

 University of Groningen

PyPedia
Kanterakis, Alexandros; Kuiper, Joel; Potamias, George; Swertz, Morris A.

Published in:
Source code for biology and medicine

DOI:
10.1186/s13029-015-0042-6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kanterakis, A., Kuiper, J., Potamias, G., & Swertz, M. A. (2015). PyPedia: using the wiki paradigm as crowd
sourcing environment for bioinformatics protocols. Source code for biology and medicine, 10, [14].
https://doi.org/10.1186/s13029-015-0042-6

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1186/s13029-015-0042-6
https://research.rug.nl/en/publications/1dabbe1a-5a23-42ce-9917-a0a48a5951ba
https://doi.org/10.1186/s13029-015-0042-6

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14
DOI 10.1186/s13029-015-0042-6

SOFTWARE Open Access

PyPedia: using the wiki paradigm as crowd
sourcing environment for bioinformatics
protocols
Alexandros Kanterakis1,2*, Joël Kuiper1, George Potamias2 and Morris A. Swertz1

Abstract

Background: Today researchers can choose from many bioinformatics protocols for all types of life sciences
research, computational environments and coding languages. Although the majority of these are open source, few of
them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to
disseminate information and enhance collaboration between users with varying expertise and background to author
qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be
applied to bioinformatics protocols.

Results: We piloted PyPedia, a wiki where each article is both implementation and documentation of a
bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose
complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of
PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of
the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy
researchers on the same page.

Conclusions: PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution
environment for biologists and bioinformaticians that complement existing resources, useful for local and
multi-center research teams.

Availability: PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions
are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.
com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License.

Keywords: Wiki, Web services, Open science, Crowdsourcing, Python

Background
It is a general consensus that modern bioinformatics soft-
ware should be useful in a community broader than the
original developers. To make this possible, this software
should possess certain qualitative characteristics such as
performance [1], openness [2], intuitive user interaction
[3] code readability and validity [4]. Developing software
while keeping in accordance with all these characteristics
is a tedious and resourceful process for most developers.

*Correspondence: kantale@ics.forth.gr
1University of Groningen, University Medical Center Groningen, Genomics
Coordination Center, Postbus 30 001, 9700 RB, Groningen, The Netherlands
2Institute of Computer Science, Foundation for Research and Technology
Hellas (FORTH), Nikolaou Plastira 100, 71110 Heraklion, Greece

As a consequence, many bioinformatics tools are devel-
oped in isolation to solve local or project problems with-
out the needs of a broader community in mind. This is
understandable as in academia, the developers are usu-
ally trainees that may have deep biological or statistical
expertise but often lack experience of modern software
management methods and development and are under
pressure to deliver in a short time frame without much
reward for long-term investments such as user guides,
examples and unit test [5]. However, this greatly hin-
ders synergism between bioinformaticians with similar
projects in labs, institutes and multi-center consortia. So
while todaymost software is open source and widely avail-
able, the overhead of installing, learning, configuring and

© 2015 Kanterakis et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-015-0042-6-x&domain=pdf
http://www.pypedia.com
https://github.com/kantale/PyPedia_server
https://github.com/kantale/pypedia
https://github.com/kantale/pypedia
mailto: kantale@ics.forth.gr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 2 of 13

validating an external bioinformatics tool for a particular
type of analysis is still a major challenge and we are still far
away from the vision of not only open and accessible but,
more significantly, explicit, maintainable and ready to use,
bioinformatics protocols [4].
Through these realizations it becomes evident that we

need an environment that can guide bioinformaticians,
regardless of their level, background, expertise, and pro-
gramming skills, to collaborate into writing, documenting,
reviewing, testing, executing, sharing and in general co-
existing into the experience of biology related software
development Several environments for coders exist, such
as cloud9 [6] or github.com, but their technical nature
often limits access for biologists who only occasionally
program. More accessible solutions such as IPython note-
book [7, 8] come closer, but are in general addressed
to experienced users, they lack a central repository of
publicly editable methods and do not offer version con-
trol. Meanwhile, Wikipedia has been successful as a low-
barrier environment for very diverse content providers
spanning from all the spectrums of expertise and back-
grounds to collaborate into creating new articles and
co-develop them to high quality. The advantages of the
wiki principle in the scientific content management have
already been discussed [9–11] and the concept of wikis
has already been used in the area of bioinformatics, such
as Wikigenes [12], SNPedia [13], GeneWiki [14] and,
semantic integration [15, 16]. Most relevant wiki for pro-
gramming is Rosetta Code (Mol, 2007), which contains
mainly a wiki of code snippets for known computational
problems but not optimized for “real world problems”.
In this paper we describe PyPedia, an effort to employ

the wiki concept in order to provide a crowdsourced envi-
ronment where bioinformaticians can share their exper-
tise and create or edit qualitative methods in the python
language. Moreover, users can experiment online with
various methods and perform basic interactive data anal-
ysis. Finally PyPedia can act as a simple python library for
a variety of bioinformatics methods.

Implementation
PyPedia is a wiki based on MediaWiki, the wiki engine
that powers Wikipedia. As in Wikipedia, the content is
divided in articles. In PyPedia each article is either a
python function or a python class. The title of each article
has the same name as the function/class that it contains.
In Wikipedia, we can place a link to any other article with
a simple notation (also called wikilink, or internal link).
Similarly in PyPedia a function call or a class instantia-
tion is automatically a wikilink to the called/instantiated
function/class. Moreover, this wikilink, functionally con-
nects an article with the linked article as a programming
dependency. For example when the function ‘PLD’ (short
for Pairwise Linkage Disequilibrium) calls the function

‘MAF’ (short for Minor Allele Frequency) then the func-
tion ‘MAF’ becomes automatically a wikilink in the article
‘PLD’ that point to ‘MAF’. When a user executes the ‘PLD’
method, then the code that is also in the ‘MAF’ article is
also executed (when called by ‘PLD’). The user does not
have to make any special ‘import’ statement since this is
taken care by PyPedia. By implementing this, we have con-
verted a wiki engine to a python library that can grow
multidimensional while users addmore articles. Users can
request to download the code for the ‘PLD’ function that
will also contain recursively all the dependencies hosted
in PyPedia. In the remaining of this chapter we detail the
functionality that allows different ways of sharing, execu-
tion and testing of the code, quality control and protection
from malevolent edits.

