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1
Introduction

D
ue to advancing technology, today’s systems tend to be increasingly complex
and interconnected. This growing trend is profoundly reshaping the state of the

art and future perspectives in engineering. However, meanwhile many challenges
arise. With the increasing complexity of networks, system analysis and control design
are becoming more difficult. It motivates this thesis which deals with extending
the theory of model reduction for control systems to the simplification of dynamic
networks. A direct application of classical reduction methods would destroy the
interconnection structure of a network, making the obtained reduced-order model
not useful for e.g, multi-agent coordination, distributed control and sensor allocation.
Thus, the main thread of this research follows the question: how to approximate the
model of a dynamic network with a certain accuracy while ensuring the preservation
of a network structure?

1.1 Background

Nowadays, booming technologies such as the Internet of things are connecting an
enormous number of industrial robots, home appliances, and electronic products
embedded with sensors and controllers [171]. There is a clear trend that future
systems are becoming more complex and interconnected. In the field of robotics,
researchers, inspired by collective intelligence in nature, e.g., swarms of bees, ants,
birds, and fish, have designed self-assembling robots [75], that are integrated into
far more complex and large-scale systems than before. In [149], the Self-Organizing
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(a) (b)

Figure 1.1: (a) Kilobots designed by Harvard University. These robots are about
the size of a coin but can move horizontally on three vibrating legs and commu-
nicate with each other via bouncing infrared lights. (b) A swarm of 1024 Kilo-
bots are self-assembling into a complex shape through only local sensing and
interactions. (Source: https://spectrum.ieee.org/automaton/robotics/
robotics-hardware/a-thousand-kilobots-self-assemble).

Systems Research Group at Harvard University demonstrates a swarm of more
than 1000 tiny robots, called Kilobots, which are capable of flexible self-assembly of
two-dimensional shapes through programmable local interactions and local sensing,
achieving highly complex collective behavior, see Fig. 1.1. The Kilobots communicate
with each other by blinking infrared lights on their bodies. By measuring how
much the brightness of the infrared light changes, a robot can tell how far away it
is from the neighboring robots. Thereby, movements can be made to reach large-
scale formations. Large-scale networks of robots have shown a great potential in
civil and military applications. For instance, in some disaster rescue missions, a
team of drones can search a large area to detect the presence of life via infrared
sensors. Power grids are the other applications of complex networks. Modern power
grid evolution towards the smart grid integration is certainly expected in the near
future. They are experiencing the penetration and integration of a wide array of new
electronic devices (e.g., electric cars, autonomous mobile robots), renewable energy
sources (e.g., wind farms, solar panels) and distributed control systems [15, 46]. The
conventional electricity paradigm, as shown in Fig. 1.2a, is gradually phasing out
and superseded by the so-called smart grids, see Fig. 1.2b. The new generation
of power networks, improving energy efficiency and optimization of the power
supply and demand, however will inevitably become more large-scale and complex,

https://spectrum.ieee.org/automaton/robotics/robotics-hardware/a-thousand-kilobots-self-assemble
https://spectrum.ieee.org/automaton/robotics/robotics-hardware/a-thousand-kilobots-self-assemble
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(a) (b)

Figure 1.2: The illustration of the traditional power grids (a) and the future smart
power networks (b). The smart grids are equipped with advanced sensing, commu-
nication, and control systems that lead to much more complex interactions between
electricity providers and consumers. (Source: http://www.news.gatech.edu/
features/building-power-grid-future).

with higher variation in the generators, uncertain loads, and denser transmission
lines [129, 134, 135].

In real life, systems taking the form of networks are ubiquitous, and the study of
such systems have received compelling attention from many disciplines, especially in
science and engineering, see e.g., [27, 48, 117, 130, 131, 161] for an overview. Coupled
chemical oscillators, cellular and metabolic networks, interconnected physical sys-
tems, electrical power grids, see e.g. [12,48,62,79,88,129,163], are only a few examples
of systems composed by a number of interconnected dynamical units. To capture the
behaviors and properties of dynamic networks, graph theory is often useful. As a net-
work describes the behavior of a collection of interacting dynamical units, a graph can
interpret the interconnection structure among the dynamical units. In such a graph,
vertices represent the dynamical units, and edges stand for the interactions among
them. Using the language of the control community, a dynamical unit in a network is
interpreted as a subsystem, or an agent, such that a set of state variables, commonly
denoted by x(t), can be used to describe the behavior of each unit evolving through
time t. Take the multi-robots system in Fig. 1.3 as an example. Each robot in the
network is a subsystem, whose states collect its position, velocity, rotation angle and
angular velocity. To achieve interactions between the robots, sensors are embedded

http://www.news.gatech.edu/features/building-power-grid-future
http://www.news.gatech.edu/features/building-power-grid-future
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Figure 1.3: Mobile robots with Mecanum wheels in DTPA Lap, University of Gronin-
gen. With onboard sensors and controllers, each robot can acquire position informa-
tion of the others and adjust the speed and rotation accordingly to achieve a certain
formation.

in each robotic platform in order to measure the relative positions with respect to the
others. The acquired information is then delivered to the onboard controller of the
robot, and a time-varying command u(t) will be generated by a designed algorithm
to control the direction and speed of the wheels. The evolution of state variables
of each subsystem depends not only on the values they have at any given time but
also on the externally imposed values of the control input signal u(t), resulting in a
closed-loop system. In addition, information of the robots is exchanged such that
their states are coordinated in order to achieve a team task. In general, a network
system is interpreted in a way that multiple subsystems are interacting and showing
a form of collective behavior.

Despite that the past few decades have witnessed great progress in understanding
and control of complex networks, the exponentially increasing complexity of network
systems still poses intense challenges to the management and operation of these sys-
tems. For instance, a robotic network composed of a large number of small robots as
in Fig. 1.1 can be modeled by a mathematical equation that contains over a thousand
state variables. Besides, the immense size and additional interconnections of a power
grid may lead to a high-dimensional differential model, which describes the changing
states of all the interacting power units. Due to limited computational, accuracy,
and storage capabilities, large-scale networks can be extremely difficult for transient
analysis, failure detection, distributed controller design, or system simulation. These
difficulties are the basic motivation of this research that aims for simplified models
of dynamical network systems capturing the main features of the original complex
ones. Performing analysis with simplified network models is often meaningful, as we
may obtain a clearer understanding of essential structures and properties of complex
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networks, avoiding distraction from less important issues. Additionally, simplified
models are of lower dimensions, requiring less computational complexity and stor-
age memories. Therefore, they are effective for simulation and prediction of the
behaviors of large-scale networks. Moreover, a reduced-order system can be utilized
in place of the original complex model for facilitating the design of controllers, which
is beneficial since the complexity of a controller is approximately the same as that of
the system to be controlled. When working with reduced-order models, it is crucial
that the reduction retains the most important characteristics of the original systems.
More precisely, the approximation error between a “good” simplified model and
the original complex system needs to be small enough. Then, how to find a “good”
simplified model for a large-scale network system? This question naturally leads to
an important branch in the field of system and control, called model reduction.

1.2 Problem Statement

In this thesis, we investigate model reduction techniques for an important class of
networks, namely consensus networks, in which subsystems are reaching certain agree-
ments via diffusive couplings [145]. Formation control of mobile vehicles, coordination
of distributed sensors, or balancing in chemical kinetics can be viewed as different
applications of consensus networks [91,92,159]. In a consensus network, the structure
of the diffusive couplings among subsystems is commonly captured by a Laplacian
matrix. Given a complex dynamical network consisting of identical subsystems, the
key problem we would like to explore in this thesis is how to construct a simplified
network preserving the diffusive couplings, or equivalently how to retain a Laplacian
structure in the reduced-order model.

Note that the complexity of a dynamical network comes from two aspects: the
large scale of the network (i.e., a large number of subsystems) and the high dimen-
sional integrated subsystems, which then naturally split the key problem of this
thesis into three sub-problems:

• How to reduce the size of the network? Specifically, we aim to find a simplified
dynamical model that can be interpreted as a dynamical network with a fewer
number of diffusively coupled subsystems. This reduced-order network model
also captures the main input-output feature and synchronization property of
the original network. (Part I)

• How to reduce the complexity of nodal dynamics? Particularly, we aim to
find the lower-order approximation of each subsystem while preserving the
synchronization property of the overall network. (Chapter 8)
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• How to reduce the size of the network and the dimension of individual subsys-
tems in a unified framework? The model reduction problem aims to generate a
simplified network model that has reduced-order subsystems and a reduced-
size network simultaneously. The obtained model is also desired to achieve a
small input-output approximation error. (Chapter 7)

1.3 Literature Review and Contributions

In the past few decades, a variety of theories and techniques of model reduction have
been investigated and developed. These techniques can be roughly classified into two
categories: Krylov-subspace methods (also known as moment matching) and singular
value decomposition (SVD) based approaches [7]. The schemes in the first category
can be found in e.g., [8, 10, 64, 69, 71, 82, 153], which are generally developed on the
notion of Krylov projectors or interpolation theory. The latter category uses theories
of balancing and Hankel operator, including balanced truncation [25, 65, 70, 128, 150,
156, 157], the Hankel Norm Approximation [66, 181] and the Singular Perturbation
Approximation [101, 112]. Amongst all the classic reduction methods, balanced
truncation is one of the most well grounded and commonly used schemes for control
systems. Its theory for stable linear systems can be traced back to early 1980s [128].
The reduction procedure is accomplished with two steps. The first step is called
balancing, which makes a coordinate transformation to simultaneously diagonalize
the controllability and observability Gramians of the system and make them equal. Then
it is well known that in the new coordinate, the diagonal entries of the Gramians
are so-called Hankel singular values that indicate the degrees of controllability and
observability of the states [128]. The second step is then to truncate the state variables
that are relatively difficult to be controlled and observed from the balanced system.
From both theoretical and practical viewpoint, the balanced truncation approach is
of great importance as it preserves stability and allows for an a priori error bound for
the approximation error.

Even though the above conventional reduction methods can provide systematic
and efficient procedures to generate reduced-order models that well approximate the
input-output behavior of original complex systems, the direct application of them to
network systems are still restricted as the interconnection topology of a network is
completely lost through reduction procedures [85]. Since the conventional methods
do not take into account the interconnection structure of a network, the obtained
projections will mix the states of vertices and the reduced-order models cannot be
interpreted as networks of interconnected subsystems anymore. Such models are not
preferable for further analyses and applications of complex networks, including syn-
chronization analysis [53, 107, 129], community and modularity detection [132, 133],
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distributed controller design [6,29,108,160], and sensor allocation [104,159]. Thus, for
large-scale complex network systems, it is essential to seek for a structure-preserving
model reduction scheme such that the reduced-order model can be interpreted as a
network of interconnected subsystems.

In the literature, we observe that there exist two directions for model reduction of
complex network systems. The first one aims to lower the dimension of the individual
subsystem. Representatives are found in e.g., [125, 152], where the setup of network
models are interconnected higher-dimensional subsystems, and the approximation
is applied to each subsystem such that certain properties of the overall network,
such as synchronization and stability, are preserved. The second direction for the
approximation of large-scale networks is to reduce the complexity of the network
topology, i.e., to find a smaller-sized network with fewer vertices to approximate
the original network of many vertices. The mainstream methodology to handle
such a problem is called graph clustering [94, 154], which has been widely used in
many other fields, including machine learning, data mining, and computer graphics
[2, 98, 114]. In recent years, this methodology has shown its potential to tackle the
structure preserving model reduction of dynamic networks. The approach has an
insightful physical interpretation of the reduction process: Partition a network into
several nonoverlapping clusters and merge the vertices in each cluster into a single
vertex, which potentially preserve the essential spatial structure of the network.
A preliminary framework is introduced in [87], where the clustering-based model
reduction is interpreted as a Petrov-Galerkin approximation. However, it leaves an
open question of how to find a “good” clustering such that the reduced-order network
systems achieve an accurate approximation. Actually, this is the most difficult part
of applying such methods, as finding an optimal clustered network is roughly an
NP-hard problem even for static graphs [2,94]. Various methods are proposed to find
an appropriate clustering for dynamic networks. The results in [96, 124, 126] consider
the almost equitable partition (AEP) as a clustering of the underlying network, and
derive an explicitH2 error expression when a specific output matrix is assumed, but
finding AEPs itself is rather difficult and computationally expensive. A combination
of the Krylov subspace method with graph clustering is proposed by [121,122], where
a reduced-order model is found by the Iterative Rational Krylov Algorithm (IRKA),
and then the partition of the network is obtained by the QR decomposition with
column pivoting on the projection matrix. [20, 21] consider so-called edge dynamics
of networks with a tree topology such that the importance of each edge can be
characterized. Then, vertices linked by the less important edges are iteratively
clustered. Nonetheless, the reduction process and error bound are heavily reliant on
the tree topology. An alternative approach is proposed in [84, 85] to simplify positive
networks. The notion of reducibility is introduced, which is characterized by the
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uncontrollability of clusters. Merging the reducible clusters leads to a reduced-order
model that still maintains the network structural information.

This thesis will discuss two reduction techniques, namely graph clustering, and
balanced truncation in Part I and Part II, respectively. The graph clustering approach
essentially reduces the complexity of the interconnection structure of a network, i.e.,
reducing the number of interacting subsystems in the network. However, the method
based on balanced truncation can also reduce the dimension of each subsystem.

The clustering-based techniques proposed in this thesis are inspired by early
pioneering works in [21, 84, 87, 126]. The model reduction framework is established
on Petrov-Galerkin projection, where the projection matrices are constructed using
the characteristic matrix of network clustering. The proposed framework results in
a reduced Laplacian matrix in the reduced-order model. Thus, it can be employed
to structure preserving model reduction of different types of networks, including
multi-agent systems, second-order network systems, and directed networks. A novel
scheme is proposed to find an appropriate clustering for dynamic networks. Specifi-
cally, we describe the behaviors of vertices by the transfer functions mapping from
external inputs to individual vertex states and define the dissimilarities of vertices by
the norms of the transfer function deviations. Note that in the frequency domain, the
behaviors of vertices are invariant to the changes of external input signals, and the
dissimilarities only depend on the distribution of input signals and the interconnec-
tion structure of the network. In other words, no matter what inputs are injected into
the network, the measurement of the dissimilarity between any two vertices remains
the same. With the information of dissimilarities of each pair of vertices, algorithms
are easily designed to place those vertices with similar behaviors into same clusters.
In contrast to [84, 85], where the clustering selection requires an error bound relying
on the positivity of the network system, the proposed framework can be applied
to more general network systems, which are not limited to positive systems or tree
networks. Basically, for any linear networks, transfer functions can be used for char-
acterizing the dissimilarities among vertices. Unlike the reducibility in [84, 85], the
dissimilarity is a pairwise notion, which is a meaningful extension and generalization
of the definition of distance in static graphs. Owing to the consistency, many existing
clustering algorithms in computer graphics and data mining, including hierarchy
clustering, K-means clustering, can be adapted to efficiently generate an appropriate
clustering for dynamic networks. Another contribution of this thesis is to propose
the notion of pseudo Gramians that are employed to efficiently evaluate the pairwise
dissimilarities and the approximation error between the original and reduced-order
network systems. The concepts are feasible for general semistable systems and can be
viewed as the generalization of standard Gramians for asymptotically stable systems.
Moreover, the pseudo Gramians are characterized by a set of Lyapunov equations.
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The second reduction technique that we develop for dynamic networks is based
on generalized balanced truncation. As mentioned before, network structures poten-
tially eclipse if applying the standard balanced truncation. However, the generalized
version may allow us to maintain a network interpretation. In this thesis, we apply
generalized balanced truncation to reduce the dimensions of synchronized Lur’e
networks, which are composed of multiple identical Lur’e-type subsystems. The
reduction is performed on each individual nonlinear subsystems while the intercon-
nection topology is untouched. By carefully selecting the generalized Gramians, we
are able to preserve the robust synchronization property of a Lur’e network. Besides,
we propose a framework to simplify networked linear passive systems based on
generalized balanced truncation that reduces the complexity of network structures
and individual agent dynamics simultaneously. We find that a diagonalizable matrix
is similar to a Laplacian matrix if it satisfies a spectral condition, which provides us a
network reduction method: we reduce a network by generalized balanced truncation
that preserves the spectral condition in the reduced-order model, which then can be
reconstructed as a simplified network system only by a coordination transformation.

1.4 Thesis Outline

The remainder of the thesis is structured as follows. Chapters 2 contains important
notations and definitions, and provides background information on graph theory and
model reduction. The subsequent chapters present methods of model reduction of
different dynamical network systems with structure preservation. The methods are
proposed in two frameworks, namely the clustering-based projection and generalized
balanced truncation.

Chapter 3 proposes a general framework for structure-preserving model reduction
of a second-order network system based on graph clustering. The notion of nodal
dissimilarity is proposed which characterizes the difference between nodes with
second-order dynamics. A greedy hierarchical clustering algorithm is proposed to
place those vertices with similar behaviors into the same clusters. The simplified
system preserves a second-order form as well as a network structure. Furthermore,
this chapter generalizes the definition of Gramians for asymptotically stable systems
to semistable systems and based on that, an efficient method to characterize the
vertex dissimilarities is developed. The materials in this chapter are based on the
conference and journal papers [35, 39, 45].

Chapter 4 applies the clustering-based model reduction to power networks with
distributed controllers. The studied system and controller are modeled as second-
order and first-order ordinary differential equations, which are coupled as a closed-
loop model. By analyzing the influence of disturbances to the power units, we
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characterize the behavior of each node (generator or load) in the power network and
define a novel notion of dissimilarity between two nodes. The reduction methodology
is developed based on separately clustering the generators and loads according to
their behavior dissimilarities. The material in this chapter is based on the journal
papers [35, 42].

Chapter 5 investigates a model reduction scheme for multi-agent systems, which
is a broader class of network system consisting of linear time-invariant subsystems.
The dissimilarity is measured based on the output errors of the subsystems with
respect to external inputs of the network. The proposed method is to simplify
the topology of the network such that the dimension of the system is reduced. A
computable bound of the approximation error between the full-order and reduced-
order models is provided. This chapter also provides a special result for reduction
of networked single integrators. The materials in this chapter are based on the
conference and journal papers [33, 34, 36].

Chapter 6 explores a model reduction problem for linear directed network sys-
tems, in which the interconnections among the vertices are described by general
weakly connected digraphs. The method focuses on selecting a suitable graph clus-
tering to simply the directed graph topology. The concepts of vertex clusterability
is proposed to identify feasible clusterings that guarantee the boundedness of the
approximation error. The materials in this chapter are based on the conference and
journal papers [41, 43].

Chapter 7 studies a novel model order reduction methodology for network sys-
tems based on generalized balanced truncation. The network model consists of
identical linear passive subsystems. The proposed method then simultaneously
reduces the complexity of the network structure and individual agent dynamics, and
it preserves the passivity of the subsystems and the synchronization of the network.
Moreover, it allows for the a priori computation of a bound on the approximation error.
The materials in this chapter are based on the conference and journal papers [37, 40].

Chapter 8 applies balanced truncation to a class of nonlinear networks, namely,
Lur’e networks. The aim of this chapter is to reduce the complexity of intercon-
nected Lur’e-type subsystems while simultaneously preserving the synchronization
property of the network. An LMI condition is established to characterize the robust
synchronization of the Lur’e network. Using the maximum and minimal solutions of
the LMI, the linear part of each Lur’e subsystem are balanced, leading to a reduced-
order Lur’e subsystem. In addition, an a prior error bound is provided to compare
the behaviors of the full-order and reduced-order Lur’e subsystem. The materials in
this chapter are based on the conference paper [44] and journal paper [38].

Finally, Chapter 9 formulates the conclusions of the thesis and makes some
suggestions for future work.
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1.6 Notations

In this section, we provide the notations that are used throughout this thesis.

Sets

Let R be the set of real numbers and R+ as the set of real nonnegative numbers. Rn

and Rn×m denote the spaces of all n-dimensional vector and n ×m matrices with
real elements, respectively. Suppose W is a subspace of Rn, then W⊥ denotes the
orthogonal complement of W in Rn. The cardinality of a set V is denoted by |V| , and
dim(W) represents the dimension of space W.

Vectors and Matrices

For a vector v, we denote its i-th element by vi, and for a matrix A, we denote its
(i, j)-th entry by Aij . AT and AH denote the transpose and conjugate transpose
of A, respectively. The determinant, trace, rank, image and nullspace of a matrix
A are denoted by det(A), tr(A), rank(A), im(A), and ker(A), respectively. For a
symmetric matrix A ∈ Rn×n, we write A � 0(A ≺ 0) if A is positive (negative)
definite . Moreover, A < 0(A 4 0) if A is positive (negative) semi-definite. Besides,
a real square matrix A is called generalized negative definite if its symmetric part
As = 1

2 (A+AT ) is negative definite. If A is generalized negative definite, then A is
also Hurwitz [57].

The identity matrix of size n is given as In , and 1n denotes an n-entries vector of
all ones. The subscript n is omitted when no confusion arises. ei is the i-th column
vector of an identity matrix, and eij = ei − ej . diag(v) represents a square diagonal
matrix with the entries of vector v on the main diagonal, and blkdiag(A1, A2 · · · , An)

is a block diagonal matrix with matrices A1, A2 · · · , An as its diagonal blocks.
Given two matrices A ∈ Rm×n and B ∈ Rp×q. The Kronecker product of A and

B is denoted by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq (1.1)

with aij the (i, j)-th entry of A. Kronecker product, which is widely used for the
representation of multiagent systems, has some important properties as follows.

(A⊗B)−1 = A−1 ⊗B−1

A⊗B +A⊗ C = A⊗ (B + C)

(A⊗B)(C ⊗D) = (AC)⊗ (BD)
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2
Preliminaries

This chapter introduces the necessary concepts used throughout the thesis. In
particular, we recapitulate some definitions from graph theory, including Lapla-

cian matrices and graph clustering. Then, some properties of matrices and system
norms are reviewed. Subsequently, we introduce the well-known model reduction
methodology, balanced truncation.

2.1 Graph Theory

Graphs are naturally describing the interconnection topology among the vertices in
dynamical networks. Here, we briefly recapitulate the definitions and fundamental
results from graph theory that will be used throughout this thesis. For more details,
we refer to e.g., [1, 32, 67, 146, 175, 176].

A finite graph is commonly defined by a pair G = (V, E), where V and E ⊆ V × V
represent the sets of vertices and edges, respectively. Each directed edge aij =

(i, j) ∈ E indicates that information flows from vertex j to vertex i. An undirected path
connecting nodes i0 and in is a sequence of undirected edges of the form (ik−1, ik),
k = 1, · · · , n. Then, an undirected graph G is connected if there is an undirected path
between any pair of distinct nodes. In this thesis, we only consider simple graphs, i.e.,
graphs do not contain any self-loops, and all the edges are connecting two distinct
vertices. Assume that |V| = n and |E| = ne, i.e., the graph G contains n vertices and
ne edges. Then, denote W ∈ Rn×n as the weighted adjacency matrix, whose elements
indicate whether pairs of vertices are adjacent or not in G. Specifically, (i, j) entry,
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denoted by wij , is strictly positive if the edge (j, i) ∈ E , and wij = 0 otherwise.
The degree matrix of G, denoted by D ∈ Rn×n is a diagonal matrix which contains
information about the degree of each vertex, that is the number of edges attached to
each vertex. For a simple graph, we have D = diag(W 1n). Thereby, the Laplacian
matrix L ∈ Rn×n is defined as

L = D −W = diag(W 1n)−W . (2.1)

In an undirected graph, wij = wji, which implies that L is symmetric, and has the
following properties, see e.g. [35].

Lemma 2.1. For a connected undirected graph, the Laplacian matrix L fulfills the following
structural conditions:

• 1TL = 0, and L1 = 0;

• Lij ≤ 0 if i 6= j, and Lii > 0;

• L is positive semi-definite with a single zero eigenvalue.

The Laplacian L is the matrix representation of the graph G. Conversely, a real square matrix
can be interpreted as a Laplacian matrix representing a connected undirected graph, if it
satisfies the above structural conditions.

The undirected graph Laplacian also can be described by a so-called incidence
matrix of G, which is defined by R ∈ Rn×ne such that Rij = 1 if the edge (i, j) heads
to vertex i, −1 if it leaves vertex i and 0 otherwise. For an undirected graph, R can be
obtained by assigning each edge with an arbitrary orientation. Then, the Laplacian
matrix of an undirected graph G is given by

L = RWRT , (2.2)

where W ∈ Rne×ne is the diagonal and positive definite matrix whose diagonal
entries represent the weights of edges.

In a directed graph (digraph), wij is generally not equal to wji, which means that
L may be asymmetric.

Lemma 2.2. For a directed graph, the Laplacian matrix L has the following characteristics:

• L1 = 0;

• Lij ≤ 0 if i 6= j, and Lii > 0.

If a real square matrix satisfies the above structural conditions, then it can be interpreted as a
Laplacian matrix representing a digraph.
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Example 2.1. Examples of undirected and directed graphs are shown in Fig. 2.1. The
weighted adjacency matrices of Fig. 2.1a and Fig. 2.1b are

Wa =



0 2 1 0 0 0

2 0 2 1 0 0

1 2 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 3

0 0 0 1 3 0


, Wb =



0 0 1 0 0 0

2 0 0 0 0 0

0 2 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 3

0 0 0 1 0 0


,

respectively. Considering the degree matrices

Da = diag(3, 5, 3, 2, 3, 4), and Db = diag(1, 2, 2, 2, 3, 1),

we obtain the Laplacian matrices

La =



3 −2 −1 0 0 0

−2 5 −2 −1 0 0

−1 −2 3 0 0 0

0 −1 0 2 0 −1

0 0 0 0 3 −3

0 0 0 −1 −3 4


, Lb =



1 0 −1 0 0 0

−2 2 0 0 0 0

0 −2 2 0 0 0

0 −1 0 2 0 −1

0 0 0 0 3 −3

0 0 0 −1 0 1


of the undirected and directed graphs, respectively. Note that the matrix La can be also
written as La = RaWaR

T
a with Wa = diag(2, 1, 2, 1, 1, 3) and the incidence matrix

Ra =



1 1 0 0 0 0

−1 0 1 1 0 0

0 −1 −1 0 0 0

0 0 0 −1 1 0

0 0 0 0 0 1

0 0 0 0 −1 −1


. (2.3)

Undirected graphs can be regarded as a special class of digraphs. In a directed
graph, a directed path is a sequence of edges which connect a sequence of vertices,
but with the added restriction that the edges all be directed in the same direction.
Digraphs can be categorized as follows.

