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1
Introduction

Cyber-Physical systems (CPS) are systems where communication, computational
and physical devices are interconnected and interact with one another. Such
interconnection is brought into practice by integrating Information Techno-
logy (IT) and Operational Technology 1 (OT). Cyber-Physical systems bring
new opportunities into several industrial and societal domains ranging from
transportation and electric power generation to traffic flow management and
health care. In fact, CPS are expected to revolutionize all the engineered sys-
tems on which our society crucially depends. Internet of Things (IoT), Industry
4.0, Smart Cities, and Smart Grid, are all concepts revolving around Cyber-
Physical systems.
Many of the above mentioned sectors and industries are critical infrastructure,
in the sense that they are essential to the health, safety, and security of our
society. This emphasizes the importance of rendering CPS “resilient” against
malfunctioning due to genuine failures or cyberattacks. An example of a cy-
berattack affecting CPS is Stuxnet. Stuxnet invaded Iranian uranium enrich-
ment facilities in 2010, and this is widely regarded as the first major CPS attack.
In 2014, German steel mill blast furnace was destroyed after hackers gained ac-
cess of German company computers. Late 2015 and 2016, Ukrainian electricity
network experienced a power outage as a result of the cyberattack comprom-
ising the electricity distribution infrastructure. In all the aforementioned ex-
amples, the Malware was designed to attack industrial control systems.
Currently, the dominant look at control system security is from computer
science and IT perspectives which focus mostly on prevention mechanisms
(Knapp and Langill, 2011; Knapp and Samani, 2013; Radvanovsky and Brod-
sky, 2016; Macaulay, 2016; Macaulay and Singer, 2016). This perspective re-
volves around concepts like firewalls, network segmentation, and access con-
trol. This approach provides the first layer of protection for the security of
control systems. However, it is not sufficient and fails to address how, and to
what extent a control system can continue to operate in case an attack turns

1Operational Technology (OT) is the hardware and software dedicated to control and monit-
oring of physical processes. Few examples include: PLC’s, SCADA, DCS.
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2 introduction

out to be successful. This triggers the necessity of introducing the concept of
resilient control as an extra layer of protection. The main objective of this thesis
is to address this problem.

1.1 self-triggered coordination
Cyber-physical systems feature a paradigm shift from centralized to distrib-
uted control and computation. In this thesis, we will address the question of
designing resilient control protocols for CPS with respect to consensus and
synchronization problems. Consensus is a prototypical problem in distributed
settings with an enormous range of applications, spanning from formation
and cooperative robotics to surveillance and distributed computing; see for in-
stance Bai et al. (2011); Olfati-Saber and Murray (2004). The terms consensus
and coordination are used interchangeably throughout the thesis. In this thesis
we will mostly focus on consensus problems, although some results will be dis-
cussed also in connection with the problem of synchronizing linear oscillators.
We will address the problem of reaching resilient coordination in a context
where the nodes have their own clocks, possibly operating in an asynchronous
way, and can make updates at arbitrary time instants. Besides the practical
difficulties in achieving a perfect clock synchronization, one main reason for
considering independent clocks is related to developments in the area of net-
worked control systems where, in order to enhance energy efficiency and flex-
ibility, it is more and more required to have fully autonomous devices, which is
the paradigm of event-triggered and self-triggered control (Heemels et al., 2012;
Hetel et al., 2017; Dimarogonas et al., 2012; Postoyan et al., 2015; De Persis
and Postoyan, 2017; Nowzari et al., 2017). In fact, our approach utilizes self-
triggered coordination protocols inspired by De Persis and Frasca (2013). Each
node is equipped with a clock that determines when the next update is sched-
uled. At the update instant, the node polls its neighbors, collects the data and
determines whether it is necessary to modify its controls along with a bound
on the next update instant.

1.2 resilience against data availability and
integrity attacks

In this thesis we will investigate the problem of designing resilient control pro-
tocols for CPS with respect to the questions of data availability and integrity.
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The first question is related to to the fact that data flow can be occasionally in-
terrupted, while the second question is related to the fact that the data content
might be corrupted. This is motivated by the following considerations. The
difference between IT and OT security is not just confined to the extent of at-
tack impact but also requires the right risk assessments strategy to prioritize
security parameters. The traditional information security CIA triad Confiden-
tiality, Integrity, and Availability also applies to OT networks (Cardenas et al.,
2008), but not at the same order as IT networks. In IT networks the order of
importance is represented by C-I-A. In OT networks, however, the focus is not
on information but on the industrial process. Therefore, real-time availability
of data is the most crucial factor to ensure normal operation of the system. As
the second factor, integrity is also important, since misrepresentation of data
results in undesired decision or control action. Confidentiality usually has a
lower priority in industrial control systems. This changes the order of import-
ance to A-I-C for OT networks and influences the representation of the content
of this thesis.
In the CPS literature attacks to the communication links are classified as either
Denial-of-Service (DoS) or deception attacks (Sandberg et al., 2015; Amin et al.,
2009). These attacks are representative of data Availability and Integrity at-
tacks, respectively. The former affect the timeliness of information exchange,
i.e., to cause packet loss. Part I is concerned with DoS attacks and, in particu-
lar, jamming attacks (Xu et al., 2006; Thuente and Acharya, 2006), although we
shall use these two terms interchangeably. We will mostly refer to jamming
attacks since this is one of the main sources of communication interruption in
wireless sensor networks, which represent the most important application do-
mains of our study. Deception attacks are instead primarily intended to affect
the trustworthiness of data by manipulating the packets transmitted over the
network; see Fawzi et al. (2011, 2014); Pasqualetti et al. (2015); Teixeira et al.
(2015a); Bai et al. (2017); Smith (2015); Mo et al. (2015); Mo and Sinopoli (2016);
Zhu and Martínez (2014); LeBlanc et al. (2013) and the references therein. Part
II is concerned with Deception attacks. In this thesis, we will focus on the
problem of designing resilient control protocols. A parallel research line fo-
cuses on the problem of detecting attacks (Shi et al., 2018; Bai et al., 2015). This
is a very important research line that should be regarded as complementary
to the present one. A detail account of the thesis outline is in order.
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1.3 outline of the thesis
This thesis consists of two main parts, each studying a particular type of secur-
ity issue that can affect cyber-physical systems performance. Both parts have a
separate introduction, statement of contributions and a more detailed outline.
Part I pertains to Data Availability Attacks. All the three chapters consider the
absence of data and information accessibility due to genuine failure or cyberat-
tacks, which results in Denial-of-Service (DoS). However, in particular we are
concerned with jamming attacks as we are mainly interested in wireless sensor
networks. In chapter 2 we consider a shared communication network, i.e. “in-
frastructure” mode, which is compromised by a jamming attack. Then we pro-
pose a resilient protocol that ensures coordination in spite of the presence of
such attacks/malfunctions. The results are extended to “ad-hoc” peer-to-peer
communication network in chapter 3. While chapter 2 and 3 deal with single
integrator networks, chapter 4 extends the analysis to higher-order dynamical
systems, which is relevant to deal with network synchronization problems.
Part II pertains to Data Integrity Attacks. The presence of unreliable inform-
ation in the network could be as a result of genuine fault in the system or cy-
berattack. Chapter 5 investigates the resilient consensus protocol against sev-
eral types of node misbehavior resulting from error in operations such as data
acquisition, data transmission, control logic, and update time scheduler. In
chapter 6, inspired by De Persis and Frasca (2013), we use a different coordin-
ation protocol aimed at relaxing the graph connectivity condition in chapter 5.
After Part II, we provide some summarizing remarks and suggestions for fu-
ture research.
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1.5 notations
The notation adopted in this thesis is in the main standard. We denote by
R, R>0, R≥0 the sets of real, positive, and nonnegative numbers, respectively.
Also, we denote by Z≥0 the set of nonnegative integers. The rest of the widely
used notations used throughout the thesis are summarized in Table 1.1. In
this table, i and ij mainly refer to nodes and edges. Furthermore, superscripts
represent vector and subscripts represents scalar nature of the state variables.
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Table 1.1: Some of the symbols and parameters widely used in the thesis
State variables

xi ∈ R, xi ∈ Rn state variable of node i
θ i ∈ R, θ ij ∈ Rn local clock variable of node and edge ij
ui ∈ R, ui ∈ Rn control variable of node i
uij ∈ R, ξ ij ∈ Rn control variable of edge ij
ηi ∈ Rn control state variable of node i

Controller

ε Sensitivity Parameter
ti
k, t

ij
k k-th update time at node i and edge ij

di degree of node i
Denial-of-Service (DoS)

hn, hij
n Sequence of DoS on/off transitions

τn, τij
n length of DoS

Hn, Hij
n n-th DoS time-interval

Ξ, Ξij set of time instances where communication is denied
Θ, Θij set of time instances where communication is allowed

Sets

G Undirected connected graph
I The set of nodes of G
E The set of edges of G
L Laplacian matrix of G
B Incidence matrix of G
Qi The set of neighbors of node i





part i
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Introduction

Wireless sensor networks are an important component in CPS. However, they
are less reliable than wired networks and more prone to genuine and malicious
disconnections. Jamming causes Denial-of-Service (DoS) phenomena and is
defined as the disruption of existing wireless communication between sender
and receiver so that no information packet can be exchanged. As the result of
jamming the signal-to-noise ratio at the receiver’s side is decreased. The nature
of jamming can be due to either unintentional (genuine) interference caused in
the communication or intentional (malicious) interference by an attacker with
the aim of hindering or distorting communicated packets.
In the literature, the issues of securing robustness of CPS against DoS has been
widely investigated only for centralized architectures (Amin et al., 2009; Gupta
et al., 2010; Befekadu et al., 2011; Teixeira et al., 2015b; Foroush and Martinez,
2012; De Persis and Tesi, 2014, 2015; Cetinkaya et al., 2017, 2018a; De Persis
and Tesi, 2016). On the other hand, very little is known about DoS for dis-
tributed coordination problems. In this part, we investigate the issue of DoS,
genuine failure or cyberattack, with respect to consensus-like networks. The
attacker’s objective is to prevent consensus by denying communication among
the network agents.
A basic question in the analysis of distributed coordination in the presence
of DoS is concerned with the modeling of DoS attacks. In De Persis and Tesi
(2014, 2015, 2018), a general model is considered that only constrains DoS at-
tacks in terms of their average frequency and duration, which makes it pos-
sible to capture many different types of DoS attacks, including trivial, periodic,
random and protocol-aware jamming attacks (Thuente and Acharya, 2006; Xu
et al., 2005; Tague et al., 2009). This model is also employed in different set-
tings (Dolk et al., 2017; Cetinkaya et al., 2018b,a; Lu and Yang, 2018)

outline and contribution
Building on De Persis and Tesi (2015), a preliminary analysis of consensus net-
works in the presence of DoS is presented in chapter 2 under the simplifying

11



12 part i – introduction

assumption that the occurrence of DoS causes all the network links to fail sim-
ultaneously. This scenario is representative of networks operating through a
single access point, in the so-called “infrastructure” mode. In chapter 3 and
4, we consider the more general scenario in which the network communica-
tion links can fail independent of each other, thereby extending the analysis to
“ad-hoc” (peer-to-peer) networks.
The main contribution of Part I is an explicit characterization of the frequency
and duration of DoS for both infrastructure mode and peer-to-peer (P2P) net-
works under which consensus can be preserved by suitably designing time-
varying control and communication policies. We also provide an explicit char-
acterization of the effects of DoS on the consensus time and show that the con-
sidered analysis framework is general enough to account as well for “genuine”
DoS, i.e., for natural network congestion phenomena. Finally, chapter 2 and 3
consider resilient consensus in a network of single integrator dynamical sys-
tems, while chapter 4 investigates resilient synchronization in a network of
higher-order dynamical systems.
In a technical sense, since DoS induces communication failures, the problem of
achieving consensus under DoS can be naturally cast as a consensus problem
for networks with switching topologies. This approach is certainly not new in
the literature. In Olfati-Saber and Murray (2004), for instance, it is shown that
consensus can be reached whenever graph connectivity is preserved point-
wise in time; Arcak (2007) considers a notion of Persistency-of-Excitation (PoE),
which stipulates that graph connectivity should be established over a period of
time, rather than point-wise in time, which is similar to the joint connectivity
assumption in Jadbabaie et al. (2003). In CPS, however, the situation is differ-
ent. In CPS, one needs to deal with the fact that networked communication
is inherently digital, which means that the rate at which the transmissions are
scheduled cannot be arbitrarily large. Under such circumstances, the afore-
mentioned tools turn out to be ineffective. In order to cope with this situation,
in this chapter we introduce a notion of Persistency-of-Communication (PoC),
which naturally extends the PoE condition to a digital networked setting by re-
quiring graph (link) connectivity over periods of time that are consistent with
the constraints imposed by the communication medium. A characterization of
DoS frequency and duration under which consensus properties are preserved
is then obtained by exploiting the PoC condition.



2
Jamming-resilient
Coordination over Shared
Networks

abstract
The issue of cyber-security has become ever more prevalent in the ana-
lysis and design of cyber-physical systems. In this chapter, we investigate
self-triggered consensus networks in the presence of communication failures
caused by Denial-of-Service (DoS) attack, namely attacks that prevent commu-
nication among the network agents simultaneously. By introducing a notion
of Persistency-of-Communication (PoC), we provide a characterization of DoS
frequency and duration such that consensus is not destroyed. An example is
given to substantiate the analysis.

Published as:

D. Senejohnny, P. Tesi, and C. De Persis, “Self-triggered coordination over a shared
network under denial-of-service,” in Decision and Control (CDC), 2015 IEEE 54th Annual
Conference on. IEEE, 2015, pp. 3469–3474.
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14 jamming-resilient coordination over shared networks

2.1 problem formulation

2.1.1 distributed control system

We assume to have a set of nodes I = {1, . . . , n} representing our agents and
an undirected connected graph G = (I, E) with E a set of unordered pairs
of nodes, called edges. We denote by B and L the Incidence and Laplacian
matrix of G, respectively, where the latter is a symmetric matrix. For each node
i ∈ I, we denote by Qi the set of its neighbors, and by di its degree, that is, the
cardinality of Qi.

We consider the following hybrid dynamics on a triplet of n-dimensional vari-
ables involving the consensus variable x, the controls u, and the local clock
variables θ. All these variables are defined for time t ≥ 0. Controls are as-
sumed to belong to {−1, 0,+1}. The specific quantizer of choice is signε : R →
{−1, 0,+1}, defined according to

signε(z) =
{
sign(z) if |z| ≥ ε
0 otherwise

(2.1)

where ε > 0 is a sensitivity parameter, which can be used at the design stage
for trading-off frequency of the control updates vs. accuracy of the consensus
region.
The system (x,u, θ) ∈ R3n in the nominal operating mode, i.e., in the absence of
DoS, satisfies the following continuous evolution





ẋi = ui

u̇i = 0
θ̇i = −1

(2.2)

except for every t such that the set

S(θ, t) = {i ∈ I : θi(t−) = 0}

is non-empty, where s(t−) denotes the limit from below of a signal s(t), i.e.,
s(t−) = limτ↗t s(τ). At such time instants, the system satisfies the following
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discrete evolution




xi(t) = xi(t−) ∀ i ∈ I

ui(t) =
{
signε(avei(t)) if i ∈ S(θ, t)
ui(t−) otherwise

θi(t) =
{

fi(x(t)) if i ∈ S(θ, t)
θi(t−) otherwise

(2.3)

where for every i ∈ I the map fi : Rn → R>0 is defined by

fi(x(t)) =





| avei(t)|
4di if | avei(t)| ≥ ε

ε
4di if | avei(t)| < ε

(2.4)

where, for conciseness, we have defined

avei(t) =
∑

j∈Qi

(xj(t)− xi(t)) (2.5)

Self-triggered coordination algorithms such as (2.2)-(2.4). turn out to be of ma-
jor interest when consensus has to be achieved in spite of possibly severe com-
munication constraints. In this respect, a remarkable feature of self-triggered
coordination lies in the possibility of ensuring consensus properties in the ab-
sence of any global information on the graph topology and with no need to
synchronize the agents local clocks De Persis and Frasca (2013).
The result which follows characterizes the convergence properties of (2.2)-(2.4)
in the nominal operating mode, and will serve as a basis for the developments
of the paper.

Theorem 2.1. De Persis and Frasca (2013). Given any x̄ ∈ Rn, let x(t) be the solution
to (2.2)-(2.4) with x(0) = x̄. Then x(t) converges in finite time to a point x∗ ∈ Rn

belonging to the set

E = {x ∈ Rn : |
∑

j∈Qi

(xj − xi)| < ε ∀ i ∈ I} (2.6)
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2.1.2 denial-of-service
We shall refer to DoS as the phenomenon by which communication across the
network is not possible. More specifically, we assume that the network nodes
make use of a shared communication medium. Under DoS, none of the net-
work nodes can send or receive information. This scenario is representative of
several possible DoS threats. In order to maintain continuity, a discussion on
this point is deferred to Section 2.1.3. Here, we proceed with the DoS modeling
and introduce a number of assumption on its frequency and duration.
Let {hn}n∈Z≥0 , where h0≥ 0, denote the sequence of DoS off/on transitions, i.e.,
the time instants at which DoS exhibits a transition from zero (communication
is possible) to one (communication is interrupted). Then

Hn := {hn} ∪ [hn, hn + τn[ (2.7)

represents the n-th DoS time-interval, of a length τn ∈ R>0, over which com-
munication is not possible. Here and in the sequel, it is understood that
hn+1 > hn + τn for all n ∈ Z≥0, otherwise Hn ∪ Hn+1 could be regarded as
a single DoS interval.
Given t, τ ∈ R≥ 0, with t ≥ τ, let

Ξ(τ, t) :=
∪

n∈Z≥0

Hn
∩

[τ, t] (2.8)

represent the sets of time instants where communication is denied and

Θ(τ, t) := [τ, t] \ Ξ(τ, t) (2.9)

represent the sets of time instants where communication is allowed, where \
denote the relative complement.
In connection with the definition of the DoS sequence in (2.7), the first question
to be addressed is that of determining the amount of DoS that the network can
tolerate before consensus, as defined in Theorem 2.1, is lost. In this respect, it is
simple to see that such an amount is not arbitrary, and that suitable conditions
must be imposed on both DoS frequency and duration.
Let us first consider the frequency at which DoS can occur. First notice that
ε/4di provides a lower bound on the inter-sampling rate of the i-th node of the
network, as imposed by the communication medium. Let now Λn = hn+1 −
hn, with n ∈ Z≥0, denote the time elapsing between any two successive DoS
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triggering. By letting dmin = mini∈I di, one immediately sees that if

Λn ≤ Δ∗ :=
ε

4dmin

then consensus could be destroyed irrespective of the adopted communica-
tion strategy. This is because DoS would be allowed to occur at a rate faster
than or equal to the sampling rate of some network node, which would clearly
preclude the possibility to achieve consensus. It is intuitively clear that, in or-
der to get stability, the frequency at which DoS can occur must be sufficiently
small compared to sampling rate of the network nodes. A natural way to ex-
press this requirement is via the concept of average dwell-time, as introduced
by Hespanha and Morse (1999). Given t, τ ∈ R≥ 0 with t ≥ τ, let n(τ, t) denote
the number of DoS off/on transitions occurring on the interval [τ, t[.

Assumption 2.1 (DoS frequency). There exist μ ∈ R≥0 and τf ∈ R>Δ∗ such that

n(τ, t) ≤ μ +
t − τ

τf
(2.10)

for all t, τ ∈ R≥0 and t ≥ τ.

In addition to the DoS frequency, one also need to enforce constraints on the
DoS duration, namely the length of the intervals over which communication
is interrupted. To see this, consider for example a DoS sequence consisting of
the singleton {h0}. Assumption 2.1 is clearly satisfied with μ ≥ 1. However,
if H0 = R≥0 (communication is never possible) then stability is lost regard-
less of the adopted control update policy. Recalling the definition of the set
Ξ in (2.8), the assumption that follows provides a quite natural counterpart of
Assumption 2.1 with respect to the DoS duration.

Assumption 2.2 (DoS Duration). There exist κ ∈ R≥0 and τd ∈ R>1such that

|Ξ(τ, t)| ≤ κ +
t − τ

τd
(2.11)

for all t, τ ∈ R≥0 and t ≥ τ.