Python
For this pilot we decided to use Python because its design
philosophy emphasizes in code readability while having
remarkable power. It features a readable syntax, func-
tional and object-oriented abilities, exception handling,
high level data types and dynamic typing. It offers imple-
mentations in all common computer architectures and
operating systems and most importantly a huge variety of
ready-to-use packages for common programming tasks. It
is between the most popular scripting programming lan-
guages and has a dominant position in the area of bioin-
formatics. E.g., BioPython [17] is the most known library
for molecular biology and bioinformatics whereas PyCo-
gent [18] focuses in sequence management and genomic
biology. Other libraries include DendroPy [19] for phy-
logenetic computing, Biskit [20] for structural bioinfor-
matics, pymzML [21] for mass spectrometry data and
Pybedtools [22], Pyicos [23] for sequencing. These tools
can be combined with more generic libraries for scien-
tific computing like scipy [24] for numerical analysis and
matplotlib [25] for plotting. PyPedia can act as a commu-
nity maintained glue library between these packages by
enriching their abilities, providing conversion functions
and demonstrating common use cases.

Wiki
PyPedia is an extension to the Mediawiki content man-
agement system mostly known as the backend of the
Wikipedia project. Mediawiki is a modern Content Man-
agement System with many features like versioning, edit
tracking, indexing/querying, rich content (for example
LaTeX math formatting), templates and multiple user
groups. Moreover, Mediawiki is highly extensible since it
supports connections with external software that can alter
its standard behavior. These connections are called hooks.
PyPedia’s extensions to Mediawiki consist of two hooks.
The first hook is activated when a new article is created
and inserts the initial content that predefines the structure

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 3 of 13

of the article. The second hook is activated when a user
submits new content and performs checks to verify the
validity of the edit.
Each PyPedia article follows a predefined structure

whereas addition or deletion of sections is not allowed in
order to preserve uniformity over all methods. Along with
the source code, each article has sections that provide doc-
umentation, user parameters, under development code,
unit tests and edit permissions of the method (Fig. 1).
In the following paragraphs we explain the use of each
section and the checks that are applied.
The first section is the “Documentation”. In this section

the user documents the method, explains the parameters,
provides references and in general contributes with any

information that will aim the potential user to use this
method. The documentation is done with wikitext, that is
a simple markup language for the visual enrichment of the
provided text with HTML elements. Among others, users
can assign categories, add images, tables, hyperlinks and
any element supported by Mediawiki. In the “Parameters”
section a user can create or edit an HTML form. This form
can be used to fill-in parameters of the method before
executing it. The different ways for executing the method
after filling this HTML form are explained at the “Using
PyPedia” paragraph. The format used for the creation of
this form is a subset of the Galaxy [26] XML (Extensi-
ble Markup Language) tool configuration language and its
outline is shown in (Fig. 2).

Fig. 1 The structure of an article in PyPedia. An article has a predefined structure. The “Code”, “Development Code” (not shown) and “Unit Tests”
sections contain python code. The rest sections define the documentation, parameters and permissions of the article

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 4 of 13

Fig. 2 Creating parameters. An example of generating a parameters form. The user defines the parameters in Galaxy XML (upper part) and upon
saving it is converted to an HTML form

For each parameter a < param > XML element has to
be defined. The “name” attribute of the “param” element
should have the same value as a parameter of the python
function that this article describes. The “type” attribute
can be either “data” if the input will be treated as a simple
string or “eval” if it is to be treated as a Python expression
(i.e. “a” :1). Finally if the “type” attribute is “select” then
a combo-box will be created. The possible options of the
combo box can be defined with subsequent < option >

elements. After a user edits and submits the parameters
the second hook parses the XML and creates the HTML
form that is displayed in the article’s page.
As with the “Documentation”, the “See also” section can

contain arbitrary wiki markup. The difference is that this
section is focused into providing inner links to similar
articles, or to articles that call or are called by this method.
Similarly the “Return" section should give information
about the return value of this method.
The “Code" section is where the source code of the

method resides. In this section a user can submit an
implementation through either a python function or
class. The only limitation is that the function’s (or class’)
name should be identical as the article’s title. Virtually,
all methods in PyPedia belong to the same namespace.
This means that a simple function call (or class instan-
tiation) is enough to load the code of another article.
Since there is no need to import, we conform to the wiki
philosophy where inner linking should be intuitive and
simple.
The “Unit tests” section contains functions that test the

validity of the code submitted in the “Code” section. Unit
testing is the process of automatically triggering the invok-
ing of methods that test the integrity of recently submitted
code. It is an important component since it ensures that
recent edits didn’t break existing functionality and guar-
antees someminimum code integrity [27]. In PyPedia unit
tests are functions that take no options and return True or
False whether the implemented test succeeds or not. If a

unit test returns a string then it is considered that it failed
and the returned text appears as an error message to the
user.
When an edit in the source code or the unit tests is

made the following procedure is executed before saving:
The source code and the unit tests are parsed and all the
referenced methods are identified and loaded recursively.
The dependency-free source code is sent through an Ajax
call to a python sandbox. This sandbox contains a virtual
environment where the execution of python code can-
not cause any side effect even if the code is deliberately
malicious. In this environment we have installed Ana-
conda [28], which is a preconfigured version of Python
with hundreds of scientific packages including BioPython.
This constitutes the ideal environment for testing the
user-provided non-secure code. In this environment we
execute the unit tests and any violation is reported back
to the user. If the execution is successful then the edit is
saved. The environment for code editing is based on the
ACE code editor for the web that offers syntax highlight-
ing, auto indentation and other modern IDE (Integrated
Development Environment) features. Offline editing in a
local environment is also supported (Additional file 1).
Each one of the “Document”, “Code”, “Unit tests” and

“Permissions” sections can have their own permissions
settings. Initially, when an article is created, only the cre-
ator user is allowed to edit each one of these sections. By
editing the “Permissions” section the user can declare in
a comma separated list additional users that are allowed
to edit these sections. Special usernames include “ALL”
for all (even anonymous) users and “SIGNED” for all
signed in users. Although openness is always encour-
aged we allow user restricted article editing. This allows
the creation of sub-communities where only specific
users are allowed to edit some of the articles. As with
all Mediawiki environments, there also exists an open
“Discussion” page for each article for general comment
submission.

