a cc sponge.

Condition (3) is sufficient but not necessary. For instance, consider the
additive group R with operation + and neutral element 0 (see Example 3). Let
C be the subset

C = {n+ t | n ∈ N ∧ 0 ≤ t ≤ f(n)}

for some descending function f : N→ R with 0 ≤ f(0). Let � be the associated
orientation of R. Then every right-bounded pair has a join because

C ∩ (y + C) 6= ∅ =⇒ ∃z : C ∩ (y + C) ⊆ z + C.

Using the automorphism x 7→ −x, it follows that every left-bounded pair has
a meet. Therefore, Corollary 3 implies that (R,�) is a sponge. In fact, it is a
sponge group.

5.3. Orienting quotient sets and factor groups

Let (G,�) be an oriented group and let H be a subgroup of G. Recall that
the (right) quotient set G/H consists of the residue classes x = x · H for all
x ∈ G. The group G has a left action on the quotient G/H defined by g ·x = g · x
for all g ∈ G.

Let C be the positive cone of (G,�), and consider the relation v on G/H
defined by

x v y ≡ x−1 · y ∈ C ·H,

and the property

q ∈ C ∧ r ∈ C ∧ q · r ∈ H =⇒ q ∈ H ∧ r ∈ H for all q, r ∈ G (4)

In words, if H contains the product of two positive elements, it contains the
elements as well.

Note that x � y =⇒ x v y, because 1 ∈ H.

Lemma 5. Assume (G,�) is an oriented group, and H a subgroup of G. Then
(G/H,v) is an oriented set if and only if Eq. (4) is satisfied. If H is a normal
subgroup of G, it is an oriented group.

Proof. For (G/H,v) to be an oriented set, vmust be reflexive and antisymmetric.
Now, since � is reflexive and 1 ∈ H, v is reflexive as well. It remains to show
that v is antisymmetric. Assume x v y and y v x. Then x−1 · y ∈ C ·H and
y−1 · x ∈ C ·H. Put z = x−1 · y. Then z ∈ C ·H and z−1 ∈ C ·H. This implies
that H has elements h, k with h � z and k � z−1. It follows that 1 � h−1z and
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1 � z−1 · k−1. As h−1 · z · z−1 · k−1 ∈ H, Eq. (4) implies that h−1 · z ∈ H. It
follows that z ∈ H and hence x = y. As a result, (G/H,v) is an oriented set if
Eq. (4) holds.

Conversely, assume (G/H,v) is an oriented set. Assume there exist a q and
r in G such that 1 � q, 1 � r, and q · r ∈ H. Then 1 v q because 1 ∈ H. On
the other hand, q · r ∈ H and 1 � r together imply that q � (q · r), so that
q v 1. Since v is an orientation, we have 1 = q, as well as q ∈ H and r ∈ H.
So, (G/H,v) is an oriented set only if Eq. (4) holds.

Finally, if H is a normal subgroup of G, G/H is a group with x · y = x · y,
so if Eq. (1) holds, (G/H,v) is an oriented group. Now, assume x v y. Then
x−1 · y ∈ C · H, so x−1 · z−1 · z · y ∈ C · H as well: z · x v z · y. Similarly,
since (G,�) is an oriented group, we can use the second property of Eq. (2)
together with the normality of H to see that z−1 · x−1 · y · z ∈ C ·H, and thus
x · z v y · z.

Example 6. Consider the additive cc sponge group (R,+,≤) and the subset
C = {x ∈ R | 0 ≤ x < c} for some constant c > 0. Lemma 4 is applicable
because 0 ∈ C and {0} ≤ C, and the additive version of condition (3) holds: if
y ∈ C and 0 ≤ x ≤ y then x ∈ C. Lemma 4 therefore implies that (R,+,�) is a
cc sponge, where x � y ≡ y − x ∈ C.

Now consider the (normal) subgroup Z of R. Let v be the induced relation on
the factor group R/Z as defined above. By Lemma 5, relation v is an orientation
if and only if the additive version of condition (4) holds: if x ∈ C and y ∈ C and
x+ y ∈ Z, then x ∈ Z and y ∈ Z. This is true if and only if c ≤ 1

2 .

5.4. Quotient sponges

We now give a sufficient (but not necessary) condition for the orientation on
G/H to also be a cc sponge:

∀z ∈ G : ∃h ∈ H : R(z) ∩ C ·H ⊆ R(h) (5)

Here, recall that R(z) = {y | z � y}, and note that R(z) = C · {z}. Intuitively,
this condition captures the notion

Lemma 6. Let (G,�) be a cc sponge group. Let H be a subgroup of G that
satisfies Eqs. (4) and (5). Then (G/H,v) is a cc sponge. If H is a normal
subgroup of G, it is a cc sponge group.

Proof. By Lemma 1, it suffices to prove that every nonempty left-bounded subset
P of G/H has a meet. By translation invariance, we may assume that the left
bound of P is 1. So, we have {1} v P . This implies that G has a nonempty
subset Q with {1} � Q and P = {q | q ∈ Q}. Now Q has a meet, say m ∈ G. It
satisfies m � q for all q ∈ Q. Therefore m v p for all p ∈ P .

Moreover, let y ∈ G be such that {y} v P . Then y v q for all q ∈ Q. This
implies that y−1 · Q ⊆ C · H. On the other hand, by translation invariance,
y−1 · Q ⊆ R(y−1). Equation (5) with z := y−1 now implies that H has an
element h with y−1 ·Q ⊆ R(h). It follows that {y · h} � Q. As m is the meet of

11



k k + 1

z z′

Figure 2: Two possible configurations for z in Example 7. Note that the case that C + {z}
overlaps with neither C + {k} nor C + {k + 1} is taken care of implicitly in the proof, as it
merely relies on at most one of A and B being nonempty.