In words, Assumption 2.2 expresses the property that, on average, the time
instances over which communication is denied do not exceed a certain fraction
of time, as specified by τd ∈ R>1.
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2.1.3 discussion

The considered assumptions only constrains the attacker action in time by pos-
ing limitations on the frequency of DoS and its duration. Such a character-
ization can capture many different scenarios, including trivial, periodic, ran-
dom and protocol-aware jamming attacks Thuente and Acharya (2006)Xu et al.
(2005)DeBruhl and Tague (2011) Tague et al. (2009). For the sake of simplicity,
we limit out discussion to the case of radio frequency (RF) jammers, although
similar considerations can be made with respect to spoofing-like threats Bel-
lardo and Savage (2003).
Consider for instance the case of constant jamming. Constant jamming is one of
the most common threats that may occur in a wireless network Pelechrinis et al.
(2011); Xu et al. (2006). By continuously emitting RF signals on the wireless
medium, this type of jammer can lower the Packet Send Ratio (PSR) for trans-
mitters employing carrier sensing as medium access policy as well as lower
the Packet Delivery Ratio (PDR) by corrupting packets at the receiver. In gen-
eral, the percentage of packet losses caused by this type of jammer depends
on the Jamming-to-Signal Ratio and can be difficult to quantify as it depends,
among many things, on the type of anti-jamming devices, the possibility to ad-
apt the signal strength threshold for carrier sensing, and the interference sig-
nal power, which may vary with time. In fact, there are several provisions that
can be taken in order to mitigate DoS attacks, including spreading techniques,
high-pass filtering and encoding DeBruhl and Tague (2011); Tague et al. (2009).
These provisions decrease the chance that a DoS attack will be successful, and,
as such, limit in practice the frequency and duration of the time intervals over
which communication is effectively denied. This scenario can be nicely de-
scribed via Assumption 2.1 and 2.2.
As another example, consider the case of reactive jamming Xu et al. (2006); Pele-
chrinis et al. (2011). By exploiting the knowledge of the 802.1i MAC layer pro-
tocols, a jammer may restrict the RF signal to the packet transmissions. The
collision period need not be long since with many CRC error checks a single
bit error can corrupt an entire frame. Accordingly, jamming takes the form of
a (high-power) burst of noise, whose duration is determined by the length of
the symbols to corrupt DeBruhl and Tague (2011); Wood and Stankovic (2002).
Also this case can be nicely accounted for via the considered assumptions.
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2.2 main result
In section 2.2.1 we introduce a modified consensus protocol to account for the
presence DoS, and we present the main result of the paper. The proofs are
reported in section 2.2.2.

2.2.1 modified consensus protocol
The consensus protocol in (2.3) needs to be modified in order to achieve ro-
bustness against DoS. In this respect, for every t such that the set S(θ, t) = {i ∈
I : θi(t−) = 0} is not nonempty, the nominal discrete evolution is modified
as follows:





xi(t) = xi(t−) ∀ i ∈ I

ui(t) =





signε(avei(t)) if i ∈ S(θ, t) ∧ t ∈ Θ(0, t)
0 if i ∈ S(θ, t) ∧ t ∈ Ξ(0, t)
ui(t−) otherwise

θi(t+) =





fi(x(t)) if i ∈ S(θ, t) ∧ t ∈ Θ(0, t)
ε

4di if i ∈ S(θ, t) ∧ t ∈ Ξ(0, t)
θi(

−) otherwise

(2.12)

In words, when a network node attempts to communicate and communication
is denied, the control signal is set to zero until the subsequent attempt 1.
To implement the consensus protocol nodes rely on their local clocks θi. The
jump times of each variable θi naturally define a sequence of local switching
times, which we denote by {ti

k}k∈Z≥0 . In particular, we have

ti
k+1 = ti

k +





fi(x(ti
k)) ti

k ∈ Θ(0, t)

ε
4di ti

k ∈ Ξ(0, t)
∀ i ∈ I. (2.13)

The modified algorithm basically consists of a two-mode sampling logic. As
it will become clear later on, this is in order to maximize the robustness of the

1It is worth noting that this implicitly requires that the nodes be able to detect the DoS status.
This is the case, for instance, when jamming causes the channel to be busy. Then, transmitters
employing carrier sensing as medium access policy can detect the DoS status. Another example
is when transceivers employ TCP acknowledgment.
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consensus protocol against DoS. By (2.13), it is an easy matter to see that the
sequences of local switching times {ti

k}k∈Z≥0 satisfy a “dwell time” property
since

Δi
k := ti

k+1 − ti
k ≥ ε

4dmax
. (2.14)

for every i ∈ I and k ≥ 0, where dmax = maxi∈I di.
For the sake of clarity, the modified consensus protocol is summarized below.

Modified Consensus Protocol (for each i ∈ I )
1: initialization: set ui(0) ∈ {−1, 0,+1} and θi(0) = 0;
2: while θi(t) > 0 do
3: i applies the control ui(t);
4: end while
5: if θi(t−) = 0 & t ∈ Θ(0, t) then
6: for all j ∈ Qi do
7: i polls j and collects the information xj(t)− xi(t);
8: end for
9: i computes avei(t);

10: i computes θi(t) as in (2.12);
11: i computes ui(t) as in (2.12);
12: else
13: if θi(t−) = 0 & t ∈ Ξ(0, t) then
14: i set ui(t) = 0;
15: i set θi(t) = ε

4di ;
16: end if
17: end if

We are now in position to characterize the overall network behavior in the
presence of DoS. In this respect, the analysis is subdivided into two main
steps: i) we first prove that regardless of the DoS all the network nodes even-
tually stop to update their local controls; and ii) we then provide conditions
on the DoS frequency and duration under which consensus, in the sense of
(2.6), is preserved. This is achieved by resorting to a notion of Persistency-of-
Communication (PoC), which stipulates that disruptions of the graph connectiv-
ity cannot exceed a prescribed threshold.



2.2. main result 21

As for ii), the following result holds true. To maintain continuity, the proof of
the results of this section are postponed to section 2.2.2.

Proposition 2.1. (Convergence of the solutions) Let x(t) be the solution to (2.2)
and (2.12). Then, for every initial condition x(0), there exists a finite time T1 such that
ui(t) = 0 for all t > T1 and i ∈ I.

By proposition 2.1, all the controls are set to zero after a finite time T1.
Moreover, after T1each node tries to sample and transmit periodically with
period ε/4di. If consensus, in the sense of (2.6), is not achieved this necessarily
means that for some node i ∈ I all the communication attempts are destroyed.
Let

Ξ̄(τ, t) :=
∪

n∈Z≥0

H̄n
∩

[τ, t] (2.15)

Θ̄(τ, t) := [τ, t] \ Ξ̄(τ, t) (2.16)

where

H̄n := {hn} ∪ [hn, hn + τn + Δ∗[

By the above arguments, a sufficient condition under which communication
is not persistently destroyed is that for any τ there exist a t such that Θ̄(τ, t)
has positive measure. This is because if the above property is true, then [τ, t[
contains a DoS-free interval of length grater than Δ∗, which is grater than ε/4di

for every i ∈ I. The following result then holds.

Proposition 2.2. (Persistency-of-Communication) Let x(t) be the solution to (2.2)
and (2.12). Consider any DoS sequence satisfying Assumption 2.1 and 2.2 with

φ(τf, τd, Δ∗) :=
1
τd

+
Δ∗
τf

< 1 (2.17)

and μ and κ arbitrary. Then, for every τ, the set Θ̄(τ, t) has positive measure for any
time t satisfying

t > τ +
κ + (1 + μ)Δ∗

1 − φ(τf, τd, Δ∗)
(2.18)

Combining Proposition 2.1 and 2.2, the main result of this chapter follows at
once.
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Theorem 2.2. Let x(t) be the solution to (2.2) and (2.12). Consider any DoS sequence
that satisfies Assumption 2.1 and 2.2 with τf and τd as in (2.17) and μ and κ arbitrary.
Then, for every initial condition, x(t) converges in finite time to a point x∗ belonging
to the set E as in (2.6).

Remark 2.1. Condition (2.17) in Proposition 2.2 amounts to requiring that the
DoS signal does not destroy communication in a persistent way. This require-
ment is indeed reminiscent of Persistency-of-Excitation (PoE) conditions that are
found in the literature on consensus under switching topologies, e.g., Arcak
(2007). There are, however, noticeable differences. In the present case, the
incidence matrix of the graph is a time-varying matrix satisfying: i) B(t) = 0
in the presence of DoS; and ii) B(t) = B in the absence of DoS, where B rep-
resents the incidence matrix related to the nominal graph configuration. Con-
sider now a DoS pattern consisting of countable number of singletons, namely
Ξ(0, t) =

∪
n∈Z≥0

{hn}, with Λn ≤ Δ∗. It is trivial to conclude that there exist
constant δ ∈ R>0 and α ∈ R>0 such that (cf. Arcak (2007))

∫ t0+δ

t0

QB(t)B⊤(t)Q⊤dt = QBB⊤Q⊤δ > α I

for all t0 ∈ R≥0, where Q is a suitable projection matrix. However, in accord-
ance with the previous discussion, consensus can be destroyed. The subtle,
yet important, difference is due to the constraint on the frequency of the in-
formation exchange that is imposed by the network. In this sense, the notion
of PoC naturally extends the PoE condition to digital networked settings by
requiring that the graph connectivity be established over periods of time that
are consistent with the constraints imposed by the communication medium.

2.2.2 convergence analysis
This section is devoted to the proof of Proposition 2.1 and 2.2 and Theorem
2.2.
Proof of Proposition 2.1. Let

V(x(t)) = 1
2xT(t)Lx(t)

where t ≥ 0. Consider the evolution of V̇(t) along the solutions to (2.2). Fol-
lowing the same steps as in De Persis and Frasca (2013), it is easy to verify
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that

V̇(x(t)) ≤ −
∑

i:| avei(ti
k)|≥ε ∧ ti

k∈Θ(0,t)

ε
2 (2.19)

In words, the derivative of V decreases whenever, for some node i, two con-
ditions are met: i) | avei(ti

k)| ≥ ε, which means that node i has not reached the
consensus set; and ii) communication is possible.
From (2.19) we deduce that there must exist a finite time T1 such that, for every
node i and every k with ti

k ≥ T1, either |avei(ti
k)| < ε or ti

k ∈ Ξ(0, t). This
is because, otherwise, the function V would become negative contradicting
the fact that V is non-negative definite since L is the Laplacian graph. Thus
the proof follows simply by recalling that in both the cases |avei(ti

k)| < ε and
ti
k ∈ Ξ(0, t) the control ui is set to zero.

Proof of Proposition 2.2 By definition of Ξ̄ and in view of Assumption 2.1 and
2.2 , the following bounds on Ξ̄ is readily obtained:

|Ξ̄(τ, t)| ≤ |Ξ(τ, t)|+ (n(τ, t) + 1)Δ∗

≤ κ +
t − τ

τd
+

(
μ +

t − τ
τf

+ 1
)

Δ∗ (2.20)

Finally notice that

|Θ̄(τ, t)| = t − τ − |Ξ̄(τ, t)| (2.21)

Combining the two equations above, one sees that a sufficient condition for
PoC is that t − τ > |Ξ̄(τ, t)|, which, in turn, is implied by

t − τ > κ +
t − τ

τd
+

(
μ +

t − τ
τf

+ 1
)

Δ∗ (2.22)

This is equivalent to
(
1 − φ(τf, τd, Δ∗

)
(t − τ) > κ + (1 + μ)Δ∗ (2.23)

which concludes the proof.
Proof of Theorem 2.2. The proof follows immediately by combining Proposition
2.1 and 2.2. In fact, by Proposition 2.1, all the local controls converge to zero in
a finite time. In turn, Proposition 2.2 excludes the possibility that this is due
to a persistence of the DoS status. This means that convergence to the set E is
necessarily achieved.
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Figure 2.1: Evolution of state x, corresponding to the solution of (2.2) and
(2.12), with ε = 0.02 (a complete graph with n = 5 nodes) in presence of DoS
with an average duty cycle of ∼ 55%. The vertical grey stripes represent the
time-intervals over which DoS is active.
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Figure 2.2: Evolution of state x, corresponding to the solution of (2.2) and
(2.12), with ε = 0.02 (a complete graph with n = 5 nodes) in absence of DoS.
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2.3 a numerical example
In what follows we see a numerical example of the proposed consensus pro-
tocol in presence of DoS. A sustained DoS attack with variable period and duty
cycle, generated randomly. The resulting DoS signal has an average duty cycle
of 55%.
We assume completely connected undirected graph with n = 5 nodes. During
times over which communication is possible each agent is connected to the
other agents, namely di = 4, while in presence of DoS graph becomes edgeless.
A sample evolution of (2.2) and (2.12) with ε = 0.02 starting from the same
initial condition and on the same graph is depicted in Figure 2.1 and Figure
2.2. Initial conditions are generated randomly between 0 and 1. The vertical
gray stripes in Figure 2.1 represent the time-intervals over which DoS is active.
The values of τd and τf for which consensus is not destroyed are plotted in
Figure 2.3. Values above this curve satisfy inequality (2.17) with Δ∗ = 0.0013.
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0.14

τd

τ
f

Figure 2.3: Locus of the points where 1/τd + Δ∗/τf = 1 with Δ∗ = 0.0013. The
values above the curve satisfies condition (2.17).

Consistent with the results in De Persis and Frasca (2013); Cortés (2006), the
solution to (2.2) and (2.12) in the absence of DOS converges in finite time to a
value close to average-max min-consensus, namely 1

2 (mini xi(0) + maxi xi(0)).
Furthermore, one sees that the presence of DoS slows down convergence. This
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is due to controls remaining constantly to zero during the DoS status. The
consensus time in Figure 2.1 is almost twice the consensus time in Figure 2.2.
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Figure 2.4: Evolution of state x in presence of DoS, average duty cycle ∼ 48%
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Figure 2.5: Evolution of state x in the absence of DoS.

To further observe the performance of the proposed resilient coordination pro-
tocol, we consider a large connected and undirected network comprised of
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n = 60 nodes where each nodes is randomly connected to 10 neighbors, i.e.
di = 10. The coordination parameters are as before, but a new random DoS is
considered with an average duty cycle of ∼ 48%. The simulation results for
the new example are given in Figure 2.4 and Figure 2.5.
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In this chapter, in a slightly different approach than chapter 2, a general frame-
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other. By introducing the notion of Persistency-of-Communication (PoC), we
provide an explicit characterization of DoS frequency and duration under
which consensus can be preserved by suitably designing time-varying con-
trol and communication policies. An explicit characterization of the effects of
DoS on the consensus time is also provided. The considered notion of PoC is
compared with classic average connectivity conditions that are found in pure
continuous-time consensus networks. Finally, examples are given to substan-
tiate the analysis.
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3.1 the framework: self-triggered consensus
Motivated by a change in communication network form “infrastructure” mode
to “ad-hoc” (peer-to-peer), the self-triggered consensus framework adopted in
this chapter is rather different than the framework in chapter 2. This is further
elaborated in 3.1.3.

3.1.1 system definition

We consider a consensus network, which is represented by an undirected
graph G = (I, E), where I = {1, . . . , n} denotes the node set and E ⊆ I × I
denotes the edge set. Specifically, we denote by D and L the incidence and
Laplacian matrix of G, respectively. For each node i ∈ I, we denote by Qi the
set of its neighbors, and by di the cardinality of Qi, that is di = |Qi|. Through-
out the chapter, we shall refer to G as the “nominal” network, and we shall
assume that G is connected.
The consensus network of interest employs self-triggered communication
De Persis and Frasca (2013), defined via hybrid dynamics, with state variables
(x,u, θ) ∈ Rn × Rd × Rd, where x is the vector of nodes states, u is the vector of
controls, θ is the vector of clock variables, and d is the sum of the neighbors of
all the nodes, i.e., d :=

∑n
i=1 di. The control signals are assumed to belong to

T := {−1, 0,+1}. The specific quantizer of choice is signε : R → T , which is
given by

signε(z) :=
{
sign(z) if |z| ≥ ε
0 otherwise

(3.1)

where ε > 0 is a sensitivity parameter, which can be used at the design stage
for trading-off frequency of the transmissions vs. accuracy of the consensus
region.
The system (x,u, θ) ∈ Rn × Rd × Rd satisfies the continuous evolution





ẋi =
∑

j∈Qi

uij

u̇ij = 0
θ̇

ij
= −1

(3.2)
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where i ∈ I and j ∈ Qi. The system satisfies the differential equation above for
all t except for those values of the time at which the set

J (θ, t) = {(i, j) ∈ I × I : j ∈ Qi and θij(t−) = 0} (3.3)

is non-empty, where s(t−) denotes the limit from below of a signal s(t), i.e.,
s(t−) = limτ↗t s(τ). At these time instants, in the “nominal” operating mode
(when communication is allowed), a discrete transition occurs, which is gov-
erned by the following discrete update:





xi(t) = xi(t−) ∀i ∈ I

uij(t) =
{

signε
(
Dij(t)

)
if (i, j) ∈ J (θ, t)

uij(t−) otherwise

θij(t) =
{

fij(x(t)) if (i, j) ∈ J (θ, t)
θij(t−) otherwise

(3.4)

where for every i ∈ I and j ∈ Qi, the map fij : Rn → R>0 is defined as

fij(x(t)) :=





|Dij(t)|
2(di + dj)

if |Dij(t)| ≥ ε
ε

2(di + dj)
if |Dij(t)| < ε

(3.5)

and

Dij(t) = xj(t)− xi(t) (3.6)

The functioning of (3.2)-(3.6) can be described as follows. Each linked pair of
nodes is equipped with a local clock. When the clock θij reaches 0, neighboring
nodes i and j exchange information and θij is reset to a value that depends on
Dij, that is the relative difference between xi and xj. At the same time, nodes i
and j also update their controls based on Dij. The control action is fully distrib-
uted since the evolution of a node xi only depends on xj with j ∈ Ni. The term
“self-triggered”, first used in the context of real-time systems Velasco et al.
(2003), stems from the fact that the next update time (the value of θij) is pre-
computed at the update time, in contrast with “event-triggered” policies in
which the updates are activated based on the continuous monitoring of a trig-
gering condition Heemels et al. (2012).
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3.1.2 modification of the coordination protocol:

In chapter 2, due to an “infrastructure” mode communication network, all the
links can fail simultaneously under DoS. In an “ad-hoc” (peer-to-peer) com-
munication network, however, the situation is different. In such networks,
communication links can fail independently and asynchronously. Therefore,
to capture the effect of DoS over a peer-to-peer network some modifications
are necessary in the coordination protocol (2.2)-(2.4). In the coordination pro-
tocol in 3.1.1, a clock and controller is associated to each edge (i, j) ∈ E , as in
De Persis and Frasca (2013). The overall control law given in (3.2) is summa-
tion of edge controllers. In the modified framework edge controllers (3.4) and
clocks (3.5) can be appropriately designed to acheive resiliency against DoS.
This is further elaborated in section 3.3.1 .

3.1.3 prototypical result for self-triggered consensus

The following result characterizes the limiting behavior of the system (3.2)-
(3.4).

Theorem 3.1. De Persis and Frasca (2013) Let x be the solution to (3.2)-(3.4). Then,
for every initial condition, x converges in finite time to a point x∗ ∈ Rn belonging to
the set

E = {x ∈ Rn : |xi(t)− xj(t)| < δ ∀ (i, j) ∈ I × I} (3.7)

where δ = ε(n − 1).

Theorem 3.1 will be used as a reference frame for the analysis of Section 3.3
and 3.4. This theorem is prototypical in the sense that it serves to illustrate the
salient features of the problem of consensus/coordination in the presence of
communication interruptions. Following De Persis and Frasca (2013), the ana-
lysis of this chapter could be extended to include important aspects such as
quantized communication, delays and asymptotic consensus (rather than approx-
imate consensus as in (3.7)). While important, these aspects do not add much
to the present investigation and will be therefore omitted. We refer the in-
terested reader to De Persis and Frasca (2013) for a discussion on how these
aspects can be dealt with.
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3.2 problem formulation: network resilience
against dos

We shall refer to Denial-of-Service (DoS, in short) as the phenomenon by which
communication between the network nodes is interrupted. We shall consider
the very general scenario in which the network communication links can fail
independent of each other. From the perspective of modeling, this amounts to
considering multiple DoS signals, one for each network communication link.