Definition 2.1. A digraph G is weakly connected (G ∈ Gw) if there exists an undirected
path between any i, j ∈ V. Particularly, if there exists a directed path in each direction
between any i, j ∈ V, G is strongly connected (G ∈ Gs). Furthermore, for every pair of
vertices i, j ∈ V, if there exists a vertex k ∈ V that can reach i, j by a directed path, G is
quasi strongly connected (G ∈ Gq).
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Figure 2.1: (a) An undirected graph with 6 vertices; (b) A directed graph with 6
vertices.
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Figure 2.2: Illustration of different categories of digraphs.

These categories can be classified using the following concepts.

Definition 2.2. A strongly connected component (SCC) of a digraph G is a subgraph in
which every vertex is reachable from every other vertex. Any digraph G can be partitioned into
several SCCs. If a SCC only has outflows, it is then called a leading strongly connected
component (LSCC) [176].

A digraph G ∈ Gw may contains multiple LSCCs, while G ∈ Gq only has a single
LSCC. Generally, we have

Gw ⊃ Gq ⊃ Gs. (2.4)

Example 2.2. Fig. 2.2 demonstrates different types of digraphs. When only considering
the edges indicated by solid arrows, G ∈ Gw, and there exist three SCCs in G: {1, 2, 3},
{5, 6} and {4}, where the first two SCCs are LSCCs. Whereas, after an extra edgea45 (dashed
arrow (1)) is added, this digraph becomes quasi strongly connected, i.e., G ∈ Gq, which
contains only two SCCs: {1, 2, 3}, {4, 5, 6}, and the first one is the LSCC. Moreover, G will
be strongly connected, when the vertices 2 and 4 are also connected by a24 represented by the
dashed arrow (2).

In the last part of this section, we recap the notions of graph clustering and
its characteristic matrix from e.g., [67, 126]. Consider a graph G = (V, E), where
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V = {1, 2, · · · , n} is the index set of vertices. A nonempty index subset of V , denoted
by C, is called a cluster of graph G. Then, graph clustering is to partition V into r

disjoint clusters which cover all the elements in V .

Definition 2.3. Consider a graph clustering {C1, C2, · · · , Cr} of a vertex set V with |V| = n.
The characteristic vector of the cluster Ci is defined by binary vector π(Ci) ∈ Rn where
1Tnπ(Ci) = |Ci|, and the k-th element of π(Ci) is 1 when k ∈ Ci and 0 otherwise. Then, the
characteristic matrix of the clustering is a binary matrix defined by

Π := [π(C1), π(C2), · · · , π(Cr)] ∈ Rn×r. (2.5)

Example 2.3. Consider a graph G = (V, E), with a vertex set V = {1, 2, · · · , 10}. Then,

C1 = {1, 2, 5}, C2 = {3, 6, 9}, and C3 = {4, 7, 8, 10}

are clusters of the graph G, which correspond to the characteristic vectors

π(C1) =
[
1 1 0 0 1 0 0 0 0 0

]T
,

π(C2) =
[
0 0 1 0 0 1 0 0 1 0

]T
,

π(C3) =
[
0 0 0 1 0 0 1 1 0 1

]T
.

Thus, the characteristic matrix of the graph clustering {C1, C2, C3} is given by

Π = [π(C1), π(C2), π(C3)] =

1 1 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0

0 0 0 1 0 0 1 1 0 1

T .

2.2 Matrices, Systems and Norms

Matrices

The following definitions are important for studying networks.

Definition 2.4. A square matrix A is said to be semistable if all eigenvalues of A are in the
closed left-half plane, and all eigenvalues with zero real value are simple roots.

Definition 2.5. [18] A square matrix A is said to be reducible if it can be placed into block
upper-triangular form by simultaneous row and column permutations. Conversely, A is said
to be irreducible if it is not reducible.

Definition 2.6. [59] A square matrix A is said to be Metzler if the off-diagonal entries of
A are all nonnegative.
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Definition 2.7. [138] Consider a square real matrix A ∈ Rn×n . If Aij ≤ 0 for all i 6= j

and all the eigenvalues of A have positive real parts, then A is called an M-matrix.

Lemma 2.3. [138] If A is a nonsingular M-matrix, then A−1 is real nonnegative, i.e., all
the entries of A−1 are real nonnegative (i.e., all the entries of A−1 are equal to or greater than
zero).

Note that the Laplacian matrix L, a matrix representation of a (directed or undi-
rected) graph, is a singular M-matrix, and −L is Metzler. In addition, the Laplacian
matrix of a directed graph is irreducible if and only if its associated directed graph is
strongly connected.

Systems and Norms

The norms for signals and systems appearing in this thesis are introduced. For more
details, we refer to e.g. [7]. The L2-space is defined as the set of square integrable
signals, i.e.,

L2 :=

{
u(t) ∈ R :

∫ ∞
0

u(t)2dt <∞
}
. (2.6)

The L2-norm of a signal x(t) ∈ Ln2 is defined as

‖x(t)‖2 =

(∫ ∞
0

x(t)Tx(t)

) 1
2

. (2.7)

The square of this norm represents the total energy contained in the signal x(t).
Consider a stable, linear time-invariant (LTI) system in a state space representation

Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.8)

with A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n. The definition of a semistable system is
defined in the following.

Definition 2.8. [19] The system Σs is semistable if lim
t→∞

x(t) exists for all initial condi-
tions x(0) when u(t) = 0.

Now, the definition of a system is recalled from e.g. [113, 169, 174].

Definition 2.9. The system Σ in (2.8) is passive if there exists a differentiable storage
function H(x) : Rn → R+ with H(0) = 0 and H(x) ≥ 0 for every x, such that

H(x(t2))−H(x(t1)) ≤
∫ t2

t1

u(t)T y(t), (2.9)
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for all solution trajectories (ui(·), x(·), y(·)) of the system (2.8). The system Σ is lossless if

H(x(t2))−H(x(t1)) =

∫ t2

t1

u(t)T y(t), (2.10)

and the system Σ is strictly passive if H is positive definite such that

H(x(t2))−H(x(t1)) =

∫ t2

t1

u(t)T y(t)−
∫ t2

t1

H(x)dt, (2.11)

for all solution trajectories (ui(·), x(·), y(·)) of the system (2.8).

Furthermore, for minimal linear system, there exists a quadratic storage func-
tion H(x) = xTPx (with P > 0), leading to the following version of the Kalman-
Yakubovich-Popov (KYP) condition [174]:

Lemma 2.4. A linear system Σ in (2.8) is passive if and only if there exists a positive definite
matrix P such that

ATP + PA 4 0, C = BTP. (2.12)

Equality holds if Σ is lossless. If Σ is strictly passive, we have ATP + PA ≺ 0 and
C = BTP .

The norm of a linear the system Σ is the gain that quantifies the amplification
provided by the system between the inputs and the outputs. Let G(s) be the transfer
function of an LTI system Σ of input u(t) and output y(t). If Σ is stable, theH∞-norm
of Σ is the largest possible L2-gain over the set of square integrable input signals
u(t), i.e.,

‖Σ‖H∞ = ‖G(s)‖H∞ = sup
u(t)∈L2,‖u(t)‖2 6=0

‖y(t)‖2
‖u(t)‖2

= sup
ω∈R

σ̄ [G(jω)] , (2.13)

where σ̄ denotes the largest singular value, and j is the imaginary unit. Furthermore,
note that G(s) is the Laplace transform of the impulse response g(t) of the system Σ,
we then define theH2-norm of Σ as the L2-norm of its impulse response:

‖Σ‖H2
= ‖G(s)‖H2

=

√∫ ∞
0

tr [g(t)T g(t)] dt. (2.14)

In frequency domain, the above definition becomes

‖Σ‖H2
= ‖G(s)‖H2

=

√
1

2π

∫ +∞

−∞
tr [G(jω)HG(jω)] dω, (2.15)
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The concepts of norms are of great importance in the thesis because it is the basis of
error evaluation in model reduction.

Consider a stable, LTI system in a state space representation (2.8). Suppose A is
Hurwitz, i.e., all eigenvalues are with negative real part. Then, the bounded real
lemma can characterize theH∞-norm of the system Σ.

Lemma 2.5. [28,162] A stable LTI system (A,B,C,D) has an H∞-norm less than γ if and
only if there exists a matrix S � 0 satisfyingATS + SA SB CT

BTS −γI DT

C D −γI

 ≺ 0 (2.16)

Particularly, in the following two cases, theH∞-norm of Σ can be simply obtained.
The first case is a internally positive system, which is defined as follows.

Definition 2.10. [97, 140] A linear system (A,B,C,D) is called internally positive if
for every initial state x0 = x(0) ∈ Rn+ and all input such that u(t) ∈ Rp+ for all t ≥ 0, the
state vector x(t) belongs to Rm+ and the output vector y(t) belongs to Rl+ for all t ≥ 0.

As shown in [97], internal positivity can be written as a simple condition using
the system matrices.

Lemma 2.6. A linear system (A,B,C,D) is internally positive if and only if (i) the
off-diagonal entries of A are all negative i.e., it is a Metzler matrix; (ii) B, C and D are all
nonnegative (i.e., all the entries of these matrices are equal to or greater than zero).

The input-output performance of a SISO positive system can be characterized as
follows.

Lemma 2.7. [140] Consider a linear system (A,B,C,D) with A Hurwitz and Metzler,
while B ∈ Rn×1

+ , C ∈ R1×n
+ , and D ∈ R+. Then,

‖G(s)‖H∞ = ‖C(sI −A)−1B +D‖H∞ = D − CA−1B. (2.17)

Next, theH∞ characterization of a descriptor system is discussed. Consider a LTI
descriptor system

Σd :

{
Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(2.18)

Definition 2.11. [60] The descriptor system (2.18) is regular if det(sE − A) is not
identically null; The system (2.18) is impulse-free if the degree of det(sE −A) is equal to
rank(E); The system (2.18) is stable if all the roots of det(sE −A) = 0 have negative real
parts; The system (2.18) is said to be admissible if it is regular, impulse-free, and stable.
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Definition 2.12. [74] A descriptor system (E,A,B,C,D) is called internally symmetric
if ET = E, AT = A, BT = B and DT = D.

Particularly, if a admissible descriptor system is internally symmetric, then the
H∞-norm of Σ can be determined by the following manner.

Lemma 2.8. [74] Consider a state-space symmetric descriptor system (E,A,B,C,D) with
an admissible pair (E,A). If E � 0 or E � 0, then the H∞-norm of the system transfer
function G(s) = C(sE +A)−1B +D is given by

‖G(s)‖H∞ = max {|λm(D)|, |λm(G(0))|} ,

where λm(·) denotes the largest eigenvalue.

ForH2 norm of the LTI system Σ in (2.8), Gramians can be employed to provide
an efficient computation. From [7], the controllability and observability Gramians of Σ

are defined as

P =

∫ ∞
0

eAtBBT eA
T tdt, Q =

∫ ∞
0

eA
T tCTCeAtdt, (2.19)

respectively. The system Σ is controllable if and only if P � 0 and observable if and
only if Q � 0 [7]. Furthermore, theH2-norm of the system Σ can be characterized by
the Gramians:

‖Σ‖H2
=
√

tr(CPCT ) =
√
tr(BTQB). (2.20)

2.3 Model Reduction

We recap some basic facts on model reduction by balanced truncation from [7].
Assume a LTI system Σ as in (2.8) is asymptotically stable (i.e., A is Hurwitz) and
minimal, i.e., controllable and observable, the controllability and observability Grami-
ans, P � 0 and Q � 0, are the unique solutions of the following linear Lyapunov
equations:

AP + PAT +BBT = 0,

ATQ+QA+ CTC = 0.
(2.21)

Balancing the system in (2.8) amounts to find a nonsingular state space transfor-
mation T such that

TPTT = T−TQT−1 = Θ, (2.22)

with Θ := diag (θ1, θ2, · · · , θn). The diagonal entries θ1 ≥ θ2 ≥ · · · ≥ θn > 0 are called
the Hankel singular values (HSVs) of the system.
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The transformation T can be obtained by the Singular Value Decomposition (SVD)
of the Gramians P and Q. More precisely, from the following SVDs

P = UcΘcU
T
c , Q = UoΘoU

T
o , (2.23)

we define matrices

S :=
(
UcΘ

1
2
c

)T
, and R :=

(
UoΘ

1
2
o

)T
. (2.24)

such that P = STS and Q = RTR. Then, the Hankel singular values of Σ are
computed as

SRT = UΘV T , (2.25)

with the diagonal matrix Θ in (2.22). Moreover,

T−1 = STUΘ−
1
2 , and T = Θ−

1
2V TR. (2.26)

The transformation matrix T leads to the balanced realization of the system in (2.8),
denoted by (Ã, B̃, C̃, D̃) with

Ã = TAT−1, B̃ = TB, C̃ = CT−1, and D̃ = D. (2.27)

In this realization, the state components corresponding to the smaller HSVs are
less controllable and observable, and thus have less influences on the input-output
behavior. It then allows the following partition of the matrices:

(Ã, B̃, C̃) :=

([
Ã11 Ã12

Ã21 Ã22

]
,

[
B̃1

B̃2

]
,
[
C̃1 C̃2

])
, (2.28)

where Ã11 ∈ Rr×r, B̃1 ∈ Rr×p, and C̃1 ∈ Rq×r, such that a reduced-order model of r
dimension is obtained.

Σ̂ :

{
ż(t) = Âz(t) + B̂u(t),

ŷ(t) = Ĉz(t) +Du(t),
(2.29)

with Â = Ã11, B̂ = B̃1, and Ĉ = C̃1. z(t) ∈ Rn is the state of the reduced-order
system, which is stable with HSVs given by θ1, . . . , θr, where r is the desired order of
the reduced system. It is possible to choose r via the computable error bound:

‖y(t)− ŷ(t)‖2 ≤ 2‖u‖2
n∑

i=r+1

θi, or equivalently, ‖Σ− Σ̂‖H∞ ≤ 2

n∑
i=r+1

θi. (2.30)

Instead of using the Lyapunov equations in (2.21), we can also work with solutions
of Lyapunov inequalities to obtain a reduced-order model based on the so-called
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generalized Gramians [58]. When the system in (2.8) is minimal and A is Hurwitz, a
pair of positive definite matrices, P � 0 and Q � 0, are the generalized controllability
and observability Gramians of the system in (2.8), respectively, if they satisfy the
following linear matrix inequalities (LMIs)

AP + PAT +BBT 4 0,

ATQ+QA+ CTC 4 0.
(2.31)

Then, similar to ordinary Lyapunov balancing, a reduced-order model can be ob-
tained by balancing the pair of positive definite matrices (P,Q) and truncation based
on the so-called generalized Hankel singular values (GHSVs) . Then, similar to the
standard balanced truncation, the corresponding model reduction error bound is
twice the sum of the neglected GHSVs.

2.4 Conclusions

In this chapter, we have presented the necessary background materials for later
chapters. In particular, graph theory is used to model the interconnection topologies
of network systems. The proposed method in Part I is established on the concept of
graph clustering. The balancing theory is applied to develop the methods in Part II.
The norms are used to characterize the approximation error between the original and
reduced-order models.
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3
Clustering-Based Model Reduction of
Second-Order Networks

This chapter defines a pair of pseudo controllability and observability Gramians
for general semistable systems, which can be viewed as the generalization of

standard Gramians for asymptotically stable systems. The pseudo Gramians are
useful throughout this thesis and turn out to be particularly useful in our proposed
method for clustering-based model reduction of second-order network systems, i.e.,
dynamical networks composed of interacting double integrators. In this chapter, we
propose a general framework for structure-preserving model reduction of a second-
order network system based on graph clustering. In this approach, vertex dynamics
are captured by the transfer functions mapping from inputs to individual states,
and the dissimilarities of vertices are quantified by the H2-norms of the transfer
function discrepancies. The dissimilarities can be evaluated using the proposed
pseudo Gramians effectively. Then, a greedy hierarchical clustering algorithm is
proposed to place vertices with similar dynamics into clusters. Then, the reduced-
order model is generated by the Petrov-Galerkin method, where the projection is
formed by the characteristic matrix of the resulting network clustering. It is shown
that the simplified system preserves an interconnection structure, i.e., it can be again
interpreted as a second-order system evolving over a reduced graph. Furthermore,
based on the pseudo controllability Gramian, we derive the approximation error
between the full-order and reduced-order models. Finally, the approach is illustrated
by an example of a small-world network.
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3.1 Introduction

A network system describes the behavior of a collection of agents whose states
are dynamical quantities, following some dynamical rule, and that dynamical rule
includes a certain interaction protocol with neighboring agents. A variety of network
systems, such as distributed power grids or mass-damper-spring networks, are given
as differential equations in second-order form, see [54, 90]. For large-scale networks,
the second-order form dynamic models can be so complex and high-dimensional that
system analysis and controller design become considerably difficult because of the
impractical amounts of storage space and computation. Therefore, this chapter aims
at a method to derive a lower-dimensional model which has an input-output behavior
similar to the original one as well as inherits a second-order network structure.

However, deriving reduced models for second-order network systems is not
necessarily straightforward. Indeed, we are able to convert a second-order system to
its equivalent first-order representation and then apply the reduction techniques used
for first-order systems. However, the resulting models are not of second-order form
in general. In [11, 31, 118, 151] etc., the existing model reduction methods, including
balanced truncation and moment matching, have been extended to the second-order
case. Although the resulting reduced model is presented in a second-order form,
it may fail to preserve the interconnection topology among subsystems, i.e., such
reduced models cannot be interpreted as network systems anymore.

There is another attempt to simplify the complexity of second-order networks
based on time-scale separation and singular perturbation analysis, see e.g., [148]
and references therein. The approach in [148] identifies the sparsely and densely
connected areas of power grids, and then aggregates the state variables of the co-
herent areas. Through singular perturbation approximation, the algebraic structure
of Laplacian matrix is maintained. Therefore, this approach indeed preserves the
network structure. Nevertheless, it does not explicitly consider the influence of
the external inputs into the networks, and there is no analytical expression for the
approximation error between the original and aggregated model.

Recently, clustering-based model reduction methods for first-order network sys-
tems have been investigated in [21, 84, 85, 87, 126]. An extension to the second-order
case can be found in [83]. In the method, graph clustering is performed based on
cluster reducibility, which is generalized as the uncontrollability of clusters and com-
puted through a tridiagonal realization of their first-order representation. Then, the
reducible clusters are merged to construct a reduced model with preservation of
a second-order network topology. Nevertheless, this approach does not take the
algebraic structure of the Laplacian matrix into account, and the approximation
procedure and error analysis are reliant on the asymptotic stability of the system.
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This can be a limitation for some applications, e.g., the coupled swing dynamics in
power networks as in [54, 148].

In this chapter, we propose a novel model reduction approach for second-order
network systems based on graph clustering. In contrast to the existing techniques,
this method can be applied to more general network models, which do not restrict
to a special class of partitions as in [126] or to a tree topology as in [21], or to
asymptotically stable models as in [83]. Besides, unlike [148], we consider the system
dynamics are influenced by external input signals. In [45], preliminary results are
presented, which are generalized in this chapter by extending the definition of
controllability Gramian and proposing a new cluster algorithm.

This chapter starts with the introduction of the pseudo Gramians, which are novel
concepts for semistable systems. We show that the new Gramians are characterized by
a set of Lyapunov equations, and their ranks are strongly related to the controllability
and the observability of a semistable system. Using the pseudo Gramians, the H2-
norm of a semistable system can be easily evaluated. Therefore, this chapter employs
them to facilitate the computation of dissimilarities and thus provides a crucial step
in the clustering-based model reduction.

The proposed clustering-based model reduction is in the framework of Galerkin
projection. The characteristic matrix of a graph clustering is used as the projection
so that the interconnection topology can be preserved in the reduced-order model.
More importantly, the algebraic structure of Laplacian matrix is also retained, and
consequently, the reduced graph can be reconstructed. A greedy hierarchical cluster-
ing algorithm is designed to generate an appropriate network partition. Specifically,
we characterize the behaviors of vertices by the transfer functions from inputs to
their individual states and denote the dissimilarities by theH2-norms of the transfer
function deviations. Then, a systematic process places those vertices with almost
similar behaviors into same clusters. The feasibility and efficiency of this method are
demonstrated by a numerical example.

The remainder of this chapter is organized as follows. Section 3.2 presents the
mathematical model of second-order network systems and formulates the problem
of structure-preserving model reduction. The pseudo Gramians are proposed in
Section 3.3. In Section 3.4, we provide the framework of clustering-based model
reduction. Then, in Section 3.5, we design the cluster selection algorithm. Finally,
Section 3.6 illustrates the feasibility of our method by means of a numerical example,
and Section 3.7 concludes the whole chapter.
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3.2 Problem Formulation

Consider a network system evolving over graph G, which has a linear time-invariant
description in second-order form as

Σ : Mẍ+Dẋ+ Lx = Fu, (3.1)

where x ∈ Rn and u ∈ Rm denote the vertex states and external inputs, respectively.
In this model, M , D, L ∈ Rn×n are referred to inertia, damping and stiffness matrices,
respectively. Note that L is also a Laplacian matrix, which represents an undirected
weighted graph, see its properties in Lemma 2.1. Based on practical applications, the
following structural conditions are assumed.

Assumption 3.1. 1©M � 0 is diagonal; 2© D = DT � 0; 3© L = LT < 0 is a weighted
Laplacian matrix of a connected undirected graph. (For the properties of L, we refer to [34]).

A variety of physical network systems are modeled in the form of (3.1) satisfying
Assumption 3.1, including the linearized swing equation in power grids [54] and
mass-damper-spring networks [90]. Take the latter one, for instance,M represents the
distribution of masses, and D presents the dampers on edges and vertices, while L
indicates the strength of diffusive coupling among the vertices connected by springs.

Note that the system in (3.1) is not asymptotically stable since L is a singular
matrix. In fact, Assumption 3.1 implies that the system Σ is semistable and passive
with respect to input u and output y = FT ẋ. We show our statement as follows.

First, the total energy of Σ is given by

H(x, ẋ) =
1

2
ẋTMẋ+

1

2
xTLx. (3.2)

With y = FT ẋ as output, we have

uT y − Ḣ = uTFT ẋ− ẋTMẍ− xTLẋ
= uTFT ẋ− ẋT (−Dẋ− Lx+ Fu)− xTLẋ
= ẋTDẋ > 0.

It follows from [99] that the system Σ is passive. Moreover, Σ can be presented in
the form of a port-Hamiltonian system as in [89].

Second, the stability of the system Σ can be seen from the first-order form realiza-
tion

Ẋ = AX + Bu (3.3)

with X T =
[
xT , ẋT

]
as the 2n-dimensional state and

A =

[
0n×n I

−M−1L −M−1D

]
, B =

[
0n×m
M−1F

]
. (3.4)
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From Assumption 3.1, it is easy to check that all the eigenvalues ofA are in the closed
left-half plane, and only one of them is at the origin. Therefore, the second-order
network system Σ is semistable.

Remark 3.1. The major differences with set-ups from familiar second-order systems as
in [11,31,118] are thatD and L in (3.1) contain the information of network spatial structures,
and the system Σ is not asymptotically stable.

Now we formulate the problem of model reduction for second-order network
systems as follows.

Problem 3.1. Given a second-order network system Σ as in (3.1), find a pair of projection
matrices W,V ∈ Rn×r with r � n to construct a reduced model in the second-order form as

Σ̂ :

{
M̂ z̈ + D̂ż + L̂z = WTFu,

x̂ = V z,
(3.5)

where M̂ = WTMV , D̂ = WTDV and L̂ = WTLV ∈ Rr×r . We require the matrices M̂ ,
D̂ and L̂ to fulfill the structural conditions in Assumption 3.1 and the trajectories of x̂(t)

to approximate those of x(t) in the original system Σ with a small error.

We call Problem 3.1 a position-based model reduction for second-order network
systems, since the variable x̂(t) in (3.5) is used to approximate x(t) rather than ẋ(t).
However, Problem 3.1 can be easily modified to solve velocity-based model reduction
problems, where the second equation in (3.5) is replaced by v = V ż, and it requires v
and ẋ(t) to have close behaviors respect to the external input fluxes u(t).

In this chapter, we mainly consider the position-based model reduction as a
standard problem setting for network systems and discuss the solution of Problem
3.1 in Section 3.4 and Section 3.5. Besides, we briefly state the extension of our
proposed method to velocity-based model reduction. The proposed method in this
chapter is based on a new concept of Gramian matrices. We introduce them in the
following section.

3.3 Gramians of Semistable System

We make the result of this section self-contained and independent of the model
reduction of directed network systems. This section extends the concepts of con-
trollability and observability Gramians for asymptotically stable systems to semistable
ones. In our preliminary results in [39], novel Gramians are deliberately introduced
for first-order network systems. Here, we present a generalization of the results
to general semistable systems, whose controllability and observability can be also
characterized by the newly proposed Gramians.
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Consider the state-space model of a linear time-invariant system

Σs :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(3.6)

with states x ∈ Rn, inputs u ∈ Rp and outputs y ∈ Rq . The following lemma provides
a necessary and sufficient condition for the semistability of Σs.

Lemma 3.1. [19] The system Σs is semistable if and only if the zero eigenvalues of A in
(3.6) are semisimple (i.e., the geometric multiplicity of the zero eigenvalue coincides with
the algebraic multiplicity), and all the other eigenvalues have negative real parts.

Note that asymptotically stable systems are only special cases of semistable
systems so that the standard definitions of controllability and observability Gramians
in (2.21) may not applicable for Σs that is not asymptotically stable. Instead, we can
define a pair of pseudo Gramians for semistable systems.

Definition 3.1. Consider the semistable system Σs as in (3.6). The pseudo controllability
and observability Gramians are given by

P =

∫ ∞
0

(eAτ − J )BBT (eA
T τ − J T )dτ ∈ Rn×n, (3.7a)

Q =

∫ ∞
0

(eA
T τ − J T )CTC(eAτ − J )dτ ∈ Rn×n, (3.7b)

where J := lim
τ→∞

eAτ is a constant matrix.