Q, this implies y · h � m and hence y v m. This proves that m is the meet of P
in G/H.

Finally, if H is a normal subgroup of G, (G/H,�) is an oriented group by
Lemma 5. Since we have just shown it is also a cc sponge, it is a cc sponge
group.

Example 7. Continuing Example 6: for (R/Z,v) with c ≤ 1
2 , condition (5)

holds. This is shown as follows. Let z ∈ R be given. We have to find h ∈ Z
with (C + {z}) ∩ (C + Z) ⊆ (C + {h}). Put k = bzc ∈ Z. Then, given that
c ≤ 1

2 , (C + {z}) ∩ (C + Z) = A ∪ B, where A = (C + {z}) ∩ (C + {k}) and
B = (C + {z}) ∩ (C + {k + 1}). Since by construction k ≤ z < k + 1, we have
A = {y | y ∈ R ∧ z ≤ y < k + c} and B = {y | y ∈ R ∧ k + 1 ≤ y < z + c}.
Now, if z + c < k + 1, then B = ∅ and (C + {z}) ∩ (C + Z) = A ⊆ (C + {k}).
Otherwise, A = ∅ since 0 < c ≤ 1

2 and z ≥ k + 1 − c ≥ k + c, so that
(C + {z}) ∩ (C + Z) = B ⊆ (C + {k + 1}). See Fig. 2 for possible configurations.
We can therefore choose h := k if z < k+ c, and h := k+ 1 otherwise. For c = 1

2 ,
the resulting cc sponge group R/Z is isomorphic to the angle sponge introduced
in [2, 3].

Example 8. Consider the additive group R2 with the orientation given by

(x1, x2) � (y1, y2) ≡ x1 ≤ y1 < x1 + 1
2 ∧ x2 ≤ y2 < x2 + 1

2 .

Use Lemma 4 to prove that this is a cc sponge group. Equations (4) and (5)
hold for the grid H = Z2. They also hold if H is one of the two coordinate axes.
Equation (4) fails if H is the line given by x1 = x2. If H is the line x1 + x2 = 0,
Eq. (4) holds and Eq. (5) fails. In this case G/H is a sponge, but the projection
G→ G/H does not preserve meets.

6. Epigraph sponges

Let E be a real Hilbert space with inner product ( , ). We assume that
dim(E) ≥ 2. Let h be a unit vector in E and let H = h⊥ be the hyperplane
orthogonal to h. For any x ∈ E, we can write x = xhh + x⊥, where x⊥ is
orthogonal to h and xh ∈ R. Note that xh = (x, h), because x⊥ is orthogonal to
h and because h is a unit vector.

A function f : R≥0 → R≥0 is used to define a positive cone by comparing
the values of xh and ||x⊥||. Let Cf be the set of points on or above the graph
(the epigraph) of f ◦ ‖·‖ evaluated on H. So, it is given by

x ∈ Cf ⇐⇒ f(‖x⊥‖) ≤ xh.

12



Proposition 1. (E,�f ), with x �f y ≡ y − x ∈ Cf , is an oriented group if
and only if f(0) = 0 and f(d) > 0 for all d > 0.

Proof. It is not too difficult to see that Cf satisfies Eq. (2’) if and only if f(0) = 0
and f(d) > 0. This concludes the proof.

From now on, by convention, we assume that f(d) > 0 iff d > 0. By
Proposition 1, we thus have an oriented group (E,�f ) with

x �f y ≡ y − x ∈ Cf ≡ f(‖y⊥ − x⊥‖) ≤ yh − xh.

In the remainder of this section, two questions are treated. 1. Is the orientation
�f a partial order? 2. Is (E,�f ) a sponge?

6.1. Is the orientation �f a partial order?

Recall from Section 5.1 that the orientation � is a partial order (i.e. is
transitive) if and only if the positive cone is closed under the group operation +.

Recall that a function f : R≥0 → R≥0 is called subadditive iff f(x + y) ≤
f(x) + f(y) for all nonnegative real x, y. Let us call f interval subadditive iff
f(z) ≤ f(x) + f(y) for all nonnegative real x, y, z with 0 ≤ x− y ≤ z ≤ x+ y.
Note that, if f is interval subadditive, then it is subadditive, because one can
take z = x + y and interchange x and y if x < y. On the other hand, if f is
subadditive and ascending, then f is interval subadditive.

Example 9. The function f given by f(0) = 0, f(u) = 2 if 0 < u ≤ 1, and
f(u) = 1 if 1 < u, is interval subadditive, but not ascending.

Theorem 3. (a) Assume the function f is interval subadditive. Then the
orientation �f is a partial order.
(b) Assume that �f is a partial order and that dim(E) ≥ 3. Then function f is
interval subadditive.

Proof. (a) Let p, q ∈ Cf and r = p + q. It suffices to prove that r ∈ Cf . By
symmetry, we may assume that ||q⊥|| ≤ ||p⊥||. As r⊥ = p⊥ + q⊥, we have
0 ≤ ||p⊥|| − ||q⊥|| ≤ ||r⊥|| ≤ ||p⊥||+ ||q⊥||. interval subadditivity now implies
that f(||r⊥||) ≤ f(||p⊥||) + f(||q⊥||) ≤ ph + qh = rh. This proves that r ∈ Cf .