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 5 of 13

Using PyPedia
There are six different ways to perform an analysis with
code hosted in PyPedia. Four of them are by directly
interacting with the pypedia.com site, one with the pype-
dia python library and one with a RESTful interface (see
Fig. 3). In the remaining of this chapter we will describe
these methods.

From the front-page text editor
In the front page of pypedia.com exists a text editor
implemented in JavaScript, called CodeMirror. It emu-
lates an interactive python environment where users can

experiment and develop custom solutions. A user can
insert python code that includes calls to PyPedia func-
tions and classes. By pressing the ‘Run’ button, the code
is parsed and the dependency-free code is formed. This
code is submitted through an Ajax call to the python sand-
box. The results are asynchronously transmitted back and
shown to the article’s page as soon as the execution fin-
ishes. Apart from simple text the results can also be graphs
or any arbitrary HTML element. The analysis command
can be converted to a URL with the ‘Create Link’ button in
the front page. Thus sharing the complete analysis is easy
as sending a URL.

Fig. 3 Executing code hosted in PyPedia. The six different ways of executing code hosted in PyPedia as they are described in the “Using PyPedia”
section. Methods 1,2,3,4 require interaction with www.pypedia.com. Method 5 is through the RESTful interface and method 6 is through the python
pypedia package

www.pypedia.com

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 6 of 13

The next three methods require interaction with a spe-
cific article’s page. As it has been described before, each
article contains a “Parameters” section. This section con-
tains an editable HTML form. A user can fill this form
with values that act as parameters to the function that
this article contains. It is important to note that for these
execution methods no knowledge of python language or
programming is required. As with any website that con-
tains a bioinformatics service, a user, only has to fill in the
parameters in order to execute a method. There are three
ways to execute this function with the filled-in values:

By pressing the ‘Run’ button
Similarly to above, with this button the dependency free
code is submitted to the python sandbox and the results
are shown on the browser.

By pressing the ‘Download code’ button
In that case the dependency-free code is downloaded in a
file that has the same name as the title of the article. This
file can then run in an Anaconda python environment.

By pressing the ‘Execute on remote computer’ button
A user can execute the dependency-free code in a remote
computer of her choice. To do that, the user initially has
to declare the specifications of the remote computer in
her user’s page. The user page is a special set of articles
where editors can create a personal profile. In this page,
users can create a section titled “ssh” and then fill in the
hostname, username and execution path of a remote
computer. For example:

==ssh==
host=www.example.com
username=JohnDoe
path=/home/JohnDoe/runPyPedia

The Mediawiki database schema has been altered in
order to store these elements in a separate table and its
contents are never shown in any page. Once these ele-
ments are stored a user can execute the dependency-free
code in this remote computer by pressing the button “Exe-
cute on remote computer” in any article. Then, a password
prompt appears in the page and after completing it, PyPe-
dia maintains a SSH connection to the declared remote
computer, executes the code and fetches the results in a
new browser tab. The results contain the method’s out-
put, returned values and potential errors. This execution
method streamlines the procedure between setting up an
execution environment and the process of installing, con-
figuring and executing the desired software. Tools that
utilize collaborative data analysis (i.e. GaggleBridge [29])
can benefit from this approach. A simple and common
example is when a group of researchers need to share a

computational environment (i.e. in Amazon EC2) in order
to perform a common bioinformatics task.

Via the RESTful API
The RESTful web service has the following specification:

http://www.pypedia.com/index.php?
get_code=<Pythonanalysiscode>
Example:
http://www.pypedia.com/index.php?
get code=Hello_world()

With this request, any user or external tool can receive
the dependency-free code. One important parameter of
the RESTful API (Application Programming Interface)
is the “b_timestamp” (b stands for ‘before’). With this
parameter we can request a specific ‘frozen’ version of the
code. When it is defined the API returns the most recent
version of the code that was edited before the declared
timestamp. This parameter is applied recursively for all
the articles that the API requests code from. By defin-
ing this parameter we can ensure that the returned code
will always be the same regardless the edits that may have
happened after a specific edit and may have changed the
method’s functionality. Sharing a link with the “get_code”
and “b_timestamp” parameters guarantees reproducibility
of the performed analysis.
It is also possible to execute code via the RESTful API.

This execution is bounded by the limited time and mem-
ory resources of the sandbox. To execute a code:

http://www.pypedia.com/index.php?
run_code=<Pythonanalysiscode>
Example:
http://www.pypedia.com/index.php?
run_code=Hello_world()

With the PyPedia python library
Through this library, a user can download the code of
a PyPedia article directly to a local Python namespace.
For example assuming a Python version 2.7 or higher
environment, a user types:

>>> import pypedia

This import maintains an HTTP connection between
a local environment and the pypedia.com website. From
that point on, an import of a PyPedia function is easy as:

>>> from pypedia import
Pairwise_linkage_disequilibrium

With this command, the code of the “Pairwise_linkage_
disequilibrium” article in www.pypedia.com, is down-

www.pypedia.com

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 7 of 13

loaded, compiled and loaded into the current names-
pace. Function updates are available for downloading
and invoking as soon as a user submits them to the
wiki. The invoking of the function is a python func-
tion call. For example to assess the pairwise linkage
disequilibrium of two SNPs (Single-Nucleotide Polymor-
phism) genotyped in four individuals with respective
genotypes AA, AG, GG, GA and AA, AG, GG, AA the
command is:

>>> print Pairwise_linkage_disequilibrium(
[(’A’,’A’),(’A’,’G’), (’G’,’G’), (’G’,’A’)],
[(’A’,’A’),(’A’,’G’), (’G’,’G’), (’A’,’A’)])

The semantics of the returned values are explained in
the “Documentation” section of the method’s article. This
documentation is part of the downloaded function as a
python’s documentation string and can be accessed by
calling the __doc__ member of the function. For example:

>>> print Pairwise_linkage_
disequilibrium.__doc__

Additional features of this library include cached down-
loads and debug information. The complete documenta-
tion is available at PyPedia web site and in Additional
file 1. The python library is available at: https://github.
com/kantale/pypedia.