Since the integrands in (3.7a) and (3.7b) are absolutely integrable functions and
converge to zero as τ → ∞, the pseudo Gramians in (3.7a) and (3.7b) are well-
defined. Furthermore, using the matrix J , the Lyapunov characteristics of P and Q
in Definition 3.1 are stated in the following theorem.

Theorem 3.1. Consider the semistable system Σs in (3.6). The pseudo controllability and
observability Gramians of Σs, P and Q defined in (3.7), are the unique symmetric solutions
of the following sets of linear matrix equations{

0 = AP + PAT + (I − J )BBT (I − J T ),

0 = JPJ T .
(3.8a)

(3.8b)

{
0 = ATQ+QA+ (I − J T )CTC(I − J ),

0 = J TQJ .
(3.9a)

(3.9b)
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Proof. Assume that A in (3.6) has zero eigenvalues with the algebraic (or geometric)
multiplicity m. Then, there exists a similarity transformation such that

A = UDU−1 =
[
U, Ū

] [0m×m
D̄

] [
V T

V̄ T

]
, (3.10)

where D̄ ∈ R(n−m)×(n−m) is Hurwitz, and the matrices U ∈ Rn×m and V ∈ Rn×m

fulfill
im(U) = ker(A), im(V ) = ker(AT ), and V TU = Im. (3.11)

Moreover, Ū is a matrix such that U =
[
U, Ū

]
is nonsingular. Note that the product

UV T is invariant to the choices for U and V , and it coincides with the matrix J in
(3.7), i.e.,

J = lim
τ→∞

eAτ = UV T . (3.12)

Therefore, the following equations hold:

J 2 = J , AJ = 0, and JA = 0. (3.13)

Furthermore, for any τ ∈ R,

J eAτ = J

(
I +

∞∑
k=1

Akτk

k!

)
= J , and eAτJ = J . (3.14)

The equations in (3.13) and (3.14) are used through the following proof.
First, we show that P in (3.7a) satisfies the two equations in (3.8). Notice that

d

dτ

[
(eAτ − J )BBT (eA

T τ − J T )
]

= AeAτBBT (eA
T τ − J T ) + (eAτ − J )BBT eA

T τAT .

(3.15)

Integrating the two terms separately leads to∫ ∞
0

AeAτBBT (eA
T τ − J )dτ =

∫ ∞
0

A(eAτ − J + J )BBT (eA
T τ − J )dτ

=AP +AJBBT
∫ ∞

0

(eA
T τ − J )dτ = AP,

(3.16)

and similarly, ∫ ∞
0

(eAτ − J )BBT eA
T τAT dτ = PAT . (3.17)
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Observe that∫ ∞
0

d

dτ

[
(eAτ − J )BBT (eA

T τ − J T )
]
dτ = (eAτ − J )BBT (eA

T τ − J T )
∣∣∣∞
0

=(I − J )BBT (I − J T ).

(3.18)

Then, the Lyapunov equation in (3.8a) is obtained by integrating both sides of (3.15).
The second equation in (3.8b) can be seen from the fact that

J
(
eAτ − J

)
= J − J = 0. (3.19)

Next, we prove the uniqueness of the solution of (3.8) by contradiction. Assume
that two symmetric matrices P1 and P2 satisfy (3.8) and P1 6= P2. From (3.8a), we
have

A(P1 − P2) + (P1 − P2)AT = 0, (3.20)

which leads to

eAτ
[
A(P1 − P2) + (P1 − P2)AT

]
eA

T τ =
d

dτ

[
eAτ (P1 − P2)eA

T t
]

= 0. (3.21)

Therefore, ∫ ∞
0

d

dτ

[
eAτ (P1 − P2)eA

T τ
]
dτ = 0, (3.22)

which implies that
P1 − P2 = J (P1 − P2)J T . (3.23)

As both P1 and P2 satisfy (3.8b), the equation (3.23) becomes zero, which, however,
contradicts the assumption that P1 6= P2. Therefore, the solution of (3.8a) and (3.8b)
is unique.

The proof of the pseudo observability Gramian in (3.9) is similar to the proof of
the controllability Gramian part, and thus the details are omitted here. Note that the
equation (3.9b) is a result of (

eAτ − J
)
J = J − J = 0. (3.24)

That completes the proof.

Remark 3.2. It is implied by (3.8b) and (3.9b) that the pseudo Gramians P and Q are
positive semidefinite. However, when A is Hurwitz, i.e., Σs is asymptotically stable, it
follows that J = 0 such that P and Q in (3.7) become the standard Gramians in (2.21).
Thus, the pseudo Gramians are generalizations of the standard ones.
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Observe that, due to the singularity of the A matrix, there may exist multiple
solutions of the Lyapunov equations in (3.8a) and (3.9a). For instance, suppose a
symmetric matrix P is a solution of (3.8a), then any matrix P + ∆P , with ∆P = ∆T

P
and A∆P = 0, is also a solution of (3.8a). However, combining the Lyapunov
equations in (3.8a) and (3.9a) with the algebraic constraints in (3.8b) and (3.9b), we
can determine the pseudo Gramians P and Q uniquely. The following corollary then
indicates that the pseudo Gramians can be obtained without calculating the integrals
in (3.7).

Corollary 3.1. Let Pa and Qa be arbitrary solutions of the Lyapunov equations in (3.8a)
and (3.9a), respectively. Then, the pseudo controllability and observability Gramians, P and
Q are computed as

P = Pa − JPaJ T . (3.25a)

Q = Qa − J TQaJ . (3.25b)

with J a constant matrix defined in (3.7).

Proof. Since both Pa and P are solutions of (3.8a), it follows from (3.23) that

Pa − P = J (Pa − P)J T = JPaJ T , (3.26)

where the second equality holds due to (3.8b). Thus, (3.25a) is verified, and (3.25b)
can be proven analogously.

In general, theH2-norm of a system is unbounded if the system is semistable, see
the network systems in [39] for instance. Nevertheless, the following lemma provides
a sufficient and necessary condition for Σs ∈ H2, which can be characterized by the
pseudo Gramians.

Lemma 3.2. Consider a semistable system Σs in (3.6). Then, Σs ∈ H2 if and only if
CJB = 0. Furthermore, if theH2-norm of Σs exists, then

‖Σs‖2H2
= tr(CPCT ) = tr(BTQB), (3.27)

where P and Q are the pseudo controllability and observability Gramians of Σs.

Proof. Let g(τ) := CeAτB be the impulse response of Σs. It follows from [7] that

‖Σs‖2H2
= tr

(∫ ∞
0

g(τ)T g(τ)dτ

)
. (3.28)

TheH2-norm of Σs is bounded if and only if g(τ) is absolutely integrable. Since g(τ)

is a smooth function on R, it is absolutely integrable if and only if

lim
τ→∞

g(τ) = C
(

lim
τ→∞

eAτ
)
B = CJB = 0. (3.29)
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Next, using the condition that CJB = 0, we can show that

tr(CPCT ) = tr

(∫ ∞
0

g(τ)T g(τ)dτ

)
, and tr(BTQB) = tr

(∫ ∞
0

g(τ)g(τ)T dτ

)
.

That completes the proof.

Hereafter, we discuss the relationship between the controllability and the observ-
ability of the semistable system Σs and the pseudo Gramians. Before proceeding, the
definitions of finite-time Gramians are introduced.

Ps(0, tf ) =

∫ tf

0

eAτBBT eA
T τdτ. (3.30a)

Qs(0, tf ) =

∫ tf

0

eA
T τCTCeAτdτ. (3.30b)

Clearly, P(0, tf ) and Q(0, tf ) are bounded and positive semidefinite when tf is finite,
whose ranks characterize the controllability and observability of the system.

Lemma 3.3. [7] Consider the system Σs in (3.6).

• Σs is controllable on [0, tf ] if and only if the finite controllability Gramian Ps(0, tf )

in (3.30a) is full rank;

• Σs is observable on [0, tf ] if and only if the finite observability Gramian Qs(0, tf ) in
(3.30b) is full rank.

Based on the above lemma, we show that pseudo Gramians characterize the
controllability and the observability of a semistable system.

Theorem 3.2. Consider a semistable system Σs whose pseudo controllability and observ-
ability Gramians are denoted by P and Q, respectively. Let m be the algebraic (or geometric)
multiplicity of the zero eigenvalues of A. Then,

• Σs is controllable if and only if rank(P) = n −m and ξTB 6= 0, for any nonzero
vector ξ ∈ ker(AT );

• Σs is observable if and only if rank(Q) = n−m and Cξ 6= 0, for any nonzero vector
ξ ∈ ker(A).

Proof. Define the finite-time pseudo controllability Gramian of the system Σs as

P(0, tf ) =

∫ tf

0

(eAτ − J )BBT (eA
T τ − J T )dτ < 0. (3.31)



3.3. Gramians of Semistable System 39

First, we assume Σs is controllable. To determine the rank of P(0, tf ), we find the
nullspace of P(0, tf ), denoted by ker(P(0, tf )), and prove that

dim(ker(P(0, tf ))) = m.

To this end, a nonzero vector ξ ∈ ker(P(0, tf )) is characterized by

ξT (eAτ − J )B = 0, ∀τ ∈ [0, tf ] . (3.32)

Consider the decomposition of A in (3.10), where ATV = 0 and V T Ū = 0, i.e.,
im(V ) = ker(AT ) = im(Ū)⊥. Since the matrix [U, Ū ] is nonsingular, we have

im(U) ∪ im(Ū) = im(U) ∪ im(V )⊥ = Rn. (3.33)

Thereby, an arbitrary nonzero vector ξ ∈ Rn can be decomposed as

ξ = αξ1 + βξ2, (3.34)

where α, β are scalars, and ξ1 ∈ im(V ), ξ2 ∈ im(U)⊥, which satisfy

ξT1 (eAτ − J )B = 0, and ξT2 J = ξT2 UV
T = 0. (3.35)

The first equation in (3.35) holds due to

V T
(
eAτ − J

)
B = V T

(
I +

∞∑
k=1

Akτk

k!
− J

)
= 0. (3.36)

With the decomposition of the vector ξ in (3.34), we rewrite (3.32) as

ξT (eAτ − J )B = αξT1 (eAτ − J )B + βξT2 (eAτ − J )B = βξT2 e
AτB. (3.37)

From Lemma 3.3, Σs being controllable is equivalent to the positive definiteness of
the standard finite-time Gramian Ps(0, tf ), i.e., for all nonzero vector ξ,

ξTPs(0, tf )ξ =

∫ tf

0

ξT eAτBBT eA
T τξdτ (3.38)

is strictly positive, which means that there is no vector ξ 6= 0 such that ξT eAτB = 0,
∀τ ∈ [0, tf ]. Therefore, a nonzero vector ξ ∈ ker(P(0, tf )) if and only if β = 0 and
α 6= 0 in (3.37), namely, ξ ∈ im(V ), which yields

rank(P(0, tf )) = n− dim(im(V )) = n−m. (3.39)

Furthermore, when Σs is controllable, we also obtain ξTB 6= 0, ∀ξ ∈ ker(AT ). Other-
wise, there will exist a nonzero vector ξ ∈ im(V ) such that ξTJ = 0, which implies
that ξT eAτB = ξT (eAτ − J )B = 0. This contradicts that (3.38) is strictly positive.
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Next, we prove that ξTB 6= 0, ∀ξ ∈ ker(A) and rank(P(0, tf )) = n − m are
sufficient for the controllability of Σs. Notice that any nonzero vector ξ ∈ Rn can
be decomposed as a linear combination of ξ1 ∈ im(V ) and ξ2 ∈ im(U)⊥ as in (3.34).
Since im(V ) is in the nullspace of P(0, tf ), and dim(im(V )) = m, the rank of P(0, tf )

then implies that
ξT2 (eAτ − J )B 6= 0, ∀ξ2 ∈ im(U)⊥. (3.40)

It follows from (3.35) that ξT2 eAτB 6= ξT2 JB = 0. Moreover,

ξT1 e
AτB = ξT1 (eAτ − J + J )B = ξT1 JB. (3.41)

Observe that ξTB 6= 0, ∀ξ ∈ ker(A) implies that V TB 6= 0. Thus, (3.41) is nonzero
for all ξ1 ∈ im(V ) since V TJB = V TUV TB = V TB 6= 0. Consequently, we obtain
ξT eAτB 6= 0, for any nonzero vector ξ, i.e., Ps(0, tf ) is positive definite. It means that
Σs is fully controllable.

Finally, the first statement in the theorem is obtained as tf → ∞. The proof of
the observability part is a dual problem, whose proof follows a similar procedure.
Hence, the details are omitted here.

The dynamics of second-order networks are described by semistable systems.
Therefore, in the next section, we will apply the results developed in this section to
the model reduction problem of second-order network systems.

3.4 Clustering-Based Model Reduction

This section will first give a class of Galerkin projections that can deliver reduced
second-order network models with interconnection structures. Then, some important
properties of the resulting systems are discussed. Consider a network system Σ on
graph G with n vertices. To approximate Σ by an r-th dimensional reduced model,
we need to find a network clustering which partitions n vertices into r clusters. To
preserve the structural conditions, we then characterize the projection in Problem
3.1 by the characteristic matrix of a graph clustering. More precisely, the following
unnormalized Galerkin projection is applied

W = V = P, (3.42)

where P is the characteristic matrix of a graph clustering, see Definition 2.5. It then
leads to the r-dimensional reduced second-order network system as

Σ̂ :

{
M̂ z̈ + D̂ż + L̂z = PTFu,

x̂ = Pz,
(3.43)
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where M̂ = PTMP , D̂ = PTDP and L̂ = PTLP ∈ Rr×r.

This projection also can be found in [33,34,87,124]. In this chapter, we will further
discuss this idea and develop our model reduction method based on it. The following
proposition holds for the simplified model in (3.43).

Proposition 3.1. The reduced network system Σ̂ resulting from a clustering-based projection
as in (3.42) preserves the interconnection structures of the original system Σ, i.e., M̂ , D̂ and
L̂ satisfy the structural conditions in Assumption 3.1.

Proof. Observe that P is a binary matrix with full column rank. It is not hard to verify
that M̂ � 0, D̂ � 0 and L̂ < 0.

Furthermore, since there always exists a permutation matrix T such that

P̃ := TP = diag(1|C1|,1|C2|, · · · ,1|Cr|), (3.44)

we have P = TT P̃ and M̂ = P̃TTMTT P̃ . Clearly, matrix TMTT is diagonal, and
therefore, M̂ is also. Moreover, the i-th diagonal entry of M̂ presents the sum of all
the masses with the i-th cluster.

From Definition (2.2), we have L̂ = PTRWRTP . Suppose the edge (i, j) of the
original graph is represented by Rk, the k-th column of the incidence matrix R.
Then, the entries of Rk satisfy that Ri,k = −Rj,k, and the other entries are zero. If
vertices i and j are within the same cluster, from the definition of characteristic matrix
of clustering, we have Pi = Pj , where Pi is the i-th row of P . Hence, we obtain
PTRk = 0. Furthermore, we can define a new incidence matrix R̂ by removing all the
zero columns of PTR and a new edge weight matrix Ŵ by eliminating the rows and
columns which are corresponding to the edges linking vertices in the same cluster.
Consequently, it follows that L̂ = PTRWRTP = R̂Ŵ R̂T , where L̂ is also a Laplacian
matrix of an undirected connected graph.

From the algebraic structures of matrices M̂ , D̂ and L̂, we are able to reconstruct
the topology of the reduced network. The following example then illustrates the
intuitive interpretation of clustering-based model reduction.

Example 3.1. The left inset of Fig. 3.1 depicts a mass-damper-spring network system of 4
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vertices. The coefficient matrices are given by

M =


1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

 , D =


4 −2 0 −1

−2 2 0 0

0 0 3.5 −3

−1 0 −3 4

 ,

L =


4 −1 −2 −1

−1 3 −1 −1

−2 −1 5 −2

−1 −1 −2 4

 , F =


1 0

0 0

0 0

0 1

 .
If vertex 3 and 4 are clustered, i.e., the network clustering is {{1}, {2}, {3, 4}}, the

characteristic matrix P is then generated as

P =


1 0 0

0 1 0

0 0 1

0 0 1

 , (3.45)

which leads to the reduced-order model as

M̂ =

 1 0 0

0 2 0

0 0 3

 , D̂ =

 4 −2 −1

−2 2 0

−1 0 1.5

 ,
L̂ =

 4 −1 −3

−1 3 −2

−3 −2 5

 , PTF =

1 0

0 0

0 1

 .
Clearly, the algebraic structures of the inertia, damper, and stiffness matrices are preserved in
the new system. An interpretation of the reduced model is presented in the right inset of Fig.
3.1.

Next, we discuss some important properties of the reduced second-order network
system (3.43). First, the following proposition can be easily obtained.

Proposition 3.2. The reduced second-order network system Σ̂ in (3.43) preserves the semista-
bility and passivity of the original system Σ.

Proof. Proposition 3.1 states that the reduced matrices M̂ , D̂ and L̂ also fulfill the
structural conditions list in Assumption 3.1. Therefore, we can also show the passivity
and semistability of the reduced model Σ̂ by converting it to a first-order realization.
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Figure 3.1: An illustrative example of clustering-based model reduction for a mass-
damper-spring network system, where red blocks represent the controlled vertices.

Second, the synchronization properties of the original network system Σ is also
retained in the reduced model Σ̂. The following theorem is extended from [34]
and [33], where first-order network systems are studied.

Theorem 3.3. Consider the second-order network system Σ and its reduced model Σ̂ resul-
ting from an clustering-based projection. If their initial conditions satisfy x(0) = Pz(0) =

x̂(0) and ẋ(0) = P ż(0) = ˙̂x(0), then the trajectories of both systems with u = 0 converge to
a common value. More precisely,

lim
t→∞

x(t) = lim
t→∞

x̂(t) = σ−1
D

[
11T (Dx(0) +Mẋ(0))

0n×1

]
,

lim
t→∞

ẋ(t) = lim
t→∞

˙̂x(t) = 0,

where σD = 1TD1.

Proof. First, the synchronization of Σ is proved as follows.
Since A in (3.3) has one zero eigenvalue, we consider the Jordan matrix decompo-

sition A = UΛU−1, where

Λ =

[
0

Λ̄

]
, (3.46)

with Λ̄ Hurwitz. The first row of U−1 and the first column of U, denoted by v1 ∈ R1×2n

and u1 ∈ R2n×1, are the left and right eigenvectors of A corresponding to the only
zero eigenvalue, respectively. Here, u1 is an unit vector, and we have

AT vT1 = 0, Au1 = 0 and v1u1 = 1. (3.47)
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The above equations then lead to

v1 =

√
n

1TD1

[
1TD 1TM

]
, and u1 =

 1√
n
1

0n×1

 , (3.48)

where the property L1 = 0 is used. Furthermore, we partition U and U−1 as

U =
[
u1 U2

]
, U−1 =

[
v1

V2

]
, (3.49)

and it follows that

eAt = UeΛtU−1 =
[
u1 U2

] [1
eΛ̄t

] [
v1

V2

]
= u1v1 + U2e

Λ̄tV2. (3.50)

Observe that lim
t→∞

U2e
Λ̄tV2 = 0, which yields that

lim
t→∞

eAt = u1v1 = σ−1
D

[
1n1

T
nD 1n1

T
nM

0n×n 0n×n

]
. (3.51)

Consequently, we obtain

lim
t→∞

[
x(t)

ẋ(t)

]
= lim
t→∞

eAt
[
x(0)

ẋ(0)

]
= σ−1

D

[
1n1

T
n (Dx(0) +Mẋ(0))

0n×1

]
.

Proposition 3.1 indicates that the reduced-order model Σ̂ has the same form as
the original model Σ. Therefore, a similar reasoning line yields

lim
t→∞

[
z(t)

ż(t)

]
=

1

1Tr D̂1r

[
1r1

T
r

(
D̂z(0) + M̂ ż(0)

)
0r×1

]
,

Then, we have the following equations for Σ̂:

lim
t→∞

˙̂x(t) = lim
t→∞

P ż(t) = 0n×1,

lim
t→∞

x̂(t) = lim
t→∞

Pz(t) = P
1r1

T
r

(
D̂z(0) + M̂ ż(0)

)
1Tr D̂1r

,

where M̂ = PTMP , D̂ = PTDP . The result immediately follows from x̂(0) =

Pz(0) = x(0) and P1r = 1n.
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Remark 3.3. Theorem 3.3 also indicates that with any initial conditions and u = 0, the
trajectories of ẋ(t) and ż(t) always converge to zero, while those of x(t) and z(t) converge to a
common value which is nonzero in general. Furthermore, if we denote ξ(t) and ξ̂(t) ∈ Rn×p

as the impulse responses of Σ and Σ̂, then we can obtain

lim
t→∞

ξ(t) = lim
t→∞

ξ̂(t) = σ−1
D 11TF,

lim
t→∞

ξ̇(t) = lim
t→∞

˙̂
ξ(t) = 0,

(3.52)

which follows from the computation of lim
t→∞

eAtB with A and B defined in (3.4).

3.5 Selection of Network Clustering

The cluster selection is a crucial problem in clustering-based model reduction, since
different choices of clustering yield different reduced models with different ap-
proximation qualities. In Section 3.5.1, we first specify the concept of the pseudo
controllability Gramian to second-order network systems and then discuss a method
to compute such Gramian from the state-space model (3.3). The purpose of defining
such a Gramian is explained in Section 3.5.2, where a hierarchical clustering algo-
rithm is designed for cluster selection. Finally, the approximation error is analyzed
in Section 3.5.3.

3.5.1 Second-Order Pseudo Controllability Gramian

For asymptotically stable systems, we can define controllability Gramian as in (2.21).
However, the standard definition is not well-defined for the network system Σ. In
this chapter, we adopt the notion of pseudo controllability Gramian of Section 3.3.
For the second-order network system Σ, we obtain a concise expression of J in (3.7)
as

J = σ−1
D

[
11TD 11TM

0n×n 0n×n

]
. (3.53)

Then, the second-order pseudo controllability Gramian, denoted by P ∈ R2n×2n, is
given in (3.7a) and satisfies the Lyapunov equation in (3.8). This section provides
specific results for second-order Gramians, which can be obtained from Section 3.3.

Lemma 3.4. Suppose a symmetric matrix P1 ∈ R2n×2n is a solution of the Lyapunov
equation in (3.8a), then the following three conditions are equivalent

1. A symmetric matrix P2 ∈ R2n×2n is a solution of (3.8a).
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2. P2 satisfies the equation

J (P1 − P2)J T = P1 − P2. (3.54)

3. P2 can be expressed by
P2 = P1 + βΠ (3.55)

with Π :=

[
11T 0n×n
0n×n 0n×n

]
and β a scalar constant.

Proof. 1)⇒ 2): Assume that P2 is also a solution of (3.8a), and denote ∆ := P1 − P2.
We have

A∆ + ∆AT = 0, (3.56)

which leads to
eAt

[
A∆ + ∆AT

]
eA

T t =
d

dt

[
eAt∆eA

T t
]

= 0. (3.57)

Therefore, we obtain ∫ ∞
0

d

dt

[
eAt∆eA

T t
]
dt = 0, (3.58)

which is equivalent to
J∆J T = ∆. (3.59)

2)⇒ 3): Assume that P2 satisfies (3.54), i.e., equation (3.59) holds. Then, the entry
in the i-th row and j-th column of ∆ is given by ∆ij = Ji∆J Tj , where Ji ∈ R1×2n

presents the i-th row of J . Note that

Ji =

{
σ−1
D ·

[
1TD,1TM

]
, 1 ≤ i ≤ n

01×2n, n+ 1 ≤ i ≤ 2n
(3.60)

with scalar σD = 1TD1. Therefore,

∆ij = σ−2
D ·

(
1TD∆D1+ 1TM∆M1

)
:= β, (3.61)

if 1 ≤ i, j ≤ n, ∆ij = 0, otherwise, which implies that P2 is presented as equation
(3.55).

3)⇒ 1): Observe that

AΠ =

[
0 I

−M−1L −M−1D

] [
β11T 0n×n
0n×n 0n×n

]
= 0.

Suppose a symmetric matrix P2 is in the form of (3.55), we then obtain

AP2 + P2AT + (I − J )BBT (I − J T )

=A(P1 + βΠ) + (P1 + βΠ)AT + (I − J )BBT (I − J T )

=AP1 + P1AT + (I − J )BBT (I − J T ) = 0,
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which indicates that P2 is also a solution of (3.8a).
That completes the proof.

We then can obtain the pseudo controllability Gramian in the following theorem,
despite that the solutions of the Lyapunov equation in (3.8a) are not unique.

Theorem 3.4. Consider the network system Σ as in (3.1) and let Pa be an arbitrary solution
of the Lyapunov equation in (3.8a). Then, the pseudo controllability Gramian P is given by

P = Pa + βaΠ, (3.62)

where Π is defined in (3.55) and

βa = −σ−2
D ·

([
1TD,1TM

]
Pa
[
D1

M1

])
. (3.63)

Proof. Consider Pa as an arbitrary solution of (3.8a). Since the pseudo controllability
Gramian P is also a solution of (3.8a), Lemma 3.4 then implies that there exists a
scalar βa such that

P = Pa + βaΠ. (3.64)

Next, we prove that βa satisfies (3.63) based on the definition of pseudo controlla-
bility Gramian. Denote a vector νT :=

[
1TD,1TM

]
∈ R1×2n. Then, we have

νTA =
[
1TD,1TM

] [ 0 I

−M−1L −M−1D

]
= 0, (3.65)

where 1TL = 0 is used. Since the power series expansion of eAt is

eAt = I +

∞∑
k=1

Aktk

k!
, (3.66)

we have
νT eAt = νT . (3.67)

For the matrix J , from its definition (3.53), we have

νTJ =
[
1TD,1TM

]
· σ−1

D

[
11TD 11TM

0n×n 0n×n

]
= νT , (3.68)

where σD = 1TD1 is used. In summary, from (3.67) and (3.68), we have

νT (eAt − J ) = νT I − νTJ = 0. (3.69)
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This implies from the definition of pseudo controllability Gramian in (3.7a), νTP = 0,
and consequenly

νTPν = 0. (3.70)

By substituting (3.64) into (3.70), we obtain

νT (Pa + βaΠ)ν = 0. (3.71)

Observe that νTΠν = (1TD1)2 = σ2
D, therefore,

βa = −σ−2
D νTPaν, (3.72)

which is equivalent to (3.63).