(b) As dim(E) ≥ 3, one can choose two orthogonal unit vectors u, v both
orthogonal to h. Let nonnegative real x, y, z with 0 ≤ x − y ≤ z ≤ x + y be
given. Consider the unit vectors v(ϕ) = (cosϕ)u + (sinϕ)v for real ϕ. Put
p = xu + f(x)h and q(ϕ) = yv(ϕ) + f(y)h. Then p ∈ Cf and q(ϕ) ∈ Cf .
As �f is transitive, it follows that r(ϕ) = p + q(ϕ) ∈ Cf . The expression
||r(ϕ)⊥|| = ||xu+ yv(ϕ)|| can take all values in the range from x− y to x+ y.
In particular, one can choose ϕ such that ||r(ϕ)⊥|| = z. Then it holds that
f(z) = f(||r(ϕ)⊥||) ≤ rh = ph + qh = f(x) + f(y).

Remark 1. In the case of dim(E) = 2, it can be proved in the same way that
the orientation �f is a partial order if and only if f(z) ≤ f(x) + f(y) for all
nonnegative real x, y, z with z = x± y.
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6.2. The main result on epigraph sponges

Before introducing the main theorem of this section, recall that a function
f : R≥0 → R≥0 is called superadditive iff f(x + y) ≥ f(x) + f(y) for all x,

y. We define f to be square-superadditive iff f(
√
x2 + y2) ≥ f(x) + f(y) for

all x, y. Note that f is square-superadditive iff the function ϕ(x) = f(
√
x) is

superadditive. Furthermore, if f is superadditive or square-superadditive, it is
also ascending (due to the nonnegativity of f), or increasing if f is positive for all
nonzero arguments. Finally, if f is square-superadditive, then f is superadditive,
due to

√
x2 + y2 ≤ x+ y for all nonnegative x and y, and the ascendingness of

square-superadditive functions. Also, recall that f is lower semicontinuous iff, for
every d, a ∈ R≥0 with f(d) > a, there exists ε > 0 such that for all e ∈ R≥0 with
|e− d| < ε it holds that f(e) > a. If f is continuous it is lower semicontinuous.

We are now ready to state the main theorem of this section.

Theorem 4. Assume that f : R≥0 → R≥0 satisfies f(d) > 0 iff d > 0.
(a) Let dim(E) ≥ 3. Then (E,�f ) is a cc sponge if and only if function f is
square-superadditive and lower semicontinuous.
(b) Let dim(E) = 2 and f is lower semicontinuous. Then (E,�f ) is a cc sponge
if and only if f is superadditive.

In dimension 2 the condition for sponges is weaker than in higher dimensions.
This seems to be because the hyperplane H is only one dimensional and therefore
has less space for sets without meet or join.

We conjecture that part (b) of the theorem can be strengthened in the
sense that, if (E,�f ) is a sponge on a two-dimensional space, then f is lower
semicontinuous.

Example 10. Let f be the identity function f(u) = u. The positive cone of
the oriented group (E,�f ) consists of the vectors x in E with ||x⊥|| ≤ xh. If
dim(E) = 3, this is a classical solid cone with the top in the origin. Function f is
additive, ascending, and continuous. Therefore, it is subadditive, superadditive,
and lower semicontinuous. Theorem 3 therefore implies that �f is a partial
order. Theorem 4 implies that (E,�f ) is a cc sponge if dim(E) = 2. As f is not
square-superadditive, the theorem also implies that (E,�f ) is not a cc sponge if
dim(E) ≥ 3. The positive cone is sketched in Fig. 3.

Example 11. Let f be given by f(u) = u2. The positive cone consists of
the vectors x with ||x⊥||2 ≤ xh. This is a solid paraboloid. Function f is
square-superadditive and continuous. Therefore it is also superadditive and
lower semicontinuous. Theorem 4 therefore implies that (E,�f ) is a cc sponge
(as dim(E) ≥ 2 by convention). The positive cone is sketched in Fig. 3. As f is
not subadditive, Theorem 3 implies that �f is not a partial order.

Example 12. Let f be given by f(0) = 0 and f(u) = u for 0 ≤ u ≤ 1,
and f(u) = 2u for u > 1. One can verify that f is superadditive and lower
semicontinuous. Assume dim(E) = 2. Theorem 4 implies that (E,�f ) is a cc
sponge. The positive cone is sketched in Fig. 3.
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Figure 3: Positive cones of Examples 10 to 12: x � y.

The rest of this section is devoted to the proof of this theorem. Section 6.3
prepares the ground by investigating the oriented group (E,�f ). The only-if
parts of the theorem are proved in Section 6.4. The if parts are proved with
Corollary 2 in Section 6.5.

6.3. Properties of the oriented group

As a preparation of the proof of Theorem 4, we investigate the oriented group
(E,�f ) introduced in Proposition 1.

Lemma 7. Relation �f is topologically closed in E2 if and only if the function
f : R≥0 → R≥0 is lower semicontinuous.

Proof. As (E,�f ) is an oriented group, �f is closed if and only if the epigraph
Cf = {w | f(‖w⊥‖) ≤ (w, h)} is closed (Lemma 3). By convention, dim(E) ≥ 2.
We can therefore choose a unit vector u orthogonal to h.

Assume that Cf is closed, and that f(d) > a. Then the vector w = d u+ a h,
is not in Cf . As Cf is closed, there exists ε > 0 such that the ball around w
with radius ε does not meet Cf . It follows that f(e) > a for all real numbers e
with |e− d| < ε. This proves that f is lower semicontinuous.