Quality control
One of the main dangers of crowdsourced management
systems is the deliberate (or accidental) import of mali-
cious code. To compensate this, the articles are split into
two namespaces: (1) the default “User” namespace that
contains unsafe, arbitrary submitted from any signed in
user and (2) the “Validated” namespace that contains val-
idated, qualitative and safe code approved by the admin-
istrators. The distinction between these is that the User
namespace has the suffix _user_< username > on the
article’s name. Articles from the “Validated” namespace
do note contain links to articles in the “User” namespaces.
Moreover execution of articles in the “User” namespaces
is allowed only in the python sandbox and never in the
user’s environment. Additional file 2 containsmore details
regarding this distinction.

Results
We have been using PyPedia for several years as an ongo-
ing experiment to validate its use. As with any wiki, the
content of PyPedia is constantly increasing since new
methods are added and revised. In this paragraph we
evaluate PyPedia by demonstrating how the current con-
tent can be used to address some common bioinformatics
tasks. In Additional file 3 we present an analysis scenario

that includes most of the methods of this paragraph. All
available methods that belong in the Validated category
can be accessed in the following link: http://www.pypedia.
com/index.php/Category:Validated.

Use case 1: Basic genomic statistics
In the area of genomics statistics, PyPedia contains
methods for the estimation of a SNP’s minor allele fre-
quency and Hardy Weinberg Equilibrium statistic. For
the later, two methods are available, the exact test [30]
and the asymptotic test [31]. Also as we have demon-
strated PyPedia offers a method for the estimation of
linkage disequilibrium between two SNPs. It also contains
methods for allelic and genotypic association tests and
trend tests of association between disease and markers.
These methods have been validated to produce identi-
cal values with the well known PLINK software [32].
Although PLINK and similar tools are of high quality
and extensively tested, they are mostly used as a black
box by bioinformaticians. Given the rise of program-
ming courses in biology curricula, approaches like PyPe-
dia that import qualitative and community maintained
methods in programming environments, allow for higher
flexibility, transparency and versatility on the performed
analysis.

Use case 2: Format convertors
Format conversion is a common, usually tedious and
error-prone bioinformatics tasks. There are very few for-
mats that have been universally established as standards
and it is very common phenomenon for a new bioin-
formatics tool to introduce a new format. The major-
ity of bioinformatics formats are tab delimited text files
where although the conversion does not require any
sophisticated programming work, it consumes consider-
able time for researchers to understand the semantics
and to make sure that no information is lost during the
conversion. Consequently this process hinders the collab-
oration among researchers and impedes the integration
of bioinformatics tools. We used PyPedia to collect and
share a set of of “readers” and “writers” for a variety
of known formats. These formats are: PLINK’s PED and
MAP, PLINK’s transposed files (TPED and TFAM), BEA-
GLE [33], Impute2 [34], MERLIN [35] and VCF [36]. For
example, “PLINK_reader()” is a method to read PLINK’s
PED and MAP files. All readers are implemented as
python generators. This case shows how by combining
the relatively small ‘wiki pages’ with readers and writers
we can routinely perform any conversion between these
formats. More significantly, any user can contribute by
adding a new format or refining an existing one. The
method ‘bioinformatics_format_convert()’ offers a conve-
nient wrapper for these methods.

https://github.com/kantale/pypedia
https://github.com/kantale/pypedia
http://www.pypedia.com/index.php/Category:Validated
http://www.pypedia.com/index.php/Category:Validated

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 8 of 13

Use case 3: Genotype imputation
Genomic imputation [37] is a popular statistical method
to enrich the set of markers of a GWAS (Genome-Wide
Association Study) study with markers from a dense and
large-scale population genetic experiment such as the
1000 Genomes Project [38] or the Genome of the Nether-
lands [39]. However, imputation involves many steps and
typically needs a High Performance Computational Envi-
ronment (HPCE) such as cluster or grid. We used PyPedia
to define the class ‘Imputation’ that can create all nec-
essary scripts and submit them to an HPCE, building
on a class named ‘Molgenis_compute’ which is a wrap-
per for the Molgenis-compute [40] tool that can run
scripts on a remote computer cluster. This case shows how
PyPedia can glue together different complex and diverse
components (not necessarily in Python). The ‘Imputa-
tion’ article contains detailed directions of how to perform
genetic imputation with this class: http://www.pypedia.
com/index.php/Imputation.

Use case 4: QQ-plots
This is a simple use case to demonstrate the interactive
generation of plots. The article qq_plot contains the code
to generate quantile-quantile plots from p-values coming
for example from a GWAS association testing. The plot
is generated asynchronously and presented to the user
as soon as it is created. This use demonstrates how also
graphics producing methods can be integrated, which is
ideal to store reproducible version of figures as published
in papers (see Fig. 4).

Use case 5: Reproduction of published research
In this section we demonstrate how PyPedia can be a
medium for reproduction of published research. As an
example we select the article from DeBoever et al. [41].
The authors of this paper have make public all the code
and data required for reproducing the results and figures
of the article. The code resides in a github repository
(https://github.com/cdeboever3/deboever-sf3b1-2015) in
the format of IPython notebooks. The data are available
in the figshare website (http://figshare.com/articles/
deboever_sf3b1_2014/1120663). Pypedia contains the
method “notebook_runner()” which executes the entire
code contained in a IPython notebook. Moreover PyPe-
dia contains methods to download data, install external
packages, decompress and manage files. To reproduce the
first figure of this article, one has to run:

>>> import pypedia

>>> from pypedia import notebook_runner

This is the URL of the notebook that

contains the commands that download

the data and install required

software

All commands in this notebook are

based on pypedia methods

>>> data_notebook = ’https://gist.’