Remark 3.4. The proof of Theorem 3.4 implies that P satisfying (3.8a) and (3.70) uniquely
exists. Let both Pa and Pb satisfy (3.8a) and (3.70). Condition (3.8a) implies that for the
pseudo controllability Gramian P , there exist scalar βa and βb such that

Pa + βaΠ = P = Pb + βbΠ. (3.73)

Moreover, (3.70) yields
βaν

TΠν = 0 = βbν
TΠν. (3.74)

Since νTΠν = σ2
D is nonzero, we have βa = βb = 0. Therefore, we have Pa = P = Pb.

Theorem 3.4 provides an approach to obtain the second-order pseudo control-
lability Gramian P without computing an integral. First, we solve the Lyapunov
equation in (3.8a) and obtain an arbitrary solution. Then, applying (3.62) leads to
the P matrix. In [14, 16], the algorithms to solve the Sylvester equation are proposed
for nonsingular A and B matrices. Based on them, it is not difficult to generalize the
methods to the singular case, e.g., the Lyapunov equation in (3.8a), just to acquire
an arbitrary solution. In this chapter, we will not further discuss the computation of
the matrix equation (3.8a) due to the limited space. In the following subsection, we
adopt the second-order pseudo controllability Gramian to design an efficient cluster
selection algorithm.

3.5.2 Hierarchical Clustering

Which method is used for cluster selection generally determines the approximation
quality of the reduced-order system. Therefore, it plays a crucial role in the model
reduction of a network system. Contrary to the existing algorithms in the literature,
we propose a novel one that uses theH2-norms of transfer function discrepancy as
the criterion to measure the dissimilarities of vertices and clusters those vertices with
similar behaviors.
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We first consider the transfer matrix of system Σ in (3.1)

η(s) := (s2M + sD + L)−1F ∈ R(s)n×m, (3.75)

and characterize the vertex behavior by the transfer function from external inputs
to individual states, i.e., the behavior of the i-th vertex is captured by the transfer
function

ηi(s) := eTi η(s). (3.76)

Then, the dissimilarity of vertices i and j is defined.

Definition 3.2. Consider the network system Σ, the dissimilarity of nodes i and j is
defined by

Dij := ‖ηi(s)− ηj(s)‖H2 . (3.77)

The boundedness of Dij is implied by the following lemma.

Lemma 3.5. Consider the second-order network system Σ and add an external output:
y = Hsx+Hvẋ with Hs, Hv ∈ Rp×n, then the input-output transfer function

G(s) := (Hs + sHv)(s
2M + sD + L)−1F ∈ R(s)p×m (3.78)

isH2 norm-bounded if and only if Hs1 = 0 or 1TF = 0.

Proof. Denote g(t) as the impulse response of G(s), which is given by

g(t) =
[
Hs Hv

]
eAtB ∈ R2p×m (3.79)

with A and B defined in (3.4). Theorem 3.3 implies that eAt is a bounded smooth
function of t and exponentially converges to a constant matrix J as t→∞. Therefore,
the function g(t) is integrable if and only if lim

t→∞
g(t) = 0.

From (3.52), the function g(t) has an exponential convergence as follows.

lim
t→∞

g(t) =
[
Hs Hv

]
JB = σ−1

D Hs11
TF . (3.80)

Observe that Hs1 ∈ Rp×1 and 1TF ∈ R1×m. Therefore, we have lim
t→∞

g(t) = 0 if

and only if Hs1 = 0 or 1TF = 0. Notice that the function g(t) being integrable
equivalently implies tr

[
g(t)T g(t)

]
is also integrable, and the H2-norm of G(s) is

presented as

‖G(s)‖H2
=

(∫ ∞
0

tr
[
g(t)T g(t)

]
dt

)1/2

, (3.81)

Thus, theH2-norm of G(s) is bounded if and only if tr
[
g(t)T g(t)

]
is integrable that

is g(t) is integrable, or equivalently, Hs1 = 0 or 1TF = 0.



50 3. Clustering-Based Model Reduction of Second-Order Networks

Notice that ηi(s)− ηj(s) is in form of G(s) with Hs = eTi − eTj and Hv = 0. Since
(eTi − eTj )1 = 0 for all i, j ∈ {1, 2, · · · , n}, the above lemma then implies that Dij in
(3.77) is always bounded for the network system Σ.

Now we define a dissimilarity matrix D whose entries are Dij . Clearly, D is
nonnegative symmetric matrix with zero diagonal elements.

Computing matrix D poses a major challenge, especially for large-scale systems,
while there are several methods, such as using the Riemann sum or linear matrix
inequalities as in e.g., [155]. However, the proposed pseudo controllability Gramian
provides a more efficient computational method due to the following theorem.

Theorem 3.5. Consider the input-output transfer function G(s) := (Hs + sHv)η(s) as in
(3.78). If Hs1 = 0 or 1TF = 0, then theH2-norm of G(s) is computed by

‖G(s)‖2H2
= tr

(
HPHT

)
. (3.82)

where H :=
[
Hs Hv

]
and P is the second-order pseudo controllability Gramian defined

in (3.7a). Specifically, the relation between the dissimilarity measure Dij and the pseudo
controllability Gramian P is given by

Dij =

√
tr

([
eTij ,01×n

]
P
[

eij
0n×1

])
. (3.83)

The proof follows directly from Lemma 3.2. To compute the dissimilarity matrixD,
we first calculate P by Theorem 3.4 and then just apply vector-matrix multiplication
to obtain all the entries of D.

The entries of D indicate the similarities of vertices. Based on the D matrix,
we propose a hierarchical clustering algorithm to generate an appropriate network
clustering for the system Σ. This approach links the pairs of vertices that are in close
proximity and place them into binary clusters. Then, the newly formed clusters can
be merged into larger clusters according to the cluster dissimilarity. The dissimilarity
of clusters Cµ and Cν is defined by

δ(Cµ, Cν) =
1

|Cµ| · |Cν |
∑
i∈Cµ

∑
j∈Cν

Dij . (3.84)

The notation δ(Cµ, Cν) is characterized by the average dissimilarity between all pairs
of vertices in the clusters Cµ and Cν .

The idea of hierarchical clustering has been extensively used in many fields,
including pattern recognition, data compression, computer graphics, and process
networks, see [77, 78, 94]. This chapter is the first one that introduces this clustering
algorithm to model reduction of network systems and defines the distance by the



3.5. Selection of Network Clustering 51

norm of transfer functions. In hierarchical clustering, we first assign each vertex into
an individual cluster and then merge two clusters into a single one if they have the
least dissimilarity. Finally, we can cluster the vertices into a binary, hierarchical tree,
which is called dendrogram. The pseudocode of hierarchical clustering is described in
Algorithm 1. Notice that Algorithm 1 is a greedy method.

Algorithm 1 Hierarchical Clustering

Input: M , D, L and F , model order n, desired order r
Output: P , M̂ , D̂, L̂

1: Compute the Gramian P by Theorem 3.4
2: Compute the dissimilarity matrix D by Theorem 3.5
3: Place each vertex into its own singleton cluster, that is Ci ← {i} for all 1 ≤ i ≤ n
4: k ← n

5: while k > r do
6: Set δm to be an arbitrary large number
7: for i = 1 : k − 1 and j = 2 : i− 1 do
8: Compute δ(Ci, Cj) by (3.84)
9: if δm > δ(Ci, Cj) then

10: µ← i, ν ← j, δm ← δ(Ci, Cj)
11: end if
12: end for
13: Merge cluster µ and ν into a single cluster
14: k ← k − 1

15: end while
16: Compute P ∈ Rn×r

17: M̂ ← PTMP , D̂ ← PTDP , L̂← PTLP

Remark 3.5. The pseudo controllability Gramian analysis leads to a pair-wise distance
notion of vertices, and the clustering algorithm is a simple consequence of it. We can also
adopt other clustering algorithms, such as iterative clustering, K-means clustering, or other
greedy clustering strategies, to our problem. We choose hierarchical clustering because it can
obtain a reduced network with small approximation error and low computational cost.

Remark 3.6. The clustering algorithm does not focus on manipulating any individual edges,
since the dissimilarity matrix D contains the dissimilarity of every pair of vertices. Even if
two vertices are not adjacent, their dissimilarity can also be measured based on their responses
to the external inputs. If the two vertices have very similar behaviors, they are then aggregated,
because the obtained reduced network generally has a smaller approximation error.
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3.5.3 Error Analysis

Now, we analyze the approximation error between the full-order and reduced-order
system. First, we denote

η̂(s) := P (s2M̂ + sD̂ + L̂)−1PTF ∈ R(s)n×m (3.85)

as the transfer function of the reduced-order system (3.43) and η̂i(s) := eTi η̂(s). Then
the following lemma indicates the boundedness of the approximation error.

Lemma 3.6. Consider the second-order network system Σ in (3.1) and the reduced model Σ̂

in (3.43) resulting from graph clustering. η(s) and η̂(s) are the transfer functions defined in
(3.75) and (3.85), respectively. Then, the following statements holds:

1. ‖ηi(s)− η̂j(s)‖H2 is bounded for any i, j = {1, 2, · · · , n}.

2. ‖η(s)− η̂(s)‖H2 is bounded.

Proof. Note that theH2-norm of ηi(s)− η̂j(s) is given by

‖ηi(s)− η̂j(s)‖2H2
=

∫ ∞
0

‖eTi ξ(t)− eTj ξ̂(t)‖22dt, (3.86)

where ξ(t) and ξ̂(t) are the impulse responses of Σ and Σ̂, respectively. Furthermore,
both ξ(t) and ξ̂(t) are bounded smooth functions of t, which exponentially converge
to the same value. From Remark 3.3, we have lim

t→∞
ξ(t) = lim

t→∞
ξ̂(t) = σ−1

D 11TF.

Therefore,
lim
t→∞

[
eTi ξ(t)− eTj ξ̂(t)

]
= 0. (3.87)

For bounded initial conditions ξi(0) and ξ̂j(0), the integral in (3.86) is bounded, i.e.,
‖ηi(s) − η̂j(s)‖2H2

< ∞. It means that the norm of each row of η(s) − η̂(s) is finite,
therefore, ‖η(s)− η̂(s)‖H2

is also bounded.

Now, we explore the method to compute the approximation error in terms of the
H2-norm. For simplicity, we denote

Â =

[
0r×r Ir
−M̂−1L̂ −M̂−1D̂

]
, B̂ =

[
0r×m

M̂−1PTF

]
. (3.88)

for the reduced system Σ̂ in (3.43). Since P1r = 1n, 1Tr D̂1r = 1Tr P
TDP1r = 1TnD1n,

the convergence matrix of Σ̂ is given by

Ĵ = σ−1
D ·

[
1r1

T
r D̂ 1r1

T
r M̂

0r×r 0r×r

]
(3.89)
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with σD = 1TnD1n.
Next, we consider the following error system:

Σe :

{
ω̇ = Aeω + Beu,
δ = Ceω,

(3.90)

where

Ae =

[
A 0

0 Â

]
∈ R(2n+2r)×(2n+2r), Be =

[
B
B̂

]
∈ R(2n+2r)×m,

Ce =
[
In 0n×n − P 0n×r

]
∈ Rn×(2n+2r).

Then, the approximation error between the full-order and reduced-order system is
equivalent to computing ‖Σe‖H2

.
Lemma 3.6 guarantees that, by clustering-based projection, the approximation

error between the full-order and reduced-order models is bounded. Now, we exploit
the method to compute the errors ‖Σ− Σ̂‖H2

.
To this end, we define the coupling pseudo controllability Gramian of system Σe,

which is formulated as

Px =

∫ ∞
0

(eAt − J )BB̂T (eÂ
T t − Ĵ T )dt ∈ R2n×2r. (3.91)

The following lemma provides a method to obtain Px without integration.

Lemma 3.7. Consider the error system Σe in (3.90) and its coupling pseudo controllability
Gramian is computed by

Px = P̃x + βxΠx, (3.92)

where P̃x is an arbitrary solution of the following Sylvester equation

AP̃x + P̃xÂ+ BB̂T = 0, (3.93)

and βx is a scalar constant given by

βx = −σ−2
D ·

[
1TnD,1

T
nM

]
P̃x

[
D̂1r
M̂1r

]
(3.94)

with σD = 1TnD1n.

Proof. By similar reasoning as in the proofs of Lemma 3.4 and Theorem 3.4, the
following results can be obtained:

First, Px is the solution of the matrix equation in (3.93).
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Second, both P̃x and Px are the solutions of equation (3.93) if only if they satisfy

J (P̃x − Px)Ĵ T = P̃x − Px, (3.95)

or equivalently, Px can be expressed as

Px = P̃x + βxΠx, (3.96)

with Πx :=

[
1n1

T
r 0n×r

0n×r 0n×r

]
and βx a scalar constant.

Third, Px satisfies [
1TnD,1

T
nM

]
Px

[
D̂1r
M̂1r

]
= 0. (3.97)

Note that [
1TnD,1

T
nM

]
Πx

[
D̂1r
M̂1r

]
= 1TnD1n1

T
r D̂1r = σ2

D. (3.98)

Therefore, from (3.96) and (3.97), we obtain the expression of βx as in (3.94).

Based on the coupling pseudo controllability Gramian, the approximation error
between the full-order and reduced-order system, i.e., ‖Σe‖H2

is obtained as follows.

Theorem 3.6. Consider the second-order network system Σ in (3.1) and the reduced model
Σ̂ in (3.43) resulting from graph clustering. Then the error between Σ and Σ̂ in terms of the
H2-norm is computed by

‖Σ− Σ̂‖H2
=

√
tr

(
Ce
[
Pn Px

PTx Pr

]
CTe
)
, (3.99)

where Ce is defined in (3.90), and Pn ∈ R2n×2n and Pr ∈ R2r×2r are the second-order
pseudo controllability Gramians of the full-order system Σ and reduced-order system Σ̂,
respectively. Px is the coupling pseudo controllability Gramian of the error system (3.90).

Proof. We extend the concept of pseudo controllability Gramian to the error system
Σe:

First, the convergence matrix of system Σe is given by

Je = lim
t→∞

eAet =

[
J 0

0 Ĵ

]
. (3.100)

Second, the pseudo controllability Gramian of system Σe is defined by

Pe =

∫ ∞
0

(eAet − Je)BeBTe (eA
T
e t − J Te )dt, (3.101)
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which can partitioned as

Pe =

[
Pn Px

PTx Pr

]
. (3.102)

Note that CeJeBe = 0, since

CeJeBe =
[
[In,0n]J [−P,0r]Ĵ

]
Be

=σ−1
D

[
1n1

T
nD 1n1

T
nM −P1r1Tr D̂ −P1r1Tr M̂

0n×n 0n×n 0n×r 0n×r

]
·


0n×m
M−1F

0r×m
M̂−1PTF


=

[
1n1

T
nF − P1r1Tr PTF

0n×m

]
= 02n×m.

Therefore,

CePeCTe =

∫ ∞
0

Ce(eAet − Je)BeBTe (eA
T
e t − J Te )CTe dt

=

∫ ∞
0

CeeAetBeBTe eA
T
e tCTe dt.

(3.103)

Finally, we have ‖Σ− Σ̂‖H2
= ‖Σe‖H2

=
√
tr (CePeCTe ).

We apply the above theorem to evaluate the exact approximation error between
the original and reduced-order network systems. To this end, three Gramians are
computed: the pseudo controllability Gramians of the original and reduced-order
systems and the coupling pseudo controllability Gramian.

Now, an extension of the clustering-based method to velocity-based model reduction
for second-order network system is discussed, where the closeness of ẋi and ẋj with
different i, j is considered. For a given system Σ as in (3.1), we intend to find a
system

Σ̂v :

{
M̂ z̈ + D̂ż + L̂z = PTFu,

v = P ż,
(3.104)

such that the state ẋ(t) in (3.1) is approximated by v(t) in Σ̂v . To this end, the pseudo
controllability Gramian P is used. Denote

ζ(s) := s(s2M + sD + L)−1F and ζi(s) := eTi ζ(s). (3.105)

The behavior of the i-th vertex is captured by the transfer function from external
inputs to the velocity of the i-th vertex ẋ(t). Then, we consider a velocity dissimilarity
matrix Dv with the (i, j)-th entry as

Dvij = ‖ζi(s)− ζj(s)‖H2 (3.106)
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Here, the dissimilarity between two vertices is measured by the velocity difference
over time. Similar to (3.83), Dvij is computed by

‖Dvij‖H2
=

√
tr

([
01×n, eTij

]
P
[
0n×1

eij

])
. (3.107)

Using the matrix Dv, the hierarchical clustering algorithm is also applicable for
velocity-based model reduction. To estimate the approximation error, we just replace Ce
in Theorem 3.6 by

Cve =
[
0n×n In 0n×r −P

]
. (3.108)

3.6 Small-World Network Example

In this section, we demonstrate the feasibility of our model reduction method by a
simulation. We generate a mass-damper-spring system evolving on an undirected
connected network with 70 vertices, see Fig. 3.2. The blue, red and yellow segments
present the edges connecting by springs, dampers and both of them, respectively.

The masses are set by
Mii = (i mod 10) + 1, (3.109)

where mod presents a modulo operation. In Fig. 3.2, the bigger size of a vertex means
it has a larger mass. The topologies of spring and damper couplings are generated by
Watts-Strogatz model [173], which is a random graph generator producing graphs
with small-world properties. Furthermore, the damper on each vertex is set to be
proportional to its mass. we add 5 inputs to the network, and the input matrix F is
randomized as a 70-by-5 matrix, whose entries are in the range of [−1, 1].

We apply the hierarchical clustering algorithm to reduce the full-order second-
order network system. The two clusters with the nearest distance are merged into a
single one and finally, Algorithm 1 will group the vertices into a binary, hierarchical
tree, called dendrogram, see Fig. 3.3. The dendrogram is fairly straightforward to
interpret the result of graph clustering: The bottom vertical lines are called leaves,
which represent the vertices on the graph. Besides, each fusion of two clusters is
indicated by the splitting of a vertical line into two branches, and the horizontal
position of the split, shown by the short horizontal bar, reads the similarities between
the two clusters. In Fig. 3.3, we use five different colors to show the result of graph
clustering with five clusters.

The resulting reduced network systems are shown in Fig. 3.4, where simplified
networks with the different number of vertices are presented. We find that the simpli-
fied network system with lower dimension trends to have more edges simultaneously
connected by springs and dampers.
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Figure 3.2: Original second-order networks with 70 vertices

 7  8 28 67 25 44  3 45  6 34  4 35 38 48 46  5 17 36  9 68 26 49 15 19 39 16 29 65 58 18 59 27 55 57 56 69 47 37 66 23 60 54 64 43 24 42 53  2 13 14 52 33  1 51 21 12 22 30 10 61 50 11 62 32 31 63 20 40 41 70
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Figure 3.3: Dendrogram depicting the graph clustering, where the horizontal axis
is labeled by vertex numberings, while the vertical axis represents the dissimilarity
between clusters.
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Next, we compare our hierarchical clustering algorithm with other clustering
strategies to illustrate that hierarchical clustering is effective in obtaining a reduced-
order network system with smaller errors. The two additional strategies we use for
the comparison are described as follows.

• Random clustering randomly assigns n vertices in V into r nonempty subsets.

• Simple greedy clustering aggregates the vertices if they have smaller pair-wise
dissimilarities. More specifically, it first clusters the most similar two vertices
and then the pairs of vertices with the second smallest dissimilarity. In the
following steps, it recursively aggregates the vertices with bigger and bigger
dissimilarity until r clusters are obtained. At each step, two clusters are unified
if they have intersections.

Fig. 3.5 depicts the comparison of three strategies in their approximation errors. The
random clustering is performed for 50 times, and the average of the approximation
errors is plotted in Fig. 3.5. Generally, the errors obtained by the different clustering
strategies decrease as the reduced order r increases. However, it is clear that the
hierarchical clustering algorithm has better performance than the other two strategies.
When r = 5, the approximation error obtained by hierarchical clustering is ‖Σ −
Σ̂‖H2

= 0.5967, which implies that behaviors of the full-order model can be well-
approximated.

We implement this numerical experiment by Matlab 2016a in the environment
of the 64-bit operating system with Intel Core i5-3470 CPU @ 3.20GHz, RAM 8.00
GB. To find the fifth-dimensional simplified model, it costs 1.1656s, while the time
of computing the Gramian is 1.1167s. Therefore, the time consumption is mainly
taken by the first step of Algorithm 1, and once the pseudo controllability Gramian is
obtained, the hierarchical clustering can be processed rapidly.

Remark 3.7. Note that numerical methods for solving Lyapunov equations generally have
at least a computational complexity O(n3), while the clustering procedure in Algorithm
1 requires a computational complexity O(n2). When the dimension of the network n is
large, solving the Lyapunov equation in (3.8a) contributes heavily to the computing time. In
contrast, the computing time of the hierarchical clustering algorithm is much lower. Although
we take a 70-dimensional network system for this example, the proposed method is also
applicable for much larger networks.

3.7 Conclusions

Based on graph clustering, we have developed a model reduction method for inter-
connected second-order systems. A hierarchical clustering algorithm is proposed
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(a) Network with 50 clusters (b) Network with 30 clusters

(c) Network with 10 clusters (d) Network with 5 clusters

Figure 3.4: Reduced network with different numbers of clusters

to find an appropriate clustering such that the vertices with similar responses with
respect to external inputs are merged. Then, a projection using cluster matrix is
applied to yield lower-dimensional network model. It is verified that such reduced
system preserves network structures. Besides, we introduce the pseudo controllabil-
ity Gramian for the computation ofH2-norms, which improve the feasibility of our
algorithm. Finally, the efficiency of the proposed method has been illustrated by an
experiment. It is worth mentioning that although we consider a linear second-order
network system as in (3.1), the proposed method can be extended to more general
network systems, such as networks consisting of higher-order linear dynamics and
directed networks, which will be discussed in Chapter 5 and Chapter 6, respectively.
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Figure 3.5: Approximation error comparisons of hierarchical clustering algorithm
with random and simple greedy clustering strategies, where the curve of random
clustering is plotted based on the mean of 50 times experiments.

In the next chapter, we extend the method proposed for second-order networks to
power networks with distributed controllers.
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4
Clustering-Based Model Reduction of
Power Networks

This chapter considers structure preserving model reduction of power networks
with distributed controllers. The studied system and controller are modeled

as second-order and first-order ordinary differential equations, which are coupled
to a closed-loop system. This chapter uses the idea developed in Chapter 3 and
considers an application to controlled power networks. By transfer functions, we
characterize the behavior of each node (generator or load) in the power network
and define a novel notion of dissimilarity between two nodes by the H2-norm of
the transfer function deviation. Then, the reduction methodology is developed
based on separately clustering the generators and loads according to their behavior
dissimilarities. The characteristic matrix of the resulting clustering is adopted for the
Galerkin projection to derive explicit reduced-order power models and controllers.
Finally, we illustrate the proposed method by the IEEE 30-bus system example.

4.1 Introduction

This chapter further extends the proposed clustering-based reduction method in
Chapter 3 and studies its application in power networks that are controlled by
distributed controllers. Power networks, nowadays, are experiencing the penetration
and integration of a wide array of new electronic devices and renewable energy
sources, see [15, 46] for an overview. In the foreseeable future, power networks will
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become more and more complex with more variation in the generators, uncertain
loads, and denser transmission lines. Centralized power generation is being replaced
by a more distributed generation.

The immense size of power grids yields mathematical models with high dimen-
sions complicating the further analysis. In most cases, a complete model of the
power network is neither practical nor necessary for e.g. transient analysis, failure
detection, distributed controller design, or system simulation. Therefore, we need to
construct a reduced-order model that can approximate the behavior of the original
complex power system with an acceptable accuracy. More importantly, we desire
to preserve the network structure in the reduced-order model such that it can be
interpreted as a reduced network with a less complex topology. Specifically, the
reduced power system is evolving over a simpler network that consists of fewer
generator and load buses and sparser transmission lines. The network structure is
necessary for the application of sensor allocation, and the management of distributed
power generation. The main interest of This chapter is to investigate the problem of
model order reduction for power networks with distributed controllers while the
preservation of network structures.

Conventional model reduction techniques, including balanced truncation and
Krylov subspace methods, have been extended to the dynamic reduction of power
systems. In these papers, the power network systems are modeled in first-order
state space representations, and the reduced-order models are constructed within
the framework of Petrov-Galerkin projection. Although these methods provide
systematic procedures to produce lower-dimensional models, which benefits the
computation and simulation of power systems, the network structure is not retained
through the reductions, and the projected states in the reduced-order model often
lack a physical interpretation. A structure-preserving approach is proposed in [40],
where the network model is firstly reduced by the balanced truncation, which still
preserves the semistability such that the reduced-order model can be reformed as
a network system. In spite of fewer nodes, the obtained reduced network has a
complete interconnection. This restricts the use of the reduced-order models in the
further applications, especially the implementation of distributed control laws. In a
distributed control network, control laws are implemented locally by each generator,
and these controllers send and receive data through a communication network, which
is only connecting generators and in general, has a different topology from the power
network, see [6,56,103,119,123,165–168] for more details. In this case, each generator
can only receive information from its adjacent generators through the communication
network, which means that the control signals have to be generated by using only
part of the system states. However, in the reduced-order model resulting from the
conventional approaches, each state is composed of a linear combination of all the
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original states. As a result, the controllers designed based on such models are not
able to be realized in a distributed fashion.