Conversely, assume that f is lower semicontinuous. To show that Cf is closed,
consider w /∈ Cf . This means that (w, h) < f(‖w⊥‖). Choose a number a with
(w, h) < a < f(‖w⊥‖). As f is lower semicontinuous, there is a number ε > 0
such that f(x) > a for all numbers x with |x − ‖w⊥‖| < ε. Furthermore, the
point w has an open neighborhood N in E such that all points w′ ∈ N satisfy
(w′, h) < a and |‖w′⊥‖ − ‖w⊥‖| < ε. As a result, (w′, h) < f(‖w′⊥‖), and hence
w′ /∈ Cf . This proves that Cf is topologically closed.

Proposition 2. Every finite subset P of E is left and right bounded in (E,�f ).

Proof. For real t, the vector t h is a right bound of p ∈ P if and only if f(‖p⊥‖) +
ph ≤ t. Therefore, t h is a right bound of P when t is larger than the maximum
of the numbers f(‖p⊥‖) + ph with p ranging over P . A left bound can be
constructed analogously.
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We next observe that, owing to f(d) > 0 for d 6= 0, relation �f satisfies

x �f y ∧ x 6= y =⇒ (x, h) < (y, h).

Recalling that f(0) = 0, the above directly implies:

Proposition 3. Let P be a subset of E that has a join x. Then x is the unique
lowest point with respect to h of the set of right bounds of P , i.e. (x, h) < (y, h)
for all right bounds y 6= x of P .

Proposition 4. Let V be a finite-dimensional linear subspace of E that contains
h. Let P be a subset of V that has a join (or meet) x. Then x ∈ V .

Proof. As V is finite-dimensional, the space E is the direct sum V ⊕ V ⊥. Let
ζ : E → E be the linear mapping given by ζ(v + w) = v − w for all v ∈ V ,
w ∈ V ⊥. Then ζ is an isometry of E which preserves h. It therefore preserves
�f , and joins and meets for �f . Hence, it keeps x invariant because it keeps P
invariant. Finally, ζ(x) = x implies x ∈ V .

Proposition 5. Let x and y be two points in E, satisfying xh = yh and
x⊥ = −y⊥. Then, if x and y have a join, it is the point (xh + f(‖x⊥‖))h.

Proof. By Proposition 4, if x and y have a join, it is an element of the subspace
spanned by x, y and h. We can also see that the join of x and y has to be a
multiple of h. This is trivially true if dim(E) = 1. For dim(E) ≥ 2 it is also
true, as otherwise the symmetry of the problem would imply the existence of two
equally valid candidates, contradicting Proposition 3. For real t, the multiple t h is
a right bound of {x, y} if and only if t ≥ xh+f(‖x⊥‖) = yh+f(‖y⊥‖). Therefore,
by Proposition 3, the join, if it exists, is indeed equal to (xh + f(x))h.

6.4. Properties of epigraph sponges

Having looked at some of the properties of the oriented group (E,�f ), we
now consider what happens if it is in fact a sponge.

Lemma 8. Assume that (E,�f ) is a sponge. Then f(d) + f(e) ≤ max(f(d+
e), f(|d− e|)) for all d, e ∈ R≥0. If dim(E) ≥ 3, then f is square-superadditive.

Proof. As dim(E) ≥ 2, we can choose a unit vector u ∈ E, orthogonal to h.
Let d and e be given. Consider the doubleton set P = {d u,−d u} in E. By
Proposition 2, the set P has a right bound. As (E,�f ) is a sponge, P has a join.
By Proposition 5, the join is f(d)h. This implies that

∀w ∈ E : d u �f w ∧ − d u �f w =⇒ f(d)h �f w. (6)

Applying Eq. (6) to w = e u+ a h (for arbitrary a ∈ R), we observe:

∀a : d u �f e u+ a h ∧ − d u �f e u+ a h =⇒ f(d)h �f e u+ a h

≡ ∀a : f(|d− e|) ≤ a ∧ f(d+ e) ≤ a =⇒ f(e) ≤ a− f(d)

≡ ∀a : max(f(d+ e), f(|d− e|)) ≤ a =⇒ f(d) + f(e) ≤ a
≡ f(d) + f(e) ≤ max(f(d+ e), f(|d− e|)).
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This concludes the first part of the proof.
Now, if dim(E) ≥ 3, we can choose a unit vector v orthogonal to both h and

u. Equation (6) is now applied to w = e v+ a h for arbitrary a ∈ R, and we have

∀a : d u �f e v + a h ∧ − d u �f e v + a h =⇒ f(d)h �f e v + a h

≡ ∀a : f(
√
d2 + e2) ≤ a =⇒ f(e) ≤ a− f(d)

≡ f(d) + f(e) ≤ f(
√
d2 + e2).

This proves that f is square-superadditive. This concludes the proof.

Proposition 6. Assume that (E,�f ) is a sponge. Then f is ascending if and
only if it is increasing.

Proof. If f is ascending and not increasing, then there is some interval [d1, d2]
over which f has a constant value, say w. Choose e with 0 < e < 1

2 (d2 − d1).
Then f(e) > 0 and f(d2) = f(d2−e) = f(d2−2e) = w, so that Lemma 8 applied
to d2 − e and e gives

w < f(d2 − e) + f(e) ≤ max(f(d2), f(d2 − 2e)) = w.

This is clearly a contradiction, so we conclude that if f is ascending, it is also
increasing. The converse implication is trivial.

Assume that f is ascending. Then all discontinuities of f are “of the first
kind” (jump discontinuities) [26, Corollary to Thm. 4.29]. That is, even if f is
discontinuous in d, the limits f−(d) = lime↑d f(e) and f+(d) = lime↓d f(e) exist,
and f−(d) ≤ f(d) ≤ f+(d). Function f is lower semicontinuous if and only if
f−(d) = f(d) for all d.