... ’githubusercontent.com/kantale/’

... ’84a312000db44b8f078e/raw/7f6e’

... ’991b29d139e3bd02e3b20712d3106’

... ’feeb1c7/DeBoever_fig1_data.ipynb’

>>> notebook_runner(data_notebook)

This is the URL provided by

DeBoever et al. that contains the

code required to reproduce the first

figure of the article

>>> fig1_notebook = ’https://raw.’

... ’githubusercontent.com/cdeboeve’

... ’r3/deboever-sf3b1-2015/master/’

... ’notebooks/figure01.ipynb’

>>> notebook_runner(fig1_notebook)

Since these commands take a long time and require sig-
nificant disk space, they can only run in a local python
environment.
To ease the procedure of configuring a pypedia envi-

ronment that contains all scientific and latex libraries
necessary for qualitative figure production we have cre-
ated a Docker image. Docker [42] is an open-source
project for creating and sharing images of operating sys-
tems that contain preconfigured environments for various
solutions. By sharing a Docker image, the complete effort
for installing and configuring tools and packages is elimi-
nated. This can contribute significantly to research repro-
ducibility [43] especially in the area of bioinformatics [44].
The pypedia Docker image is a available at https://hub.
docker.com/r/kantale/pypedia/.

Discussion
Currently PyPedia contains 354 pages (or methods) with
63 registered users. In average every page has 5.4 edits.
Since the ‘fork’ feature was added recently, almost all of
the pages are novel articles. PyPedia has been online for a
short period of time (6 months) and additional user statis-
tics are not available. We plan to publish user statistics
after an adequate usage of the system. Furthermore, these
statistics will guide us to enhance PyPedia.

Positive aspects of the wiki paradigm
PyPedia is an effort to apply the wiki paradigm into bioin-
formatics methods development. The wiki paradigm can
be defined as the mass and collaborative submission of
unstructured information by a diverse or loosely coupled
community, also called crowdsourcing [45]. Another fea-
ture is in terms of evolutionary adaptation: the content is

http://www.pypedia.com/index.php/Imputation
http://www.pypedia.com/index.php/Imputation
https://github.com/cdeboever3/deboever-sf3b1-2015
http://figshare.com/articles/deboever_sf3b1_2014/1120663
http://figshare.com/articles/deboever_sf3b1_2014/1120663
https://hub.docker.com/r/kantale/pypedia/
https://hub.docker.com/r/kantale/pypedia/

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 9 of 13

Fig. 4 An example of a graph generated online from a PyPedia article. Graphics output can be embedded in PyPedia, such as to provide full
provenance for figures in scientific publications

dynamic and constantly developed as users with different
abilities and perspectives edit it. Only the beneficial to
the community edits stay, or “survive”, thus ensuring that
most relevant articles are incrementally improved over
time while irrelevant pages are removed [46]. Finally,
the wiki approach can alleviate significant and constantly
increasing effort and time needed to validate, maintaining
and document to ease realization of the e-science vision
[4] by integrally stimulate essential best practices:

Version-control system One of the primary characteris-
tics of the MediaWiki is the additive model and the ver-
sioning system. All edits and the meta-information such
as authors, dates and comments are stored and tracked.
With the addition of the “b_timestamp” API parameter
users can acquire and share a specific, time-bounded ver-
sion of the code, contributing to the reproducibility of an
analysis.

Material tracking All software, configuration steps and
parameters that were used as processing steps to generate
scientific results should be tracked. Additionally should
be easily shared and reproducible by third parties [2].
Researchers that performed an experiment with PyPe-
dia methods can provide links to the revisions of the

articles that were used (permalinks). Any other party can
use these permalinks to access the specific version of the
methods and perform the same computational steps, even
if the respective articles have changed since then.

Write testable software This principle recommends the
use of small, modular components that can be easily tested
and combined into larger solutions. This is the essence
of the PyPedia functionality. Every article is a small inde-
pendently developed and tested module. The extension
undertakes seamlessly the combination of articles into
integrated programs when this is needed.

Encourage sharing of software Unlike traditional open
source policies of releasing the code under distinct ver-
sions, in PyPedia, the whole continuous process of devel-
oping is open. Moreover, the content is released under the
BSD license that is one of the most open and permissive
licenses that allows re-use and re-mix of the content under
the condition that suitable attribution is given.

Criticism of the wiki model
The major criticism against the use of the wiki paradigm
in the scientific context is that the crowd does not always
exhibit the required synergy into submitting qualitative

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 10 of 13

articles [47]. Usually disagreements arise that require the
intervention of an expert that is not always recognized
from the whole community. There is also the impression
that qualitative code is difficult to find and hence wiki
curated code is of poor quality. In PyPedia, we therefore
provide an optional system where the submission of alter-
native content for similar methods can be done through
“User” articles. Any user can create a copy of an existing
algorithm under her user name and submit an alternative
version. This is similar to the “fork” procedure in the revi-
sion control systems. In addition we created articles in a
“Validated” category that can be more closely managed by
(project/lab/consortium) administrators and are updated
from the pool of User articles under the strict qualitative
criteria (see also Additional file 2).
Another issue of the wiki content is the deliberately

malicious edits, also referred as vandalism and common
spam. Vandalism is limited by explicitly setting user rights
to every section of the article. So only sections that allow
anonymous edits are prone to this. The level of edit-
openness and thus the risk for vandalism is left to the
authors of the articles although administrators can take
action when they identify it. To manage spam we have
adopted the CAPTCHA approach.
Yet another criticism refers to the level of maturity of

the research community into adopting open source tac-
tics [5]. Some authors are reluctant to publish code either
because they think it is not good enough or because they
afraid to share. Other authors are convinced that shar-
ing does not only benefit the community that uses an
open-source project but the original authors as well in
terms of citations, visibility as an expert, and funding
opportunities.
A final note is about reproducibility, which is one of

the key aspects of the modern e-science era. It has been
argued [48] that modern software infrastructure lacks
mechanisms that will enable the automatic sharing and
reproduction of published results and that subsequently
hinders scientific advancement in general.