3.2.1 assumptions: class of dos signals

Let {hij
n}n∈Z≥0 with hij

0≥ 0 denote the sequence of DoS off/on transitions affect-
ing the link {i, j}, namely the sequence of time instants at which the DoS status
on the link {i, j} exhibits a transition from zero (communication is possible) to
one (communication is interrupted). Then

Hij
n := {hij

n} ∪
[
hij

n, h
ij
n + τij

n

[
(3.8)

represents the n-th DoS time-interval, of a length τij
n ∈ R≥0, during which

communication on the link {i, j} is not possible. Given t, τ ∈ R≥0, with t ≥ τ,
let

Ξij(τ, t) :=
∪

n∈Z≥0

Hij
n
∩

[τ, t] (3.9)

and

Θij(τ, t) := [τ, t] \ Ξij(τ, t) (3.10)

where \ denotes relative complement. In words, for each interval [τ, t], Ξij(τ, t)
and Θij(τ, t) represent the sets of time instants where communication on the
link {i, j} is denied and allowed, respectively.
The first question to be addressed is that of determining a suitable modeling
framework for DoS. Following De Persis and Tesi (2015), we consider a general
model that only constrains DoS attacks in terms of their average frequency and
duration. Let nij(τ, t) denote the number of DoS off/on transitions on the link
{i, j} occurring on the interval [τ, t].
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Assumption 3.1 (DoS frequency). For each {i, j} ∈ E , there exist μij ∈ R≥0 and
τij

f ∈ R>0 such that

nij(τ, t) ≤ μij +
t − τ
τij

f

(3.11)

for all t, τ ∈ R≥0 with t ≥ τ.

Assumption 3.2 (DoS duration). For each {i, j} ∈ E , there exist κij ∈ R≥0 and
τij

d ∈ R>1 such that

|Ξij(τ, t)| ≤ κij +
t − τ
τij

d

(3.12)

for all t, τ ∈ R≥0 with t ≥ τ.

In Assumption 3.1, the term “frequency” stems from the fact that τij
f provides

a measure of the “dwell-time” between any two consecutive DoS intervals on
the link {i, j}. The quantity μij is needed to render (3.11) self-consistent when
t = τ = hij

n for some n ∈ Z≥0, in which case nij(τ, t) = 1. Likewise, in As-
sumption 3.2, the term “duration” is motivated by the fact that τij

d provides a
measure of the fraction of time (τij

d > 1) the link {i, j} is under DoS. Like μij,
the constant κij plays the role of a regularization term. It is needed because
during a DoS interval, one has |Ξij(hij

n, h
ij
n + τij

n)| = τij
n ≥ τij

n/τij
d since τij

d > 1,
with τij

n = τij
n/τij

d if and only if τij
n = 0. Hence, κij serves to make (3.12) self-

consistent. Thanks to the quantities μij and κij, DoS frequency and duration are
both average quantities. Figure 3.1 exemplifies values of nij(τ, t) and Ξij(τ, t)
for a given DoS pattern on the link {i, j}.

Remark 3.1. Throughout this chapter, we will mostly focus on the case where
DoS is caused by malicious attacks. Of course, DoS might also result from a
“genuine” network congestion. We shall address this case in Section 3.4.3.

3.2.2 control objective
The control objective is to design variants to the basic protocol (3.4)-(3.6) that
guarantee robustness against the class of DoS signals described in Section 3.2.1,
i.e., variants that preserve consensus despite the occurrence of periods of DoS.
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Figure 3.1: Example of DoS signal on the link {i, j}. Off/on transitions are rep-
resented as ↑, while on/off transitions are represented as ↓. The off/on transitions
occur at 3sec, 9sec and 18.5sec, and the corresponding intervals have dura-
tion 3sec, 4sec and 1.5sec, respectively. This yields for instance: nij(0, 1) = 0,
nij(1, 10) = 2 and nij(10, 20) = 1, while Ξij(0, 1) = ∅, Ξij(1, 10) = [3, 6[∪ [9, 10[
and Ξij(10, 20) = [10, 13[∪ [18.5, 20[.

We will show in Section 3.3 that variants do exist that rely on a modification of
both control and communication protocols. In this respect, we will provide an
explicit characterization of DoS frequency and duration (τij

f , τ
ij
d) at the various

network links under which consensus can be preserved. We will also provide
an explicit characterization of the effects of DoS on the consensus time.

3.3 dos-resilient consensus

3.3.1 modified consensus protocol

In order to achieve robustness against DoS, the nominal discrete evolution (3.4)
is modified as follows:
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xi(t) = xi(t−) ∀i ∈ I

uij(t) =





signε
(
Dij(t)

)
if (i, j) ∈ J (θ, t) ∧ t ∈ Θij(0, t)

0 if (i, j) ∈ J (θ, t) ∧ t ∈ Ξij(0, t)

uij(t−) otherwise

θ ij(t) =





fij(x(t)) if (i, j) ∈ J (θ, t) ∧ t ∈ Θij(0, t)
ε

2(di + dj)
if (i, j) ∈ J (θ, t) ∧ t ∈ Ξij(0, t)

θ ij(t−) otherwise
(3.13)

In words, the control action uij is reset to zero whenever the link {i, j} is in DoS
status. Notice that this requires that the nodes are able to detect the occurrence
of DoS. This is the case, for instance, with transmitters employing carrier sens-
ing as medium access policy. Under such circumstances, a DoS signal in the
form of constant jamming (cf. Section 3.2.2) can be detected. Another example is
when transceivers use Transmission Control Protocol (TCP) acknowledgment
and DoS takes the form of reactive jamming (cf. Section 3.2.2). In addition to
u, also the local clocks are modified upon DoS, yielding a two-mode sampling
logic. In particular, for each {i, j} ∈ E , let {tij

k}k∈Z≥0 denote the sequence of
transmission attempts. Then, each θij satisfies

tij
k+1 = tij

k +





fij(x(tij
k )) if tij

k ∈ Θij(0, t)

ε
2(di + dj)

otherwise
(3.14)

As it will become clear later on, this is in order to maximize the robustness of
the consensus protocol against DoS. By (3.14), it is an easy matter to see that for
each {i, j} ∈ E the sequences {tij

k}k∈Z≥0 satisfy a “dwell-time” property, since

Δij
k := tij

k+1 − tij
k ≥ ε

4dmax
(3.15)

for all k ∈ R≥0, where dmax = maxi∈I di. This ensures that all the sequences of
transmission times are Zeno-free.
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Similar to (3.4)-(3.6), also the modified consensus protocol does only require
local clocks. In addition, the control action remains fully distributed since the
evolution of a node xi only depends on xj with j ∈ Ni.
For the sake of clarity, the DoS-resilient consensus protocol is summarized be-
low.

DoS-resilient consensus protocol

1: initialization: For all i ∈ I and j ∈ Ni, set θij(0−) = 0, uij(0−) ∈ {−1, 0,+1},
and ui(0−) =

∑
j∈Ni

uij(0−);
2: for all i ∈ I do
3: for all j ∈ Ni do
4: while θij(t) > 0 do
5: i applies the control ui(t) =

∑
j∈Ni

uij(t);
6: end while
7: if θij(t−) = 0 ∧ t ∈ Θij(0, t) then
8: i updates uij(t) = signε

(
xj(t)− xi(t)

)
;

9: i updates θij(t) = fij(x(t));
10: else
11: if θij(t−) = 0 ∧ t ∈ Ξij(0, t) then
12: i updates uij(t) = 0;
13: i updates θij(t) = ε

2(di + dj)
;

14: end if
15: end if
16: end for
17: end for

3.3.2 convergence of the solutions and δ-consensus
We are now in position to characterize the overall network behavior in the pres-
ence of DoS. In this respect, the analysis is subdivided into two main steps: i)
we first prove that all the network nodes eventually stop to update their local
controls; and ii) we then provide conditions on the DoS frequency and dura-
tion such that consensus, in the sense of (3.7), is preserved. The latter property
is achieved by resorting to a notion of Persistency-of-Communication, which de-
termines the amount of DoS (frequency and duration) under which consensus
can be preserved.
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As for i), the following result holds true.

Proposition 3.1. (Convergence of the solutions) Let x be the solution to (3.2) and
(3.13). Then, for every initial condition, there exists a finite time T∗ such that, for any
i ∈ I, it holds that ui(t) = 0 for all t ≥ T∗.

Proof. Consider the Lyapunov function

V(x) = 1
2x⊤x (3.16)

Let tij
k := max{tij

ℓ : tij
ℓ ≤ t, ℓ ∈ Z≥0}. First notice that the derivative of V along

the solutions to (3.2) satisfies

V̇(x(t)) =
n∑

i=1
xi(t)ẋi(t)

=
n∑

i=1
[xi(t)

∑

j∈Ni

uij(t)]

= −
∑

{i,j}∈E:
|Dij(tij

k )|≥ε ∧ tij
k∈Θij(0,t)

Dij(t) signε(Dij(tij
k ))

≤ −
∑

{i,j}∈E:
|Dij(tij

k )|≥ε ∧ tij
k∈Θij(0,t)

|Dij(tij
k )|

2

(3.17)

In words, the derivative of V decreases whenever, for some {i, j} ∈ E , two con-
ditions are met: i) |Dij(tij

k )| ≥ ε, which means that i and j are not ε-close; and ii)
communication on the link that connects i and j is possible. The third equality
follows from the fact that for any {i, j} ∈ E for which |Dij(tij

k )| < ε or tij
k ∈ Ξij(0, t)

we have uij(t) = 0 for all [tij
k , t

ij
k+1[, and the fact that uij(t) = signε(Dij(tij

k )) where
Dij(t) = xj(t)− xi(t). The inequality follows from the fact that, during the con-
tinuous evolution |Ḋij(t)| ≤ di + dj and at the jumps Dij(t) does not change its
value. This implies that Dij(t) cannot differ from Dij(tij

k ) in absolute value for
more than (di + dj)(t − tij

k ). Exploiting this fact, if communication is allowed
and |Dij(tij

k )| ≥ ε then by (3.5) and (3.14) we have

|Dij(t)| ≥ |Dij(tij
k )|/2 (3.18)
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and

signε(Dij(t)) = signε(Dij(tij
k )) (3.19)

for all t ∈ [tij
k , t

ij
k+1[.

From (3.17) there must exist a finite time T∗ such that, for every {i, j} ∈ E and
every k with tij

k ≥ T∗, it holds that |Dij(tij
k )| < ε or tij

k ∈ Ξij(0, t). This is because,
otherwise, V would become negative. The proof follows recalling that in both
the cases |Dij(tij

k )| < ε and tij
k ∈ Ξij(0, t) the control uij(t) is set equal to zero.

The above result does not allow one to conclude anything about the final dis-
agreement vector in the sense that given a pair of nodes (i, j) the asymptotic
value of |xj(t)− xi(t)| can be arbitrarily large. As an example, if node i is never
allowed to communicate then xi(t) = xi(0) for all t ∈ R≥0. In order to recover
the same conclusions as in Theorem 3.1, bounds on DoS frequency and dura-
tion have to be enforced. The result which follows provides one such charac-
terization.
Let {i, j} ∈ E be a generic network link, and consider a DoS sequence on {i, j},
which satisfies Assumption 3.1 and 3.2. Define

αij :=
1
τij

d

+
Δij
∗

τij
f

(3.20)

where

Δij
∗ :=

ε
2(di + dj)

(3.21)

Proposition 3.2 (Link Persistency-of-Communication (PoC)). Consider any link
{i, j} ∈ E employing the transmission protocol (3.13). Also consider any DoS sequence
on {i, j}, which satisfies Assumption 3.1 and 3.2 with μij and κij arbitrary, and τij

d and
τij

f such that αij < 1. Let

Φij :=
κij + (μij + 1)Δij

∗
1 − αij (3.22)

Then, for any given unsuccessful transmission attempt tij
k , at least one successful trans-

mission occurs over the link {i, j} within the interval [tij
k , t

ij
k + Φij].
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Proof. Consider any link {i, j} ∈ E , and suppose that a certain transmission
attempt tij

k is unsuccessful. We claim that a successful transmission over {i, j}
does always occur within [tij

k , t
ij
k +Φij]. We prove the claim by contradiction. To

this end, we first introduce some auxiliary quantities. Let H̄ij
n := {hij

n}∪[hij
n, h

ij
n+

τij
n +Δij

∗[. denote the n-th DoS interval over the link {i, j} prolonged by Δij
∗ units

of time. Also let

Ξ̄ij
(τ, t) :=

∪

n∈Z≥0

H̄ij
n
∩

[τ, t]

Θ̄ij
(τ, t) := [τ, t] \ Ξ̄ij

(τ, t)
(3.23)

Suppose then that the claim is false, and let t∗ denote the last transmission at-
tempt over [tij

k , t
ij
k + Φij]. Notice that this necessarily implies |Θ̄ij

(tij
k , t∗)| = 0.

To see this, first note that, in accordance with (3.14), the inter-sampling time
over the interval [tij

k , t∗] is equal to ε/(2(di + dj)) = Δij
∗. Hence, we cannot

have |Θ̄ij
(tij

k , t∗)| > 0 since this would imply the existence of a DoS-free in-
terval within [tij

k , t∗] of length greater than Δij
∗, which is not possible since, by

hypothesis, no successful transmission attempt occurs within [tij
k , t∗]. Thus

|Θ̄ij
(tij

k , t∗)| = 0. Moreover, since t∗ is unsuccessful, it must be contained in
a DoS interval, say Hij

q . This implies [t∗, t∗ + Δij
∗[⊆ H̄ij

q Hence,

|Θ̄(tij
k , t∗ + Δij

∗)| = |Θ̄(tij
k , t∗)|+ |Θ̄(t∗, t∗ + Δij

∗)|
= 0

However, condition |Θ̄(tij
k , t∗ + Δij

∗)| = 0 is not possible. To see this, simply
notice that

|Θ̄(tij
k , t)| = t − tij

k − |Ξ̄(tij
k , t)|

≥ t − tij
k − |Ξ(tij

k , t)| − (n(tij
k , t) + 1)Δij

∗

≥ (t − tij
k )(1 − αij)− κij − (μij + 1)Δij

∗

(3.24)

for all t ≥ tij
k where the first inequality follows from the definition of the set

Ξ̄(τ, t) while the second one follows from Assumption 3.1 and 3.2. Hence, by
(3.24), we have |Θ̄(tij

k , t)| > 0 for all t > tij
k +(1−αij)−1(κij+(μij+1)Δij

∗) = tij
k +Φij.

Accordingly, |Θ̄(tij
k , t∗ + Δij

∗)| = 0 cannot occur because t∗ + Δij
∗ > tij

k + Φij. In
fact, by hypothesis, t∗ is defined as the last unsuccessful transmission attempt
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within [tij
k , t

ij
k +Φij], and, by (3.14), the next transmission attempt after t∗ occurs

at time t∗ + Δij
∗. This concludes the proof.

We refer to the property above as a PoC condition since this property guar-
antees that DoS does not permanently destroy communication. Combining
Proposition 3.1 and 3.2, the main result of this section can be stated.

Theorem 3.2. Let x be the solution to (3.2) and (3.13). For each {i, j} ∈ E , consider
any DoS sequence that satisfies Assumption 3.1 and 3.2 with μij and κij arbitrary, and
τij

d and τij
f such that αij < 1. Then, for every initial condition, x converges in finite

time to a point x∗ belonging to the set E as in (3.7).

Proof. By Proposition 3.1, all the local controls become zero in a finite time
T∗. In turns, Proposition 3.2 excludes that this is due to the persistence of a
DoS status. This means that, for all {i, j} ∈ E , |Dij(t)| = |xj(t) − xi(t)| < ε for
all t ≥ T∗. Since each pair of neighboring nodes differs by at most ε and the
nominal graph is connected, we conclude that each pair of network nodes can
differ by at most δ = ε(n − 1).

3.3.3 convergence time
The above theorem shows that convergence is reached in a finite time. The
following result characterizes the effect of DoS on the convergence time.

Lemma 3.1 (Bound on the convergence time). Consider the same assumptions as
in Theorem 3.1. Then,

T∗ ≤
[

1
ε
+

dmax

εdmin
+

4dmax

ε2 Φ
]∑

i∈I
(xi(0))2 (3.25)

where dmin := mini∈I di and Φ := max{i,j}∈E Φij.

Proof. Consider the same Lyapunov function V as in the proof of Proposition
3.1. Notice that, by construction of the control law and the scheduling policy,
for every successful transmission tij

k characterized by |Dij(tij
k )| ≥ ε, the func-

tion V decreases with rate not less than ε/2 for at least ε/(4dmax) units of time.
Hence, V decreases by a least ε2/(8dmax) := ε∗.Considering all the network
links, such transmissions are in total no more than ⌊V(0)/ε∗⌋ since, otherwise,
the function V would become negative. Hence, it only remains to compute the
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time needed to have ⌊V(0)/ε∗⌋ of such transmissions. In this respect, pick any
t∗ ≥ 0 such that consensus has still not been reached. Note that we can have
uij(t∗) = 0 for all {i, j} ∈ E . However, this condition can last only for a lim-
ited amount of time. In fact, if uij(t∗) = 0 then the next transmission attempt,
say ℓij, over the link {i, j} will necessarily occur at a time less than or equal to
t∗ + Δij

∗ with Δij
∗ ≤ ε/(4dmin). Let Q := [t∗, t∗ + ε/(4dmin)], and suppose that

over Q all the controls uij have remained equal to zero. This implies that for
some {i, j} ∈ E we necessarily have that ℓij is unsuccessful. This is because if
uij(t) = 0 for all {i, j} ∈ E and all t ∈ Q then xi(t) = xi(t∗) for all i ∈ I and
all t ∈ Q. Hence, if all the ℓij were successful, we should also have uij(ℓij) ̸= 0
for some {i, j} ∈ E since, by hypothesis, consensus is not reached at time t∗.
Hence, applying Proposition 3.2 we conclude that at least one of the controls
uij will become non-zero before ℓij + Φij units of time have elapsed. Overall,
this implies that at least one control will become non-zero before ε/(4dmin)+Φ
units of time have elapsed. Since t∗ is generic, we conclude that V decreases
by at least ε∗ every ε/(4dmax) + ε/(4dmin) + Φ units of time, which implies that

T∗ ≤
[

ε
4dmax

+
ε

4dmin
+ Φ

]
V(0)
ε∗

(3.26)

The thesis follows by recalling that V(0) can be rewritten as V(0) =
1
2
∑

i∈I(xi(0))2.

3.4 discussion and extensions
3.4.1 persistency-of-communication and consensus under

permanent link disconnections
As it follows from the foregoing analysis, consensus is achieved whenever for
each link {i, j} ∈ E , the DoS signal satisfies αij < 1. This condition poses lim-
itations on both DoS frequency and duration. It is worth noting that this con-
dition is in a wide sense also necessary in order to achieve consensus. To see
this, consider a network for which removing the link {i, j} causes the network
underlying graph to be disconnected. Of course, if communication over {i, j}
is always denied then consensus cannot be achieved for arbitrary initial condi-
tions. In this respect, it is an easy matter to see that condition αij < 1 becomes
necessary to achieve consensus. In fact, denote by S(τij

f , τ
ij
d) the class of all DoS

signals for which αij ≥ 1. Then, S(τij
f , τ

ij
d) does always contain DoS signals for
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which communication over the link {i, j} can be permanently denied. As an
example, consider the DoS signal characterized by (hij

n, τ
ij
n) = (tij

k , 0). This DoS
signal satisfies Assumption 3.1 and 3.2 with (μij, κij, τij

f , τ
ij
d) = (1, 0, Δij

∗,∞), but
destroys any communication attempt over the link {i, j}. As another example,
consider the DoS signal characterized by (hij

0 , τ
ij
0) = (0,∞). This signal satis-

fies Assumption 3.1 and 3.2 with (μij, κij, τij
f , τ

ij
d) = (1, 0,∞, 1), but, as before,

destroys any communication attempt over the link {i, j}. In both the examples,
αij = 1.
Requiring αij < 1 is not surprising. In fact, the fulfillment of this condition
requires that

τij
f > Δij

∗ and τij
d > 1 (3.27)

The first requirement, τij
f > Δij

∗, simply means that DoS can occasionally occur
at a rate faster than the highest transmission rate of the link {i, j}. However, on
the average, the frequency at which DoS can occur must be sufficiently small
compared to sampling rate of the network link. Likewise, the second require-
ment, τij

d > 1, simply means that, on the average, the amount of DoS affecting
link {i, j} must necessarily be a fraction of the total time. PoC can be therefore
regarded as an average connectivity property.
It is worth noting that in some cases consensus can be preserved even if αij ≥ 1
for certain network links. This happens whenever removing such links does
not cause the graph to be disconnected. More precisely, letX be any set of links
such that GX := (I, E \ X ) remains connected. From the foregoing analysis, it
is immediate to conclude that consensus is preserved whenever αij < 1 for all
{i, j} ∈ E \ X , even if communication over the links {i, j} ∈ X is permanently
denied.