Lemma 9. Assume that (E,�f ) is a sponge. Then f is ascending if and only
if it is lower semicontinuous.

Proof. First assume that f is ascending. Let d be an argument where f is not
continuous. As before, choose a unit vector u orthogonal to h. Let the vectors x
and y be given by x = d u+ f+(d)h and y = −d u+ f−(d)h. For real numbers
zh and e, the vector z = e u+ zh h is a right bound of {x, y} if and only if

zh ≥ re = max(f(|d− e|) + f+(d), f(|d+ e|) + f−(d)).

By Propositions 3 and 4, the join of {x, y} is the lowest such right bound, so it is
z∗ = e u+re h with e = arg mine re. Now note that for e < 0, f+(d) < f(|d−e|),
so that

f+(d) + f−(d) < 2 f+(d) < re for all e < 0.

For e > 0, f+(d) < f(|d+ e|), so that

f+(d) + f−(d) < re for all e > 0.
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Furthermore, for 0 < e < 2d, f(|d− e|) < f−(d), so that re = f(d+ e) + f−(d).
It follows that lime↓0 = f+(d) + f−(d). Clearly, this limit must be the height
of the lowest right bound z∗ of {x, y}. Now, since re = f(d) + f+(d) for e = 0,
the existence of the join implies that f(d) = f−(d). This proves that f is lower
semicontinuous.

Now, assume that f is lower semicontinuous, and that f is not ascending.
So, there should be real numbers u and v such that 0 ≤ u < v and f(v) <
f(u). As f is lower semicontinuous, the set G = {d ∈ R≥0 | f(d) ≤ f(v)}
is topologically closed. It follows that its subsets G0 = {d ∈ G | d ≤ u}
and G1 = {d ∈ G | u ≤ d} are also closed. G0 is bounded from above by u
and G1 is bounded from below by u. Therefore, G0 has a greatest element
g0, and G1 has a smallest element g1. It is clear that g0 < u < g1, and that
d = 1

2 (g0 + g1) /∈ G, so that f(d) > f(v). Putting e = 1
2 (g1 − g0), we have

0 < e ≤ d and max(f(d + e), f(d − e)) = max(f(g1), f(g0)) ≤ f(v) < f(d).
This contradicts Lemma 8, so if f is lower semicontinuous it is also ascending,
completing the proof.

Combining the above lemmas, we find the following:

Corollary 4. Assume that (E,�f ) is a sponge. Then the following are equiva-
lent:

1. relation �f is topologically closed,
2. f is lower semicontinuous,
3. f is ascending,
4. f is increasing,
5. f is superadditive.

If dim(E) ≥ 3, all of the aforementioned properties hold.

Proof. Lemma 7 shows that the first two properties are equivalent (even if
(E,�f ) is just an orientation). Proposition 6 shows that in the current context
the third and fourth property are equivalent. Lemma 9 shows that the second and
third property are equivalent. We also noted already that if f is superadditive,
it is also ascending. This leaves only one implication to prove: that if f is
ascending, it is also superadditive. If f is ascending, Lemma 8 now implies
that f(d) + f(e) ≤ f(d+ e) for all nonnegative reals d and e, since those satisfy
|d− e| ≤ d+ e. This implies that f is superadditive. Finally, when dim(E) ≥ 3,
Lemma 8 tells us that f is square-superadditive, and thus superadditive.

Necessity. If (E,�f ) is a sponge and dim(E) ≥ 3, then f is square-
superadditive and lower semicontinuous by Lemma 8 and Corollary 4. This
implies the only-if part of Theorem 4(a). If (E,�f ) is a sponge, dim(E) = 2,
and f is lower semicontinuous, then f is superadditive by Corollary 4. This
implies the only-if part of Theorem 4(b). Note that conditional completeness is
not needed for these implications.
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6.5. Sufficiency

In this section the if parts of Theorem 4 is proved by means of Corollary 2.
We therefore assume that f is lower semicontinuous and square-superadditive
(or just superadditive if dim(E) = 2). It follows that f is increasing, because it
is superadditive, and f(d) > 0 for all d > 0.

Lemma 10. The covector h∗ : E → R, defined by h∗(x) = (h, x), is continuous
and a discriminator.

Proof. Being a linear bounded functional, h∗ is continuous [27, Thm. 1.18]. To
see that it is also a discriminator, consider ε > 0 to be given. We can now
pick a δ > 0 that is both less than 1

2ε and less than f( 1
2ε). Clearly, recalling

that f is increasing, any element x ∈ Cf for which h∗(x) = xh < δ satisfies
‖x‖ < 1

2ε + 1
2ε = ε. Since yh − xh < δ ≡ h∗(y) < h∗(x) + δ, it follows

that for any two elements x, y ∈ E, x � y and h∗(y) < h∗(x) + δ imply that
d(x, y) = ‖y − x‖ < ε.

Recall that function f is lower semicontinuous and increasing. It is easy to
see that f(x) ≤ f+(x) < f(y) whenever 0 ≤ x < y. We also have

f+(x) + f(y) ≤ f(x+ y) whenever x ≥ 0 and y > 0. (7)

This follows from the fact that f is superadditive, increasing, and lower semicon-
tinuous, as well as the fact that f(x+ ε) + f(y − ε) ≤ f(x+ y) holds for all ε
with 0 < ε < y.

Proposition 7. Let V be a real Hilbert space, and let p, q ∈ V be such that
(p, q) ≥ 0 and q 6= 0. Assume that f is square-superadditive, or that f is
super-additive and dim(V ) = 1. Then f+(‖p‖) + f(‖q‖) ≤ f(‖p+ q‖).