Another network simplification method is the Kron reduction, which has been
widely used in e.g. classic circuit theory, smart grid monitoring, and transient stabil-
ity assessment. The extension of this approach for model order reduction of electric
networks can be found in [30, 52, 123] and references therein. The network structure
of a power system is preserved as the Schur complement of the Laplacian matrix
of the original network is again a Laplacian matrix, which represents a smaller net-
work. Despite the simplicity of implementation, the Kron reduction modeling only
eliminates the load buses in the power network [52]. To reduce the complexity of
a network of synchronous generators, which is modeled by a second-order swing
equation [55], [148] proposes a method based on time-scale separation and singular
perturbation analysis. This approach identifies the sparsely and densely connected
areas of power grids and then aggregates the state variables of the coherent areas.
Similar to Kron reduction, the algebraic structure of the Laplacian matrix is main-
tained through the singular perturbation approximation. However, the method
in [148] ignores the fluctuation of power demands from the loads.

Clustering analysis of power networks, derived from the concept of diakoptics,
has been intensively explored in the study of coherency recognition, area aggrega-
tion, and behavior approximation in the power grid. A large and complex power
network could be more easily analyzed and managed when it is decomposed into
several smaller components. The coherency-based approach is most popular for the
clustering analysis of electric networks. Many related results have been reported in
the literature, see [9, 46, 47, 80, 116, 139, 177] and the references therein. The generator
coherency is introduced to describe the tendency of generators when the disturbances
are affecting the system. The reduced model of the power network then results from
aggregating those coherent generators. However, the coherency identification is
a data-driven process, which heavily relies on the accuracy of the sampling data
generated from the time-domain voltage angle responses of the generator buses.

The presented work provides a novel model order reduction scheme for power
networks with the associated distributed controllers. The reduction procedure is
developed based on Chapter 3, where the reduction of second-order network systems
is studied. This chapter explores the application of power networks that contain
many generator and load buses, and the proposed method aims to simultaneously
simplify the structures of the transmission network and its distributed controller.

By linearizing the nonlinear structure preserving model of the power network [17],
we obtain the network model in a second-order representation. Together with the
distributed controller, the closed-loop system is derived, which is semistable and
contains the Laplacian matrices of the power transmission network and the commu-
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nication graph of the controllers. The clustering analysis of the networks is based
on the closed-loop system. Similar to the idea in Chapter 3, that a reduced-order
model is generated by clustering the nodes behaving similarly. More specifically, the
behaviors of network nodes are characterized by transfer functions, and anH2 norm
characterization of the dissimilarity of nodal behaviors are adapted such that the hier-
archical clustering algorithm in Chapter 3 can find suitable clusterings for generator
and load nodes, respectively. This notion of dissimilarity is data-independent, which
means that we do not need the time-domain sample data to evaluate the differences
among the nodes. Compared with Chapter 3, the current chapter mainly focuses
on the application of power networks whose models couple the generator and load
dynamics with the distributed controllers. The proposed method need to reduce
the power network and communication network simultaneously, instead of only
simplifying the network system as in Chapter 3. The definition of nodal behaviors
cannot be directly applied, since the influence of communication networks of the
distributed controllers has to be concerned, and the behaviors of generator and load
nodes are supposed to be treated differently.

As the dissimilarity is defined in terms of theH2-norm, we use the controllability
Gramian of the closed-loop system to evaluate the dissimilarities between all pairs
of generator and load buses. The result of Section 3.3 in Chapter 3 is used. Besides,
the hierarchical clustering algorithm in Chapter 3 is also employed to generate
appropriate network clusterings for both generators and loads, so that the nodes with
similar behaviors are grouped into the same clusters. Then, the Galerkin method
is applied to yield a reduced-order power network with a simplified distributed
controller. The characteristic matrices of the resulting clusterings are used as the
projection matrices. It is shown that the algebraic structures of Laplacian matrices are
retained in the reduced-order model. Consequently, the interconnection topologies
of the power transmission network and communication network of the controller are
simplified.

4.2 Power Network and Distributed Controller

Consider a connected power network consisting of n synchronous generators and
m loads. Denote Vg = {1, · · · , n} and Vl = {n + 1, · · · , n + m} as the index sets of
generator and load buses, respectively. Then, the interconnection structure of the
power grid can be represented by a connected undirected graph

G = (Vg ∪ Vl, E), with E ⊂ (Vg ∪ Vl)× (Vg ∪ Vl).

E is the set of unordered pairs (i, j) representing transmission lines between nodes
i and j, which are assumed to be inductive. Notice that |Vg| = n and |Vl| = m,
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therefore, G contains n+m nodes.
The dynamics of generators and loads in a power network are characterized by

nonlinear structure-preserving models [17, 51] as follows.
(1) Generator bus i ∈ Vg :

θ̇i = ωi,

Miω̇i = −Diωi −
n+m∑
j=1

ViVjX
−1
ij sin(θi − θj) + Pmi ;

(4.1)

(2) Load bus i ∈ Vl:

θ̇i = ωi

0 = −Diωi −
n+m∑
j=1

ViVjX
−1
ij sin(θi − θj)− P li .

(4.2)

All the symbols in the models are described as follows.

• θi: voltage phase angle;

• ωi: voltage frequency w.r.t the nominal reference ω∗ (typically 50 Hz or 60 Hz);

• Mi > 0: angular momentum of generator i;

• Di > 0: damping coefficient;

• Vi > 0: the voltage magnitude at node i;

• Xij ≥ 0: the inductance of the transmission line connecting nodes i and j;

• Pmi : controllable power generation;

• P li : unknown power demand.

The above structure-preserving power network models are commonly used in
the stability analysis and controller design of power networks, including the analysis
of network synchronization and frequency regulation, see [17, 51, 165]. For example,
[61] studies the full-order description of synchronous generators in a grid setting.
However, controlling such model turns out to be rather complicated. Furthermore, it
should be remarked that the models in (4.1) and (4.2) are simplifications for the real
power systems based on the assumption that the influence of the windings of the
generators is negligible and the power lines are assumed to be lossless. Therefore,
only very slow electromechanical transients will be affected by the type of feedback
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that is proposed for using in this chapter. For example, transients as described in [102]
would not be applicable.

To obtain a linear model based on (4.1) and (4.2), we follow [123, 158] and assume
that the differences of the phase angles are relatively small, i.e., θi − θj ≈ 0 for
any i, j ∈ Vg ∪ Vl, which is satisfied in a vicinity of the nominal condition. This
assumption then leads to a linearizion of the power network model in the following
compact second-order form

Σp :

[
Mg 0

0 0

] [
θ̈g
θ̈l

]
+

[
Dg 0

0 Dl

] [
θ̇g
θ̇l

]
+

[
L1 L12

LT12 L2

] [
θg
θl

]
=

[
Pm
−Pl

]
, (4.3)

where θg ∈ Rn, θl ∈ Rm are the state vectors collecting θi with i ∈ Vg and i ∈ Vl,
respectively. Matrices Mg, Dg, and Dl are diagonal and positive definite, which are
defined as Mg := diag(M1,M2, · · · ,Mn) ∈ Rn×n, Dg := diag(D1, D2, · · · , Dn) ∈
Rn×n, and Dl := diag(Dn+1, Dn+1, · · · , Dn+m) ∈ Rm×m. Moreover, Pm and Pl
are collections of Pmi with i ∈ Vg and P li with i ∈ Vl, respectively. The weighted
Laplacian matrix L ∈ R(n+m)×(n+m) of the network topology G is partitioned as

L =

[
L1 L12

LT12 L2

]
. (4.4)

The (i, j)-th entry of L is given by

Wij = Wji := ViVjX
−1
ij , (4.5)

which is interpreted as the maximum real power transfer between any two nodes i
and j with constant voltage levels. The value of Wij is positive if there is a physical
cable directly connecting nodes i and j and zero otherwise. L has a very special
structure as stated in Lemma 2.1.

It is a crucial task to maintain the frequencies of generators and loads in the
power network close to the nominal value. However, with the growth of the network
size, centralized controllers become increasingly expensive due to the need for the
information of all generators. Recently, distributed averaging PI controllers have
been proposed for the frequency control of power networks, see [6, 56, 123] for the
details. The distributed controllers exchange information over a communication
network

Gc := (Vg, Ec), with Ec ⊂ Vg × Vg,

which is assumed to be undirected and connected. It should be emphasized that the
topology of the communication network Vg is generally different from the topology
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of the power network G. For each generator i ∈ Vg , the controller takes the form

Qiξ̇i = −ωi −
∑
j∈Ni

cij(ξi − ξj),

Pmi = ξi.

(4.6)

Here,Ni represents the set of neighboring generators of node i in Gc, i.e., the collection
of generators that generator i communicates with. The coefficients cij = cji > 0

reflect the strengths of the connection between generators i and j. Qi is a positive
gain. The controller (4.6) is designed to regulate the frequency deviation to zero
and enforce the controller states ξi to reach a consensus, i.e., the generated power
deviation of all generators becomes equal at steady state.

Notice that the controller (4.6) only needs the information from the neighbors of
generator i, therefore can be implemented in a distributed fashion. We now write the
controller in the vector form

Σc :

{
Qξ̇ = −Lcξ − ωg,
Pm = ξ,

(4.7)

where Lc is the Laplacian matrix of the communication network whose (i, j) en-
try is given by cij . The vector ξ ∈ Rn is the collection of ξi, i ∈ Vg, and Q :=

diag(Q1, Q2, · · · , Qn). ωg := θ̇g ∈ Rn represent the frequencies of all the generators.
By substituting the distributed controller (4.7) for Pm in (4.3), we obtain the

closed-loop system

Σcl : Eẋ = Ax+Bd (4.8)

where the state variable xT :=
[
θTg θTl ωTg ξT

]
∈ R3n+m and

E =


Dg 0 Mg 0

0 Dl 0 0

Mg 0 0 0

0 0 0 Q

 , A =


−L1 −L12 0 In
−LT12 −L2 0 0

0 0 Mg 0

0 0 −In −Lc

 , and B =


0

−Im
0

0

 .
(4.9)

Here d := Pl is the power consumption of the m loads, which is uncontrollable and
regarded as the stochastic disturbance of the closed-loop system (4.8). We analyze
the stability of Σcl in the following theorem.

Theorem 4.1. The closed-loop power system Σcl is semistable, and its impulse response
converge to zero.
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Proof. Observe that det(E) = det(Dg) det(Dl) det(D−1
g Mg) 6= 0. Therefore, E is non-

singular, and its inverse reads as

E−1 =


0 0 M−1

g 0

0 D−1
l 0 0

M−1
g 0 −M−1

g DgM
−1
g 0

0 0 0 Q−1

 . (4.10)

which gives

E−1A =


0 0 In 0

−D−1
l LT12 −D−1

l L2 0 0

−M−1
g L1 −M−1

g L12 −M−1
g Dg M−1

g

0 0 −Q−1 −Q−1Lc

 . (4.11)

By [123], interconnecting the controller Σc and the power network system Σp results
in a zero frequency deviation and consensus of the controller states. It then implies
that, with impulse signals as disturbances of the closed-loop system Σcl, all the
state trajectories converge to constant values, i.e., lim

t→∞
eE
−1At exists. Thus, Σcl is

semistable by the definition in [19].
Furthermore,using the third property of Laplacian matrices in Lemma 2.1, it is

easy to check that

ker(E−1A) = ker(A) = span
([
1Tn 1Tm 0Tn 0Tn

]T)
. (4.12)

Together with semistability, we conclude that E−1A only has one zero eigenvalue at
the origin, and all the other eigenvalues have strict negative real parts. Notice that
the vectors

vR ∈ span



1n

1m

0n
0n


 and vL ∈ span



1n

0m
0n
Q1n


 (4.13)

are the right and left eigenvector of E−1A corresponding to the zero eigenvalue,
respectively, i.e., E−1AvR = 0 and vTLE

−1A = 0. Based on this, we can obtain the
following decomposition

E−1A = UDU−1 = [vR, VR]

[
0

D̄

] [
vTL
V TL

]
, (4.14)

where U is unitary, and D̄ ∈ R3n+m−1 is Hurwitz. Hence, ‖vR‖2 = 1 and vTLvR = 1,
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which yields

vR =
1√

n+m


1n

1m

0m
0n

 and vL =

√
n+m

n


1n

0m
0n
Q1n

 , (4.15)

Then, the convergence value of the impulse response is computed as

lim
t→∞

(
eE
−1At

)
E−1B = vRv

T
LE
−1B

=
1

n


1n1

T
n 0n×m 0n×n 1n1

T
nQ

1m1
T
n 0m×m 0m×n 1m1

T
nQ

0n×n 0n×m 0n×n 0n×n
0n×n 0n×m 0n×n 0n×n




0n
D−1
l

0n
0n

 = 0.
(4.16)

That completes the proof.

Remark 4.1. Due to the singularity of matrix E−1A, the closed-loop system Σcl is not
asymptotically stable. However, Theorem 4.1 indicates that, for any initial condition, the
unforced system responses can reach the steady states at zero. Theorem 4.1 also offers a
physical interpretation for the power network. The distributed controller in (4.7) eliminates
the effects of disturbances, namely a sudden impulse change in the power demand, and steers
the frequencies of all the nodes (i.e., the generator and load buses) to the nominal value ω∗.
Note that the frequency at the steady state is independent from the disturbances.

4.3 Model Reduction of Power Networks

To uncover the community structure of generators and loads, a novel clustering
method is proposed and applied in this section, where the clusters are constructed
based on the differences of nodes behaviors.

We propose a new method for cluster selection in power networks. The choices
of clustering will determine the accuracy of network approximation. i.e., how close
the behaviors of the reduced and original networks are. Hence, the cluster selection
algorithm is the most crucial part of the clustering-based model reduction. This
chapter provides a new way of cluster selection, which involves a particular notion
of dissimilarity and an adaption of the hierarchical clustering algorithm. The details
of our method are described hereafter.
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4.3.1 Characterization and Computation of Dissimilarity

In the context of clustering, node dissimilarities intuitively describe how different
the nodes are from each other. In contrast with the existing results in the literature,
such as [46, 94, 139], the clusters of a power network in this chapter are identified
without sampling data from a real system. We calculate the dissimilarities of network
nodes by theH2-norms of transfer function discrepancies, rather than the Euclidean
distances of the relative positions. Then, potentially, we can place the nodes with
similar behaviors into the same clusters.

More precisely, by considering the state variables of the closed-loop power system
Σcl in (4.8), the behavior of generator i (i ∈ Vg) is characterized by its responses of the
voltage angles θi, the frequencies ωi and the controller states ξi. We include ξi into
behavior characterization of generators since we also approximate the controller Σc.
When the generators are clustered, the communication network of the distributed
controllers is automatically simplified. Hence, the effects of the controller states
ξi are also needed to be included. As for the behavior of load i (i ∈ Vl), it can be
simply represented by its voltage angle responses θi with respect to the stochastic
disturbances d.

The behaviors of generators and loads can be expressed in the complex frequency
domain by the transfer functions from d to the indicative state variables. Denote two
new binary vectors

αi = ei + ei+n+m + ei+2n+m, βi = ei+n, (4.17)

where ei is the i-th unit base vector. Then the behavior of generator i is given by

Ψg
i (s) =

[
θi(s) ωi(s) ξi(s)

]T
d(s)

= αTi (sI −A)B, i = {1, 2, · · · , n}, (4.18)

where θi(s), ωi(s), ξi(s), and d(s) are the Laplace transforms of the states θi, ωi, ξi,
and the input d, respectively, in the closed-loop system. Furthermore, the behavior of
load i ∈ Vl is represented by

Ψl
i(s) =

θi+n(s)

d(s)
= βTi (sI −A)B, i = {1, 2, · · · ,m}. (4.19)

It is worth to mention that the definitions of behaviors here are different from the one
in Chapter 3. As we aim to reduce the communication network as well, we include
the state of the distributed controller in the definition of generator behavior.

Thereupon, a pairwise dissimilarity of nodes i and j is defined for generators and
loads respectively.

Dgij = ‖Ψg
i (s)−Ψg

j (s)‖H2 , Dlij = ‖Ψl
i(s)−Ψl

j(s)‖H2 . (4.20)
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Moreover, the dissimilarity matrices for the generators and loads are denoted by
Dg ∈ Rn×n andDl ∈ Rm×m, which are constructed by collectingDgij andDlij . Clearly,
Dg and Dl are symmetric matrices with nonnegative entries and zero diagonal
elements. Besides, the boundedness of Dg and Dl are also guaranteed by Theorem
4.1. The reason of the boundedness are explained as follows.

For simplicity, let
A = E−1A, B = E−1B, (4.21)

where E, A, B are system coefficients of the closed-loop system Σcl in (4.8). Note that
impulse response of node i in Σcl is expressed by eAtB, which is a bounded smooth
function of t and exponentially converges to zero. Thus, the boundedness of Dgij and
Dlij can be seen from the the definition ofH2-norm [7].

‖Ψg
i (s)−Ψg

j (s)‖
2
H2

=

∫ ∞
0

(αi −αj)
T eAtBBT eA

T t(αi −αj)dt

= (αi −αj)
TP(αi −αj),

(4.22)

and similarly,
‖Ψl

i(s)−Ψl
j(s)‖2H2

= (βi − βj)
TP(βi − βj). (4.23)

In both equations, P is the pseudo controllability Gramian of the closed-loop system
Σcl, see (3.7a) for the definition of pseudo controllability Gramian. For large-scale
networks, (4.22) and (4.23) provide an efficient method to compute matrix D, since
we first calculate P and then just apply vector-matrix multiplication to obtain all
the entries of D. However, the semistability of Σcl poses a challenge to implement
this idea. For asymptotically stable systems, their controllability Gramians can be
uniquely determined by solving the associated continuous-time algebraic Lyapunov
equation in (2.21).

In the semistable case, A is not Hurwitz, which results in multiple solutions of
the below Lyapunov equation [14].

AP + PAT + BBT = 0. (4.24)

To characterize the pseudo controllability Gramian from the solutions of (4.24), the
following lemma is proven.

Lemma 4.1. The pseudo controllability Gramian P of the semistable power system Σcl is
positive semidefinite, and it is uniquely determined by the combination of (4.24) and

vTLPvL = 0, (4.25)

where vL is the left eigenvector of A given in (4.15).
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Proof. Since vTLA = 0, for any t, we have

vTLe
AtB = vTL

(
I +At+

A2

2
t2 + · · ·

)
B

= vTLB =

√
n+m

n

[
1Tn 0Tm 0Tn 1TnQ

] 
0n
D−1
l

0n
0n

 = 0.

(4.26)

Thus, (4.25) holds. It then yields vTLPvL = 0, which means P is positive semidefinite.
Next, we show that solving the Lyapunov equation (4.24) together with (4.25) will

yield a unique solution. Assume that two symmetric matrices P1 and P2 are both the
solutions of (4.24) and (4.25). From (4.24), we have

A(P1 − P2) + (P1 − P2)AT = 0, (4.27)

which leads to

eAt
[
A(P1 − P2) + (P1 − P2)AT

]
eA

T t =
d

dt

[
eAt(P1 − P2)eA

T t
]

= 0. (4.28)

Therefore, ∫ ∞
0

d

dt

[
eAt(P1 − P2)eA

T t
]
dt = 0. (4.29)

Note that lim
t→∞

eAt = vRv
T
L . Then, we obtain from (4.29) that

P1 − P2 = vRv
T
L (P1 − P2)vLv

T
R, (4.30)

which is equal to zero due to (4.25). Thus, we obtain P1 6= P2. As a result, the
common solution of (4.24) and (4.25) is unique.

In the following theorem, we then provide a method to determine the controlla-
bility Gramian of the semistable system Σcl by solving linear matrix equations.

Theorem 4.2. Let Pa be an arbitrary solution that fulfills (4.24). Then, the pseudo control-
lability Gramian P of the closed-loop power system Σcl in (4.8) is computed as

P = Pa − JPaJ T , (4.31)

where J is a constant matrix defined by

J := lim
t→∞

eAt =
1

n


1n1

T
n 0n×m 0n×n 1n1

T
nQ

1m1
T
n 0m×m 0m×n 1m1

T
nQ

0n×n 0n×m 0n×n 0n×n
0n×n 0n×m 0n×n 0n×n

 ∈ R(3n+m)×(3n+m). (4.32)
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Proof. Equation (4.26) implies that JPJ T = 0. From (4.30) in the proof of Lemma
4.1, we have

Pa − P = J (Pa − P)J T = JPaJ T , (4.33)

which leads to (4.31).

It should be remarked that P in (4.31) does not depend on the choice of Pa, which
can be any symmetric real solution of (4.24). Besides, we can modify the Hessenberg-
Schur method (SB04MD (SLICOT)) in [68] to solve the Lyapunov equation with a
nonsingular Amatrix. The output of the adapted Hessenberg-Schur algorithm will
give one solution of (4.24), and we then use the relation in (4.31) to obtain the real
value of P . Hereafter, we apply (4.22) and (4.23) to determine all the dissimilarities
of different pairs of generators or loads in the power grid.

4.3.2 Reduced Model of Power Network

In Section 4.3.1, the dissimilarities are calculated in the closed-loop systems. Now
we apply the idea of hierarchical clustering to group the generator and load buses
separately. The idea of hierarchical clustering has been extensively explored in many
fields, including pattern recognition, data compression, and network science, see [13,
94]. Hierarchical clustering, in principle, is a greedy algorithm, whose running time
grows polynomially with the size of the studied networks. Compared to the K-means
algorithm, another popular clustering method, the result of hierarchical clustering is
not affected by the initializations of the graph partitions. Due to the above qualities,
we choose and adapt the hierarchical algorithm to cluster the generator and load
buses for the purpose of model order reduction. The details of the hierarchical
clustering can be found in Section 3.5.2.

In this chapter, the generators and loads are grouped separately on account of dif-
ferent evaluation criteria of dissimilarities, see Section 4.3.1, yet the same hierarchical
clustering procedures can be applied for both. It is because the hierarchical clustering
only needs the dissimilarity matrices Dg and Dl, whose entries already contain the
dissimilarities of all pairs of generator and load nodes. Hereby, we only analyze the
clustering of generators and the clustering of loads in parallel. Both procedures go in
the same way, hence we only present it for any D ∈ {Dg,Dl}.

Suppose that we acquire r clusters of generator buses and q clusters of load
buses. Correspondingly, the characteristic matrices are denoted by Πg ∈ Rn×r and
Πl ∈ Rm×q , respectively. Let

Πp =

[
Πg 0

0 Πl

]
. (4.34)
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Figure 4.1: Illustration of Aggregation of generator buses (a) and load buses (b). The
nodes in the same cluster are included in the dashed boxes.

Then, a simplified weighted power network Ĝ can be obtained by aggregating all
the nodes with the same clusters in the original complex network. Mathematically,
the reduced Laplacian matrix of Ĝ is generated by the following projection.

L̂ = ΠT
p LΠp =

[
ΠT
g L1Πg ΠT

g L12Πg

ΠT
l L

T
12Πl ΠT

l L2Πl

]
:=

[
L̂11 L̂12

L̂T12 L̂22

]
∈ R(r+q)×(r+q), (4.35)

where L is the weighted Laplacian matrix representing the original network. Simi-
larly, the inertia and damping coefficients in the reduced network are given by

M̂g = ΠT
gMgΠg, D̂g = ΠT

gDgΠg ∈ Rr×r, and D̂l = ΠT
l DlΠl ∈ Rq×q. (4.36)

This clustering-based projection also has a physical interpretation, as shown in
Fig. 4.1, which shows the aggregation of generator and load buses respectively.
Notice that the nodes in the same cluster can be aggregated even if they do not have
a direct connection with each other.

The transmission lines contained in a cluster are neglected, while those connecting
two clusters are aggregated. Moreover, the maximum real power transfer on the new
branch between the clusters Cµ and Cν is given by

Ŵµ,ν =
∑
i∈Cµ

∑
j∈Cν

Wij , (4.37)
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whereWij is the maximum real power transfer between nodes i and j. In the reduced
network, a node represents a cluster of nodes in the original network, and its angular
momentum and damping coefficient are the sum of these parameters of generators
and loads in the original power network. Specifically, the inertia and damping
coefficients of the cluster Ci are computed as

M̂µ =
∑
i∈Cµ

Mi and D̂µ =
∑
i∈Cµ

Di. (4.38)

Now, we are ready to present the reduced-order power system of Σp in (4.3),
which is obtained by Galerkin projection.

Σ̂p :

[
M̂g 0

0 0

][ ¨̂
θg
¨̂
θl

]
+

[
D̂g 0

0 D̂l

][
˙̂
θg
˙̂
θl

]
+

[
L̂1 L̂12

L̂T12 L̂2

][
θ̂g
θ̂l

]
=

[
ΠT
g Pm
−ΠT

l Pl

]
, (4.39)

where the Laplacian matrix and M̂g, D̂g, D̂l are defined in (4.35) and (4.36), respec-
tively. θ̂g ∈ Rr and θ̂l ∈ Rq are the voltage phase angles of the aggregated generators
and loads in the reduced-order power network, which are used to approximate the
states in the original system:

θg ≈ Πg θ̂g, ωg ≈ Πgω̂g = Πg
˙̂
θg, and θl ≈ Πlθ̂l. (4.40)

In this model reduction method, we essentially do clustering for generators and loads
respectively. Note that the distributed controllers in this chapter are mounted to
the generators. Thus, when the generators are clustered, the network of distributed
controllers are clustered automatically. As a result, both the plants and the controllers
are reduced. Based on (4.39), the reduced-order nonlinear power system can be also
constructed, which follows the same form as (4.1) or (4.2). Here, the reduced-order
nonlinear model is omitted.

As the generators are clustered, the size of the communication network Gc for
the distributed controller in (4.7) is also simplified. As a result, the dimension of
the controller is reduced simultaneously. Analogously, the representation of the
lower-dimensional controller is written as

Σ̂c :

 Q̂
˙̂
ξ = −L̂cξ̂ −ΠT

g Πgω̂g,

Pm = Πg ξ̂,
(4.41)

where Q̂ := ΠT
g QΠg, and ξ̂ ∈ Rr is states of the reduced-order controller. L̂c :=

ΠT
g LcΠg represents the simplified communication network.

Combining the reduced versions of the power network Σ̂p and the distributed
controller Σ̂c, we derive the reduced-order closed-loop system as follows.