3.4.2 comparison with classic connectivity conditions
As previously noted, PoC can be regarded as an average connectivity property
as it does not require graph connectivity point-wise in time. In this sense, it
is reminiscent of Persistency-of-Excitation conditions that are found in the liter-
ature on consensus under switching topologies (e.g., see Arcak (2007)). There
are, however, noticeable differences. To see this, consider the simple situation
in which the DoS pattern is the same for all the links, i.e., (hij

n, τ
ij
n) = (hn, τn)
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for all {i, j} ∈ E and all n ∈ Z≥0. Under such circumstances, the incidence
matrix of the graph is a time-varying matrix satisfying: i) B(t) = 0 in the pres-
ence of DoS; and ii) B(t) = B in the absence of DoS, where B represents the
incidence matrix related to the nominal graph configuration. Consider now a
DoS pattern consisting of countable number of singletons, i.e., Hn = {hn} for
all n ∈ Z≥0. In a classic continuous-time setting, such a DoS pattern does not
destroy consensus. In fact, it is trivial to conclude that there exist constants
c1, c2 ∈ R>0 such that (cf. Arcak (2007))

∫ t0+c1

t0

QB(t)B⊤(t)Q⊤dt = QBB⊤Q⊤c1 > c2I (3.28)

for all t0 ∈ R≥0, where Q is a suitable projection matrix such that
QB(t)B⊤(t)Q⊤ is nonsingular if and only if the graph induced by D(t) is con-
nected. In the present case, in accordance with the previous discussion, con-
sensus can instead be destroyed. The subtle, yet important, difference is due
to the constraint on the frequency of the information exchange that is im-
posed by the network. In this sense, the notion of PoC naturally extends the
Persistency-of-Excitation condition to digital networked settings by requiring
that the graph connectivity be established over periods of time that are con-
sistent with the maximum transmission rate imposed by the communication
protocol.

3.4.3 accounting for genuine dos
In the foregoing analysis, we focused on the case where DoS is caused by ma-
licious attacks. Of course, DoS might also result from a “genuine” network
congestion. Hereafter, we will briefly discuss how the case of genuine DoS can
be incorporated into the present framework. We shall focus on a deterministic
formulation of the problem. A probabilistic characterization of the problem,
though restricted to a centralized setting, has been proposed in Cetinkaya et al.
(2015).
Let βij ∈ [0, 1] be an upperbound on the average percentage of transmission
failures that can occur over the link {i, j}. This bound can be chosen as rep-
resentative of the situation where all the network nodes exchange information
at the highest transmission rate (according to (3.14), this is equal to 4dmax/ε
for each link). Here. by “average” we mean that, denoting by Tij

A(τ, t) and
Tij

F(τ, t) the number of transmission attempts and transmission failures for the
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link {i, j} on the interval [τ, t], it holds that

Tij
F(τ, t)

Tij
A(τ, t)

≤ βij (3.29)

as Tij
A(τ, t) → ∞.

This condition can be suitably rearranged. To this end, first notice that the
above condition is equivalent to the existence of a positive constant aij such
that

Tij
F(τ, t) ≤ aij + βijTij

A(τ, t) (3.30)

for all t, τ ∈ R≥0 with t ≥ τ. Moreover, it holds that Tij
A(τ, t) ≤ ⌈(t − τ)/Δij

∗⌉
since, by construction, Δij

∗ is the smallest inter-transmission time for the link
{i, j}. Letting bij := aij + 1, we then have

Tij
F(τ, t) ≤ bij +

t − τ
(Δij

∗/βij)
(3.31)

Therefore, we can regard genuine transmission failures as the result of a DoS
signal in the form of a train of pulses that are superimposed to the transmis-
sion instants, where Tij

F(τ, t) coincides with the number nij(τ, t) of DoS off/on
transitions occurring on the interval [τ, t]. Thus, Assumption 3.1 and 3.2 are
satisfied with (μij, κij, τij

f , τ
ij
d) = (bij, 0, Δij

∗/βij,∞). According to the analysis of
Section 3.3, one can conclude the following: i) if only genuine transmission
failures are present (no malicious DoS), Persistency-of-Communication is pre-
served as long as

1
τij

d

+
Δij
∗

τij
f

= βij < 1 (3.32)

This is consistent with intuition and, in fact, simply means that communication
over the link {i, j} is not permanently destroyed if and only if Tij

F(τ, t) < Tij
A(τ, t)

on the average; ii) in case of genuine and malicious transmission failures, one
can simply consider two independent DoS signals acting on the same link, each
one characterized by its own 4-tuple (μij, κij, τij

f , τ
ij
d). It is immediate to see that
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Figure 3.2: Evolution of x, corresponding to the solution to (3.2) and (3.13) for
a random graph with n = 40 nodes in the absence of DoS.

that the analysis of Section 3.3 carries over to the present case by replacing
condition αij < 1 with αij + βij < 1.

3.5 a numerical example
We consider a random connected undirected graph with n = 40 nodes and
with di = 4 for all i ∈ I. Nodes and control initial values are generated ran-
domly within the interval [0, 1] and the set {−1, 0, 1}, respectively.
We consider the behavior of (3.2) and (3.13) with ε = 0.005. Figure 3.2 depicts
simulation results for the nominal case in which DoS is absent. Notice that in
this case (3.13) coincides with (3.4). We next consider the case in which DoS
is present. Simulation results are reported in Figure 3.3. In the simulation, we
considered DoS attacks which affect each of the network links independently.
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Figure 3.3: Evolution of x, corresponding to the solution to (3.2) and (3.13) for
a random graph with n = 40 nodes in the presence of DoS.

For each link, the corresponding DoS pattern takes the form of a pulse-width
modulated signal with variable period and duty cycle (maximum period of
0.15sec and maximum duty cycle equal to 100%), both generated randomly.
These patterns are reported in Table I and depicted in Figure 3.4 for a few
number of network links. Notice that, for each DoS pattern, one can compute
corresponding values for (μij, κij, τij

f , τ
ij
d). They can be determined by comput-

ing the values nij(τ, t) and |Ξij(τ, t)| of each DoS pattern (cf. Assumption 3.1
and 3.2) over the considered simulation horizon. Figure 3.5 depicts the ob-
tained values of τij

f and τij
d for each {i, j} ∈ E . One sees that these values are

consistent with the requirements imposed by the PoC condition.
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Figure 3.4: DoS pattern for the network links {13, 14}, {6, 34}, {34, 39}, {9, 26},
{9, 21} and {33, 38}. The vertical gray stripes represent the time-intervals over
which DoS is active.

Table 3.1: DoS average duty cycle over some links

Link {i, j} Duty cycle (%) Link {i, j} Duty cycle (%)
{13, 14} 49 % {6, 34} 44.78 %
{34, 39} 55.96 % {9, 26} 47.3 %
{9, 21} 52.76 % {33, 38} 58.96 %



3.5. a numerical example 49

τd

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

τ
f

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3.5: Locus of the points 1/τd + Δ∗/τij
f = 1 as a function of (τd, τf) with

Δ∗ = 6.25 × 10−4 (blue solid line). Notice that Δ∗ = Δij
∗ for all {i, j} ∈ E , so that

the locus of point does not vary with {i, j}. The various ∗ represent the values
of (τij

d , τ
ij
f ) for the network links.

In order to further substantiate the performance of the proposed resilient co-
ordination protocol, we consider a larger connected and undirected network
comprised of n = 100 nodes where each nodes is randomly connected to 6
neighbors, i.e. di = 6. The coordination parameters are as before. The simula-
tion results for the new example in the presence and absence of DoS are given
in Figure 3.6 and Figure 3.7, respectively.
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Figure 3.6: Evolution of state x in the absence of DoS.
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Figure 3.7: Evolution of state x in the presence of DoS.
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abstract
In this chapter, we investigate self-triggered synchronization of linear oscil-
lators in the presence of communication failures caused by Denial-of-Service
(DoS), thus extending the previous analysis to networks involving high-order
dynamics. In line with chapter 3, a general framework is considered in which
network links can fail independent of each other. A characterization of DoS fre-
quency and duration to preserve network synchronization is provided, along
with an explicit characterization of the effect of DoS on the time required to
achieve synchronization. An numerical example is given to substantiate the
analysis.
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Notation: The following notations are employed throughout this chapter. The
Z dimensional identity matrix is denoted by IZ. Vectors of all ones and zeros
are denoted by 1 and 0, respectively. In this chapter, the stacking of n column
vectors x1, x2, . . . , xn, where xi ∈ RN, is denoted by

x :=
[
x⊤1 x⊤2 . . . x⊤n

]⊤

where x ∈ RnN. Furthermore, the ℓ-th component of vector x is denoted by xℓ
or, interchangeably, by [x]ℓ.

4.1 self-triggered synchronization
4.1.1 system definition
We consider a connected and undirected graph G = (I, E), where I :=
{1, 2, · · · ,n} is the set of nodes and E ⊆ I ×I is the set of links (edges). Given
a node i ∈ I, we shall denote by Ni = {j ∈ I : (i, j) ∈ E} the set of its neighbors,
i.e., the set of nodes that exchange information with node i, and by di = |Qi|,
i.e., the cardinality of Qi. Notice that the order of the elements i and j in (i, j)
is irrelevant since the graph is assumed undirected. Throughout the chapter,
we shall refer to G as the “nominal” network (the network configuration when
communication is allowed for every link).
We assume that each network node is a dynamical system consisting of a linear
oscillator with dynamics

ẋi = Axi + Bui (4.1)

where (A,B) is a stablizable pair and all eigenvalues of A lie on imaginary
axis with unitary geometric multiplicity; xi,ui ∈ RN represent node state and
control variables. The network nodes exchange information according to the
configuration described by the links of G. To achieve synchronization with
constrained flow of information, we employ a hybrid controller with state vari-
ables (x, η, ξ, θ) ∈ RnN × RnN × Rnd × Rnd, where d :=

∑N
i=1 di. The controller

makes use of a quantization function.
The specific quantizer of choice is signε : R → {−1, 0, 1}, which is given by

signε(z) :=
{

sign(z) if |z| ≥ ε
0 otherwise

(4.2)
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where ε > 0 is a sensitivity parameter, which is selected at the design stage
to trade-off between synchronization accuracy and communication frequency.
The flow dynamics are given by

η̇i = (A + BK)ηi +
∑

j∈Ni

ξ ij (4.3a)

ξ̇
ij
= Aξ ij (4.3b)

θ̇
ij
= −1 (4.3c)

ui = Kηi (4.3d)

where A + KB is Hurwitz; ηi ∈ RN and ξ ij ∈ RN are controller states, and
θij ∈ RN is the local clock over the link (i, j) ∈ E , where θij(0) = 0. As it will
become clear in the sequel, the superscript “ij” appearing in ξ and θ indicates
that these variables are common to nodes i and j. The continuous evolution of
the edge-based controller dynamic holds as long as the set

S(θ, t) := {(i, j, ℓ) ∈ I × I × L∗ : θij
ℓ(t

−) = 0} (4.4)

is non-empty, where s(t−) denotes the limit from below of a signal s(t), i.e.,
s(t−) = limτ↗t s(τ), and where ℓ ∈ L∗ := {1, 2, . . . ,N}. At these time instants,
in the “nominal” operating mode, a discrete transition (jump) occurs, which is
given by

xi
ℓ(t) = xi

ℓ(t−)
ηi
ℓ(t) = ηi

ℓ(t
−)

ξ ij
ℓ(t) =





[eAt signε(e−AtDij(η(t)− x(t)))]ℓ if (i, j, ℓ) ∈ S(θ, t)

ξ ij
ℓ(t−) otherwise

θij
ℓ(t) =





fijℓ(t) if (i, j, ℓ) ∈ S(θ, t)

θij
ℓ(t−) otherwise

(4.5)

for every i ∈ I, j ∈ Ni and ℓ ∈ L∗.

Here, Dij(α(t)) = αj(t)− αi(t) and fijℓ : Rn → R>0 is given by

fijℓ(x) = max

{∣∣[e−AtDij(η(t)− x(t))
]
ℓ

∣∣
2(di + dj)

,
ε

2(di + dj)

}
(4.6)
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Note that for all (i, j) ∈ E we have θij(t) = θji(t) and ξ ij(t) = −ξ ji(t) for all
t ∈ R≥0. As such, (4.1)-(4.5) can be regarded as an edge-based synchroniza-
tion protocol. Here, the term “self-triggered”, first adopted in the context of
real-time systems Velasco et al. (2003), expresses the property that the data
exchange between nodes is driven by local clocks, which avoids the need for a
common global clock.
A few comments are in order.

Remark 4.1 (Controller structure). The controller emulates the node dynamics
(4.1), with an extra coupling term as done in Scardovi and Sepulchre (2009).
The coupling is through the variable ξ ij, which is updated at discrete times
and emulates the open-loop behavior of (4.1) during its the controller continu-
ous evolution De Persis (2013). Slightly different from Scardovi and Sepulchre
(2009), the coupling term ξ ij takes into account the discrepancy between node
and controller states. This choice of coupling is due to the use of the quantizer
(4.2) which triggers at discrete instances.

Remark 4.2 (Clock variable θij
ℓ ). Each clock variable θij

ℓ plans ahead the update
time of component ℓ of controller state ξ ij. Whenever θij

ℓ reaches zero, the ℓ-th
component of the controller state and clock variables is updated. In order to
avoid arbitrarily fast sampling (Zeno phenomena), we use the threshold ε in
the update of the function fij in (4.6). In particular, this implies that for every
edge (i, j) ∈ E and for any time T , no more than n⌊ 2(di+dj)T

ε + 1⌋ number of
updates can occur over an interval of length T .

4.1.2 self-triggered synchronization

Inspired by Scardovi and Sepulchre (2009), we analyze (4.1)-(4.5) using the
change of coordinates

xi(t) = xi(t)
X i(t) = e−At(ηi(t)− xi(t))
U ij(t) = e−Atξ ij(t)
θij(t) = θij(t)

(4.7)
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Accordingly, the network state variables become (x,X ,U , θ) ∈ RnN × RnN ×
Rnd × Rnd with corresponding flow dynamics

ẋi(t) = (A + BK)xi(t) + BKeAtX i(t) (4.8a)

Ẋ i(t) =
∑

j∈Ni

U ij

U̇ ij(t) = 0 (4.8b)

θ̇
ij
(t) = −1

and discrete transitions (jumps)

xi
ℓ(t) = xi

ℓ(t−) (4.9a)

X i
ℓ(t) = X i

ℓ(t−)

U ij
ℓ (t) =





signε (D
ij
ℓ (X (t)) if (i, j, ℓ) ∈ S(θ, t)

U ij
ℓ (t−) otherwise

(4.9b)

θij
ℓ(t) =





gij
ℓ(X (t)) if (i, j, ℓ) ∈ S(θ, t)

θij
ℓ(t−) otherwise

where (i, j, ℓ) ∈ I × I × L∗ and

gij
ℓ(X (t)) = max





∣∣∣Dij
ℓ (X (t))

∣∣∣
2(di + dj)

,
ε

2(di + dj)



 (4.10)

Notice that the notion of local time in both coordinates is the same. The reason
for considering this change of coordinates is to transform the origianl syn-
chronization problem into a consensus problem that involves integrator vari-
ables X i.
The result which follows is the main result of this section.

Theorem 4.1. Let all the eigenvalues of A lie on the imaginary axis with geometric
multiplicity equal to one. Let (x,X ,U , θ) be the solution to system (4.8) and (4.9).
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Then there exist a finite time T such that X converges within the time T to a point
X∗ = [X 1

∗
⊤
, . . . ,X n

∗
⊤]⊤ in the set

E :=
{
X ∈ RnN : |Dij

ℓ (X )| < δ ∀ (i, j, ℓ) ∈ I × I × L∗
}

(4.11)

where δ = ε(n − 1), and U(t) = 0 for all t ≥ T. Moreover, for any arbitrary small
εc ∈ R>0 there exist a time Tc(εc) ≥ T such that

∣∣xi
ℓ(t)− xj

ℓ(t)
∣∣ < 2εc +

√
N δ ∀(i, j, ℓ) ∈ I × I × L∗ (4.12)

for all t ≥ Tc(εc), where N is the dimension of the vector x.

Proof of Theorem 4.1. As a first step, we analyze the consensus of subsystem
(X ,U , θ). Afterwards, we will investigate the synchronization of the states xi

throughout the relation X i(t) = e−At(ηi(t)− xi(t)).

Consider the Lyapunov function V(X ) = 1
2X⊤X , and let tij

ℓk
:= max{tij

l : tij
l ≤

t, l ∈ Z≥0}. The derivative of V along the solutions to (4.8) satisfies

V̇(X (t)) =
N∑

i=1
X i⊤(t) Ẋ i(t)

= −
∑

(i,j)∈E
(X j(t)−X i(t))⊤U ij(tij

ℓk
)

= −
∑

(i,j)∈E

n∑

ℓ=1
Dij

ℓ (X (t)) signε(D
ij
ℓ (X (tij

ℓk
)))

(4.13)

During the continuous evolution |Ḋij
ℓ (X (t))| ≤ di + dj for t ∈ [ti

k, ti
k+1[, where

Dij(X (t)) = X j(t) − X i(t). Exploiting this fact and recalling the definition of
gij
ℓ(X (t)) in (4.10), it holds that if |Dij

ℓ (X (tij
ℓk
))| ≥ ε then

|Dij
ℓ (X (t))| ≥ |Dij

ℓ (X (tij
ℓk
))| − (di + dj)(t − tij

ℓk
)

≥
|Dij

ℓ (X (tij
ℓk
))|

2

(4.14)

and

signε(D
ij
ℓ (X (t))) = signε(D

ij
ℓ (X (tij

ℓk
))) (4.15)
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Using (4.14) and (4.15) we conclude that

V̇(X (t)) ≤ −
∑

(i,j)∈E

∑

ℓ∈L∗:
|Dij

ℓ(X (tij
ℓk
))|≥ε

|Dij
ℓ (X (tij

ℓk
))|

2 (4.16)

In view of (4.16), there must exist a finite time T such that, for every (i, j) ∈ E
and every k, ℓ with tij

ℓk
≥ T, it holds that |Dij

ℓ (X (tij
ℓk
))| < ε. This is because, oth-

erwise, V would become negative. The inequality in (4.11) follows by recalling
that, in a graph with N nodes the graph diameter is N − 1. This shows that X
converges in a finite time T to a point X∗ in the set E.
We now focus on x. In view of (4.2), U converges to zero in a finite time.
Moreover, in view of (4.7), we have that ηi(t) − xi(t) converges to eAtX i

∗ and
ξ to 0 in a finite time. As for η, recall that ηi has flow and jump dynamics
given by

η̇i(t) = (A + BK)ηi(t) +
∑

j∈Ni

ξ ij(t)

ηi(t) = ηi(t−)
(4.17)

Hence, η converges exponentially to the origin since ξ converges to 0 is a fi-
nite time and A + BK is Hurwitz. Combining this fact with the property that
ηi(t) − xi(t) convergence asymptotically to eAtX i

∗, we have that xi(t) conver-
gence asymptotically to −eAtX i

∗. This implies that for any node i ∈ I and any
εc ∈ R>0, there exists a time Tc(εc) after which ∥xi(t) + eAtX i

∗∥ ≤ εc, where ∥·∥
stands for Euclidean norm.
Notice that in general X i

∗ ̸= X j
∗ for i ̸= j in accordance with the approximate

consensus property (4.11). Therefore, the solutions xi and xj for all (i, j) ∈ I×I
will achieve approximate consensus as well. In particular, an upper bound on
their disagreement level can be estimated as

∥xi(t)− xj(t)∥ ≤ ∥xi(t) + eAtX i
∗∥+ ∥xj(t) + eAtX i

∗∥
≤ ∥xi(t) + eAtX i

∗∥+ ∥xj(t) + eAtX j
∗∥+ ∥eAtX i

∗ − eAtX j
∗∥

≤ 2εc + ∥eAt(X j
∗ −X i

∗)∥
≤ 2εc +

√
n δ

(4.18)
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where the last inequality is obtained from (4.11) and the fact that A has purely
imaginary eigenvalues by hypothesis. This concludes the proof.