Proof. First assume that f is square-superadditive. Let ϕ be the superadditive
function given by ϕ(x) = f(

√
x). Equation (7) implies that

f+(‖p‖) + f(‖q‖) = ϕ+(‖p‖2) + ϕ(‖q‖2) ≤ ϕ(‖p‖2 + ‖q‖2).

On the other hand, we have ϕ(‖p‖2 + ‖q‖2) ≤ ϕ(‖p + q‖2) = f(‖p + q‖), as
(p, q) ≥ 0, and ϕ is increasing.

If dim(V ) = 1, we have ‖p+ q‖ = ‖p‖+ ‖q‖ because (p, q) ≥ 0. If, moreover,
f is superadditive, then Eq. (7) gives f+(‖p‖) + f(‖q‖) ≤ f(‖p‖ + ‖q‖) =
f(‖p+ q‖).

Lemma 11. Every pair of elements of E has a join in E.

Proof. If x and y are comparable by �f , one of them is their join. We may
therefore assume that they are not comparable. Therefore, the difference vector
x − y is not a multiple of h. We may translate the origin in the hyperplane
h⊥ of vectors orthogonal to h to the point 1

2 (x⊥ + y⊥), and thus assume that
x⊥ = −y⊥ 6= 0.
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Let e be the unit vector ‖y⊥‖−1 y⊥. Let S be the linear subspace spanned
by h and e. This subspace contains x and y. The vectors h and e form an
orthonormal basis of it. We abbreviate the inner products with h and e by
uh = (u, h) and ue = (u, e). Note that xe < 0 < ye.

Let U be the set of right-bounds of {x, y}, so that U = (x+Cf )∩(y+Cf ). As
x and y are not comparable, we have x /∈ U and y /∈ U . Given the assumptions
made at the start of this section, the set U is topologically closed. We observe
that

u ∈ U
≡ x �f u ∧ y �f u
≡ f(‖u⊥ − x⊥‖) ≤ uh − xh ∧ f(‖u⊥ − y⊥‖) ≤ uh − yh
≡ max(xh + f(‖u⊥ − x⊥‖), yh + f(‖u⊥ − y⊥‖)) ≤ uh. (8)

In particular, for u ∈ S, we have

u ∈ U ≡ max(xh + f(|ue − xe|), yh + f(|ue − ye|)) ≤ uh.

Because y /∈ U , the lowest point of U ∩ S above y is

y′ = ye e+ y′h h, where y′h = xh + f(ye − xe) > yh.

Let S′ be the rectangle of the points z ∈ S with xe ≤ ze ≤ ye and yh ≤ zh ≤ y′h.
As S′ is compact and U is closed, the intersection U ∩ S′ is compact. It is
nonempty because y′ ∈ U ∩ S′. Therefore, there is z ∈ U ∩ S′ with zh ≤ uh for
all u ∈ U ∩ S′. We claim that zh ≤ uh for all u ∈ U ∩ S; it suffices to consider
u ∈ U ∩ S \ S′. In that case, if xe ≤ ue ≤ ye, then zh ≤ y′h < uh. If ye < ue,
then zh ≤ y′h < uh because f is increasing. The case ue < xe is treated in the
same way. This proves that zh ≤ uh for all u ∈ U ∩ S.

As z is a lowest point of U ∩ S and xe ≤ ze ≤ ye, we have

zh = max(xh + f(ze − xe), yh + f(ye − ze)).

At first sight, one might expect the two terms of the maximum to be equal, but
this need not be the case because of the semicontinuity of f . Instead, we claim
that

zh ≤ xh + f+(ze − xe) ∧ zh ≤ yh + f+(ye − ze). (9)

The lefthand inequality is treated first. If ze = ye, then z = y′ and zh =
xh + f(ye − xe), which is less than xh + f+(ye − xe). Otherwise, it holds that
xe ≤ ze < ye. Assume that xh + f+(ze − xe) < zh. Then there is a real number
t with ze < t < ye and s = xh + f(t− xe) < zh. As f is increasing, we also have
s′ = yh + f(ye − t) < zh. If we put s′′ = max(s, s′), the vector u = t e + s′′ h
satisfies u ∈ U and uh = s′′ < zh, contradicting the minimality of zh. This
proves the lefthand inequality of (9). The other one follows by symmetry.

It remains to prove that every element u ∈ U is a right-bound of z. Let u ∈ U
be given. As we need to compare the vectors u⊥ and z⊥, we define q = u⊥ − z⊥.
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First assume that q = 0. This implies that u⊥ = z⊥ = ze e. It follows that
u ∈ U ∩ S, and hence zh ≤ uh, and hence z �f u.

It remains to assume that q 6= 0. Two cases are distinguished: qe ≥ 0 or
qe ≤ 0. Assume qe ≥ 0. Put p = z⊥−x⊥. Then (p, q) ≥ 0. We use Proposition 7
with E := h⊥, and p and q as chosen just now. The relation z �f u is proved in

z �f u
≡ { definition �f }
f(‖u⊥ − z⊥‖) ≤ uh − zh
⇐ { (8) gives xh + f(‖u⊥ − x⊥‖) ≤ uh }
zh + f(‖u⊥ − z⊥‖) ≤ xh + f(‖u⊥ − x⊥‖)
≡ { choices of p and q }
zh + f(‖q‖) ≤ xh + f(‖q + p‖)
⇐ { q 6= 0, Proposition 7 with E := h⊥, and choice of p }
zh ≤ xh + f+(‖z⊥ − x⊥‖)
≡ { x⊥ = xe e, z⊥ = ze e, and Eq. (9) }

true .

The case qe ≤ 0 is treated in the same way with p = z⊥ − y⊥.