Wiki versus GIT and IPython
Currently, the most prominent medium for scientific col-
laboration is the GIT tool [49] through the several GIT
hosting services such as GitHub and BitBucket. Especially
for python developers, GitHub is able to render online
IPython notebooks. Moreover, PyPedia as a wiki, contains
a versioningmechanismwhich is inferior to GIT’s relevant
system. Nevertheless, the ‘wiki’ philosophy is completely
absent from the GIT model. As a consequence, scientists,
still have to search for methods in different repositories,
find ways to combine different code bases and go through
unavailable or incomplete documentation.
PyPedia, as a wiki, encourages users to contribute their

code not for the purpose of just storing it in an open

version control system (which is mostly the case of
Github-like repositories) but to contribute in a generic
project. That means that the code has to cover a generic
problem, to be well written, documented, tested and more
significantly to use other wiki methods. By following these
principles, data analyzed or generated with PyPedia meth-
ods are easier to be interpreted. This is orthogonal to
traditional data analysis in science that happens mainly
with methods that even when they are well written, the
justification of developing them is often omitted. Never-
theless since the majority of scientific code resides in git
repositories, in our future work, we plan to shorten the
distance between wiki and GIT, that is, to handle the code
management with a GIT compatible service instead of
MediaWiki.
Another issue is the IDE features of PyPedia. Modern

IDE environments offer far superior abilities compared to
the plugins of PyPedia. These IDE-like plugins of PyPe-
dia have the purpose to aim users to apply simple changes
rather than to be an adequate environment for the devel-
opment of large scale solutions. Nevertheless, PyPedia can
function as a modern repository of highly qualitative code
with simple editing abilities.
Finally, the main usage of PyPedia is not for interactive

data analysis since other tools like IPython, Python(x,y)
[50] and Spyder [51] are more targeted to this purpose
and have superior capabilities compared to PyPedia’s web
based environment. PyPedia is designed to be comple-
mentary to these tools when it comes to interactive data
analysis. That means that code hosted in PyPedia can
be executed in these tools interactively and the oppo-
site, meaning that code developed on these tools can
be uploaded to PyPedia. As an example in Additional
file 3 we demonstrate an interactive data analysis from
code hosted in PyPedia combined with code developed
locally. In contrast, code hosted in Github cannot be
executed interactively (unless significant and skilled pro-
gramming effort is applied). To conclude, PyPedia is
not a tool for interactive analysis per se but a code
repository that helps other tools to perform interactive
analysis.

Future work
Our first priority in the future is to submit additional arti-
cles as simple PyPedia users. To enhance the software
quality we plan to introduce a voting mechanism through
which the transition of articles from the User to the Vali-
dated category will be more transparent and objective (for
PyPedia installations using this mechanism).
Moreover we plan to support execution of compu-

tational intensive PyPedia methods through remotely
submitting jobs to cluster environments via the SSH inter-
face. A similar future step is to build execution environ-
ments ‘on-the-fly’ in the cloud (i.e. Amazon EC2). To

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 11 of 13

do that we plan to add additional parameters that will
determine the system architecture, the CPU and themem-
ory requirement of the methods. The users can submit
their cloud credentials and the PyPedia environment will
setup the environment, submit the computational task,
fetch the results and release the resources.
In order to improve the uniformity of the methods

we plan to experiment with extensions that offer seman-
tic integration [52]. The naming of the articles and the
parameters of themethods should follow the same schema
and new content should be forced to adhere these direc-
tions. For example parameters that represent a nucleotide
sequence in FASTA format should have the same name
across all PyPedia methods. In Wikipedia, articles that
belong to the same semantic category contain a uni-
form structure. Similarly PyPedia can aim to standardize
bioinformatics methods.
Furthermore we believe that open and editable code is

one of the two fundamental components of modern sci-
ence. The other is open and easy accessible data [53, 54].
Packages likes BioPython and PyCogent include meth-
ods to query online repositories and transfer data. Yet,
a comprehensive list of data repositories in bioinformat-
ics along with suitable access methods is still missing. For
these reasons, we plan to catalogue these open reposito-
ries and develop methods to streamline the transfer and
management of large scientific data.

Conclusions
PyPedia can be considered part of a family of e-science
tools that try to integrate and connect all stakehold-
ers involved in a bioinformatics community [26, 29, 55].
Therefore special care has been given to provide inter-
faces to ease the integration with external via RESTful web
services [56, 57], programming APIs, online method exe-
cution and traditional HTML forms. With this, PyPedia
can be useful as central method repository for a bioin-
formatics project, laboratory or multi-center consortium.
In addition, PyPedia can be also conceived as an exper-
imentation platform where users can test and evaluate
methods, try various parameters and assess the results. To
evaluate PyPedia we presented the concept at several con-
ferences: Bioinformatics Open Source Conference (BOSC
2012), EuroPython 2012 and EuroSciPy 2012 Below we
summarize positive and negative criticisms received to the
concepts described above.
PyPedia attempts to address issues facing individual

bioinformaticians and teams by offering an environment
that promotes openness and reproducibility. Starting from
experimentation users can generate initial results and
ideas that they can share. Then they can create a draft arti-
cle, add documentation and an HTML submission form
and make the article appealing for other users to collabo-
rate and improve it. From this they can offer and use the

dependency-free version of their solution to other tools
and environments for ‘real-world’ execution as part of
daily business. The overhead of installation and configu-
ration has been minimized whereas the User Interaction
is familiar to any Wikipedia user.
The programming language of the content methods is

Python and was chosen for the simplicity, readability and
the dynamic that exhibits in the bioinformatics commu-
nity. Python has been characterized as a ‘glue language’,
meaning that is suitable for integrating heterogeneous
applications in a simple and intuitive way that was con-
firmed in this pilot.
We provide PyPedia as open source solution for any

individual or group to adopt, to use as sharing system
or to publish methods as supplement to a paper. Mean-
while we plan to keep maintaining the public pilot site so
that it may evolve in a more broadly used method cat-
alogue. Although PyPedia has been developed with the
particular needs of the bioinformatics software commu-
nity in mind, we believe that the same design principles
can benefit other research domains. Consequently, we
plan to embrace content coming from other scientific
disciplines.