Σcl : Ê ˙̂x = Âx̂+ B̂d, (4.42)
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where x̂T :=
[
θ̂Tg θ̂Tl ω̂Tg ξ̂

]
∈ R3r+q and

Ê =


D̂g 0 M̂g 0

0 D̂l 0 0

M̂g 0 0 0

0 0 0 Q̂

 , Â =


−L̂1 −L̂12 0 ΠT

g Πg

−L̂T12 −L̂2 0 0

0 0 M̂g 0

0 0 −ΠT
g Πg −L̂c

 , and B̂ =


0

−ΠT
l

0

0

 .
(4.43)

Here d := Pl is the uncontrollable power demand in (4.8). The Galerkin projection
matrix for the closed-loop system Σcl is

Π =


Πg 0 0 0

0 Πl 0 0

0 0 Πg 0

0 0 0 Πg

 , (4.44)

which satisfies
Ê = ΠTEΠ, Â = ΠTAΠ, and B̂ = ΠTB. (4.45)

Next, the properties of the reduced-order models are discussed in the following
theorem.

Theorem 4.3. The reduced power network Σp in (4.39) and the distributed controller Σc

in (4.41) preserve the network structures, namely, L̂ in (4.35) and L̂c in (4.41) are still
Laplacian matrices representing a simplified power network and a communication network.
The closed-loop system Σcl in (4.42) is also semistable, and its impulse response converges to
zero.

Proof. In Chapter 3, we have proven that the Galerkin projection based on the char-
acteristic matrix of network clustering can preserve the algebraic structure of a
Laplacian matrix, which means L̂ in (4.35) and L̂c in (4.41) are the reduced Laplacian
matrices representing the simplified power network and communication links. Be-
sides, (4.38) shows that M̂g , D̂g , and D̂l are diagonal and positive definite. Therefore,
the reduced models in (4.39) and (4.41) have the same structures as (4.8) and (4.7),
respectively.

Follow the same reasoning line of Theorem 4.1, the closed-loop system Σcl is
semistable. It has only one pole at the origin, and all the other poles are located in
the open-left half plane. The vectors

v̂L =

√
r + q

n


ΠT
g Πg1r

0q
0r
Q̂1r

 and v̂R =
1√
r + q


1r

1q

0r
0r

 (4.46)
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are the left and right eigenvectors of Ê−1Â corresponding to the only zero eigenvalue,
which can be verified by v̂TL Ê

−1Â = 0, and Ê−1Âv̂R = 0. Note that the characteristic
matrix of the graph clustering has the property Πg1r = 1n. Hence, ‖v̂R‖2 = 1, and
v̂TL v̂R = 1. We further obtain

lim
t→∞

(
eÊ
−1Ât

)
Ê−1B̂ = v̂Rv̂

T
L Ê
−1B̂

=
1

n


1r1

T
r ΠT

g Πg 0r×q 0r×r 1r1
T
r Q̂

1q1
T
r ΠT

g Πg 0q×q 0q×r 1q1
T
r Q̂

0r×r 0r×q 0r×r 0r×r
0r×r 0r×q 0r×r 0r×r




0r
D̂−1
l ΠT

l

0r
0r

 = 0.

(4.47)

That completes the proof.

4.4 Case Study

We illustrate the proposed method on the IEEE 30-bus test system [164], which
contains 6 generator buses and 41 transmission lines. The graph representation of
this power system is depicted in Fig. 4.2a. In order to fit the network data into
the index setting of the states in our model (4.3), we use the bus numberings that
are different from the original system date. Now, the generator buses are with the
indices from 1 to 6. Assume that the distributed controllers of the generators are
identical and connected based on the communication network in Fig. 4.2b. The
control parameters in (4.6) are given by Qi = 0.1 for all generators and cij = 1.
Thereby the closed-loop power system in (4.42) is established, which include 42 states,
namely the voltage phase angles of generators and loads, θg ∈ R6 and θl ∈ R24, the
generator voltage frequencies ωg ∈ R6, and the controller states ξ ∈ R6. The positive
semidefinite controllability Gramian is then obtained by Theorem 4.2. Consequently,
the dissimilarity matrices of generator and load behaviors are computed using (4.22)
and (4.23). Due to space reasons, we only give the results for generators as follows.

Dg =



0 0.0737 0.0824 0.3147 0.1401 0.2319

0.0737 0 0.0854 0.2899 0.1071 0.2121

0.0824 0.0854 0 0.3124 0.1445 0.2418

0.3147 0.2899 0.3124 0 0.2472 0.3374

0.1401 0.1071 0.1445 0.2472 0 0.2041

0.2319 0.2121 0.2418 0.3374 0.2041 0


. (4.48)

We then group the generator and load nodes by Algorithm 1, which divides the
node sets in the original network into several subsets that contain nodes with small
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Figure 4.2: (a) The topology of IEEE 30-bus test system. The generators and load
buses are represented by circles and squares, respectively. (b) The communication
network that links the distributed controllers on 6 generators.
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Figure 4.3: Dendrograms showing the clusterings of 6 generator buses (a) and 24
load buses. The horizontal axis are labeled by bus numberings, and the dissimilarity
data are read from vertical axis.
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Figure 4.4: The reduced topology of the power transmission lines and communication
links, which are represented by solid and dashed edges, respectively.

dissimilarities to each other. The clustering results of the generator and load nodes
are straightforwardly interpreted by the dendrograms in Fig. 4.3. The leaves are
the bottom vertical lines representing the buses, and the clustering of two nodes is
indicated by merging two leaves into a single branch. The dissimilarity can be read
from the horizontal position of each fusion. In this example, we cluster node sets of
the generators and loads as in Table 4.1, where we obtain 3 clusters of generators and
3 clusters of loads. The clustering results are reasonable owing to the hierarchical
structures of the dendrograms.

Using the characteristic matrices of the resulting clusterings for Galerkin projec-
tion, we obtain the reduced-order models of the power networks and distributed
controller in forms of (4.39) and (4.41). The simplified networks are depicted in
Fig. 4.4. Therefore, the network structures are preserved through the reduction
process, which means that we can use the power network with much smaller size to
approximate the behavior of the original one.

Next, the quality of the approximation is evaluated. We consider the outputs
of the closed-loop system Σcl as θg, θl, ωg, and ξ, respectively. Correspondingly,
they are approximated by Πg θ̂g, Πlθ̂l, Πgω̂g, and Πg ξ̂, which are assumed to be the
outputs of reduced-order model and controller. Based on this, we compute the
approximation errors of those variables in terms of H2-norms, see Table 4.2. The
errors are not significant if we think of the values of the node dissimilarities in (4.48)
and the dimension of the reduced closed-loop model which is considerably lower
compared to the original system.

Next, the performance of the reduced-order model is further demonstrated in the
time domain. The states of both the original and simplified networks are initialized
at zero. From 0 to 20 seconds, the power demands of the 24 loads, Pl, are assumed by
a random vector with all entries in the range [0, 3]. After 20 seconds, the demands
are set to be a new random constant vector, which is generated from [0, 1]. The unit
of Pl is 100 MVA. In Fig. 4.5, we compare the state trajectories of both systems,
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Table 4.1: Clustering results of generator and load buses

Clusters C1 C2 C3

Generator Buses 1, 2, 3, 5 4 6

Clusters C4 C5 C6

Load Buses 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 28

27, 29, 30 26

Table 4.2: The approximation errors evaluated byH2-norms

Variables θg θl ωg ξ

Errors 0.0791 0.2088 0.2379 0.1187

i.e., the phase angles of the generators and loads, the frequencies of the generators
and the states of the controllers. Evolving over time, each state trajectory of the
reduced network show a similar directional tendency to the trajectories representing
a cluster of nodes in the original network. Furthermore, the most of the response
curves of the full-order system are approximated by those of the reduced model
with acceptable errors. Besides, in Fig. 4.5c, we can see how the full-order and
reduced-order distributed controllers regulate the generator frequency deviations
back to zero in both systems. Moreover, Fig. 4.5d illustrates that the states of both
controllers are synchronized to the same trajectories.

We implement this numerical test by Matlab 2016a in the environment of a
64-bit operating system with Intel Core i5-3470 CPU @ 3.20GHz, RAM 8.00 GB.
We observe that the evaluation of dissimilarities takes 0.0564 seconds, while the
clustering algorithm only uses 0.0033 seconds to find three clusters for both generator
and load buses. Therefore, the total computation time is mainly consumed by the
calculation of the controllability Gramian for dissimilarity evaluation.
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(a) (b)

(c) (d)

Figure 4.5: The comparisons of the state responses of the full-order and reduced-order
power systems, where the solid and dashed lines are representing the trajectories of
the original and simplified networks, respectively

4.5 Conclusions

We have considered the reduced-order modeling of power networks and distributed
controllers, which are expressed as semistable second-order and first-order differ-
ential algebraic equations, respectively. By exploiting the controllability Gramian
of the semistable closed-loop system, we have proposed a novel notion of node
dissimilarity and apply a hierarchical clustering approach to divide the generator
and load buses into several subsets. Towards the preservation of network structures
in the reduced-order models, the characteristic matrices of the resulting clusters
are adopted for the Galerkin projections of both power system and its controller.
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The explicit reduced-order models are established in the same forms of the original
models, which inherit a network interpretation for the interconnections of the power
units. A numerical example, at last, has shown the performance of the reduced-order
model and controller. This chapter provides an idea to explore clusterings of con-
trolled power networks based on dynamical models. Compared to Chapter 3, this
chapter provides a generalization for the definition of nodal behaviors. This result
can be further extended in the next chapter to linear multi-agent systems, which are
composed of multiple interacting higher-order subsystems.
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Clustering-Based Model Reduction of
Multi-Agent Systems

This chapter investigates a model reduction scheme for large-scale multi-agent
systems. The system consists of identical linear time-invariant subsystems inter-

connected via a large-scale network. To reduce the network complexity, we introduce
a notion of nodal dissimilarity based on the H2-norms of the transfer function de-
viations, which is similar to the one introduced in Chapter 3 for the second-order
networks. Here we study the general multi-agent systems and propose a new graph
clustering approach to aggregate the pairs of subsystems with smaller dissimilarities.
The simplified network system is verified to preserve an interconnection structure
and synchronization properties of a network. Moreover, a computable bound of the
approximation error between the full-order and reduced-order models is provided,
and the feasibility of the proposed approach is demonstrated by network examples.

5.1 Introduction

We focus on the clustering-based reduction of multi-agent systems, which roughly
refer to network systems that are composed of multiple interacting first-order linear
subsystems. Multi-agent systems represent a broader class of network systems. A
second-order network discussed in Chapter 3 can be also written in the form of
a multi-agent system with double integrators as the agent dynamics. Although,
the second-order structure is not considered, the interconnection among the ver-
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tices are supposed to be preserved. In recent decades, multi-agent systems (or
network systems) have received increasing attention from the system and control
field, see [117, 145] for an overview. However, multi-agent systems with complex
interconnection structures are often modeled by high-dimensional differential equa-
tions, which complicates system analysis, online simulation, controller design, etc.
Thus, it is of clear importance to find a less complex network model to approximate
the input-output characteristics of a full-order model. This chapter aims to lower the
complexity of networks by reducing the number of vertices.

In this chapter, reducing the complexity of underlying networks is of particular in-
terest. Related to this work, our preliminary results on networked single-integrators
and double-integrators can be found in [34, 35, 39, 45]. To characterize a broader class
of networks, we consider, in this chapter, systems that are composed of identical
higher-order linear subsystems interconnecting through a general undirected graph.
The notion of dissimilarity from Chapter 3 is extended to characterize pairwise dis-
tances among agents. Specifically, this chapter interprets the behaviors of agents
as the transfer matrices from external control inputs to the outputs of individual
agents, and the generalize dissimilarity between two agents to theH2-norm of the
transfer matrix deviations. In contrast to [84, 86], where the clustering selection
requires a prescribed error bound that relies on the positivity of the network system,
the proposed framework utilizes a pairwise notion, the vertex dissimilarity, such
that a dissimilarity matrix is established. It is an extension and generalization of the
concept in conventional clustering problems in data mining, see e.g. [2, 94], where
static data objects are classified. Owing to the consistency, many existing clustering
algorithms in computer graphics can be adapted to efficiently reduce the complexity
of dynamical network systems. Furthermore, the pairwise dissimilarities allow for an
easy modification to only aggregate adjacent nodes as in [21]. Finally, the proposed
method shows that the simplified model retains the network structure and preserves
the synchronization property of the network.

The remainder of this chapter is organized as follows. The models of multi-agent
systems and the form of reduced-order models are presented in Section 5.2. In Section
5.3, the cluster selection algorithm is provided based on the concept of dissimilarity,
and theH2 error bound is given. Section 5.4 presents specific results for networked
integrators. Section 5.5 illustrates the proposed method by a simulation example,
and Section 5.6 summarizes this chapter.

5.2 Problem Formulation

In this section, we introduce the mathematical model of a multi-agent system and
then address the model reduction problem in the framework of graph clustering.
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5.2.1 Multi-Agent Systems

Consider a multi-agent system defined on a connected undirected graph G = (V, E),
with V = {1, 2, · · · , n}. The dynamics of each node is described as{

ẋi = Axi +Bvi,

yi = Cxi,
(5.1)

where xi ∈ Rn̄, vi, yi ∈ Rm̄ are the state, control input and measured output of agent
i, respectively. We assume all the agents are identical in the network, and a diffusive
coupling rule is applied as

mivi = −
n∑

j=1,j 6=i

wij (yi − yj) +

p∑
j=1

fijuj , (5.2)

where mi ∈ R > 0 is the inertia of node i, and uj ∈ R with j = {1, 2, · · · , p} are
external control signals. Furthermore, fij ∈ R represents the amplification of uj
acting on node i, and wij stands for the intensity of the coupling between nodes
i and j. As an undirected graph is assumed in this chapter, we have wij = wji.
By (5.1) and (5.2), we establish a compact model describing the dynamics of the
overall network. Let F ∈ Rn×p be the collection of fij and denote inertia matrix
M := diag (m1,m2, · · · ,mn) ∈ Rn×n. We then obtain

Σ :

{
(M ⊗ In̄)ẋ = (M ⊗A− L⊗BC)x+ (F ⊗B)u,

y = (I ⊗ C)x.
(5.3)

with a combined state vector xT :=
[
xT1 , x

T
2 , · · · , xTn

]
∈ Rnn̄, external control inputs

uT :=
[
uT1 , u

T
2 , · · · , uTp

]
∈ Rpm̄, and external measurements yT :=

[
yT1 , y

T
2 , · · · , yTn

]
∈

Rnm̄. In the model, L ∈ Rn×n is the Laplacian matrix of the interconnection graph,
whose (i, j) entry is given by

Lij =

{ ∑n
j=1,j 6=i wij , i = j

−wij , otherwise.
(5.4)

For more details of Laplacian matrices, we refer to Section 2.1. The Laplacian matrix L
indicates the interconnection topology and the edge weights of G. Assume the multi-
agent system is evolving over a connected, weighted undirected graph, then L fulfills
the structural conditions in Remark 2.1, namely, LT = L < 0 and ker(L) = span(1n).

A special case of system (5.3) is networked single-integrators. Consider xi ∈ R,
A = 0, and B = C = 1 in the subsystem (5.1), the networked single-integrator system
is then reformulated as

Σs : Mẋ = −Lx+ Fu. (5.5)
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A variety of physical systems are of this form, such as mass-damper systems and single-
species reaction networks, see e.g., [87,124] and the references therein. System (5.5) is in
the form of a gradient system, and also convertible into a port-Hamiltonian system [87].
System Σs is called semistable (see Definition 2.8), since it has a simple pole at the
origin. In this chapter, we discuss this class of network systems as a special result.

Synchronization is an important property in the context of multi-agent systems.
With u = 0, the system Σ in (5.3) synchronizes if

lim
t→∞

[xi(t)− xj(t)] = 0, ∀ i, j = {1, 2, · · · , n}. (5.6)

Note that M−1L has only real eigenvalues, which are denoted by λ1 ≥ · · · ≥ λn−1 >

λn = 0. Based on the eigenvalues, the following lemma then provides a sufficient
condition for the synchronization of Σ.

Corollary 5.1. The multi-agent system Σ synchronizes if A − λ1BC and A − λn−1BC

are generalized negative definite, i.e., their symmetric parts are strictly negative definite.

Proof. Denote Φi := A − λiBC. For any λ1 ≥ λi ≥ λn−1, there exists a pair of
constants c1, c2 ≥ 0 with c1 + c2 = 1 such that Φi = c1Φ1 + c2Φn−1. Observe that

1

2

(
Φi + ΦTi

)
=
c1
2

(
Φ1 + ΦT1

)
+
c2
2

(
Φn−1 + ΦTn−1

)
≺ 0.

The synchronization of Σ then follows from e.g. [107, 125], which state that the
multi-agent system Σ in (5.3) synchronizes if and only if A − λkBC is Hurwitz
for all k = {1, 2, · · · , n − 1}. By definition, Φi is generalized negative definite and
consequently, is Hurwitz for all i = 1, 2, · · · , n− 1. That leads the conclusion.

Note that the agent system (5.1) is allowed to be unstable as the synchronization
condition in Corollary 5.1 does not require A to be Hurwitz. However, to avoid the
trajectories of agents converging to infinity, we assume that the agent system (5.1) is
Lyapunov stable, which excludes it from having poles in the open right-half plane.

5.2.2 Clustering-Based Reduction Framework

In graph theory, clustering is an important tool to simplify the topology of a complex
graph and capture its essential structure. This idea is applied to dynamical networks
in this section. Recall the concepts of graph clustering in Chapter 2. If n nodes are
partitioned into r clusters, we form reduced-order model as

Σ̂ :

{
(M̂ ⊗ In̄)ż =

(
M̂ ⊗A− L̂⊗B

)
z + (F̂ ⊗B)u,

ŷ = (P ⊗ C)z,
(5.7)
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where M̂ := PTMP , L̂ := PTLP and F̂ = PTF with P corresponding the charac-
teristic matrix of a graph clustering. The reduced state z presents the dynamics of
clusters, and ŷ = (P ⊗ I)z provides an approximation of the original outputs y.

For system (5.5) with networked single-integrators, clustering-based projection
yields the reduced model as

Σ̂s :

{
M̂ ż = −L̂z + F̂ u,

x̂ = Pz.
(5.8)

Remark 5.1. From Definition 2.3, P is a binary matrix, which satisfies P1r = 1n and
1TnP = [|C1|, |C2|, · · · , |Cr|]. The specific structure of P guarantees that M̂ is diagonal
positive definite and L̂ is a Laplacian matrix [34, 87, 124]. Hence, the reduced model Σ̂ is
again in the form of system (5.3) and can be interpreted as a multi-agent system with less
agents. Thus, the network structure is guaranteed to be preserved by the clustering-based
projection. Furthermore, because of ker(L̂) = span(1r), L̂ characterizes a connected reduced
graph with r nodes.

To formulate the problem to be investigated in this chapter, the following assump-
tion is made for the agent dynamics in (5.1).

Assumption 5.1. The multi-agent system Σ synchronizes, i.e., satisfies the condition in
Corollary 5.1, and the A matrix of the agent dynamics (5.1) has no eigenvalues with positive
real parts.

Based on the above assumption, we formulate the model reduction problem of
system Σ in the framework of Petrov-Galerkin projection.

Problem 5.1. Given a multi-agent system Σ as in (5.3) and a desired reduced order r.
Find a suitable clustering P such that reduced-order model Σ̂ in (5.7) achieves a small
approximation error, i.e., ‖Σ− Σ̂‖H∞ or ‖Σ− Σ̂‖H2 is as small as possible.

Example 5.1. Consider a 5-dimensional mass-damper system in Fig. 5.1, left inset and take
the velocities of masses as state variables. The network system is modeled in the form of (5.5)
with

M = I5, L =


6 −3 0 −2 −1

−3 4 −1 0 0

0 −1 6 −2 −3

−2 0 −2 5 −1

−1 0 −3 −1 5

 , F =


1 0

0 0

0 0

0 1

0 1

 .
The diagonal entries of M matrix and −Lij (i 6= j) represent mass parameters and the
damping coefficient of the edge (i, j), respectively. u1 and u2 indicate the external forces
acting on the 1st and 4th mass blocks. We choose a graph clustering as shown in Fig.
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Figure 5.1: An illustrative example of clustering-based model reduction for a mass-
damper network system, where red blocks represent the controlled nodes

5.1 that partitions the nodes set of the original network into 3 clusters: {C1, C2, C3} =

{{1, 2}, {3, 5}, {4}}. By Definition 2.3, the characteristic matrix is

P =

1 1 0 0 0

0 0 1 0 1

0 0 0 1 0

T ,
which leads to a reduced-order model with

M̂ =

 2 0 0

0 2 0

0 0 1

 , L̂ =

 4 −2 −2

−2 5 −3

−2 −3 5

 , F̂ =

1 0

0 1

0 1

 .
Clearly, it maintains the algebraic structures of the inertia and Laplacian matrices. Therefore,
the network structure is preserved, which allows for a physical interpretation of the reduced
model, as shown in Fig. 5.1, right inset.

5.2.3 Synchronization Preservation

The definition of interlacing is first introduced.

Definition 5.1. [67] Suppose X ∈ Rn×n and Y ∈ Rr×r are symmetric matrices, where
r ≤ n. Let sequences λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) and λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λr(Y )

be the eigenvalues of X and Y , respectively. Then, the eigenvalues of Y interlace those of X
if for i = 1, 2, · · · , r,

λn−r+i(X) ≤ λi(Y ) ≤ λi(X), (5.9)
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Lemma 5.1. [67] Consider symmetric matrices X ∈ Rn×n and Y ∈ Rr×r, where r ≤ n. If
there exists a matrix S ∈ Rn×r such that STS = Ir and Y = STXS, then the eigenvalues
of Y interlace those of X .

Based on Lemma 5.1 and Corollary 5.1, the following theorem shows that the
cluster-based model reduction method preserves the synchronization property in the
reduced-order multi-agent system.

Theorem 5.1. Consider the original system Σ and the corresponding reduced-order model Σ̂

resulting from graph clustering. The eigenvalues of M−1L interlace those of M̂−1L̂. More-
over, if Σ satisfies the synchronization condition in Corollary 5.1, then Σ̂ also synchronizes,
and their impulse responses, denoted by ξ(t) and ξ̂(t), satisfy

lim
t→∞

ξ(t) = lim
t→∞

ξ̂(t) = σ−1
M 11TF ⊗ lim

t→∞
CeAtB, (5.10)

where σM = 1TM1.

Proof. It follows from [67] that the eigenvalues of matrix M̂−1/2L̂M̂−1/2 interlace
those of M−1/2LM−1/2, since there exists a matrix S := M1/2PM̂−1/2 ∈ Rn×r with
STS = I such that

ST
(
M−1/2LM−1/2

)
S = M̂−1/2L̂M̂−1/2. (5.11)

As M−1L and M̂−1L̂ are similar to M−1/2LM−1/2 and M̂−1/2L̂M̂−1/2, respectively,
we obtain that the eigenvalues of M̂−1L̂ also interlace those of M−1L, i.e.,

λ1 ≥ λ̂i ≥ λn−1,∀ i = 1, 2, · · · , r − 1, (5.12)

where λ̂i are the i-th largest eigenvalue of M̂−1L̂. Moreover, Σ satisfies the synchro-
nization condition in Corollary 5.1, i.e., A − λ1BC and A − λn−1BC are general-
ized negative definite, which then leads to the generalized negative definiteness of
A− λ̂iBC, ∀ i = 1, 2, · · · , r − 1 due to (5.12). Thus, system Σ̂ also synchronizes by
Corollary 5.1.

Next, we prove that the impulse responses of Σ and Σ̂ converge to the same
value. The proof of the synchronization of Σ follows from e.g., [107]. Consider the
eigenvalue decomposition M−1L = UΛoU−1, where U ∈ Rn×n is nonsingular, and

Λo =

[
0

Λ̄o

]
with Λ̄o = diag (λ1, · · · , λn−1) . (5.13)

The matrices U and U−1 are partitioned as

U =
[
U1 U2

]
, U−1 =

[
VT1 VT2

]T
, (5.14)
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where VT1 ,U1 ∈ Rn×1 are the left and right eigenvectors corresponding to the zero
eigenvalue, respectively. Here, U1 is a unit vector, and we have

(M−1L)TVT1 = 0, (M−1L)U1 = 0 and V1U1 = 1, (5.15)

which yields

V1 =
√
nσ−1

M 1TM, and U1 =
1√
n
. (5.16)

Note that

e[I⊗A−(M−1L)⊗BC]t = (U ⊗ I)e(I⊗A−Λo⊗BC)t(U−1 ⊗ I)

= U1V1 ⊗ eAt + U2V2 ⊗ e(In−1⊗A−Λ̄o⊗BC)t,

where In−1⊗A−Λ̄⊗BC is Hurwitz by Corollary 5.1. Therefore, the impulse response
of the original system Σ converges as

ξ(t) =(I ⊗ C)
[
e(I⊗A−M

−1L⊗BC)t
]

(M−1F ⊗B)

→U1V1M
−1F ⊗ lim

t→∞
CeAtB, as t→∞,

= σ−1
M 11TF ⊗ lim

t→∞
CeAtB.

(5.17)

Similarly, the impulse response of the reduced-order system Σ̂ is given by

ξ̂(t)→(P ⊗ C)
(
σ−1
M 1r1

T
r F̂ ⊗ eAtB

)
, as t→∞,

= σ−1
M P1r1

T
r P

TF ⊗ lim
t→∞

CeAtB

= σ−1
M 1n1

T
nF ⊗ lim

t→∞
CeAtB.

To obtain the above result, the equations P1r = 1n and 1Tr P
TMP1r = 1TnM1n =

σ−1
M are used. That completes the proof.

The following proposition specifies Σ as a networked port-Hamiltonian system.
In this case, system Σ and its reduced-order model Σ̂ are synchronized.

Proposition 5.1. Consider the agent dynamics in (5.1) which is a port-Hamiltonian
system, i.e.,

A = (J −R)Q, C = BTQ

with J = −JT , R = RT and R, Q � 0. Then, both Σ and Σ̂ are synchronized.
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Proof. Denote Φi := J −R− λiBBT . From [107], the synchronization of Σ is equiva-
lently characterized by the Hurwitz stability of matrix ΦiQ for any i = 1, 2, · · · , n− 1.
Observe that Φi + ΦTi = −2(R+ λiBB

T ) ≺ 0. Therefore,

1

2

(
Q1/2ΦiQ

1/2 +Q1/2ΦTi Q
1/2
)
≺ 0, (5.18)

which implies Q1/2ΦiQ
1/2 to be generalized negative definite and consequently, is

Hurwitz stable. Since ΦiQ ∼ Q1/2ΦiQ
1/2, ΦiQ is also Hurwitz. Then the synchro-

nization of system Σ can be proved by Corollary 5.1.
Since the eigenvalues of M̂−1L̂ also interlace those of M−1L, the synchronization

of its reduced-order model can be obtained similarly.