The if parts of Theorem 4 are now obtained by collecting the results. As-
sume that f is lower semicontinuous and square-superadditive (superadditive
if dim(E) = 2). Then Lemma 11 implies that every pair has a join in (E,�f ).
As f is superadditive and satisfies f(d) > 0 for all d > 0, it is increasing. The
relation �f is closed because of Lemma 7. Therefore, Lemma 10 implies that
(E,�f ) has a discriminator. Therefore, Corollary 2 implies that (E,�) is a cc
sponge. This concludes the proof of Theorem 4.

7. The hyperbolic sponge

Let h be a unit vector in a real Hilbert space E with dim(E) ≥ 2. Let H = h⊥

be the hyperplane orthogonal to h and let H+ = {x ∈ E | 0 < (h, x)} be the
(open) half space in direction h. We again have xh = (h, x) and x⊥ = x− (h, x)h.

It is known that H+ can be considered a model for hyperbolic space [28, §7]:
the Poincaré half-space model. In this model, the distance between two points
in H+ is

dH(x, y) = arcosh

(
1 +
‖x− y‖2

2xh yh

)
.

Where arcosh(x) = ln(x+
√
x2 − 1). It can be checked [14, §12.2.1] that for two

points x, y such that x⊥ = y⊥, dH(x, y) = | ln(xh)− ln(yh)|. Because of this, we
put

hH(x) = ln(xh).
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H
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x

z

Figure 4: Illustration of the hyperbolic orientation in the Poincaré half-plane model. We have
x � y, as well as y � z, but x and z are incomparable. Note how the set of left bounds of y is
half of a closed disk in this model, and that only points strictly above H correspond to points
in hyperbolic space.

Since x ∈ H+, xh > 0, and the above is well-defined. Note that while H+ is an
open subset of E, (H+, dH) is, in fact, a complete metric space. Furthermore, the
metric spaces (H+, dH) and (H+, dE) with dE(x, y) = ‖x−y‖ are homeomorphic,
as the identity function is a homeomorphism between the two.

Relation � on H+ is defined by

x � y ≡ ‖x− y⊥‖ ≤ yh.

Note that x � x holds because ‖x − x⊥‖ = xh. We observe that the above
definition corresponds to saying that x � y if and only if y lies between x and
the highest point of the geodesic through x and y in the half-space model of
hyperbolic space [28, Thm. 9.3]; this is the converse of the original formulation
[14, §12.4.4], but for the current exposition it was much more convenient to use
the convention that “higher” values are larger.

Lemma 12. Let x � y and x 6= y. Then hH(x) < hH(y).

Proof. As xh is the height of x above H, and y⊥ ∈ H, we have xh ≤ ‖x− y⊥‖,
with equality if and only if x⊥ = y⊥. On the other hand, x � y implies
‖x − y⊥‖ ≤ yh. Considering that the logarithm is increasing on the positive
reals, the inequality follows, unless x⊥ = y⊥.

Therefore, assume that x⊥ = y⊥. We then have x = xhh + x⊥ and y =
yhh+ x⊥. Given that x � y, we see that ‖x− y⊥‖ = xh ≤ yh. As x 6= y, we see
that xh < yh, and thus hH(x) < hH(y).

Corollary 5. Relation � is an acyclic orientation on H+.

Proposition 8. (a) Every finite subset P of H+ has a right bound in (E,�).
(b) A pair x, y ∈ H+ is left bounded if and only if ‖x⊥ − y⊥‖ < xh + yh.

Proof. (a) Choose λ > 0 with ‖p‖ ≤ λ for all p ∈ P . Then y = λh is a right
bound of P , because ‖p− y⊥‖ = ‖p‖ ≤ λ = yh for every p ∈ P .
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(b) Let p be a left bound of x and y. Then p ∈ H+. Therefore p is not on
the line segment between x⊥ and y⊥. This implies ‖x⊥− y⊥‖ < ‖x⊥− p‖+ ‖p−
y⊥‖ ≤ xh + yh. The converse follows from considering when two (hemi)spheres
overlap.

Remark 2. It follows that there are pairs without a left bound. For example,
let e be a unit vector orthogonal to h, take x = h and y = h+ 2 e. The pair x, y
has no left bound because ‖x⊥ − y⊥‖ = 2 and xh = yh = 1. This implies that
inversion of the orientation gives a completely different oriented set.

Lemma 13. The relation � on the complete metric space (H+, dH) is closed.

Proof. We first show that the relation is closed on the metric space (H+, dE)
with the Euclidean metric. To this end, consider the function f : H+×H+ → R
given by f(x, y) = yh−‖x−y⊥‖. As f is continuous under the Euclidean metric,
and � is the preimage of the closed set {t | t ≥ 0}, � is closed. Since (H+, dH)
and (H+, dE) are homeomorphic, � is closed in (H+, dH) as well.

Lemma 14. On the complete metric space (H+, dH), hH is a discriminator.

Proof. In order to prove that function hH is a discriminator, we try, given y ∈ H+

and δ > 0, to bound the distance dH(x, y) for all vectors x in the set

Lδ(y) = {x ∈ H+ | x � y ∧ hH(y) < hH(x) + δ}
= {x ∈ H+ | ‖x− y⊥‖ ≤ yh ∧ ln(yh) < ln(xh) + δ}.