Availability and requirements
Project name: PyPedia
Project home page: http://www.pypedia.com
Operating system(s): Platform independent
Programming language: Python
Other requirements: Anaconda: https://www.continuum.
io/downloads
License: BSD 2-Clause License

Additional files

Additional file 1: Additional documentation and technical manual of
PyPedia. (DOCX 135 kb)

Additional file 2: Detailed discussion and presentation of different
user groups and articles categories as well as some security issues.
(DOCX 134 kb)

Additional file 3: A scenario of bioinformatics analysis with existing
articles in pypedia.com through IPython. (PDF 107 kb)

Abbreviations
API: Application Programming Interface; CPU: Central Processing Unit; GWAS:
Genome-Wide Association Study; HTTP: HyperText Transfer Protocol; SNP:
Single-Nucleotide Polymorphism; VCF: Variant Call Format; XML: Extensible
Markup Language.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AK piloted the idea, authored the source code and the manuscript. JK
provided valuable feedback, suggested features and contributed to the
manuscript. GP helped to draft the manuscript. MS participated in the design
process, coordination and helped to draft the manuscript. All authors read and
approved the final manuscript.

http://www.pypedia.com
https://www.continuum.io/downloads
https://www.continuum.io/downloads
http://dx.doi.org/10.1186/s13029-015-0042-6
http://dx.doi.org/10.1186/s13029-015-0042-6
http://dx.doi.org/10.1186/s13029-015-0042-6

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 12 of 13

Acknowledgements
We thank Antonis Chazapis for his valuable help on setting up and configuring
the pypedia.com website.

Funding
The research leading to these results has received funding from the Ubbo
Emmius Fund to AK, the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement Number 261433 (Biobank
Standardisation and Harmonisation for Research Excellence in the European
Union - BioSHaRE-EU) to JK, and BBMRI-NL, a research infrastructure financed
by the Netherlands Organization for Scientific Research (NWO project
184.021.007), to MS.

Received: 23 June 2015 Accepted: 20 October 2015

References
1. Kumar S, Dudley J. Bioinformatics software for biologists in the genomics

era. Bioinformatics (Oxford, England). 2007;23(14):1713–7.
2. Ince DC, Hatton L, Graham-Cumming J. The case for open computer

programs. Nature. 2012;482(7386):485–8.
3. Bolchini D, Finkelstein A, Perrone V, Nagl S. Better bioinformatics through

usability analysis. Bioinformatics (Oxford, England). 2009;25(3):406–12.
4. Merali Z. Computational science: ...Error. Nature. 2010;467(7317):775–7.

http://www.nature.com/nature/journal/v467/n7317/pdf/467775a.pdf.
5. Barnes N. Publish your computer code: it is good enough. Nature.

2010;467(7317):753.
6. Ciortea L, Zamfir C, Bucur S, Chipounov V, Candea G. Cloud9: A software

testing service. ACM SIGOPS Oper Syst Rev. 2010;43(4):5–10.
7. Perez F, Granger BE. IPython: A System for Interactive Scientific

Computing. Comput Sci Eng. 2007;9(3):21–9.
8. Shen H. Interactive notebooks: Sharing the code. Nature. 2014;515(7525):

151–2. doi:10.1038/515151a.
9. Butler D. Publish in Wikipedia or perish. Nature. 2008. http://www.nature.

com/news/2008/081216/full/news.2008.1312.html.
10. Wang K. Gene-function wiki would let biologists pool worldwide

resources. Nature;439(7076):534.
11. Salzberg SL. Genome re-annotation: a wiki solution? Genome Biol.

2007;8(1):102.
12. Hoffmann R. A wiki for the life sciences where authorship matters. Nat

Genet. 2008;40(9):1047–51.
13. Cariaso M, Lennon G. SNPedia: a wiki supporting personal genome

annotation, interpretation and analysis. Nucleic Acids Res. 2011;40(D1):
1308–12.

14. Huss JW, Lindenbaum P, Martone M, Roberts D, Pizarro A, Valafar F, et
al. The Gene Wiki: community intelligence applied to human gene
annotation. Nucleic Acids Res. 2010;38(Database issue):633–9.

15. He S, Nachimuthu SK, Shakib SC, Lau LM. Collaborative authoring of
biomedical terminologies using a semantic Wiki. AMIA ... Ann Symp Proc /
AMIA Symposium. AMIA Symp. 2009;2009:234–8.

16. Hoehndorf R, Bacher J, Backhaus M, Gregorio SE, Loebe F, Prüfer K, et al.
BOWiki: an ontology-based wiki for annotation of data and integration of
knowledge in biology. BMC Bioinformatics. 2009;10 Suppl 5(Suppl 5):5.

17. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al.
Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics (Oxford, England). 2009;25(11):
1422–3.

18. Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC,
et al. PyCogent: a toolkit for making sense from sequence. Genome Biol.
2007;8(8):171.

19. Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic
computing. Bioinformatics (Oxford, England). 2010;26(12):1569–71.

20. Grünberg R, Nilges M, Leckner J. Biskit–a software platform for structural
bioinformatics. Bioinformatics (Oxford, England). 2007;23(6):769.

21. Bald T, Barth J, Niehues A, Specht M, Hippler M, Fufezan C.
pymzML–Python module for high-throughput bioinformatics on mass
spectrometry data. Bioinformatics (Oxford, England). 2012;28(7):1052–3.

22. Dale RK, Pedersen BS, Quinlan AR. Pybedtools: a flexible Python library
for manipulating genomic datasets and annotations. Bioinformatics
(Oxford, England). 2011;27(24):3423–4.

23. Althammer S, González-Vallinas J, Ballaré C, Beato M, Eyras E. Pyicos: a
versatile toolkit for the analysis of high-throughput sequencing data.
Bioinformatics (Oxford, England). 2011;27(24):3333–40.

24. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for
Python. [Online; accessed 2015-05-11] (2001–). http://www.scipy.org/.

25. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng.
2007;9(3):90–5.

26. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al.
Galaxy: a platform for interactive large-scale genome analysis. Genome
Res. 2005;15(10):1451–5.

27. Runeson P. A survey of unit testing practices. IEEE Software. 2006;23(4):
22–9.

28. Anaconda Scientific Python Distribution. https://store.continuum.io/
cshop/anaconda/, Accessed 2015-06-01.

29. Battke F, Symons S, Herbig A, Nieselt K. GaggleBridge: collaborative data
analysis. Bioinformatics (Oxford, England). 2011;27(18):2612–3.

30. Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of
Hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76(5):887–93.

31. Stern C. The hardy-weinberg law. Science. 1943;97(2510):137–8.
32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D,

et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

33. Browning BL, Browning SR. A unified approach to genotype imputation
and haplotype-phase inference for large data sets of trios and unrelated
individuals. Am J Hum Genet. 2009;84(2):210–3.

34. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype
imputation method for the next generation of genome-wide association
studies. PLoS Genetics. 2009;5(6):1000529.

35. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and
genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol. 2010;34(8):816–34.

36. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.
The variant call format and VCFtools. Bioinformatics (Oxford, England).
2011;27(15):2156–8.

37. Servin B, Stephens M. Imputation-based analysis of association studies:
candidate regions and quantitative traits. PLoS Genet. 2007;3(7):114.

38. Clarke L, Zheng-Bradley X, Smith R, Kulesha E, Xiao C, Toneva I, et al.
The 1000 Genomes Project: data management and community access.
Nat Methods. 2012;9(5):459–62.

39. Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC,
Abdellaoui A, et al. The Genome of the Netherlands: design, and project
goals. Eur J Hum Genet. 2013;22(2):221–7.

40. Byelas H, Dijkstra M, Neerincx PB, Van Dijk F, Kanterakis A, Deelen P, et al.
Scaling bio-analyses from computational clusters to grids. In: IWSG; 2013.

41. DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, et al.
Transcriptome sequencing reveals potential mechanism of cryptic 3’
splice site selection in SF3B1-mutated cancers. PLoS Comput Biol.
2015;11(3):1004105. doi:10.1371/journal.pcbi.1004105.

42. Merkel D. Docker: lightweight Linux containers for consistent
development and deployment. Linux J. 2014;2014(239):2.

43. Boettiger C. An introduction to Docker for reproducible research. ACM
SIGOPS Oper Syst Rev. 2015;49(1):71–9. doi:10.1145/2723872.2723882.

44. Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML, Notredame
C. The impact of Docker containers on the performance of genomic
pipelines. PeerJ. 2015;3:e1273. PeerJ Inc.

45. Doan A, Ramakrishnan R, Halevy AY. Crowdsourcing systems on the
World-Wide Web. Commun ACM. 2011;54(4):86.

46. Weimer W, Forrest S, Le Goues C, Nguyen T. Automatic program repair
with evolutionary computation. Commun ACM. 2010;53(5):109.

47. Giles J. Wikipedia rival calls in the experts. Nature. 2006;443(7111):493.
48. Gentleman R. Reproducible research: a bioinformatics case study. Stat

Appl Genet Mol Biol. 2005;4:2.
49. Ram K. Git can facilitate greater reproducibility and increased transparency

in science. Source Code Biol Med. 2013;8(1):7. doi:10.1186/1751-0473-8-7.
50. Python(x,y) - the scientific Python distribution. [Online; accessed

2015-09-28]. http://python-xy.github.io/.
51. Spyder. [Online; accessed 2015-09-28]. https://pythonhosted.org/spyder/.
52. Brohée S, Barriot R, Moreau Y. Biological knowledge bases using Wikis:

combining the flexibility of Wikis with the structure of databases.
Bioinformatics (Oxford, England). 2010;26(17):2210–1.

pypedia.com
http://www.nature.com/nature/journal/v467/n7317/pdf/467775a.pdf
http://dx.doi.org/10.1038/515151a
http://www.nature.com/news/2008/081216/full/news.2008.1312.html
http://www.nature.com/news/2008/081216/full/news.2008.1312.html
http://www.scipy.org/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
http://dx.doi.org/10.1371/journal.pcbi.1004105
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1186/1751-0473-8-7
http://python-xy.github.io/
https://pythonhosted.org/spyder/

Kanterakis et al. Source Code for Biology andMedicine (2015) 10:14 Page 13 of 13

53. Tenopir C, Allard S, Douglass K, Aydinoglu AU, Wu L, Read E, et al. Data
sharing by scientists: practices and perceptions. PloS One. 2011;6(6):
21101.

54. Axton M. No second thoughts about data access. Nat Genet. 2011;
43(5):389.

55. Bonnal RJP, Aerts J, Githinji G, Goto N, MacLean D, Miller CA, et al.
Biogem: an effective tool-based approach for scaling up open source
software development in bioinformatics. Bioinformatics (Oxford,
England). 2012;28(7):1035–7.

56. Pettifer S, Thorne D, McDermott P, Attwood T, Baran J, Bryne JC, et al.
An active registry for bioinformatics web services. Bioinformatics (Oxford,
England). 2009;25(16):2090–1.

57. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, et al.
BioCatalogue: a universal catalogue of web services for the life sciences.
Nucleic Acids Res. 2010;38(Web Server issue):689–94.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Availability
	Keywords

	Background
	Implementation
	Python
	Wiki
	Using PyPedia
	From the front-page text editor
	By pressing the `Run' button
	By pressing the `Download code' button
	By pressing the `Execute on remote computer' button
	Via the RESTful API
	With the PyPedia python library

	Quality control

	Results
	Use case 1: Basic genomic statistics
	Use case 2: Format convertors
	Use case 3: Genotype imputation
	Use case 4: QQ-plots
	Use case 5: Reproduction of published research

	Discussion
	Positive aspects of the wiki paradigm
	Version-control system
	Material tracking
	Write testable software
	Encourage sharing of software

	Criticism of the wiki model
	Wiki versus GIT and IPython
	Future work

	Conclusions
	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Funding
	References