5.3 Approximation of Multi-Agent Systems

Denote the transfer matrices of system Σ and Σ̂ by

η(s) = (I ⊗ C) [M ⊗ (sI −A) + L⊗BC]
−1

(F ⊗B), (5.19a)

η̂(s) = (P ⊗ C)
[
M̂ ⊗ (sI −A) + L̂⊗BC

]−1

(F̂ ⊗B). (5.19b)

Then the transfer matrices from the external inputs to the outputs of individual
subsystem are expressed as

ηi(s) := (eTi ⊗ I)η(s), η̂i(s) := (eTi ⊗ I)η̂(s). (5.20)

As a natural outcome of Theorem 5.1, the following corollary implies that the
approximation error between Σ and Σ̂ is always bounded, even if Σ is not asymptot-
ically stable.

Corollary 5.2. Consider the multi-agent system Σ and the reduced model Σ̂ resulting from
an arbitrary clustering. Then, ‖η(s)− η̂(s)‖H2

is always bounded.

Proof. Denote Ξij(t) := (eTi ⊗I)ξ(t)−(eTj ⊗I)ξ̂(t), where ξ(t) and ξ̂(t) are the impulse
responses of system Σ and Σ̂, respectively. Then, by the definition ofH2-norm, we
have

‖ηi(s)− η̂j(s)‖2H2
=

∫ ∞
0

tr
[
ΞTij(t)Ξij(t)

]
dt, (5.21)

Note that ξ(t) and ξ̂(t) are bounded smooth functions of t. It follows from eTij1 = 0

and the Lyapunov stability of (A,B,C) that

lim
t→∞

ΞTij(t) = σ−1
M eTij11

TF ⊗
(

lim
t→∞

CeAtB
)

= 0. (5.22)

Thus, for bounded initial conditions ξi(0) and ξ̂j(0), the integral in (5.21) is bounded,
i.e., ‖ηi(s)− η̂j(s)‖2H2

<∞. Consequently, ‖η(s)− η̂(s)‖2H2
is finite.
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5.3.1 Vertex Dissimilarity

The transfer matrix ηi(s) defined in (5.20) represents the mapping from the external
control signals u to the outputs xi, which can be interpreted as the behavior of the i-th
agent. Then, we recall the dissimilarity of two nodes in Definition 3.2. Particularly, if
Dij = 0, nodes i and j are 0-dissimilar.

The dissimilarity matrix (or distance matrix), defined by D := [Dij ], is nonneg-
ative, symmetric, and with zero diagonal elements. The concept of dissimilarity
matrix is commonly used in signal processing, as it describes a pairwise distance
between two observations. Conventionally, the dissimilarity is characterized by the
Euclidean distance, see e.g., [4, 178]. However, Definition 3.2 extends the domain
of this notation to the norm of the difference between nodal dynamics. The idea to
measure the similarity of transfer functions for clustering of dynamical networks
can be also seen in [84, 85]. When each cluster only has two nodes, the notion of the
dissimilarity in (3.77) coincides with that of the cluster reducibility in [84, 85].

An efficient computation of the H2-norm in (3.77) requires the controllability
Gramian of Σ, which however may not exist when Σ is not asymptotically stable, see
Chapter 3. Inspired by [84], we extract out the asymptotically stable parts from Σ by a
specific transformation and employ the controllability Gramian of the asymptotically
stable system, we develop an efficient way for the computation of the pairwise
dissimilarities.

Theorem 5.2. Consider the multi-agent system Σ in (5.3) that synchronizes. Denote

Sn :=
1

n

[
1n−11

T
n−1 − nIn−1,1n−1

]
∈ R(n−1)×n. (5.23)

Then, P̄ ∈ Rn̄(n−1)×n̄(n−1) is the unique solution of the Lyapunov equation

ĀP̄ + P̄Ā+ B̄B̄T = 0, (5.24)

where

Ā : = In−1 ⊗A− (SnSTn )−1SnM−1LSTn ⊗BC,
B̄ : = (SnSTn )−1SnM−1F ⊗B.

(5.25)

Furthermore, the (i, j) entry of the dissimilarity matrix is computed as follows:

• Dii = 0, if i ∈ {1, 2, · · · , n};

• D2
ni = D2

in = tr
[
(eTi ⊗ C)P̄(ei ⊗ C)

]
, if i ∈ {1, 2, · · · , n− 1};

• D2
ij = D2

ji = tr
[
(eTij ⊗ C)P̄(eij ⊗ C)

]
, if i, j ∈ {1, 2, · · · , n− 1}.
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where ei, eij ∈ Rn−1.

Proof. Consider the following transformation matrices

Tn :=

[
STn

1

n
1n

]
, T −1
n =

[
(SnSTn )−1Sn

1Tn

]
, (5.26)

and define new state variables

δ := (T −1
n ⊗ In̄)x =

([
−In−1 1n−1

1Tn−1 1

]
⊗ In̄

)
x :=

[
δd
δa

]
,

where

δd = ([−In−1,1n−1]⊗ In̄)x ∈ Rm(n−1),

δa = (1Tn ⊗ In̄)x ∈ Rm.
(5.27)

Note that (eTi ⊗ In̄)δd ∈ Rn̄ represents the error between the states of the i-th and the
n-th agents, while δa ∈ Rn̄ indicates the average of all the agent states.

We then substitute x = (Tn ⊗ In̄) · δ to the network model Σ in (5.3) and multiply
T −1
n M−1 ⊗ In̄ from the left side. It then leads to an equivalent representation of Σ as

δ̇ = (In ⊗A− L̃⊗BC)δ + (F̃ ⊗B)u. (5.28)

where

L̃ =

[
(SnSTn )−1SnM−1LSTn 0

1TM−1LSTn 0

]
,

F̃ =

[
(SnSTn )−1SnM−1F

1TM−1F

]
.

(5.29)

It is not hard to see that L̄ and M−1L share all the nonzero eigenvalues, and the
synchronization of Σ implies that matrix Ā in (5.25) is Hurwitz [107]. Now, consider
an output y = Hδ, and denote ηd(s) as the transfer function of the system (Ā, B̄,H).
Since Ā is Hurwitz, the controllability Gramian P̄ is the unique solution of the
Lyapunov equation in (5.24). Thus, it follows from [7] that

‖ηd(s)‖H2
=
√
tr(HP̄HT ), (5.30)

We obtain the pairwise dissimilarities Dii, Dni and Dij , if H in (5.30) is replaced by
eTj ⊗ C, eTi ⊗ C or H = eTij ⊗ C, respectively.
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Example 5.2. We again use Example 5.1 to illustrate the flows of the two graph clustering
algorithms. From Theorem 5.2, we have

Ā =


−7 3 −3 1

2 −4 −2 −1

−1 1 −9 1

1 0 −1 −6

 , B̄ =


−1 1

0 1

0 1

0 0

 .
Solving the Lyapunov equation in (5.24) yields

P̄ =


0.1716 0.1285 0.0647 0.0098

0.1285 0.1476 0.0800 0.0066

0.0647 0.0800 0.0573 0.0004

0.0098 0.0066 0.0004 0.0016

 (5.31)

Then, the dissimilarity matrix is given by

D =


0 0.2494 0.3154 0.3919 0.4142

0.2494 0 0.2119 0.3688 0.3842

0.3154 0.2119 0 0.2410 0.2394

0.3919 0.3688 0.2410 0 0.0396

0.4142 0.3842 0.2394 0.0396 0

 .

The minimal value in D, 0.0396, indicates that vertices 4 and 5 are of strongest similarity
compared to the other pairs of vertices.

5.3.2 Cluster Selection and Error Analysis

The appropriate selection of clusters is crucial for the approximation precision of
network reduction. The main contribution of this chapter comes from a novel clus-
tering procedure. Compared to the existing results in e.g. [21, 84, 126]. our idea is
a generalization of the conventional clustering in signal processing [94]. Instead of
classifying a large number of static data and measuring their differences by the Eu-
clidean norms, we generalize the method for dynamical systems, where the domain
of dissimilarity is extended to Definition 3.2. With the new notation of dissimilarity,
the model reduction problem of networks is connected to the conventional data
clustering problems.

Note that the value of Dij indicates the dissimilarity of agent i and j in terms
of transfer functions. Intuitively, clustering the agents with higher similarity can
potentially deliver a reduced-order model with smaller approximation error. Based
on this, standard clustering schemes in signal processing can be adapted to generate
a suitable partition of the network, e.g., the iterative clustering in [34] and the
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hierarchical clustering in Chapter 3. In this chapter, a more efficient algorithm is
proposed in Algorithm 2.

Algorithm 2 Network Clustering Algorithm

1: Compute matrix D using Theorem 5.2.
2: Place each node into its own singleton cluster, i.e.,

Ck ← {k}, ∀ 1 ≤ k ≤ n.

3: Find two clusters Cµ and Cν such that

(µ, ν) := arg min

(
max

i,j∈Cµ∪Cν
Dij
)
. (5.32)

4: Merge clusters Cµ and Cν into a single cluster.
5: If there are more than r clusters, repeat the steps 3 and 4. Otherwise, compute
P ∈ Rn×r and generate

M̂ ← PTMP, L̂← PTLP, F̂ ← PTF.

The proposed algorithm is implicitly based on pairwise dissimilarities of the
agents and minimizes within-cluster variances. The variance within a cluster is
evaluated by the maximal dissimilarity between all pairs of nodes in the cluster. Note
that the formation of clusters in Algorithm 2 does not focus on manipulating any
individual edges. Even if two nodes are not adjacent, they can be placed into the
same cluster when they have very similar behaviors.

Remark 5.2. It should be emphasized that Algorithm 2 can be easily adapted to aggregate
adjacent nodes only. To this end, we first introduce the definition of adjacent clusters as
follows: Two clusters Cµ and Cν are adjacent if there exist i ∈ Cµ and j ∈ Cν such that nodes
i and j are connected by an edge. Then, we modify step 3 in Algorithm 2 where we find two
adjacent clusters such that (5.32) holds.

Now the approximation error between the original and reduced multi-agent
systems is analyzed using the dissimilarities in (3.77). For simplicity, we denote

Sr :=
1

r

[
1r−11

T
r−1 − rIr−1,1r−1

]
∈ R(r−1)×r, (5.33)

and
P̄ := PM̂−1STr , M̄ := P̄TMP̄ , L̄ := P̄TLP̄ . (5.34)
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Theorem 5.3. Consider the multi-agent system Σ in (5.3). Suppose Σ synchronizes (i.e., it
satisfies the conditions of Corollary (5.1). If the graph clustering is given by {C1, C2, · · · , Cr},
then the approximation error between Σ and the clustered system Σ̂ is bounded by

‖η(s)− η̂(s)‖H2 < γs ·
r∑

k=1

|Ck| · max
i,j∈Ck

Dij , (5.35)

where γs is a positive scalar satisfying X̄ P̄TL⊗BC −P̄T ⊗ CT
LP̄ ⊗ CTBT −γsI I

−P̄ ⊗ C I −γsI

 ≺ 0, (5.36)

with X̄ := M̄ ⊗ (AT +A)− L̄⊗ (CTBT +BC). Particularly, if A in (5.1) is generalized
negative definite, i.e., A+AT ≺ 0, then γs is characterized by X L⊗BC −I ⊗ CT

L⊗ CTBT −γsI I

−I ⊗ C I −γsI

 ≺ 0, (5.37)

with X := M ⊗ (AT +A)− L⊗ (CTBT +BC).

Proof. The approximation error can be evaluated by the following transfer function.

ηe(s) := η(s)− η̂(s) = Ce(sI −Ae)
−1Be, (5.38)

with

Ae = In+r ⊗A−
[
M−1L

M̂−1L̂

]
⊗BC,

Be =

[
M−1F

M̂−1F̂

]
⊗B, Ce =

[
In −P

]
⊗ In̄.

(5.39)

Inspired by [84, 85], we rewrite the error system into a cascade form. Consider
the following nonsingular matrices

T =

[
0 In
Ir P

]
⊗ In̄, T −1 =

[
−P Ir
In 0

]
⊗ In̄. (5.40)

with P = M̂−1PTM ∈ Rr×n. It then follows that

sI − T −1AeT =

[
Ω̂(s) −PM−1L(I − PP )⊗BC

0 Ω(s)

]
,

T −1Be =

[
0

M−1F

]
⊗B, CeT =

[
−P I − PP

]
⊗ I,



5.3. Approximation of Multi-Agent Systems 97

where Ω(s) and Ω̂(s) are transfer functions defined by

Ω(s) := sIn − In ⊗A+M−1L⊗BC,

Ω̂(s) := sIr − Ir ⊗A+ M̂−1L̂⊗BC.
(5.41)

Thus, applying a transformation using (5.40) to (5.38) leads to

ηe(s) = CeT (sI − T −1AeT )−1T −1Be
= −(P ⊗ C)Ω̂−1(s)

[
PM−1L(I − PP )⊗BC

]
η(s)

+ [(I − PP )⊗ C] η(s)

=
[
I ⊗ C − (P ⊗ C)Ω̂−1(s)(PM−1L⊗BC)

]
· [(I − PP )⊗ I] η(s),

(5.42)

where η(s) = Ω−1(s)(M−1F ⊗B) and

PM−1L(I − PP )⊗BC
= (PM−1L⊗BC) [(I − PP )⊗ I] ,

are used for derivation of the last expression in (5.42).
Denote the following two transfer functions

ηae (s) := I ⊗ C − (P ⊗ C)Ω̂−1(s)(M̂−1PTL⊗BC), (5.43a)

ηbe(s) := [(I − PP )⊗ I] η(s). (5.43b)

such that ηe(s) := ηae (s) · ηbe(s). Thus, the approximation error between the original
and reduced-order multi-agent systems, Σ and Σ̂, is bounded as

‖ηe(s)‖H2 ≤ ‖ηae (s)‖H∞‖ηbe(s)‖H2 . (5.44)

In the rest of the proof, we will show the boundedness of ‖ηae (s)‖H∞ and ‖ηbe(s)‖H2

and analyze their upper bounds respectively.
First, we discuss the transfer function ηae (s) in (5.43a), which is associated with a

linear system with coefficient matrices

Aa : = Ir ⊗A− M̂−1L̂⊗BC,

Ba : = M̂−1PTL⊗BC,
Ca : = −P ⊗ C, and Da := Ir ⊗ C.

(5.45)

Using the matrix Sr in (5.33), which satisfies Sr1r = 0, we define transformation
matrices

Tr :=

[
M̂−1STr

1

r
1r

]
, T −1
r =

[
(SrM̂−1STr )−1Sr

σ−1
M 1Tr M̂

]
,
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where σM = 1Tr M̂1r = 1TnM1n. It then leads to

T −1
r AaTr =

[
As 0

0 A

]
, T −1
r Ba =

[
Bs
0

]
, CaTr =

[
Cs ∗

]
with

As : = Ir−1 ⊗A− M̄−1L̄⊗BC,
Bs : = M̄−1P̄TL⊗BC,
Cs : = −P̄ ⊗ C.

(5.46)

The matrices M̄ , L̄ and P̄ are defined in (5.34).
Clearly, the above transformation splits ηae (s) as ηae (s) = blkdiag(C, gs(s)) with a

static gain C and the system

gs(s) := Cs(sI −As)−1Bs + Ir−1 ⊗ C. (5.47)

Observe that

M̄−1L̄ = (P̄TMP̄ )−1P̄TLP̄

= (STr M̂−1PTMPM̂−1STr )−1STr M̂−1PTLPM̂−1STr
= (SrM̂−1STr )−1Sr(M̂−1L̂)STr .

Thus, M̄−1L̄ shares all the nonzero eigenvalues with M̂−1L̂. Moreover, Theorem 5.1
implies that Σ̂ also synchronizes as the original multi-agent system Σ̂ synchronizes.
Then, it follows from [107] that As is Hurwitz. Consequently, the transfer function
gs(s) is shown to be asymptotically stable, and hence,

‖ηae (s)‖H∞ ≤ max{‖C‖2, ‖gs(s)‖H∞} ≤ ‖gs(s)‖H∞ . (5.48)

We use the bounded real lemma (see e.g. [28]) to characterize theH∞-norm of gs(s)
in (5.47). There exists a positive scalar γs such that ‖gs(s)‖H∞ < γs, if the following
inequality holds for a matrix K � 0.ATsK +KAs KBs CTs

BTs K −γsI I

Cs I −γsI

 ≺ 0. (5.49)

Let K = M̄ ⊗ I in (5.49), it then yields the LMI in (5.36), which is feasible as X̄ is
negative definite.

In the special case that A+AT ≺ 0, X is also negative definite so that the LMI in
(5.37) is feasible. Observe that (5.36) can be obtained from (5.37) by pre-multiplying
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and post-multiplying the matrix blkdiag(P̄T , I, I) and its transpose, respectively.
Thus, γs is a solution of (5.36) if it satisfies (5.37).

Next, the H2-norm of transfer function (5.43b) is discussed. Without loss of
generality, let

P = blkdiag
(
1|C1|,1|C2|, · · · ,1|Cr|

)
,

M = blkdiag (M1,M2, · · · ,Mr) ,

with Mi ∈ R|Ci|×|Ci|. Denote m̂i = 1TMi1, then M̂ = diag(m̂1, m̂2, · · · , m̂r). Define
a vector of transfer functions

(
ηCi
)T

:=

[(
ηCi1

)T
,
(
ηCi2

)T
, · · · ,

(
ηCi|Ci|

)T]
, (5.50)

where ηCik represents the behavior of the k-th node in the cluster Ci. We can also
write the expression [(I − PP )⊗ I] η(s) into a block diagonal form whose i-th block
diagonal entry is given by([

I|Ci| − 1|Ci|1
T
|Ci|m̂

−1Mi

]
⊗ I
)
ηCi

=


∑

k∈Ci,k 6=1

m̂−1
i mk

(
ηCi1 − η

Ci
k

)
...∑

k∈Ci,k 6=|Ci|
m̂−1
i mk

(
ηCi|Ci| − η

Ci
k

)
 .

(5.51)

It is noted that ‖ηCij −η
Ci
k ‖H2

≤ ‖ηCimax‖H2
, where ηCimax refers to the biggest divergence

of node behaviors within the cluster Ci. It then leads to∥∥∥∥∥∥
∑

k∈Ci,k 6=1

m̂−1
i mk

(
ηCi1 − η

Ci
k

)∥∥∥∥∥∥
H2

≤ ‖ηCimax‖H2 . (5.52)

Therefore, we obtain

‖ηbe(s)‖H2
≤

r∑
k=1

∥∥∥(I|Ck| − m̂−11|Ck|1
T
|Ck|Mk

)
ηCk
∥∥∥
H2

≤
r∑

k=1

|Ck| · ‖ηCkmax‖H2
=

r∑
k=1

|Ck| · max
i,j∈Ck

Dij .

That completes the proof.
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Specifically, when A is generalized negative definite, γs is obtained by an a priori
calculation, i.e., its value is only determined by the original system Σ. Besides, from
(5.35), we can see that the proposed clustering algorithm is effective, as Algorithm
2 aims to minimize the maximal within-cluster dissimilarity of each cluster such
that the sum term in (5.35) would be smaller. Consequently, the error bound of
‖η(s)− η̂(s)‖H2

will potentially be lower.

5.4 Approximation of Networked Single-Integrators

In this section, we zoom in on the system of interconnected single-integrators as in
(5.5). The approximation error between systems Σs and Σ̂s is analyzed, and an error
bound is established. Here, we denote the transfer functions of the network system
Σs in (5.5) and the reduced-order model Σ̂s with the states as outputs by

η(s) = (sM + L)−1F, (5.53)

η̂(s) = P (sM̂ + L̂)−1F̂ , (5.54)

respectively, and let ηi(s) = eTi η(s) and η̂i(s) = eTi η̂(s).
Since the network system Σs is the special case of system Σ in (5.3) with A = 0

andB = 1, the following two results directly follows from Theorem 5.1 and Corollary
5.2, respectively.

Corollary 5.3. Consider network system Σs and its reduced-order model Σ̂s resulting from
a clustering-based projection. Let ξ(t) ∈ Rn×p and ξ̂(t) ∈ Rn×p be the impulse responses of
x in (5.5) and x̂ in (5.8), respectively. We have

lim
t→∞

ξ(t) = lim
t→∞

ξ̂(t) = σ−1
M 11TF. (5.55)

Corollary 5.4. Consider the transfer functions in (5.53) and (5.54), the following statements
holds:

• ‖ηi(s)− η̂j(s)‖H2
is bounded for any i, j ∈ {1, 2, · · · , n}.

• ‖Σs − Σ̂s‖H2 is bounded.

Corollary 5.4 guarantees that, by the clustering-based projection, the approxima-
tion error between the full-order and reduced-order models is bounded. Specifically,
the error bound is given by the following theorem.

Theorem 5.4. Denote

Ls = M−1/2LM−1/2, L̂s = M̂−1/2L̂M̂−1/2. (5.56)
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Let L and L̂ be the Moore-Penrose inverses of Ls and L̂s, respectively. Then, theH∞ error
between Σs and Σ̂s is bounded as

‖η(s)− η̂(s)‖H∞ <
1

2
‖FTΨF‖2, (5.57)

where

Ψ =

[
L+ P L̂PT L − P L̂PT
L − P L̂PT L+ P L̂PT

]
, F =

[
F

In

]
. (5.58)

Proof. Since Ls and L̂s are similar to M−1L and M̂−1L̂, respectively, the following
spectral decompositions are obtained:

Ls = UΛoU
T , L̂s = ÛΛrÛ

T , (5.59)

where the diagonal entries in Λo and Λr are also the eigenvalues ofM−1L and M̂−1L̂,
respectively. We the use the following partitioned matrices:

Λo =

[
0

Λ̄o

]
, Λr =

[
0

Λ̄r

]
(5.60)

where Λ̄o ∈ R(n−1)×(n−1) and Λ̄r ∈ R(r−1)×(r−1) are diagonal and positive definite.

U =
[
u1 U2

]
, Û =

[
û1 Û2

]
, (5.61)

where u1 and û1 are the eigenvectors corresponding to the zero eigenvalues of Ls
and L̂s, respectively. It follows that

u1 =
M1/21n√

σM
, û1 =

M̂1/21r√
σM

(5.62)

and
L = M−1/2U2Λ̄−1

o UT2 M
−1/2, L̂ = M̂−1/2Û2Λ̄−1

r ÛT2 M̂
−1/2. (5.63)

To study the approximation error, we consider the error system Σe := Σs − Σ̂s

whose state is given by ωT =
[
xT , zT

]
∈ Rn+r, where x and z are the states of Σs and

Σ̂s, respectively. Then, the state-space representation of Σe is formalized as

Σe :

{
ω̇ = Aeω + Beu,
ψ = Ceω,

(5.64)

with

Ae = −
[
M−1L 0

0 M̂−1L̂

]
,Be =

[
M−1F

M̂−1F̂

]
, Ce =

[
In −P

]
.
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Applying the transform

ω = diag
(
M−1/2U, M̂−1/2Û

)
· ω̃ (5.65)

to the error system Σe leads to

Σe :



˙̃ω = −


0

Λ̄o
0

Λ̄r

 ω̃ +


uT1 M

−1/2F

UT2 M
−1/2F

ûT1 M̂
−1/2F̂

Û2M̂
−1/2F̂

u,
ψ =

[
M−1/2u1 M−1/2U2

−PM̂−1/2û1 − PM̂−1/2Û2

]
ω̃.

From Corollary 5.3, we have

M−1/2u1u
T
1 M

−1/2F − PM̂−1/2û1û
T
1 M̂

−1/2F̂

= σ−1
M 1n1

T
nF − σ−1

M P1r1
T
r P

TF = 0.
(5.66)

Therefore, it is not hard to obtain that the following stable system

Σ̄e :


˙̄ω = −

[
Λ̄o

Λ̄r

]
ω̄ +

[
UT2 M

−1/2F

ÛT2 M̂
−1/2F̂

]
u,

ψ =
[
M−1/2U2 −PM̂−1/2Û2

]
ω̄.

(5.67)

has the identical input-output relation as the system Σe, since they share the same
transfer function. Consequently, we have

‖η(s)− η̂(s)‖2H∞ = ‖Σ̄e‖H∞ . (5.68)

Denote

Λ̃ =

[
Λ̄o

Λ̄r

]
, B̃ =

[
UT2 M

−1/2F

ÛT2 M̂
−1/2F̂

]
, C̃ =

[
M−1/2U2 −PM̂−1/2Û2

]
. (5.69)

We then apply Lemma 2.5 to Σ̄e. If the inequality in (2.16) is satisfied with S = I , i.e.,−2Λ̃ B̃ C̃T

B̃T −γ0I 0

C̃ 0 −γ0I

 ≺ 0, (5.70)
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the system Σ̄e hasH∞-norm less than γ0. The above inequality is equivalent to

γ0I �
1

2

[
B̃T

C̃

]
Λ̃−1

[
B̃ C̃T

]
=

1

2

[
FT (L+ P L̂PT )F FT (L − P L̂PT )

(L − P L̂PT )F L+ P L̂PT

]
:=

1

2
FTΨF .

(5.71)

This then leads to equation (5.57).

Moreover, when only two nodes are clustered and aggregated, the H∞-norm
bounds of the approximation error for the individual nodes are characterized by the
following theorem.