In view of the formula for dH(x, y), the maximal value of this distance is obtained
by maximizing ‖x− y‖ and minimizing xh. The maximal distance is therefore
reached when ‖x− y⊥‖ = yh and ln(yh) = ln(xh) + δ. This maximal distance
is not reached in Lδ(y), however, but only on its boundary. In any case, such
vectors x give the least upper bound of the distance. If we write xu = ‖x⊥−y⊥‖,
these two equations become x2h+x2u = y2h and yh = xhe

δ. After some calculation,
one finds that dH(x, y) = arcosh(eδ) holds because

1 +
‖x− y‖2

2xh yh
=

2xh yh + (xh − yh)2 + x2u
2xh yh

=
2 y2h

2xh yh
= eδ.

Using continuity of the arcosh function for δ ↓ 0, one finds that hH is a discrimi-
nator.

Theorem 5. The pair (H+,�) is a cc sponge.

Proof. We have already shown that � is closed, and that hH is a discriminator. It
is also clear that hH is continuous. Thus, if we can show that every left-bounded
pair in H+ has a meet, we can apply Theorem 2. Now, let x, y be a left-bounded
pair in H+. If x and y are comparable, one of them is the meet. We may
therefore assume that x and y are not comparable. It follows that x⊥ 6= y⊥.

Let e be a unit vector pointing from x⊥ to y⊥. Let a = ‖y⊥ − x⊥‖. Then
a > 0 and y⊥ = x⊥ + a e. Proposition 8(b) implies that a < xh + yh.
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Let S be the plane that contains the points x, x⊥, y, y⊥. Let S+ = S ∩H+.
In the halfplane S+, the set of left bounds of x is the half disk with center x⊥
and radius xh; similarly for y. These half disks intersect because a < xh + yh.
As x and y are not comparable, it is not the case that one of the half disks is
contained in the other. Therefore, the corresponding circles meet in two points,
one of which is in S+. Assume that the circles meet in z ∈ S+. As z is contained
in both half disks, it is a left bound of both x and y. We claim that z is the
meet of x and y.

The projection z⊥ is on the line through x⊥ and y⊥, and can therefore be
written z⊥ = x⊥ + b e. As x and y are not comparable, we have 0 < b < a. Let
c = a− b. Then y⊥ = z⊥ + c e. It follows that

b2 + z2h = x2h

c2 + z2h = y2h

b+ c = a.

 (10)

In order to prove that z is the meet of x and y, it remains to prove that any
left bound u of x and y is a left bound of z. Let z⊥ + t e be the orthogonal
projection of u onto the line through x⊥ and y⊥, and let s be the distance of u
to this line. We now have

u � x ∧ u � y
≡ { definition }

(t+ b)2 + s2 ≤ x2h ∧ (t− c)2 + s2 ≤ y2h
≡ { Equation (10) }
t2 + 2bt+ s2 ≤ z2h ∧ t2 − 2ct+ s2 ≤ z2h

⇒ { b > 0 and c > 0, and hence 2bt ≥ 0 or 2ct ≤ 0 }
t2 + s2 ≤ z2h
≡ { definition }
u � z.

This proves that z is the meet of x and y. Considering Lemmas 13 and 14, and
observing that hH is continuous, we can now apply Theorem 2 to conclude that
(H+,�) is a cc sponge.

8. The geometry of the various sponges

In order to compare the various sponges we constructed, it is useful to
examine the left cones L(x) and the right cones R(x) of elements in the different
sponges.

In a sponge group, all left and right cones are isomorphic because R(x) =
x · R(0) and L(x) = x · L(0) and L(0) = R(0)−1. Also, there can be no left-
or right-extreme points: suppose that x0 is a left-extreme point, we then have
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x0 · L(0) = {x0}, meaning that x0 cannot have an inverse (which it has to have,
since it is a group element).

In the inner-product sponge of Section 3, every right cone R(x) for x 6= 0,
is a half space, while the left cone L(x) is the ball centered at 1

2x with radius
1
2‖x‖. In the hyperbolic sponge of Section 7, every left cone is a half ball, while
the right cone is bounded by a component of a hyperboloid.

The inner-product sponge has precisely one left-extreme point, viz. the origin
of the space, and no right-extreme points. The hyperbolic sponge has no extreme
points.

In the inner-product sponge, every nonempty subset has a meet, which can
be the origin. In the hyperbolic sponge, every finite or bounded subset has a
join.

In the inner-product sponge, the right cones R(x) and R(y) are disjoint if
and only if x 6= 0 and y = λx for some λ < 0. In the hyperbolic sponge, the left
cones L(x) and L(y) are disjoint if and only if xh + yh ≤ ‖x⊥ − y⊥‖.

9. Summary and future work

This work aims to extend the toolbox of those interested in the extra freedom
that (conditionally complete) sponges provide compared to lattices. To this end
Theorem 2 shows that in a complete metric space, it suffices to show (under
mild conditions) that an orientation has joins and meets for pairs to prove that
it is a sponge, and even a conditionally complete one. Section 5 shows how for
sponge groups, the additional structure helps to identify new sponges derived
from a known sponge group. Theorem 4 in its turn gives a fairly satisfying
characterization of epigraph sponges, which are applicable to any Hilbert space
with a “preferred” direction. Examples of the latter include matrices with the
Frobenius inner product and the (scaled) identity matrix playing the role of h, but
also colour spaces for instance, where white would play the role of h. Section 7
uses Theorem 2 to establishes that the hyperbolic sponge identified previously
[2, 3] generalizes to arbitrary dimension (earlier, only the two dimensional case
was studied).

In future, it would be interesting to not just look at sponge groups, but also
sponges with groups acting on them: both the inner product sponge and the
epigraph sponge deal with some kind of rotation invariance, but we do not yet
have an overarching theory to constrain and characterize sponges with given
group invariances (and we do expect that at least some interesting things can be
said). One could also consider further generalizations, for example by including
semigroups.
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