Proof of Proposition 4.1. Reasoning as in the proof of Theorem 4.1, it is an easy
matter to see that in the presence of DoS (4.16) modifies into

V̇(X (t)) ≤ −
∑

(i,j)∈E

∑

ℓ∈L∗:
|Dij

ℓ(X (tij
ℓk
))|≥ε ∧

tij
ℓk
∈Θij(0,t)

|Dij
ℓ (X (tij

ℓk
))|

2 (4.19)

In words, the derivative of V decreases whenever, for some (i, j) ∈ E , ℓ ∈ L∗,
two conditions are met: i) |Dij

ℓ (X (tij
ℓk
))| ≥ ε, which means that i and j are not

component-wise ε-close; and ii) communication on the link that connects i and
j is possible.
From (4.19) there must exist a finite time T∗ such that, for every {i, j, ℓ} ∈ E×L∗

and every k with tij
ℓk
≥ T∗, it holds that |Dij

ℓ (X (tij
ℓk
))| < ε or tij

ℓk
∈ Ξij(0, t). This is

because, otherwise, V would become negative. The proof follows by recalling
that in both the cases |Dij

ℓ (X (tij
ℓk
))| < ε and tij

ℓk
∈ Ξij(0, t) the control U ij

ℓ (t) is set
equal to zero.

Proof of Proposition 4.2. Consider any link (i, j) ∈ E , and suppose that a certain
transmission attempt tij

ℓk
is unsuccessful. We claim that a successful transmis-

sion over the link (i, j) does always occur within [tij
ℓk
, tij

ℓk
+ Φij]. We prove the

claim by contradiction. To this end, we first introduce a number of auxiliary
quantities. Denote by H̄ij

n := {hij
n}∪ [hij

n, h
ij
n+τij

n+Δij
∗[. the n-th DoS interval over

the link (i, j) prolonged by Δij
∗ units of time. Also, let

Ξ̄ij
(τ, t) :=

∪

n∈Z≥0

H̄ij
n
∩

[τ, t] (4.20)

Θ̄ij
(τ, t) := [τ, t] \ Ξ̄ij

(τ, t) (4.21)

Suppose then that the claim is false, and let t⋆ℓ denote the last transmission at-
tempt over [tij

ℓk
, tij

ℓk
+ Φij]. Notice that this necessarily implies |Θ̄ij

(tij
ℓk
, t⋆ℓ )| = 0.

To see this, first note that, in accordance with (4.26), the inter-sampling time
over the interval [tij

ℓk
, t⋆ℓ ] is equal to ε/(2(di + dj)) = Δij

∗. Hence, we cannot
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have |Θ̄ij
(tij

ℓk
, t⋆ℓ )| > 0 since this would imply the existence of a DoS-free inter-

val within [tij
ℓk
, t⋆ℓ ] of length greater than Δij

∗, which is not possible since, by
hypothesis, no successful transmission attempt occurs within [tij

ℓk
, t⋆ℓ ]. Thus

|Θ̄ij
(tij

ℓk
, t⋆ℓ )| = 0. Moreover, since t⋆ℓ is unsuccessful, it must be contained in

a DoS interval, say Hij
q . This implies [t⋆ℓ , t⋆ℓ + Δij

∗[⊆ H̄ij
q . Hence, we have

|Θ̄ij
(tij

ℓk
, t⋆ℓ + Δij

∗)| = |Θ̄ij
(tij

ℓk
, t⋆ℓ )|+ |Θ̄ij

(t⋆ℓ , t⋆ℓ + Δij
∗)|

= 0 (4.22)

However, condition |Θ̄(tij
ℓk
, t⋆ℓ +Δij

∗)| = 0 is not possible. To see this, notice that

|Θ̄ij
(tij

ℓk
, t)| = t − tij

ℓk
− |Ξ̄ij

(tij
ℓk
, t)|

≥ t − tij
ℓk
− |Ξij(tij

ℓk
, t)| − (n(tij

ℓk
, t) + 1)Δij

∗

≥ (t − tij
ℓk
)(1 − αij)− κij − (μij + 1)Δij

∗ (4.23)

for all t ≥ tij
ℓk

where the first inequality follows from the definition of the set
Ξ̄ij

(τ, t) while the second one follows from Assumption 4.1 and 4.2. Hence, by
(4.23), we have |Θ̄ij

(tij
ℓk
, t)| > 0 for all t > tij

ℓk
+(1−αij)−1(κij+(μij+1)Δij

∗) = tij
ℓk
+

Φij. Accordingly, |Θ̄(tij
ℓk
, t⋆ℓ +Δij

∗)| = 0 cannot occur because t⋆ℓ +Δij
∗ > tij

ℓk
+Φij. In

fact, by hypothesis, t⋆ℓ is defined as the last unsuccessful transmission attempt
within [tij

ℓk
, tij

ℓk
+Φij], and, by (4.26), the next transmission attempt after t⋆ℓ occurs

at time t⋆ℓ + Δij
∗. This concludes the proof.

Equations (4.11) and (4.12) involve a notion of “approximate” synchronization.
This amounts to saying that the solutions eventually synchronize up to an er-
ror, which can be made as small as desired by reducing ε (at the expense of an
increase in the communication cost since, in view of (4.6), the minimum inter-
transmission time decreases with ε). Theorem 4.1 will be used as a reference
frame for the analysis of Section 4.3. The case of asymptotic synchronization
can be pursued along the lines of De Persis and Frasca (2013).
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4.2 network denial-of-service
We shall refer to Denial-of-Service (DoS) as the phenomenon by which com-
munication between the network nodes is interrupted. Similar to chapter 3 we
consider the very general scenario in which the network communication links
can fail independent of each other. The similar DoS characterization, assump-
tion, and discussion in section 3.2 are valid in this chapter as well. For the sake
of simplicity of the reader, however, the assumptions are provided once again.

Assumption 4.1 (DoS frequency). For each (i, j) ∈ E , there exist μij ∈ R≥0 and
τij

f ∈ R>0 such that

nij(τ, t) ≤ μij +
t − τ
τij

f

(4.24)

for all t, τ ∈ R≥0 with t ≥ τ.

Assumption 4.2 (DoS duration). For each (i, j) ∈ E , there exist κij ∈ R≥0 and
τij

d ∈ R>1 such that

|Ξij(τ, t)| ≤ κij +
t − τ
τij

d

(4.25)

for all t, τ ∈ R≥0 with t ≥ τ.

4.3 main result

4.3.1 resilient self-triggered synchronization

When DoS disrupts link communications, the former controller state ξ ij
ℓ is not

available any more. In order to compensate for the communication failures,
the control action is suitably modified as follows during the controller discrete
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updates,

xi
ℓ(t) = xi

ℓ(t−)
X i

ℓ(t) = X i
ℓ(t−)

U ij
ℓ (t) =





signε (D
ij
ℓ (X )) if (i, j, ℓ) ∈ S(θ, t) ∧ t ∈ Θij(0, t)

0 if (i, j, ℓ) ∈ S(θ, t) ∧ t ∈ Ξij(0, t)

U ij
ℓ (t−) otherwise

θij
ℓ(t) =





gij
ℓ(t) if (i, j, ℓ) ∈ S(θ, t) ∧ t ∈ Θij(0, t)

ε
2(di + dj)

if (i, j, ℓ) ∈ S(θ, t) ∧ t ∈ Ξij(0, t)

θij
ℓ(t−) otherwise

(4.26)

In words, the control action U ij is reset to zero whenever the link (i, j) is in DoS
status 1. In addition to U , also the local clocks are modified upon DoS, yielding
a two-mode sampling logic. Let {tij

ℓk
}ℓk∈Z≥0 denote the sequence of transmission

attempts for ℓ-th component of ξ ij over the link (i, j) ∈ E . Then when a com-
munication attempt is successful tij

ℓk+1
= tij

ℓk
+gij

ℓ(t), and when it is unsuccessful
tij
ℓk+1

= tij
ℓk
+ ε/(2(di + dj)).

In order to characterize the overall network behavior in the presence of DoS.
The analysis is subdivided into two main steps: i) we first prove that all the
edge-based controllers eventually stop updating their local controls; and ii)
we then provide conditions on the DoS frequency and duration such that syn-
chronization, in the sense of (4.12), is preserved. This is achieved by resorting
to a notion of Persistency-of-Communication (PoC), which naturally extends
the PoE condition Arcak (2007) to a digital networked setting by requiring
graph connectivity over periods of time that are consistent with the constraints
imposed by the communication medium.
As for i), we have the following result.

Proposition 4.1. (Convergence of the solutions) Let (x,X ,U , θ) be the solutions
to (4.8) and (4.26). Then, there exists a finite time T∗ such that, for any (i, j) ∈ E , it
holds that U ij

ℓ (t) = 0 for all ℓ ∈ L∗ and for all t ≥ T∗.
1 Notice that this requires that the nodes are able to detect the occurrence of DoS. This is the

case, for instance, with transmitters employing carrier sensing as medium access policy. Another
example is when transceivers use TCP-like protocols.



62 synchronization of self-triggered networks under jamming

Proof: See the appendix.

The above result does not allow one to conclude anything about the final dis-
agreement vector in the sense that given a pair of nodes (i, j), the asymptotic
value of |X j

ℓ(t)−X i
ℓ(t)| and/or |xj

ℓ(t)− xi
ℓ(t)| can be arbitrarily large. As an ex-

ample, if node i is never allowed to communicate then X i(t) = X i(0) and the
oscillator state xi(t) satisfies ẋi(t) = Axi(t) with initial condition −X i(0) for all
t ∈ R≥0. In order to recover the same conclusions as in Theorem 4.1, bounds
on DoS frequency and duration have to be enforced. The result which follows
provides one such characterization. Let (i, j) ∈ E be a generic network link,
and consider a DoS sequence on (i, j), which satisfies Assumption 4.1 and 4.2.
Define

αij :=
1
τij

d

+
Δij
∗

τij
f

(4.27)

where

Δij
∗ :=

ε
2(di + dj)

(4.28)

As for ii), we have the following result.

Proposition 4.2 (Persistency-of-Communication (PoC)). Consider any link
(i, j) ∈ E employing the transmission protocol (4.26). Also consider any DoS se-
quence on (i, j), which satisfies Assumption 4.1 and 4.2 with μij and κij arbitrary, and
τij

d and τij
f such that αij < 1. Let

Φij :=
κij + (μij + 1)Δij

∗
1 − αij (4.29)

Then, for any given unsuccessful transmission attempt tij
ℓk

, at least one successful
transmission occurs over the link (i, j) within the interval [tij

ℓk
, tij

ℓk
+ Φij].

Proof: See the appendix.

The following result extends the conclusions of Theorem 4.1 to the presence of
DoS.
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Theorem 4.2. Let (x,X ,U , θ) be the solution to (4.8) and (4.26). For each (i, j) ∈
E , consider any DoS sequence that satisfies Assumption 4.1 and 4.2 with ηij and κij

arbitrary, and τij
d and τij

f such that αij < 1. Then, X converges in a finite time T∗ to a
point X ∗ in (4.11), and U(t) = 0 for all t ≥ T∗. Moreover, for every εc ∈ R>0 there
exist a time Tc(εc) ≥ T∗ such that (4.12) is satisfied for all t ≥ Tc(εc).

Proof. By Proposition 4.1, all the local controls become zero in a finite time T∗.
In turn, Proposition 4.2 excludes that this is due to the persistence of a DoS
status. Then the result follows along the same lines as in Theorem 4.1.

Remark 4.3. One main reason for considering DoS comes from studying net-
work coordination problems in the presence of possibly malicious attacks. In
fact, the proposed modeling framework allows to consider DoS patterns that
need not follow a given class of probability distribution, which is instead a
common hypothesis when dealing with “genuine” DoS phenomena such as
network congestion or communication errors due to low-quality channels. In
this respect, Senejohnny et al. (2017) discusses how genuine DoS can be incor-
porated into this modeling framework.

4.3.2 effect of dos on the synchronization time
By Theorem 4.2, Ẋ becomes zero in a finite time T∗ after which the network
states x exponentially synchronize. Thus, it is of interest to characterize T∗,
which amounts to characterizing the effect of DoS on the time needed to
achieve synchronization.

Lemma 4.1 (Bound on the convergence time). Consider the same assumptions as
in Theorem 4.2. Then,

T∗ ≤
[

1
ε
+

dmax

εdmin
+

4dmax

ε2 Φ
]∑

i∈I

∑

ℓ∈L∗

(ηi
ℓ(0)− xi

ℓ(0))2 (4.30)

where dmin := mini∈I di and Φ := max(i,j)∈E Φij.

Proof. Consider the same Lyapunov function V as in the proof of Theorem 4.1.
Notice that, by construction of the control law and the scheduling policy, for
every successful transmission tij

ℓk
characterized by |Dij

ℓ (X (tij
ℓk
)| ≥ ε, the func-

tion V decreases with rate not less than ε/2 for at least ε/(4dmax) units of time,
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in which case V decreases by at least ε2/(8dmax) =: ε∗. Considering all the
network links, such transmissions are in total no more than ⌊V(0)/ε∗⌋ since,
otherwise, the function V would become negative. Hence, it only remains to
compute the time needed to have ⌊V(0)/ε∗⌋ of such transmissions. In this re-
spect, pick any t∗ℓ ≥ 0 such that consensus has still not been reached on the ℓ-th
component of X . Note that we can have U ij

ℓ (t∗ℓ ) = 0 for all (i, j) ∈ E . However,
this condition can last only for a limited amount of time. In fact, if U ij

ℓ (t∗ℓ ) = 0
then the next transmission attempt, say lijℓ , over the link (i, j) and component-ℓ
will necessarily occur at a time less than or equal to t∗ℓ+Δij

∗ with Δij
∗ ≤ ε/(4dmin).

Let Q := [t∗ℓ , t∗ℓ + Δij
∗], and suppose that over Q some of the controls U ij

ℓ have
remained equal to zero. This implies that for some (i, j) ∈ E we necessarily
have that lijℓ is unsuccessful. This is because if U ij

ℓ (t) = 0 for all (i, j) ∈ E and all
t ∈ Q then X i

ℓ(t) = X i
ℓ(t∗ℓ ) for all i ∈ I and all t ∈ Q. Hence, if all the lijℓ were

successful, we should also have U ij
ℓ (l

ij
ℓ) ̸= 0 for some (i, j) ∈ E since, by hypo-

thesis, consensus is not reached at time t∗ℓ . Hence, applying Proposition 4.2
we conclude that at least one of the controls U ij

ℓ will become non-zero before
lijℓ +Φij. As each vector component ℓ has the same Δij

∗, at least one of the control
vectors U ij will become non-zero before the same amount of time. Overall, this
implies that at least one control will become nonzero before ε/(4dmin)+Φ units
of time have elapsed. Since t∗ℓ is generic, we conclude that V decreases by at
least ε∗ every ε/(4dmax) + ε/(4dmin) + Φ units of time, which implies that

T∗ ≤
[

ε
4dmax

+
ε

4dmin
+ Φ

]
V(0)
ε∗

(4.31)

The thesis follows by recalling that V(0) can be rewritten as

V(0) = 1
2
∑

i∈I

∑

ℓ∈L∗

(X i
ℓ(0))2

.
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Figure 4.1: Evolution of x, corresponding to the solution to (4.1)-(4.3) and (4.26)
for a random graph with n = 6 nodes in the presence of DoS.

4.4 a numerical example
We consider a random (connected) undirected graph with n = 6 nodes and
with di = 2 for all i ∈ I. Each node has linear oscillator dynamics of the form

ẋi(t) =
[

0 1
−1 0

]
xi(t) +

[
0
1

]
ui(t) (4.32)

The nodes initial values are randomly within the interval [−2, 2] and
(η(0), ξ(0), θ(0)) = (0,0,0).
In the simulations, we considered DoS attacks which affect each of the network
links independently. For each link, the corresponding DoS pattern takes the
form of a pulse-width modulated signal with variable period and duty cycle
(maximum period of 0.4 second and maximum duty cycle equal to 55%), both
generated randomly. These patterns are reported in Table I for each network
link.
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Figure 4.2: Evolution of the controller state η in the absence of DoS.
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Figure 4.3: Evolution of the controller state η in the presence of DoS.
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Figure 4.4: Locus of the points 1/τd + Δ∗/τij
f = 1 as a function of (τd, τf) with

Δ∗ = 0.05 (blue solid line). The horizontal axis represents τd and the vertical
axis represents τf. Notice that Δ∗ = Δij

∗ for all (i, j) ∈ E , so that the locus of
point does not vary with (i, j). The various “∗” represent the values of (τij

d , τ
ij
f )

for the network links.

Table 4.1: DoS average duty cycle over links

Link (i, j) Duty cycle (%) Link (i, j) Duty cycle (%)
{1, 2} 56.07 % {1, 4} 55.12 %
{2, 3} 55.2 % {3, 6} 56.3 %
{4, 5} 66.06 % {5, 6} 59.72 %

The evolution of state x(t), corresponding to the solutions to (4.1)-(4.3) and
(4.26) with ε = 0.04 is depicted in Figure 4.1. One sees that x exhibits a quite
smooth response. In fact, the impact of loss of information can be better ap-
preciated by looking at the controller dynamics, which are reported in Figures
4.2 and 4.3. This can be explained simply by noting that the controller state ξ
is affected by DoS directly while x is affected by DoS indirectly since ξ enters
the node dynamics after being filtered twice.
As a final comment, note that for each DoS pattern one can compute corres-
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ponding values for (μij, κij, τij
f , τ

ij
d). They can be determined by computing

nij(τ, t) and |Ξij(τ, t)| of each DoS pattern (cf. Assumptions 4.1 and 4.2) over
the considered simulation horizon. Figure 4.4 depicts the values obtained for
τij

f and τij
d for each (i, j) ∈ E . One sees that these values are consistent with the

requirements imposed by the PoC condition.
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Introduction

When dealing with network systems, a fundamental challenge is to ensure
their functioning even when some of the network units (nodes) do not operate
as intended due to faults or attacks. The main difficulty originates from the
fact that normal (non-misbehaving) nodes can receive, process, and spread er-
roneous data coming from misbehaving nodes with the consequence that a
failure in one point of the network can compromise the whole network per-
formance.
The prototypical problem to study resilience in the presence of misbehaving
nodes is the so-called consensus problem (Cao et al., 2013), which forms the
foundation for distributed computing. In resilient consensus, each node is as-
sumed to be aware of only local information available from its neighbors and
the goal is to make sure that normal nodes eventually reach a common value
despite the presence of misbehaving nodes. The resilient consensus problem
has a long history, and it has been investigated first by the computer scientists
Dolev et al. (1986); Lynch (1996), usually under the hypothesis that the net-
work graph is complete, that is assuming an all-to-all communication struc-
ture. More recently, thanks to the widespread of consensus-based applica-
tions, this problem has attracted a lot of interest also within the engineering
community, mostly in connection with the goal of delineating the minimal
connectivity assumptions that are needed to guarantee consensus.
In LeBlanc et al. (2013), the authors consider mean subsequence reduced (MSR)
algorithms and define a graph-theoretic property, referred to as network ro-
bustness, which characterizes necessary and sufficient connectivity hypothesis
under which normal nodes can reach consensus using only local information
available from their neighbors. The results indicate that, while the communic-
ation graph should possess a certain degree of redundancy, completeness of
the communication graph is not necessary even for very general types of mis-
behavior. The results of LeBlanc et al. (2013) have been extended in many ven-
ues. Examples include methods for handling time-varying networks Saldaña
et al. (2017), double-integrator systems Dibaji and Ishii (2015), continuous-time
networked systems LeBlanc and Koutsoukos (2017), sparse communication
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graphs with trusted nodes Abbas et al. (2014, 2017) as well as methods for
identifying the robustness of specific classes of networks Usevitch and Pan-
agou (2017).
Most of the research works in this area assume that the network operates in
perfect synchrony, in the sense that all the nodes, at least the normal ones, up-
date at the same moment in time. Since this condition might be difficult to
obtain, a parallel line of research has focused on methods for handling asyn-
chrony, which is known to render consensus much more challenging to ob-
tain Dolev et al. (1986). Among many notable works, we mention LeBlanc and
Koutsoukos (2012); Vaidya et al. (2012); Dibaji and Ishii (2017); Dibaji et al.
(2017) which consider MSR-type algorithms supporting asynchrony. In these
works, asynchrony refers to the property that the nodes are equipped with
identical clocks, operating synchronously, but can make updates at different
steps, that is at different multiples of the clock period.
The objective of this part is to address the problem of resilient consensus in a
context where the nodes have their own clocks, possibly operating in an asyn-
chronous way, and can make updates at arbitrary time instants. Besides the
practical difficulties in achieving a perfect clock synchronization, one main
reason for considering independent clocks is related to developments in the
area of networked control systems where, in order to enhance efficiency and
flexibility, it is more and more required to have fully autonomous devices,
which is the paradigm of event-triggered and self-triggered control Heemels et al.
(2012). In fact, our approach utilizes a self-triggered control scheme De Persis
and Frasca (2013). Each node is equipped with a clock that determines when
the next update is scheduled. At the update instant, the node polls its neigh-
bors, collects the data and determines whether it is necessary to modify its
controls along with a bound on the next update instant.

outline and contributions
The main result of chapter 5 establishes approximate consensus under certain
conditions on the connectivity of the communication graph and a maximum
number of misbehaving nodes, conditions which can be relaxed if misbehavior
only occurs in data acquisition or timing. While LeBlanc et al. (2013); LeB-
lanc and Koutsoukos (2012, 2017); Dibaji and Ishii (2017); Dibaji et al. (2017)
achieve perfect consensus and require milder connectivity conditions, they
all require the existence of a global clock that synchronize all the operations.
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The present results indicate that the resilient consensus problem can be ap-
proached without requiring that the nodes are equipped with identical clocks,
even when the graph is not complete, a feature which is very appealing for net-
worked control applications.
Chapter 6 considers a modified coordination protocol with the intent of relax-
ing the network connectivity requirements of chapter 5. This modified pro-
tocol aims at relaxing the network connectivity requirements by searching for
exact, rather than approximate, consensus. Although the convergence ana-
lysis is not yet complete, extensive simulation studies demonstrate that the
proposed protocol achieves convergence under the same connectivity assump-
tion as in LeBlanc et al. (2013).
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abstract
Network systems are one of the most active research areas in the engineering
community as they feature a paradigm shift from centralized to distributed
control and computation. When dealing with network systems, a fundamental
challenge is to ensure their functioning even when some of the network nodes
do not operate as intended due to faults or attacks. The objective of this paper
is to address the problem of resilient consensus in a context where the nodes
have their own clocks, possibly operating in an asynchronous way, and can
make updates at arbitrary time instants. The results represent a step towards
the development of resilient event-triggered and self-triggered coordination
protocols.
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5.1 system definition and main result
Consider a network of n ∈ N nodes interconnected in accordance with a time-
invariant undirected connected graph G := (I, E), where I is the set of nodes
while E ⊆ I × I is the set of edges. We let Qi denote the set of neighbors of
i ∈ I, and by di the cardinality of Qi, that is di := |Qi|. The set Qi represents the
set of nodes with which node i exchanges data. For every i ∈ I, the dynamics
are given by





ẋi(t) = ui(t)

zi(t) = fi(xi(t))
t ∈ R≥0 (5.1)

where xi ∈ R is the state with xi(0) arbitrary; ui ∈ R is the control action applied
by node i; zi ∈ R is the output, where fi : R → R is a function to be specified, and
represents the value that node i makes available to its neighbors. The variable
t ∈ R≥0 is understood as the absolute time frame within which all the nodes
carry out their operations in an asynchronous way.
The objective is to design a coordination protocol in such a way that normal
(non-misbehaving) nodes eventually reach approximate consensus despite the
presence of misbehaving nodes. We will specify later on the class of misbeha-
viors considered in this chapter. According to the usual notion of consensus
Cao et al. (2013), the network nodes should converge to an equilibrium point
where all the nodes have the same value lying somewhere between the min-
imum and maximum of their initial values. The following definition formal-
izes the notion of approximate consensus considered in this chapter.
Network nodes carry out their operations by means of three main quantities:

• A parameter ε ∈ R>0, which determines the desired level of accuracy for
consensus.

• A parameter F ∈ N, which determines the maximum number of misbe-
having nodes that the network is expected to encounter.

• A sequence {ti
k}k∈N of time instants at which node i requests data from its

neighbors, where ti
0 ∈ [0, tinit] defines the first time instant at which node

i becomes active and tinit ∈ R≥0 denotes the first time instant at which all
the nodes are active in the network. By convention, 0 = tr

0 where r is the
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first network node to become active and xi(t) = xi(ti
0) for every i ∈ I and

for all t ∈ [0, ti
0].

It is implicit in the above definition of tinit that all the nodes become active in
a finite time. We will also assume that all nodes remain active for the entire
runtime. The analysis can be easily generalized to the case where some of the
nodes never “wake up” or “die” during the network runtime.

5.1.1 coordination protocol
Let N and M represent the sets of normal nodes and misbehaving nodes, re-
spectively, which are assumed to be time-invariant (Assumption 5.1). We now
focus on the generic k-th round of operations for node i ∈ N. This consists
of four main operations: (i) data acquisition; (ii) data transmission; (iii) control
logic; (iv) timing. These operations will also define the considered notion of
misbehaviors.
(i) Data acquisition. At time ti

k, node i ∈ I collects data from its neighbors. De-
note by hi : R → R, i ∈ I, the function processing the incoming data, which
means that given zj(t) with j ∈ Qi, hi(zj(t)) defines the information on j avail-
able to node i at time t. For i ∈ N,

hi(χ) = χ ∀χ ∈ R (5.2)

A data acquisition error means that (5.2) is not satisfied for some χ ∈ R, which
represents for example a fault at the receiver.
(ii) Data transmission. For i ∈ N, fi in (5.1) satisfies

fi(χ) = χ ∀χ ∈ R (5.3)

which means that a normal node makes available to the other nodes its true
state value. A transmission error means that (5.3) is not satisfied for some
χ ∈ R, which can represent a fault at the transmitter as well as an intentional
misbehavior. By convention, node i transmits data from time ti

0.
(iii) Control logic. The scheme is based on the idea of discarding “extreme”
values Dolev et al. (1986), which prevents normal nodes from processing po-
tentially harmful information. For every i ∈ I, let Di(t) ⊆ Qi be the set of
neighbors that are not discarded by i at t ∈ R≥0. For i ∈ N this set is determ-
ined as follows. Let Vi(t) be the ordered set formed by sorting the elements
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of Qi in a non-decreasing order of value hi(zj(t)) = zj(t). An arbitrary order-
ing is pre-specified to classify elements with the same value. Consider the set
Fi(t) formed by the first F elements of Vi(t), and let E i(t) be the subset of Fi(t)
consisting of all the elements of Fi(t) with associated value smaller than xi(t),
that is r ∈ E i(t) if and only if r ∈ Fi(t) and zr(t) < xi(t). Similarly, let Li(t)
be the set formed by the last F elements of Vi(t), and let E i(t) be the subset of
Li(t) consisting of all the elements of Li(t) with associated value larger than
xi(t), that is r ∈ E i(t) if and only if r ∈ Li(t) and zr(t) > xi(t). By convention,
r /∈ Di(t) if t < tr

0, that is if node r is still not active at time t. For i ∈ N, Di(·)
satisfies

Di(t) = Qi \
(
E i(t) ∪ E i(t)

)
(5.4)

and the control action is given by

ui(t) =
{

0 t ∈ [0, ti
0)

signε(avei(ti
k)) t ∈ [ti

k, ti
k+1)

(5.5)

where

avei(t) :=
∑

j∈Di(t)

(
hi(zj(t))− xi(t)

)
(5.6)

and where, for every χ ∈ R,

signε(χ) :=
{

0 if |χ| < ε
sign(χ) otherwise (5.7)

By convention, Di(t) = ∅ implies avei(t) = 0. An error in the control logic
means that (5.5) is not satisfied for some t ∈ R≥0.

Remark 5.1. From a technical viewpoint, we adopt a control logic which re-
moves “extreme” values (as in classic MSR-type algorithms) and then form
an average from a subset of the remaining values through a quantized sign
function, which saturates the control action applied at the node. This is as an
approximation of the pure (non-quantized) control law introduced in Cortés
(2006), which, in the absence of misbehaving nodes, guarantees max-min con-
sensus, the quantization being instrumental to avoid a continuous data flow
among the nodes. Interestingly, the use of sign functions has been considered
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to solve consensus on the median value Franceschelli et al. (2017), which is in-
herently robust to outliers and thus to some types of misbehavior. Although
our work is substantially different from Franceschelli et al. (2017) as we do not
consider a continuous data flow, both the approaches suggest that saturating
the controls can be beneficial for resilience since this limits the effect of an in-
correct update choice resulting from erroneous data.

(iv) Timing. For i ∈ N, the next round of operations is scheduled at time ti
k+1 =

ti
k + Δi

k, where

Δi
k ≥ Δi

Δi
k ≤

1
4di max{ε, | avei(ti

k)|}
(5.8)

with Δi ∈ R>0 such that Δi ≤ ε/(4di). Operations can be then periodic as well as
aperiodic. The first condition avoids arbitrarily fast sampling (Zeno behavior),
while the second of condition is needed to reach approximate consensus. A
timing error means that (5.8) is not satisfied for some k ∈ N.

5.1.2 assumptions and main results
Assumption 5.1. The set M of misbehaving nodes does not change over time and
|M| ≤ F.

Assumption 5.2. For every i ∈ M, ui(·) is a locally integrable function, Di(·) ⊆ Qi,
fi(·), hi(·) ∈ R and Δi

k ≥ Δi for all k ∈ N for some Δi ∈ R>0.

Assumption 5.3. Every pair of normal nodes have at least 3F+ 1 neighbors in com-
mon.

Assumption 5.4. Every pair of normal nodes have at least 2F+ 1 neighbors in com-
mon.

The second assumption ensures the existence of the solutions for all the nodes
and for all time, that variables and functions are well defined. Assumption
5.2 entails no upper bound on Δi

k. This is in order to capture the event that a
misbehaving node never collects data from its neighbors and applies an open-
loop control.
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Assumptions 5.3 and 5.4 deal with the graph connectivity properties, and their
use will vary depending on the type of nodes misbehavior. Both the assump-
tions ensure that the normal nodes share sufficient “genuine” information for
taking control decisions. These assumptions hold, for instance, for classes of
strongly regular graphs Godsil and Royle (2001), though it is not needed that the
graph is regular. These assumptions should be interpreted as design condi-
tions when the graph topology can be assigned. Let λ denote the number of
neighbors that every pair of normal node share. From the Assumptions 5.3
and 5.4, λ is either 3F+ 1 or 2F+ 1. Consider a complete graph of λ+ 1 nodes.
Then add k more nodes, where each of these k nodes connects to all of the λ+1
nodes in the clique. This graph with n = λ+ k+ 1 nodes has the property that
every pair of nodes has at least λ nodes in common and we see that, for fixed
F, the number of edges scales only linearly with n.
We now state the main results of the chapter, which are proven in Sections 5.3
and 5.4.

Theorem 5.1. Consider the network system (5.1)-(5.8), with the misbehaving nodes
exhibiting an error in any of the operations (i)-(iv). If Assumptions 5.1, 5.2 and 5.3 hold
true, then all the normal nodes i ∈ N remain inside the convex hull containing their
initial values. Moreover, there exists a finite time T ∈ R≥0 such that |xi(t)−xj(t)| < 3ε
for all t ≥ T and i, j ∈ N.

Theorem 5.2. Consider the network system (5.1)-(5.8), with the misbehaving nodes
exhibiting an error in the operation (i) and/or (iv). If Assumptions 5.1, 5.2 and 5.4 hold
true, then all the normal nodes i ∈ N remain inside the convex hull containing their
initial values. Moreover, there exists a finite time T ∈ R≥0 such that |xi(t)−xj(t)| < 3ε
for all t ≥ T and i, j ∈ N.

Intuitively, errors in data acquisition or timing are less critical as they do not
alter control or output values.

5.2 monotonicity properties
The results of this section rely on Assumption 5.1 and 5.2 only, and are thus
independent of the specific type of nodes misbehavior. Let

xm(t) := min
i∈N

xi(t), xM(t) := max
i∈N

xi(t) (5.9)

where t ∈ R≥0.
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The first result shows that normal nodes remain in the convex hull containing
their initial values.

Lemma 5.1. Consider the network system (5.1)-(5.8), and let Assumptions 5.1 and
5.2 hold. Then, xm(·) and xM(·) are monotonically non-decreasing and non-increasing,
respectively.

Proof. We prove the statement only for xm(·) since the proof for xM(·) is analog-
ous. Suppose that the claim is false, and let τ be the first time instant at which
there exists an index i ∈ N such that





xi(τ) ≤ xj(τ) ∀ j ∈ N

ui(τ) < 0
(5.10)

Clearly, there could be multiple nodes achieving (5.10) at time τ. In this case,
i is any of such nodes. Notice that τ ≥ ti

0 since ui(t) = 0 for all t ∈ [0, ti
0).

Consider first the case where τ = ti
k for some k ∈ N. In order for ui(ti

k) < 0 we
must have avei(ti

k) ≤ −ε < 0. However, this is not possible. In fact, any normal
node j satisfies zj(ti

k) = xj(ti
k) ≥ xi(ti

k) because i is the node of minimum value
at τ = ti

k. Hence, zj(ti
k) < xi(ti

k) only if j is misbehaving. Since misbehaving
nodes are not more than F by Assumption 5.1, if a misbehaving node j gives
zj(ti

k) < xi(ti
k) it is discarded by the control logic.

Consider next the case where τ is not an update time for node i. Let ti
k < τ

be the last update time for node i before τ. In order to have (5.10), there must
exist a node s ∈ N such that





xs(ti
k) ≤ xj(ti

k) ∀ j ∈ N

xs(ti
k) < xi(ti

k)

xi(τ) ≤ xj(τ) ∀ j ∈ N

ui(τ) < 0

(5.11)

The first two conditions imply that i is not the node which takes on the
minimum value at ti

k, value which is instead attained by node s. Condition
xs(ti

k) < xi(ti
k) is needed otherwise ui(ti

k) ≥ 0 in accordance with the previous
arguments. The last three conditions mean that i becomes the minimum at τ
with ui(τ) = ui(ti

k) < 0. Let β := xi(ti
k)− xs(ti

k). Recall that normal nodes take
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controls in {−1, 0, 1}. Hence, xi(τ) ≤ xj(τ) for all j ∈ N only if τ − ti
k ≥ β/2.

However,

Δi
k ≤ 1

4di

∑

j∈Di(ti
k)

(xi(ti
k)− zj(ti

k))

≤ 1
4di

∑

j∈Di(ti
k)

(xi(ti
k)− xs(ti

k)) (5.12)

The first equality follows from the fact that ui(ti
k) < 0 requires avei(ti

k) ≤ −ε
so that Δi

k ≤ | avei(ti
k)|/(4di). On the other hand, the second inequality follows

since zj(ti
k) < xs(ti

k) only if j is misbehaving, in which case it is discarded by
node i in view of Assumption 5.1 and by the control logic. Since |Di(t)| ≤ di

for all t ∈ R≥0 then Δi
k ≤ β/4. This leads to a contradiction since it implies

β/2 ≤ τ − ti
k < Δi

k ≤ β/4 with β > 0.
By Lemma 5.1, normal nodes remain in the convex hull containing their initial
values. This lemma also implies that xm(·) and xM(·) admit a finite limit,

x := lim
t→∞

xm(t), x := lim
t→∞

xM(t) (5.13)

For the next developments, we strengthen Lemma 5.1 by showing that there
exist normal nodes that settle on the minimum and maximum values in a finite
time.

Lemma 5.2. Consider the network system (5.1)-(5.8), and let Assumptions 5.1 and
5.2 hold. Then, there exist at least two indices r, s ∈ N and a finite time T′ ∈ R≥0
such that xr(t) = x and xs(t) = x for all t ≥ T′. In addition, mini∈N xi(t) ≥ x and
maxi∈N xi(t) ≤ x for all t ≥ T′.

Proof. We prove the statement only for x as the proof for x is analogous. Since
xm(·) converges to x and is continuous, for any δ ∈ R>0 there exists a finite
time Tδ ∈ R≥0 such that |xm(t) − x| < δ for all t > Tδ . Let Δ := mini∈N Δi
and pick δ = Δ/3. Consider any i ∈ N and any update time ti

k for node i such
that ti

k ≥ Tδ . Condition ti
k ≥ Tδ is well defined for any Tδ since by Lemma 5.1

normal nodes always remain in the convex hull containing their initial values
so that Δi

k is bounded from above.
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We claim that, for any i ∈ N and any ti
k ≥ Tδ ,

|xi(ti
k)− x| ≥ δ ⇒ |xi(t)− x| ≥ δ ∀ t ≥ ti

k (5.14)

In simple terms, this means that if xi(ti
k) does not belong to W := (x− δ, x+ δ)

then xi(·) can never enter W afterwards. The implication (5.14) is shown as
follows. Since |xm(t)−x| < δ for all t > Tδ then we must also have xj(t) > x− δ
for all t > Tδ and j ∈ N. This means that condition |xi(ti

k) − x| ≥ δ implies
xi(ti

k) ≥ x + δ. The analysis is divided into two subcases.
Case 1. Assume xi(ti

k) ∈ [x + δ, x + 2δ). In this case,

avei(ti
k) =

∑

j∈Di(ti
k)

(zj(ti
k)− xi(ti

k))

>
∑

j∈Di(ti
k)

(x − δ − xi(ti
k))

> −3δ|Di(ti
k)|

> −ε (5.15)

The first inequality follows from the fact that j ∈ Di(ti
k) only if zj(ti

k) > x− δ. In
fact, zj(t) = xj(t) > x − δ for all t > Tδ and j ∈ N. Thus, nodes with an output
value less than or equal to x − δ are misbehaving, and they are discarded in
view of Assumption 5.1 and by construction of the control logic. The second
inequality follows because xi(ti

k) < x + 2δ by hypothesis. The last inequality
follows since 3δ ≤ ε/(4di) and |Di(t)| ≤ di for all t ∈ R≥0. Since avei(ti

k) > −ε
implies ui(t) ∈ {0, 1} for all t ∈ Ti

k then xi(t) /∈ W for all t ∈ Ti
k, and xi(ti

k+1) /∈ W
by continuity of xi(·).
Case 2. Assume xi(ti

k) ≥ x + 2δ. In order for node i to decrease we must have
avei(ti

k) ≤ −ε. Hence,

Δi
k ≤ 1

4di

∑

j∈Di(ti
k)

(xi(ti
k)− zj(ti

k))

<
1

4di

∑

j∈Di(ti
k)

(xi(ti
k)− x + δ)

≤ 1
4 (xi(ti

k)− x + δ) (5.16)
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The second inequality follows because j ∈ Di(ti
k) only if zj(ti

k) > x−δ according
with the previous arguments. The third inequality follows since |Di(t)| ≤ di

for all t ∈ R≥0. Since normal nodes take controls in {−1, 0, 1}, we obtain

xi(t) ≥ xi(ti
k)− Δi

k ≥ x +
5
4δ (5.17)

for all t ∈ Ti
k, where the last inequality follows from (5.16) and since xi(ti

k) ≥
x + 2δ. Thus xi(t) /∈ W for all t ∈ Ti

k, and xi(ti
k+1) /∈ W by continuity of xi(·).

We conclude that if xi(ti
k) does not belong to W for some ti

k ≥ Tδ then xi(·) can
never enter W afterwards. Moreover, for every i ∈ N, if xi(ti

k) ∈ W and ui(ti
k) ̸=

0 then xi(ti
k+1) /∈ W. In fact, in this case, node i must apply the same control

input for a period not shorter than Δ. Thus, xi(ti
k+1) /∈ W since the control

input is constant with unitary slope for at least Δ time units and W has measure
2δ = 2Δ/3. Thus, since the number of nodes is finite, there exists a finite time
T′′ ≥ Tδ starting from which the signal xi(·), i ∈ N, either persistently remains
inside W or persistently remains outside W. Moreover, there exists at least one
index i ∈ N for which xi(·) persistently remains inside W since, by definition,
x ∈ W is the limiting value of xm(·).
Every xi(·), i ∈ N, that persistently remains outside W from T′′ onwards satis-
fies xi(t) ≥ x + δ for all t ≥ T′′. Consider next any xi(·), i ∈ N, that persistently
remains inside W from T′′ onwards. By the above arguments, ui(ti

k) = 0 for
all ti

k ≥ T′′. Moreover, the first sampling ti
k ≥ T′′ must occur no later than

T′ := T′′ + ε/4. This is because, either ui(T′′) = 0 so that ti
k − T′′ ≤ ε/(4di) by

construction of the update times or ui(T′′) ̸= 0 so that ti
k−T′′ ≤ 2δ < ε/4 other-

wise xi(ti
k) /∈ W according to the previous arguments. Hence, every xi(·), i ∈ N,

that persistently remains inside W from T′′ onwards satisfies xi(t) = xi(T′) for
all t ≥ T′. Thus mini∈N xi(t) ≥ x for all t ≥ T′ and xr(T′) = x for some r ∈ N
since x is the limiting value of xm(·).

5.3 generic misbehavior
By Lemma 5.2, there exist at least two indices r, s ∈ N and a finite time T′ such
that xr(t) = x and xs(t) = x for all t ≥ T′. We now show that under Assumption
5.3 x − x is upper bounded by 3ε.
Proof of Theorem 5.1. The property that normal nodes always remain inside the
convex hull containing their initial values has been shown in Lemma 5.1. Thus,
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we focus on the second part of the statement.
Let T′ be as in Lemma 5.2, and denote by r and s any two indices belonging to
N such that xr(t) = x and xs(t) = x for all t ≥ T′. Consider now any update
time tr

k ≥ T′ for node r. Since node r does not change its value from T′ onwards,
we must have aver(tr

k) < ε. This implies that zi(tr
k)− xr(tr

k) < ε for all i ∈ Dr(tr
k).

In fact, in order to have zi(tr
k)− xr(tr

k) ≥ ε for some i ∈ Dr(tr
k) there should exist

at least one index j ∈ Dr(tr
k) such that zj(tr

k) − xr(tr
k) < 0. However, this is not

possible. In fact, in view of Lemma 5.2, zj(tr
k) = xj(tr

k) ≥ x for all j ∈ N so that
every node which takes on an output value smaller than x is misbehaving and
it is discarded by node r in view of Assumption 5.1 and by construction of the
control logic. Since every i ∈ N satisfies zi(·) ≡ xi(·) we have xi(tr

k) − x < ε for
all i ∈ Dr(tr

k) ∩ N.
The claim thus trivially follows if s ∈ Dr(tr

k). Suppose s /∈ Dr(tr
k). Nodes r and s

have at least 3F+1 neighbors in common by virtue of Assumption 5.3, so that,
because of Assumption 5.1, they have at least 2F + 1 neighbors in common
belonging to N. At tr

k, node r can discard at most F normal nodes since there
are no normal nodes with value smaller than xr(tr

k). Hence, there are at least
F+1 normal nodes belonging toDr(tr

k)∩Qs. Starting from tr
k, node s will sample

at a time ts
k ≤ tr

k + ε/4. When s will sample, it cannot discard all these F + 1
normal nodes by construction of the control logic and because none of these
nodes can take on a value larger than x from T′ onwards in view of Lemma 5.2.
Following the same reasoning as before, at least one of these nodes, say node
i, must satisfy xi(ts

k) > x − ε otherwise one would have aves(ts
k) ≤ −ε. Hence,





xi(tr
k) < x + ε

xi(ts
k) > x − ε

xi(ts
k) ≤ xi(tr

k) +
ε
4

(5.18)

where the last inequality follows since ui(t) < 1 for all t ∈ R≥0 and i ∈ N, and
since ts

k ≤ ts
k+ε/4. This implies x−x < 3ε, and the claim follows letting T := T′.

5.4 data acquisition or timing misbehavior
Since we are dealing with data acquisition or timing misbehavior, it holds that
zi(·) ≡ xi(·) for every i ∈ I. We will therefore only use xi throughout this
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section. In order to prove Theorem 5.2, we avail ourselves of the following
intermediate result.

Lemma 5.3. Consider the network system (5.1)-(5.8), with the misbehaving nodes
exhibiting an error in the operation (i) and/or (iv). Suppose that Assumptions 5.1 and
5.2 hold. Let T′ be as in Lemma 5.2, and let r and s be any two indices belonging to
N such that xr(t) = x and xs(t) = x for all t ≥ T′. Then, | aver(t)| < 3ε/2 and
| aves(t)| < 3ε/2 for all t ≥ T, where T := T′ + ε/4.

Proof. We prove the claim only for node r since the analysis for node s is analog-
ous. Consider any sampling interval Tr

k with tr
k ≥ T′. As a first step, notice that

aver(t) ≥ 0 for all t ∈ Tr
k since, in view of Lemma 5.2, j ∈ Dr(t) only if xj(t) ≥ x.

We stress that Dr(·) is defined only for analysis purposes as its computation is
done only at the update times. We now determine an upper bound for aver(·)
over Tr

k.

Following the same notation as in Section 5.1.1, let E i(t) and E i(t) be the subset
of nodes not belonging toDi(t). DecomposeDr(t) = Ar(t)∪Br(t)∪Cr(t), where





Ar(t) := Dr(t) ∩ E r(tr
k)

Br(t) := Dr(t) ∩ Dr(tr
k)

Cr(t) := Dr(t) ∩ E r(tr
k)

(5.19)

Note that this can be done since i ∈ Dr(t) only if i ∈ Qr and since Qr = E r(tr
k)∪

Dr(tr
k)∪ E r(tr

k) by construction. The set Cr(t) is comprised of the neighborhood
of node r that had the highest values at time tr

k, but have moderate values at
time t. Further decompose Cr(t) = Cr(t) ∪ Cr(t), where

{
Cr(t) := {j ∈ Cr(t) : xj(t) = x}
Cr(t) := {j ∈ Cr(t) : xj(t) > x}

(5.20)

This can be done since j ∈ Cr(t) only if j ∈ Dr(t) and j ∈ Dr(t) only if xj(t) ≥
x. We focus on the set Cr(t). Suppose that there are L elements in this set.
Obviously L ≤ F since |E r(τ)| ≤ F for all τ ∈ R≥0. Now, to each element of
Cr(t) there corresponds at least an element belonging toZr(t) := E r(t)∩(E r(tr

k)∪
Dr(tr

k)), that is |Zr(t)| ≥ L. In words, if C̄r(t) has L nodes, then there must be at
least L nodes whose values are more extreme at time t, and those nodes must
have come from the set of moderate (or low) values at time tr

k. In fact, |E r(t)| ≤
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|E r(tr
k)| − |Cr(t)|+ |Zr(t)| by construction. Hence, if |Zr(t)| < L one would have

|E r(t)| < |E r(tr
k)| ≤ F along with elements in Dr(t), those belonging to the set

Cr(t), which take on a value larger than x. However, this is not possible in view
of the control logic. Since any element in Cr(t) must take on a value not larger
than the value taken on by any element in Zr(t), we conclude that

∑

j∈Cr(t)

(
xj(t)− x

)
≤

∑

j∈Zr(t)

(
xj(t)− x

)
(5.21)

As a final step, let Zr(t) = Zr(t) ∪ Zr(t), where

{
Zr(t) := E r(t) ∩ E r(tr

k)

Zr(t) := E r(t) ∩ Dr(tr
k)

(5.22)

Then,

∑

j∈Dr(t)

(
xj(t)− x

)
≤

∑

j∈(Ar(t)∪Zr(t))

(
xj(t)− x

)
+

∑

j∈(Br(t)∪Zr(t))

(
xj(t)− x

)

(5.23)

The first sum on the right side of (5.23) yields

∑

j∈(Ar(t)∪Zr(t))

(
xj(t)− x

)
≤

∑

j∈(Ar(t)∪Zr(t))

(
xj(tr

k)− x + t − tr
k
)

≤ |E r(tr
k)|(t − tr

k) (5.24)

The first inequality follows since all the nodes, including the misbehaving
ones, take controls in {−1, 0, 1}. The second inequality follows since (Ar(t) ∪
Zr(t)) ⊆ E r(tr

k) and because j ∈ E r(tr
k) only if xj(tr

k) < x. The second sum on the
right side of (5.23) yields

∑

j∈(Br(t)∪Zr(t))

(
xj(t)− x

)
≤

∑

j∈(Br(t)∪Zr(t))

(
xj(tr

k)− x + t − tr
k
)

≤ ε + |Dr(tr
k)|(t − tr

k) (5.25)
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The last inequality follows since (Br(t) ∪ Zr(t)) ⊆ Dr(tr
k) and since∑

j∈S
(
xj(tr

k)− x
)
< ε for every S ⊆ Dr(tr

k). In fact,
∑

j∈Dr(tr
k)

(
xj(tr

k)− x
)
< ε

since r stays constant from T′ on. Thus, in order for
∑

j∈S
(
xj(tr

k)− x
)
≥ ε there

should exist at least one node j ∈ Dr(tr
k)\S such that xj(tr

k) − x < 0. However,
since r is the node that attains the minimum value among the normal nodes
then j ∈ Dr(tr

k) only if xj(tr
k) ≥ x otherwise it is discarded in view of Assump-

tion 5.1 and by construction of the control logic.
Overall, we get

∑

j∈Dr(t)

(
xj(t)− x

)
≤ ε + (|E r(tr

k)|+ |Dr(tr
k)|)(t − tr

k)

<
3
2ε (5.26)

for all t ∈ Tr
k since |E r(tr

k)| + |Dr(tr
k)| ≤ dr and because t − tr

k ≤ ε/(4dr) for all
t ∈ Tr

k. Finally, since the interval Tr
k is generic, we conclude that | aver(·)| < 3ε/2

starting from the first update tr
k ≥ T′ of node r. Since this occurs not later than

T′ + ε/(4dr), it holds that | aver(t)| < 3ε/2 for all t ≥ T.
We note that Lemma 5.3 strongly relies on the fact that there is no control or
transmission misbehavior. In fact, in either case, neither (5.24) nor (5.25) are
valid.
We finally proceed with the proof of Theorem 5.2.
Proof of Theorem 5.2. Let T be as in Lemma 5.3, and denote by r and s any two
indices belonging to N such that xr(t) = x and xs(t) = x for all t ≥ T.
Consider any t ≥ T. We have

aves(t) =
∑

j∈Ds(t)

(
xj(t)− x

)
=

∑

j∈Ds(t)

(
xj(t)− x

)
+ |Ds(t)| (x − x) (5.27)

The sum term satisfies
∑

j∈Ds(t)

(
xj(t)− x

)
=

∑

j∈(Ds(t)\Dr(t))

(
xj(t)− x

)
+

∑

j∈(Ds(t)∩Dr(t))

(
xj(t)− x

)

<
∑

j∈(Ds(t)\Dr(t))

(
xj(t)− x

)
+

3
2ε (5.28)
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The inequality comes from the fact that aver(t) < 3ε/2 in view of Lemma 5.3,
and since

∑
j∈S

(
xj(t)− x

)
< 3ε/2 for every S ⊆ Dr(t) (cf. the proof of Lemma

5.3). Hence,

aves(t) <
∑

j∈(Ds(t)\Dr(t))

(
xj(t)− x

)
+ |Ds(t)| (x − x) + 3

2ε (5.29)

Since s is the node attaining the maximum value among the normal nodes,
j ∈ Ds(t) only if xj(t) ≤ x otherwise it is discarded in view of Assumption 5.1
and by construction of the control logic. Thus, xj(t) ≤ x for all t ≥ T and all
j ∈ Ds(t). Hence,

aves(t) < (|Ds(t)\Dr(t)| − |Ds(t)|) (x − x) + 3
2ε (5.30)

As a final step, notice that

|Ds(t)| − |Ds(t)\Dr(t)| = |Ds(t) ∩ Dr(t)| (5.31)

Following the same notation as in Section 5.1.1, let E i(t) and E i(t) be the set of
nodes discarded by i ∈ N at time t with associated value smaller than xi(t) and
larger than xi(t), respectively. For nodes r and s, define





W r(t) := E r(t) ∩Qs

W r(t) := E r(t) ∩Qs

W s(t) := E s(t) ∩Qr

W s(t) := E s(t) ∩Qr

(5.32)

Thus, at every t ∈ R≥0, node r discards |W r(t)| + |W r(t)| nodes that are also
neighbors of s. Similarly, node s discards |W s(t)|+ |W s(t)| nodes that are also
neighbors of r. Moreover,

{
W r(t) ⊆ W s(t)

W s(t) ⊆ W r(t)
(5.33)

The first relation follows because r is the node attaining the minimum value
among the normal nodes. Thus, all the nodes that belong to W r(t) take on
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value less than x and hence are necessarily misbehaving. Since these nodes
belong to Qs, they must be discarded also by node s. In fact, at every t ∈
R≥0, node s discards the F smallest value less than xs(t), and, after T, there
cannot be more than F values less than x in view of Assumption 5.1 and Lemma
5.2. Hence, these nodes must belong to E s(t), and thus to W s(t). The same
reasoning applies to the relation W s(t) ⊆ W r(t).
Hence, at every t ∈ R≥0, nodes r and s can discard at most |W s(t)|+|W r(t)| ≤ 2F
different common neighbors. Since by Assumption 5.4 nodes r and s have at
least 2F+1 neighbors in common, we have |Ds(t)∩Dr(t)| ≥ 1. This implies that
aves(t) < −(x − x) + 3ε/2. By combining this inequality with aves(t) > −3ε/2,
we finally conclude that x − x < 3ε.

5.5 a numerical example
Consider a network system as in (5.1)-(5.8), with n = 7 nodes interconnected
as in Figure 5.1 and F = 1 misbehaving nodes. State and clock initial values
are taken randomly within the intervals [0, 1] and [0, tinit], respectively, with
tinit = 0.15sec. The desired accuracy level for consensus is selected as ε = 0.01
and we set Δi = ε/(4di) for every node. We note that the graph satisfies As-
sumption 5.3, which is sufficient to guarantee resilience against generic mis-
behavior (Theorem 5.1).
We mainly consider the case of control and output misbehavior, which are the
most critical errors for consensus (cf. Section 5.1.2) and depict tangible vari-
ation in state and output evolution. Specifically, we assume that the misbehav-
ing node i ∈ M applies the control input ui(t) = 10 sin(10 πt) and ui(t) = 0.2
for all t ∈ R≥0 instead of (5.5). Figure 5.2 and 5.3 illustrates the network state
evolution with the proposed resilient consensus protocol. In agreement with
the conclusions of Theorem 5.1, one sees that the normal nodes remain in the
convex hull containing their initial values and reach an approximate agree-
ment disregarding the behavior of the misbehaving node.
In order to further substantiate the performance of the proposed resilient co-
ordination protocol, we consider other type of attack strategies. For example
in Figure 5.4, 5.5, and 5.6 we consider output misbehavior where the evolution
of the output of the misbehaving node i ∈ M follows an arbitrary trajectory ac-
cording zi(t) = 0.05 sin(10πt+ xi(0), zi(t) = 0.5t+ xi(0), and zi(t) = 0.1+ xi(0),
respectively. While we observe the employed resilient protocol ensures net-
work nodes reach consensus.
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Figure 5.1: Network system considered in the numerical example. Normal
nodes are depicted in gray, while the misbehaving node is depicted in orange.
The graph satisfies Assumption 5.3 and is thus robust against generic misbeha-
vior (Theorem 5.1). The removal of the red edges leads to a graph that satisfies
Assumption 5.4, which is robust against data acquisition or timing misbeha-
vior (Theorem 5.2).
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Figure 5.2: Network state evolution with the resilient consensus protocol un-
der control misbehavior ui(t) = 10 sin(10 πt), i ∈ M. The evolution of the
misbehaving node’s state is depicted in red dashed line.
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Figure 5.3: Network state evolution with the resilient consensus protocol un-
der control misbehavior, ui(t) = 0.2, i ∈ M. The evolution of the misbehaving
node’s state is depicted in red dashed line.
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Figure 5.4: Network state x(t) and output z(t) evolution under output misbe-
havior zi(t) = 0.2 sin(10πt) + xi(0), i ∈ M. The misbehaving node trajectories
are depicted in red dashed line.
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Figure 5.5: Network state x(t) and output z(t) evolution under output misbe-
havior zi(t) = 0.5 t + xi(0), i ∈ M. The misbehaving node trajectories are
depicted in red dashed line.
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Figure 5.6: Network state x(t) and output z(t) evolution under output misbeha-
vior zi(t) = 0.1+ xi(0), i ∈ M. The misbehaving node trajectories are depicted
in red dashed line.
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Asymptotic Coordination in
Self-triggered Networks

abstract
By reasoning on approximate consensus, the connectivity conditions in
chapter 5 are more conservative than those found in the literature on resilience
coordination under synchronous clocks LeBlanc et al. (2013). In particular.
The objective of this chapter is to relax the network connectivity requirement of
chapter 5 by reasoning on asymptotic consensus. The considered approach is
inspired by the asymptotic coordination protocol De Persis and Frasca (2013),
where exact consensus is achieved at the expense of slowing down the conver-
gence speed. The idea is that exact consensus helps to reduce some constraints
on the network connectivity. Although the formal analysis of this new protocol
is not yet complete, it is conjectured that with this modification we can ensure
resilience under the same (r, s)-robustness hypothesis of LeBlanc et al. (2013).

Published as:

97



98 misbehavior-resilient asymptotic coordination in self-triggered networks

6.1 system definition
Consider a network of n ∈ N nodes interconnected in accordance with a time-
invariant undirected connected graph G := (I, E), where I is the set of nodes,
with n := |I|, while E ⊆ I × I is the set of edges. We let Qi denote the set of
neighbors of i ∈ I, and by di the cardinality of Qi, that is di := |Qi|. The set Qi
represents the set of nodes with which node i exchanges data. For every i ∈ I,
the dynamics are given by





ẋi(t) = γ(t)ui(t)

zi(t) = fi(xi(t))
t ∈ R≥0 (6.1)

where xi ∈ R is the state with xi(0) arbitrary; ui ∈ R is the control action applied
by node i; γ(t) = a/1 + t, ∀ a ∈ R≥0 is a non-increasing function; zi ∈ R is the
output, where fi : R → R is a function to be specified, and represents the value
that node i makes available to its neighbors. The variable t ∈ R≥0 is understood
as the absolute time frame within which all the nodes carry out their operations
in an asynchronous way.
The objective is to design a coordination protocol in such a way that normal
(non-misbehaving) nodes eventually reach asymptotic consensus despite the
presence of misbehaving nodes. The class of misbehavior in this chapter is
similar to chapter 5. According to the usual notion of consensus Cao et al.
(2013), the network nodes should converge to an equilibrium point where all
the nodes have the same value.
Network nodes carry out their operations by means of three main quantities:

• Let ε(t) = b/1 + t, ∀ b ∈ R≥0 be a non-increasing function, such that
limt→∞ ε(t) = 0.

• A parameter F ∈ N, which determines the maximum number of misbe-
having nodes that the network is expected to encounter.

• A sequence {ti
k}k∈N of time instants at which node i requests data from its

neighbors, where ti
0 ∈ [0, tinit] defines the first time instant at which node

i becomes active and tinit ∈ R≥0 denotes the first time instant at which all
the nodes are active in the network. By convention, 0 = tr

0 where r is the
first network node to become active and xi(t) = xi(ti

0) for every i ∈ I and
for all t ∈ [0, ti

0].
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It is implicit in the above definition of tinit that all the nodes become active in
a finite time. We will also assume that all nodes remain active for the entire
runtime. The analysis can be easily generalized to the case where some of the
nodes never “wake up” or “die” during the network runtime.

6.1.1 coordination protocol
Let N and M represent the sets of normal nodes and misbehaving nodes, re-
spectively, which are assumed to be time-invariant. We now focus on the gen-
eric k-th round of operations for node i ∈ N . This consists of four main opera-
tions: (i) data acquisition; (ii) data transmission; (iii) control logic; (iv) timing. The
operations (i), (ii), and (iii) are similar to chapter 5. The update time operation
(iv), however, should be adjusted to compensate for slowing the system velo-
city by γ(t) and avoids arbitrarily fast update rate. Error or fault in any of the
mentioned operations is considered as misbehavior.
(iv) Timing. For i ∈ N , the next round of operations is scheduled at time ti

k+1 =

ti
k + Δi

k where

Δi
k =

1
4diγ(ti

k)
max{ε(ti

k), | avei(ti
k)|} (6.2)

with Δi ∈ R>0 such that Δi := mink Δi
k ≤ c/4dmax and c ∈ R>0 satisfies

c ≤ ε(t)
γ(t)

, ∀ t ≥ 0 (6.3)

Operations can be then periodic as well as aperiodic. Parameter ε(t) asymp-
totically converges to zero, parameter γ(t) in (6.1) is introduced to avoids ar-
bitrarily fast sampling (Zeno behavior) by slowing down the update rate of
system (6.2) and the system velocity (6.1). To fulfill this purpose, therefore,
the non-increasing functions ε(t) and γ(t) should enjoy a comparable speed of
convergence to zero that satisfies (6.3). A timing error means that (6.2) is not
satisfied for some k ∈ N.

6.1.2 assumptions and definitions
Assumption 6.1. The set M of misbehaving nodes does not change over time and
each normal node i can have at most F misbehaving node among its neighbors, i.e.
|Qi ∩M| ≤ F.
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Assumption 6.2. For every i ∈ M, ui(·) is a locally integrable function, Di(·) ⊆ Qi,
fi(·), hi(·) ∈ R and Δi

k ≥ Δi for all k ∈ N, i ∈ M, and for some Δi ∈ R>0.

Definition 6.1 ((r, s)-robust graph). For r, s ∈ N , the graph for all pairs of
disjoint nonempty subsets of nodes S1,S2 ⊂ I, satisfies at least one of the fol-
lowing conditions

i All nodes in S1 have at least r neighbors outside S1.

ii All nodes in S2 have at least r neighbors outside S2.

iii There are at least s nodes in S1 ∪ S2 that each have at least r neighbors
outside their respective sets.

The Assumption 6.2 ensures the existence of the solutions for all the nodes
and for all time, that variables and functions are well defined. Furthermore,
it entails no upper bound on Δi

k,∀i ∈ M. This is in order to capture the event
that a misbehaving node never collects data from its neighbors and applies an
open-loop control.
Definition 6.1 deals with the graph connectivity properties and ensure that
the normal nodes enjoy sufficient “genuine” information for taking control
decisions LeBlanc et al. (2013). These assumptions should be interpreted as
design conditions when the graph topology can be assigned.
In the next section we sate the main results of the paper.

6.2 main result
Before representing the main result of this chapter. Let the maximum and
minimum trajectories be defined as

xm(t) := min
i∈N

xi(t), xM(t) := max
i∈N

xi(t) (6.4)

where t ∈ R≥0.
In order to argue that all normal nodes remain in the convex hull containing
their initial values first we have to show xM(t) and xm(t) are monotonically non-
increasing and non-decreasing, respectively. This argument is given in Lemma
6.1.
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Lemma 6.1. Consider the network system (6.1)-(6.2), and let Assumptions 6.1 and
6.2 hold. Then, xm(·) and xM(·) are monotonically non-decreasing and non-increasing,
respectively.

Proof of Lemma 6.1. We prove the statement only for xm(·) since the proof for
xM(·) is analogous. Suppose that the claim is false, and let τ be the first time
instant at which there exists an index i ∈ N such that





xi(τ) ≤ xj(τ) ∀ j ∈ N
ui(τ) < 0

(6.5)

Clearly, there could be multiple nodes achieving (6.5) at time τ. In this case, i
is any of such nodes. Notice that τ ≥ ti

0 since ui(t) = 0 for all t ∈ [0, ti
0).

Consider first the case where τ = ti
k for some k ∈ N. In order for ui(ti

k) < 0 we
must have avei(ti

k) ≤ −ε < 0. However, this is not possible. In fact, any normal
node j satisfies zj(ti

k) = xj(ti
k) ≥ xi(ti

k) because i is the node of minimum at
τ = ti

k. Hence, zj(ti
k) < xi(ti

k) only if j is misbehaving. Since misbehaving
nodes are not more than F by Assumption 6.1, if a misbehaving node j gives
zj(ti

k) < xi(ti
k) it is discarded by the control logic.

Consider next the case where τ is not an update time for node i. Let ti
k < τ be

the last update time for node i before τ. In order to have (6.5), there must exist
a node s ∈ N such that





xs(ti
k) ≤ xj(ti

k) ∀ j ∈ N
xs(ti

k) < xi(ti
k)

xi(τ) ≤ xj(τ) ∀ j ∈ N
ui(τ) < 0

(6.6)

The first two conditions imply that i is not the node which takes on the
minimum value at ti

k, value which is instead attained by node s. Condition
xs(ti

k) < xi(ti
k) is needed otherwise ui(ti

k) ≥ 0 in accordance with the previous
arguments. The last three conditions mean that i becomes the minimum at τ
with ui(τ) = ui(ti

k) < 0. Let

β := xi(ti
k)− xs(ti

k)
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Recall that normal nodes take controls in {−1, 0, 1}. Hence, xi(τ) ≤ xj(τ) for
all j ∈ N only if τ − ti

k ≥ β/2γ(ti
k). However,

Δi
k(ti

k) ≤ 1
4diγ(ti

k)

∑

j∈Di(ti
k)

(xi(ti
k)− zj(ti

k))

≤ 1
4diγ(ti

k)

∑

j∈Di(ti
k)

(xi(ti
k)− xs(ti

k)) (6.7)

The first equality follows from the fact that ui(ti
k) < 0 requires avei(ti

k) ≤ −ε(ti
k)

so that Δi
k ≤ | avei(ti

k)|/(4diγ(ti
k)). On the other hand, the second inequality

follows since zj(ti
k) < xs(ti

k) only if j is misbehaving, in which case it is discarded
by node i in view of Assumption 6.1 and by the control logic. Since |Di(t)| ≤ di

for all t ∈ R≥0 then Δi
k ≤ β/4γ(ti

k). This leads to a contradiction since it implies

β
2γ(ti

k)
≤ τ − ti

k < Δi
k ≤

β
4γ(ti

k)

with β > 0.
This Lemma implies that xM(t) and xm(t) admit a finite limit

x := lim
t→∞

xm(t), x := lim
t→∞

xM(t) (6.8)

We conjecture that x = x under the hypothesis that the graph is (F + 1,F + 1)-
robust, meaning that the network achieves exact consensus. More precisely ,
we conjecture the following.

Conjecture 6.1. Consider the network system (6.1)-(6.2), with the misbehaving nodes
exhibiting an error in either of the operations (i)-(iv). If Assumptions 6.1 and 6.2 hold
true and the graph is (F+ 1,F+ 1)-robust, then for all i ∈ N , xi(t) remains inside the
convex hull containing their initial values and

lim
t→∞

xi(t) = v, v ∈ [min
i
{xi(0)}, max

i
{xi(0)}]

The above conjecture is based on the following considerations. With approx-
imate consensus of chapter 5 nodes can stop updating their values even if exact
consensus is not achieved, in which case x = x can be large (increasing with
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network size). As discussed in chapter 5, Assumption 5.3 and 5.4 become in-
strumental to ensure that the nodes attaining the maximum x and minimum x
values share enough genuine (non-misbehaving) information so that x− x can
be kept small. By using a protocol that searches for exact consensus, nodes can
stop updating their values only when exact consensus is achieved. Since the
nodes of maximum and minimum take on a limiting value, in order to show
that x = x one hast to rule out the situation where some of the network nodes
take on value within [x, x] and continue to move, which in principle would al-
low x − x to be strictly grater than zero. We conjecture that this situation can
not happen if the graph is (F + 1,F + 1)-robust since this property guaran-
tees that asymptotically at least one of the two nodes taking on maximum and
minimum values have at least F+ 1 neighbors, thus at least one genuine (non-
misbehaving) node. This implies that such neighbor must necessarily take on
the same maximum/minimum constant value. In turn, by applying iteratively
the same argument this ensures that x = x. Unfortunately, the above argument
holds only when x and x are exactly attained, which is true only asymptotic-
ally. This introduces some technical subtleties which need to be worked out
in order to make the above argument rigorous. In sequel, this idea is demon-
strated via numerical example. Extensive simulation results indicate that most
likely this conjecture is true.
As a final point we mention that while this modified protocol can provide a
way to relax the hypothesis on the network connectivity, it remains interesting
to see if one can relax the hypothesis in the network connectivity also with
respect to the protocol of section 5 which has the definite advantage to ensure
finite-time convergence.

6.3 a numerical example
Consider a network system as in (6.1)-(6.2), with n = 7 and dmax = 5 nodes in-
terconnected as in Fig. 6.1 and F = 1 misbehaving nodes. State and clock initial
values are taken randomly within the intervals [0, 1] and [0, tinit], respectively,
with tinit = 0.5sec. As far as simulation is concerned, the desired functions
ε(t) = 0.05/(1+ t) and γ(t) = 0.25/(1+ t) are assumed. This sets Δ = 0.025 for
every node with c = 0.2. We note that the graph satisfies (2, 2)-robust property
as in Definition 6.1.
We mainly consider the case of control and output misbehavior, which are the
most critical errors for consensus and depict tangible variation in state and



104 misbehavior-resilient asymptotic coordination in self-triggered networks

Figure 6.1: Network system considered in the numerical example. Normal
nodes are depicted in grey, while the misbehaving node is depicted in orange.
The graph satisfies (2, 2)-robust property as in Definition 6.1.

output evolution. Specifically, we assume that the misbehaving node i ∈ M
applies the control input ui(t) = 10 sin(10 πt) and ui(t) = 0.05 for all t ∈ R≥0
instead of (5.5). Figure 6.2 and 6.3 illustrates the network state evolution with
the proposed resilient consensus protocol. In agreement with the conclusions
of Theorem 6.1, one sees that the normal nodes remain in the convex hull con-
taining their initial values and reach an approximate agreement disregarding
the behavior of the misbehaving node.
In order to further substantiate the performance of the proposed resilient co-
ordination protocol, we consider other type of misbehavior. For example in
Figure 6.4, 6.5, and 6.6 we consider output misbehavior where the evolution
of the output of the misbehaving node i ∈ M follows an arbitrary trajectory
according zi(t) = 0.3 sin(πt+ xi(0), zi(t) = 0.06 t+ xi(0), and zi(t) = 0.1+ xi(0),
respectively.
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Figure 6.2: Network state evolution with the resilient consensus protocol un-
der control misbehavior ui(t) = 0.5 sin(πt), i ∈ M. The evolution of the mis-
behaving node’s state is depicted in red dashed line.
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Figure 6.3: Network state evolution with the resilient consensus protocol un-
der control misbehavior, ui(t) = 0.05, i ∈ M. The evolution of the misbehaving
node’s state is depicted in red dashed line.
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Figure 6.4: Network state x(t) and output z(t) evolution under output misbe-
havior zi(t) = 0.3 sin(πt)+xi(0), i ∈ M. The misbehaving node trajectories are
depicted in red dashed line.
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Figure 6.5: Network state x(t) and output z(t) evolution under output misbe-
havior zi(t) = 0.06 t + xi(0), i ∈ M. The misbehaving node trajectories are
depicted in red dashed line.
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Figure 6.6: Network state x(t) and output z(t) evolution under output misbeha-
vior zi(t) = 0.1+ xi(0), i ∈ M. The misbehaving node trajectories are depicted
in red dashed line.



7
Conclusions

In this thesis, we developed self-triggered coordination protocols that are re-
silient against communication failure and node misbehavior of both genu-
ine and malicious nature. These scenarios are representatives of breach in
data availability and integrity, respectively, which are the dominant threats
to cyber-physical systems.
In part I, we investigated self-triggered coordination for distributed network
systems in the presence of Denial-of-Service at the communication links, of
both genuine and malicious nature. We considered a framework in chapter 2
in which DoS affects the whole network links simultaneously, which is repres-
entative for networks operating at infrastructure mode. A generalized version
of this framework is considered in chapter 3 and 4 in which DoS can affect
each of the network links independently, which is representative for networks
operating in peer-to-peer mode. By introducing a notion of Persistency-of-
Communication (PoC), we provided an explicit characterization of DoS fre-
quency and duration under which coordination of single integrator dynamics
(chapter 2 and 3) and synchronization of higher order dynamics (chapter 4) can
be preserved by suitably designing time-varying control and communication
policies. An explicit characterization of the effects of DoS on the consensus and
synchronization time has also been provided. We compared the notion of PoC
with classic average connectivity conditions that are found in pure continuous-
time consensus networks. The analysis reveals that PoC naturally extends such
classic conditions to a digital networked setting by requiring graph connectiv-
ity over periods of time that are consistent with the constraints imposed by the
communication medium.
In part II, we investigated the possibility of approaching the resilient consensus
problem in a context where the nodes have their own clocks and can make up-
dates at arbitrary time instants. The results in chapter 5 indicate that handling
misbehaving units can be possible also in network applications involving asyn-
chronous and aperiodic transmissions, as occurs with event-triggered and self-
triggered network systems. In chapter 6 the connectivity condition required to
achieve approximate consensus in chapter 5 is relaxed via a different coordina-
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tion protocol, following the similar line of reasoning in LeBlanc et al. (2013). A
rigorous treatment of convergence for this protocol is still under development.

7.1 future research

High network connectivity helps to render the network more robust against
DoS and misbehavior, while low network connectivity helps to save commu-
nication resources. The former and latter are concerned with robustness and
communication cost, respectively. Optimizing the trade off between robust-
ness and communication cost is an interesting topic for future research. A
detail elaboration on possible future works are provided for part I and II, sep-
arately.

7.1.1 part i

The presented results lend themselves to many extensions. An interesting in-
vestigation pertains the analysis of coordination and synchronization schemes
in the presence of both DoS and deceptive attacks. In this part, failures induced
by DoS do not follow a given class of probability distributions. It can be inter-
esting to consider a probabilistic approach in case the attacker does also want
to remain undetected; see for instance Zhang et al. (2015); Bai et al. (2015). This
is because for example packet drops following a Bernoulli distribution or alike
might be more difficult to detect with classic detectors, as they might resemble
genuine packet drops. Investigating this issue in the present context repres-
ents an interesting research line.
Finally, it is of interest to look for control laws other than the one considered in
this thesis. For instance, one can think of embedding the nodes with prediction
capabilities so as to estimate the behavior of the neighboring nodes and set
the control action accordingly, possibly in accordance with a given optimality
performance criterion. A choice of this type has been considered in Feng and
Tesi (2017), where the control action during DoS is chosen based on predictions
of the process future behavior. The analysis in Feng and Tesi (2017), however,
is restricted to a classic single-feedback control loop, and it is not immediately
clear how such an approach can be extended to a distributed setting like the
one considered in this thesis.
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7.1.2 part ii
In this part, we have considered a scenario where the network can support the
data flow with reliability and accuracy, thus neglecting issues such as trans-
mission delays, data loss, bandwidth as well as noise. In practice, these issues
are are also very important but require careful consideration of several tech-
nicalities. Nonetheless, we envision that some extensions are indeed possible
along the same lines as in De Persis and Frasca (2013); Senejohnny et al. (2017)
where we discuss aspects related to the quality of the transmission medium.
Our approach utilizes a self-triggered update scheme with control saturation.
It is of interest to investigate if similar results can be obtained also with event-
triggered or other types of aperiodic update schemes e.g., Hetel et al. (2017);
Dimarogonas et al. (2012). It is also interesting to see if similar results can be
obtained with other averaging functions, for example with the classic coup-
ling law for average consensus Cortés (2006). We envision an application of the
present research within the context of distributed optimization of Sundaram
and Gharesifard (2015, 2018), with specific reference to self-triggered schemes
Fazlyab et al. (2016). Another interesting research venue is in the area of multi-
agent systems with cloud access Nowzari and Pappas (2016). Also in this con-
text, self-triggered control seems a viable option for enabling asynchronous
coordination without destroying regulation properties.
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Summary

With the advent of new concepts like Internet of Things (IoT), Industry 4.0,
Smart Cities, and Smart Grid, new opportunities are brought into several in-
dustrial and societal domains ranging from transportation and electric power
generation to traffic flow management and health care. Many of the above
mentioned sectors and industries are essential to the health, safety, and secur-
ity of our society and are considered critical infrastructure. This emphasizes
the importance of rendering such systems “resilient” against malfunctioning
due to genuine failures or cyberattacks.
Real-time availability and integrity of data are crucial to ensure normal op-
eration of the system. The first factor is related to to the fact that data flow
can be occasionally interrupted, while the second factor is related to the fact
that the data content might be corrupted. Given these important factors, this
thesis investigates the problem of designing coordination protocols over di-
gital communication channels, which are resilient against the lack of data and
unreliable information. The results are divided in two parts.
Part I is concerned with resilience against the absence of data and information
accessibility due to genuine failure or cyberattacks, which results in Denial-of-
Service (DoS). In particular, we are concerned with jamming attacks as we are
mainly interested in wireless sensor networks. We design resilient consensus
and synchronization protocols for both shared and peer-to-peer communica-
tion networks.
Part II is concerned with resilience against unreliable information in the net-
work which could be the result of genuine fault/error in the control system
operation or cyberattack. The nodes that communicate untrustworthy data in
the network are considered misbehaving. We investigate a resilient consensus
protocol against several types of misbehavior resulting from errors in oper-
ations such as data acquisition, data transmission, control logic, and update
time scheduler.
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Samenvatting

Met de opkomst van nieuwe concepten als Internet of Things, Industry 4.0,
Smart Cities en Smart Grids ontstaan er nieuwe mogelijkheden in industriële
en maatschappelijke sectoren, van transport en het opwekken van stroom tot
verkeersregeling en gezondheidszorg. Veel van deze sectoren zijn essentieel
voor de gezondheid en veiligheid van onze maatschappij en behoren tot de zo-
genoemde kritieke infrastructuur. Daaruit blijkt het belang om zulke systemen
bestand te maken tegen problemen veroorzaakt door defecten of cyberaanval-
len.
Beschikbaarheid en integriteit van data zijn cruciaal om zulke systemen goed
te laten werken. Deze twee factoren kunnen in het geding komen vanwege het
feit dat communicatiekanalen soms tijdelijk niet werken, respectievelijk het feit
dat data tijdens het transport beschadigd of veranderd kan worden. Vanwege
deze factoren behandelt dit proefschrift de uitdaging van het ontwerpen van
coördinatieprotocols over digitale communicatiekanalen, die bestand zijn te-
gen datagebrek en foutieve data. De resultaten zijn opgedeeld in twee delen.
Deel I behandelt bestendigheid tegen de afwezigheid van data als gevolg van
defecten of cyberaanvallen die resulteren in Denial-of-Service. In het bijzonder
houden we ons bezig met aanvallen waarbij een draadloos communicatieka-
naal verstoord wordt. We ontwerpen bestendige consensus- en synchronisa-
tieprotocollen voor zowel gedeelde als peer-to-peernetwerken.
Deel II behandelt bestendigheid tegen onbetrouwbaarheid van de informa-
tie in het netwerk, mogelijk als gevolg van een defect in het regelsysteem of
een cyberaanval. De nodes in het netwerk die onbetrouwbare data aanleveren
worden aangemerkt als zich misdragend. We onderzoeken een consensuspro-
tocol dat bestand is tegen verschillende soorten misdragingen die het gevolg
zijn van problemen bij dataverzameling, communicatie, aansturing en upda-
teplanning.
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