Theorem 5.5. Consider an n-th dimensional network system Σs and its (n − 1)-th di-
mensional simplified model Σ̂s resulting from clustering vertices µ and ν. Denote δη :=

ηµ(s)− ην(s). Then, the approximation error of each vertex is bounded as

‖ηi(s)− η̂i(s)‖H∞ ≤
ρ
√
n− 2

mi
‖δη‖H∞ , for all i 6= µ, ν, (5.72a)

‖ηµ(s)− η̂µ(s)‖H∞ ≤
mν +

∑n
i=1,i6=µ,νmi

mµ +mν
‖δη‖H∞ , (5.72b)

‖ην(s)− η̂ν(s)‖H∞ ≤
mµ +

∑n
i=1,i6=µ,νmi

mµ +mν
‖δη‖H∞ . (5.72c)

In the first inequality,

ρ :=
∥∥∥[M̄ + (mµ +mν)−111T

]−1
∥∥∥

2
,

where M̄ is a square submatrix obtained by removing the µ and ν rows and columns of M .

Proof. Without loss of generality, we suppose the vertex n− 1 and n of the original
system Σs are aggregated. Besides, we denote δη := ηn−1(s)− ηn(s) ∈ R(s)1×p and

∆ηa =


η1(s)− η̂1(s)

η2(s)− η̂2(s)
...

ηn−2(s)− η̂n−2(s)

 ,
∆ηb = ηn−1(s)− η̂n−1(s),

∆ηc = ηn(s)− η̂n(s).

(5.73)
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In this case, the cluster matrix P ∈ Rn×(n−1) is given by

P =

[
In−2 0

0 12

]
. (5.74)

Furthermore, we partition L and M as

L =

[
L11 L12

LT12 L22

]
,M =

[
M11 0

0 M22

]
, (5.75)

where L11,M11 ∈ R(n−2)×(n−2), M22 = diag[mn−1,mn]. L12 ∈ R(n−2)×2 can be pre-
sented by L12 = [−`1,−`2] with `1 and `2 being nonnegative vectors. For simplicity,
we denote m̃ = mn−1 +mn.

Recall the expressions of transfer functions in (5.53), we have

(sM + L)

 η1(s)
...

ηn(s)

 = B, (5.76)

(sM̂ + L̂)

 η̂1(s)
...

η̂n−1(s)

 = B̂. (5.77)

Reshuffling (5.76), we obtain

(sM + L)P

 η1(s)
...

ηn−1(s)

 = B +

[
−`2

smn + 1T `2

]
δη, (5.78)

Multiplying PT from left to (5.78) yields

(sM̂ + L̂)

 η1(s)
...

ηn−1(s)

 = B̂ +

[
−`2

smn + 1T `2

]
δη. (5.79)

Then, we subtract (5.79) from (5.77) and obtain

(sM̂ + L̂)

[
∆ηa
∆ηb

]
=

[
−`2

smn + 1T `2

]
δη. (5.80)

Furthermore, with L1 = 0, we have

sM̂ + L̂ =

[
sM11 + L11 −L111

−1TL11 sm̃+ 1TL111

]
. (5.81)
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Pre-multiplying (5.80) by

T =

[
In−2 0

1T 1

]
. (5.82)

further gives the following equation[
sM11 + L11 −L111

1TM11 m̃

] [
∆ηa
∆ηb

]
=

[
−`2
mn

]
δη (5.83)

By solving the above equation, the error expressions of ∆ηa and ∆ηb are respectively
given by

∆ηa = Ka(s)δη, and ∆ηb = Kb(s)δη (5.84)

with

Ka(s) = M−1
11

[
sL−1

11 + M̃
]−1 (mn

m̃
1− L−1

11 `2

)
, (5.85)

Kb(s) =
mn + 1TM11(sM11 + L11)−1`2
m̃+ 1TM11(sM11 + L11)−1L111

. (5.86)

Here, M̃ = M−1
11 + m̃−111T .

Moreover, since η̂n = η̂n−1, we have

∆ηb −∆ηc = δη. (5.87)

Also note that L111 = `1 + `2. As result, we can obtain ∆ηc = Kc(s)δη with

Kc(s) = −mn−1 + 1TM11(sM11 + L11)−1`1
m̃+ 1TM11(sM11 + L11)−1L111

. (5.88)

Next, based on the derived error formulas, we further investigate the error
bounds.

Denote Ω(s) =
[
sL−1

11 + M̃
]−1

, then we have for 1 ≤ i ≤ n− 2,

∆ηi = eTi Ka(s)δη = eTi M
−1
11 Ω(s)

(mn

m̃
1− L−1

11 `2

)
δη. (5.89)

Consequently,

‖∆ηi‖ ≤ ‖eTi M−1
11 ‖ · ‖Ω(s)‖ · ‖mn

m̃
1− L−1

11 `2‖ · ‖δη‖

= m−1
i · ‖Ω(s)‖ · ‖mn

m̃
1− L−1

11 `2‖ · ‖δη‖.
(5.90)

First, as Ω(s) can be regarded as a state-space symmetric descriptor system with
identity input and output matrices, by Lemma 2.8, itsH∞ norm is

‖Ω(s)‖ = λm(M̃)−1 := ρ. (5.91)
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Then, equation L111 = `1 + `2 leads to

mn

m̃
1− L−1

11 `2 =
mn

m̃
(L−1

11 `1 + L−1
11 `2)− L−1

11 `2 = L−1
11 (

mn

m̃
`1 −

mn−1

m̃
`2). (5.92)

Note that L11 is a M-matrix, therefore, L−1
11 is a nonnegative matrix by Lemma 2.3.

Besides, since L111 = `1+`2 and `1, `2 are vectors with real nonnegative elements, we
can guarantee that both L−1

11 `1 and L−1
11 `2 not greater than L−1

11 L111 = 1 entry-wise.
Then, from (5.92),

‖mn

m̃
1− L−1

11 `2‖ ≤
mn

m̃
‖L−1

11 `1‖+
mn−1

m̃
‖L−1

11 `2‖ ≤ ‖1‖ =
√
n− 2. (5.93)

Finally, by (5.90), (5.91) and (5.93), we have the bound for ∆ηi. After replacing n− 1

and n by µ and ν respectively, it is equivalent to (5.72a) .
Next, we find theH∞ bound for Kb(s) in (5.86). Note that Kb(s) is in the form of

a quotient of two SISO transfer functions, i.e.,

Kb(s) :=
Gn(s)

Gd(s)
, (5.94)

where

Gd(s) = 1T (sI + L11M
−1
11 )−1L111+ m̃, (5.95a)

Gn(s) = 1T (sI + L11M
−1
11 )−1(−`2) +mn. (5.95b)

The state-space representation of Gd(s) is

ẋ = −(L11M
−1
11 )x+ (L111)u,

y = 1Tx+ m̃u.

With m̃ 6= 0, we have

ẋ = −(L11M
−1
11 )x+ (L111)

(
−m̃−11Tx+ m̃−1y

)
,

u = −m̃−11Tx+ m̃−1y,

which leads to the inverse transfer function as

Gd(s)
−1 = −m̃−21T

[
sL−1

11 + M̃
]−1

1+ m̃−1. (5.96)

Observe that G0(s)−1 is a state-space symmetric descriptor system and Note that

|Gd(0)−1| = |Gd(0)|−1 =
1

1TM111+ m̃
< m̃−1. (5.97)
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Thus, by Lemma 2.8,
‖G−1

d (s)‖ = m̃−1. (5.98)

On the other hand, Gn(s) is a internally positive system by Definition 2.10, then
Lemma 2.7 yields ‖Gn(s)‖ = mn + 1TM11(−L−1

11 `2) ≤ mn + 1TM111. Therefore,

‖Kb(s)‖ ≤ ‖Gn(s)‖ · ‖G−1
d (s)‖ =

mn +
∑n−2
i=1 mi

m̃
, (5.99)

which leads to the error bound in (5.72b).
Similarly, we can obtain the bound for ∆ηc as in (5.72c).

The dynamics of a cluster is captured by η̂i(s), which is used to approximate
the dynamics of all the vertices in this cluster. Theorem 5.5 indicates that this
approximation error is bounded by the dissimilarity of the aggregated vertices.
Based on Theorem 5.5, we have the following corollary directly.

Corollary 5.5. If the reduced-order model Σ̂s is derived from aggregating two 0-dissimilar
vertices in the full-order system Σs, then ‖Σs − Σ̂s‖H2

= 0.

5.5 Numerical Examples

5.5.1 Path Network

To illustrate the feasibility of our method proposed in Section 5.3, we use the example
in [21] for comparison. The thermal model of interconnected rooms in a building is
considered, where the network is described by a path graph with 6 nodes, see Fig.
5.2a, and each room is an agent as in (5.1) with

A = R−1
i

[
C−1

1 C−1
1

C−1
2 C−1

2

]
+R−1

o

[
C−1

1 0

0 0

]
∈ R2×2,

B =
[
C−1

1 0
]T
, C =

[
1 0

]
.

(5.100)

The meaning of the parameters can be found in [21], which provides their values as
C1 = 4.35 · 104, C2 = 9.24 · 106, Ri = 2.0 · 10−3, and Ro = 2.3 · 10−2. Moreover, the
inertia and Laplacian matrices are given by

M = I6, L = R−1
w



1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1


, (5.101)
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Figure 5.2: The clustering of a network that is composed of 6 interconnected rooms.
(a) The cluster selection generated by Algorithm 2. (b) The clustering result in [21]
and modified Algorithm 2 in Remark 5.2.

where Rw = 1.6 · 10−2 represents the nominal thermal resistance between two
adjacent rooms. The input matrix F =

[
e3 R−1

o 16

]
indicates the distribution of

external inputs.
By Theorem 5.2, the dissimilarity matrix is computed as D =

0 0.0095 0.1332 0.0094 0.0011 0.0028

0.0095 0 0.1268 0.0004 0.0099 0.0114

0.1332 0.1268 0 0.1268 0.1332 0.1337

0.0094 0.0004 0.1268 0 0.0098 0.0112

0.0011 0.0099 0.1332 0.0098 0 0.0019

0.0028 0.0114 0.1337 0.0112 0.0019 0


· 10−3

Then, Algorithm 2 generate a graph clustering: {{1, 5, 6}, {2, 4}, {3}}, see Fig. 5.2b,
which is different from the result in [21], see Fig. 5.2c. Taking the output of the third
agent as the external output of the whole system, we calculate the approximation
error as ‖Σ−Σ̂‖H∞ = 9.4171 ·10−5, while it is 8.4663 ·10−4 in [21]. Thus, our method
produces a more accurate approximation of the network system. Next, using Remark
5.2, we adapt Algorithm 2 to only cluster adjacent agents. It then yields an identical
clustering result as in [21].

5.5.2 Small-World Network

Next, the efficiency of the proposed approach is verified by a large-scale small-
world network example. This simulation is implemented with Matlab 2016a in the
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Figure 5.3: Watts-Strogatz network with 500 nodes and 2000 edges

environment of 64-bit operating system, which is equipped with Intel Core i5-3470
CPU @ 3.20GHz, RAM 8.00 GB.

The agents are oscillators with coefficients

A =

[
0 1

−1 1

]
, B = C = I2. (5.102)

The Laplacian matrix L representing the underlying network is created by the Watts-
Strogatz model [173], which is a random graph generator producing graphs with
small-world properties. In this example, the original network contains 500 nodes and
2000 edges, as shown in Fig. 5.3. In (5.3), the diagonal entries of the inertia matrix
M are chosen randomly from the range 1 to 10, and F ∈ R500×10 is a binary matrix,
whose (i, j) entry is 1 if the the j-th input affects the i-th node, and 0 otherwise. Here,
we randomly assign 10 nodes to be controlled. In Fig. 5.3, the controlled nodes are
labeled by diamond markers.

In the simulation, the original multi-agent system has a dimension of 1000, and we
use Algorithm 2 to reduce the number of agents to 5. The approximation errors of the
reduced models with different dimensions are shown in Fig. 5.5, which compares the
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Figure 5.4: Reduced Watts-Strogatz networks with 125 clusters (left) and 45 clusters
(right)
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Figure 5.5: Approximation error versus reduced order r

actual approximation errors and the associated bounds in terms ofH2-norms. From
Fig. 5.5, the exact errors and the error bounds of ‖Σ− Σ̂‖H2 show negative relations
with the reduced dimension r. In particular, when r < 40, the approximation errors
rapidly decrease as r increases. Table 5.1 list the actual approximation errors and the
error bounds at different reduced order r. The reduced networks with 125 nodes and
45 nodes are shown in Fig. 5.4. The time for computation of the dissimilarity matrix
is approximately 85 seconds, while it only takes 0.004s, on average, for Algorithm 2
to find a suitable clustering.

In conclusion, this simulation example demonstrates that hierarchical clustering
algorithm is feasible and effective in model reduction of large-scale multi-agent
systems.
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Table 5.1: The exact approximation errors and the error bounds

Clusters Actual Error Error Bound γs

r = 45 0.0081 0.107 1.3223

r = 125 0.0022 0.0037 1.6348

r = 225 8.4 · 10−4 13.7 · 10−4 1.6348

r = 425 1.2 · 10−4 2.6 · 10−4 2.2598

5.6 Conclusions

In this chapter, we propose a general framework of structure preserving model
reduction for multi-agent systems. The proposed method builds a connection to the
conventional data clustering. The pairwise Euclidean distance in statistical clustering
is generalized to the behavior dissimilarity in our framework, which is measured
by the norm of transfer function variance. Based on the dissimilarity matrix, which
is known as distance matrix in statistical analysis, we are able to adapt the well-
developed algorithms for the statistical clustering to solve the model reduction
problem. Therefore, the proposed method is a novel extension and generalization
of the conventional clustering analysis. Moreover, to generate an appropriate graph
clustering, an efficient clustering algorithm is proposed, which can be also easily
adapted to only aggregate adjacent agents.

Note that the results presented in Chapter 3, Chapter 4, and Chapter 5 are consid-
ering systems evolving over undirected networks. In the next chapter, we discuss
the clustering-based model reduction of directed networks.
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6
Clustering-Based Model Reduction of
Directed Dynamical Networks

This chapter investigates a model reduction problem for linear directed network
systems, in which the interconnections among the vertices are described by

general weakly connected digraphs. We introduce a concept of vertex clusterability to
guarantee the boundedness of the approximation error and use the newly proposed
Gramians to facilitate the evaluation of the dissimilarity of each pair of vertices. A
clustering algorithm is thereto provided to generate an appropriate graph clustering,
whose characteristic matrix is employed as the projections in the Petrov-Galerkin
reduction framework. The obtained reduced-order system preserves the weakly
connected directed network structure, and the approximation error is computed by
the pseudo Gramians. Finally, the efficiency of the proposed approach is illustrated
by numerical examples.

6.1 Introduction

We extend the results in the above chapters to a more general case that the vertices
in a network are connected by directed edges. The extension is not straightforward
since the clustering of directed networks and projection matrices have to be care-
fully chosen in order to guarantee the boundedness of the approximation error. For
undirected networks, any graph clustering can result in a bounded approximation
error, however, this conclusion does not hold in the directed case. Moreover, directed
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networks have more applications, which appear in e.g., social and ecological interac-
tions, chemical reactions and physical networks, see e.g. [12, 27, 79, 88, 130, 163] for an
overview.

A pioneering model reduction approach dealing with semistable directed net-
works is proposed in [84]. The graph clustering is formed based on a notion of
cluster reducibility, characterized by the uncontrollability of local states. Merging the
vertices in the reducible clusters then yields a reduced-order model that preserves
the structural information of a directed network. In this method, the studied network
essentially has a strongly connected topology, since a positive Frobenius eigenvector
of the system matrix is needed for the projection. An alternative approach in [41]
focuses on the behavior of individual vertices described by transfer functions and
pairwise dissimilarities evaluated by function norms. The vertices behaving similarly
are sequentially assimilated to a single vertex. This approach is preferable for a
consensus network and applicable to a strongly connected topology. In broader
applications of dynamical networks, for instance, biochemical systems, sensor coor-
dination, gene regulation, weakly connected spatial structures commonly appear in
the networks, see e.g., [3, 120, 159, 163].

This motivates us to consider weakly connected directed networks. As undi-
rected networks and strongly connected networks are only subcategories of weakly
connected ones, the systems studied in this chapter describe more general scenarios,
and the proposed method can be also applied to the former two cases. It is worth
noting that a model reduction problem of weakly connected directed networks has
been absent from the literature so far. The major difficulty for such networks is an
appropriate clustering selection scheme. The approximation accuracy heavily relies
on the resulting graph clustering, whereas finding an optimal clustered network
is roughly an NP-hard problem even for static networks [2, 94]. More importantly,
in [41, 84], projections are generated using the positive Frobenius eigenvectors of
the system matrix. However, such vectors may not exist in the weakly connected
case. Furthermore, a weakly connected network may not reach a global consensus as
strongly connected ones do. Instead, a local consensus is achievable among the ver-
tices that are able to influence each other. Consequently, the clustering for a weakly
connected graph has to be prudently selected to avoid an unbounded approximation
error.

To tackle the above difficulties, this chapter introduces a definition of vertex
clusterability for weakly connected networks and shows that the boundedness of the
approximation error is guaranteed if and only if clusterable vertices are aggregated.
Thereby, the concept of dissimilarity is defined only for clusterable vertices. In
contrast to [34, 41], the input and output dissimilarities are considered based on the
responses of the vertex states to the external inputs and the measurement of the state
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discrepancy from the output channels, respectively. Thus, the pairwise dissimilarities
are evaluated by combining the input and output efforts. Then, according to the
vertex clusterability and dissimilarity, a graph cut algorithm is designed to partition
the underlying network into a desired number of clusters. Then, a clustering-based
projection is employed to reduce the dimension of the original network system, where
the projection matrix is generated from the left kernel space of the system matrix.
The proposed method yields a reduced-order model that preserves not only the
structure and connectedness of directed network but several fundamental properties,
including consensus, semistability, and asymptotic behaviors of the vertex.

The rest of this chapter is organized as follows: Section 6.2 presents the model
of directed networks, and the Petrov-Galerkin reduction framework is established
based on graph clustering. Then, in Section 6.3 we define the vertex clusterability
and dissimilarity, and propose a scheme for model reduction of directed networks.
The proposed method is illustrated through an example in Section 6.4, and finally,
concluding remarks are made in Section 6.5.

6.2 Directed Network Systems and Graph Clustering

In this chapter, the interactions among the vertices are described by a directed graph.
The network model is first introduced in the form of Laplacian dynamics. Based on
graph clustering, a projection framework for network structure-preserving model
reduction is presented.

6.2.1 Directed Network Systems

A directed network system describes the dynamics evolving over a digraph G. Let
xi(t) ∈ R be the state of a vertex i, which is diffusively coupled with the other vertices
as

ẋi(t) = −
n∑

j=1,j 6=i

wij [xi(t)− xj(t)] +

p∑
k=1

fikuk(t), (6.1)

wherewij ∈ R+ and fij ∈ R represent the weight of the edge aij and the amplification
of the input uk ∈ R acting on the vertex i, respectively. Then, we describe the
dynamics of all the vertices on a directed consensus network by the following linear
time-invariant system

Σ :

{
ẋ(t) = −Lx(t) + Fu(t),

y(t) = Hx(t),
(6.2)
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where x(t) ∈ Rn is the collection of the vertex states. The vectors u ∈ Rp and y ∈ Rq

are the external control flows and measurements. The input and output matrices
F and H then represent the distributions of the external inflows and outflows,
respectively. The Laplacian matrix L is associated with a weakly connected weighted
digraph G, which reflects the diffusive coupling among the vertices of G. We refer to
Lemma 2.2 for the structural property of L. Throughout the chapter, we suppose the
digraph G contains nd SCCs, {S1, . . . ,Snd}, such that Si ∩ Sj = ∅, for any i, j, and
∪j=1,··· ,ndSi = V. Moreover, the set SL ⊆ V collects all the vertices in the LSCCs of G,
and Si ⊆ SL if Si is a LSCC of G.

A typical example of (6.2) is a chemical reaction network, (see e.g., [3, 73, 120]),
where chemical species are the vertex states xi(t). The directed edges represent a
series of chemical reactions converting source species to target species, and the edge
weights are the rate constants of the corresponding reactions.

Remark 6.1. The network system Σ is semistable due to the Laplacian matrix L, which
is singular and reducible (i.e., L is similar via a permutation to a block upper triangular
matrix). Furthermore, by Geršgorin’s circle theorem (see, e.g., [95]), the real part of each
nonzero eigenvalue of L is strictly positive.

A strongly connected digraph is called balanced if the indegree and outdegree
of each node are equal [67, 176]. In e.g. the mass action kinetics chemical reaction
networks [81, 91], the balancing of a directed network is necessary to preclude
sustained oscillations, multi-stability or other types of exotic dynamic behavior. This
chapter extends the definition of balanced digraphs to the weakly connected case.

Definition 6.1. A weakly connected digraph G is generalized balanced if each LSCC is
balanced, i.e.,

∑
j∈Sk wij =

∑
j∈Sk wji, ∀i ∈ Sk ⊆ SL.

The following lemma then shows that any directed network system in (6.2) can
be converted to its generalized balanced form.

Lemma 6.1. Consider a directed graph Laplacian matrix L. There always exists positive
diagonal matrix M ∈ Rn×n such that L := ML is a Laplacian matrix associating with a
generalized balanced digraph.

Proof. A reducible Laplacian matrix L is permutation-similar to a block upper trian-
gular matrix. Thus, there exists a permutation matrix Tµ such that

L = Tµ ·


Ll1 · · · 0 0

...
. . .

...
...

0 · · · Llm 0

∗ · · · ∗ Lr

 T Tµ , (6.3)
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where the first m diagonal blocks, Lli (i = 1, · · · ,m), are the Laplacian matrices
associated with the m LSCCs of G, while Lr relates to the remaining vertices in G.
It is well-known that the Laplacian associated to a strongly connected digraph has
a simple zero eigenvalue, whose associated left eigenvector has all positive entries,
see this statement in e.g., [41, 176]. Therefore, there exists a positive vector νi such
that LTliνi = 0 for each i = 1, · · · ,m. Then, it is verified that diag(νi)Lli represents a
balanced directed subgraph, since

1T diag(νi)Lli = 0 and diag(νi)Lli1 = 0. (6.4)

Let
M := diag

(
[νT1 , · · · , νTm, νTr ]

)
· T Tµ (6.5)

with νr an arbitrary positive vector. Then, L := ML represents a generalized balanced
digraph by Definition 6.1.

Example 6.1. Consider the weakly connected graph in Fig. 2.2, where the weights the edges
are labeled. The weighted Laplacian matrix is written as

L =



1 0 −1 0 0 0

−2 2 0 0 0 0

0 −2 2 0 0 0

0 −1 0 2 0 −1

0 0 0 0 3 −3

0 0 0 0 −1 1


. (6.6)

By (6.5), we choose M = diag
(
[2, 1, 1, α, 1, 3]T

)
with α an arbitrary positive scalar such

that

L = ML =



2 0 −2 0 0 0

−2 2 0 0 0 0

0 −2 2 0 0 0

0 −α 0 2α 0 −α
0 0 0 0 3 −3

0 0 0 0 −3 3


(6.7)

is a Laplacian matrix associating with a generalized balanced digraph.

Consider the directed network system Σ in (6.2). Then, Lemma 6.1 implies that
there exists an equivalent representation:

Σ :

{
Mẋ(t) = −Lx(t) +MFu(t),

y(t) = Hx(t),
(6.8)
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where M ∈ Rn×n is positive diagonal such that L := ML is a Laplacian matrix
associating with a generalized balanced digraph. The introduction of the generalized
balanced form (6.8) of directed networks is meaningful, as in the following sections,
it will be employed to define the vertex clusterability and dissimilarity. Moreover, it
can be seen as an extension of undirected networks in [34], where M is the vertex
weights and L corresponds to an undirected graph.

6.2.2 Projection by Graph Clustering

This subsection constructs the reduced network system in the Petrov-Galerkin frame-
work in which the projection matrix is chosen as the characteristic matrix of graph
clustering. Before proceeding, we provide some notions regarding graph cluster-
ing [34, 126].

Consider a weakly connected digraph G = (V,E). Then, a graph clustering is to
divide the vertex set V into r nonempty and disjoint subsets, i.e., {C1, C2, · · · , Cr},
where Ci is called a cell (or a cluster) of G.

Definition 6.2. The characteristic matrix of the clustering S is denoted by a binary matrix
Π ∈ Rn×r, whose (i, j)-entry is defined by

Πij :=

{
1, vertex i ∈ Cj ,
0, otherwise.

(6.9)

Clearly, the entries in each row of Π has a single 1 entry while all the others are 0,
which means that each vertex is included in a unique cell. Moreover, Π satisfies

Π1n = 1r. (6.10)

Now, we consider the system Σ on digraph G of n vertices. To formulate a reduced
model of dimension r, we first find a graph clustering that partitions the vertices of
G into r cells. Then, we use the characteristic matrix of the clustering to construct
the projection in the Petrov-Galerkin framework, which yields a reduced network
system. Specifically, the following left and right projection matrices are utilized:

Π† := (ΠTNΠ)−1ΠTN, and Π, (6.11)

where N is a diagonal matrix such that ΠTNΠ is invertible, and Π† ∈ Rr×n is the
reflexive generalized inverse of Π (see [141] for the definition). Both Π and N are to
be determined in the latter sections. Wherein, Π is formed as the clustering of G is
selected.

The reason that we select the pair of projection matrices in (6.11) is due to its
potential to preserve a network structure. With this projection, the r-dimensional
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projected model is given as

Σ̂ :

{
ż(t) = −L̂z(t) + F̂ u(t),

ŷ(t) = Ĥz(t),
(6.12)

where z(t) ∈ Rr, and

L̂ := Π†LΠ, F̂ = Π†F and Ĥ = HΠ.

It can be verified that L̂1r = 0, and L̂ has nonnegative diagonal entries and nonposi-
tive off-diagonal elements. Thus, the reduced matrix L̂ ∈ Rr×r is a lower-dimensional
Laplacian matrix representing a digraph with fewer vertices, and the reduced-order
system Σ̂ models a smaller-sized weakly connected directed network. In other words,
the network structure is guaranteed to be preserved.

Under the projection framework (6.11), the rest of this chapter investigates the
structure-preserving model reduction problem of the system Σ, formulated as fol-
lows.

Problem 6.1. Given a directed network system Σ in (6.2), find matrices Π and N such that
the obtained reduced-order model Σ̂ in (6.12) approximates the original system Σ in a way
that ‖Σ− Σ̂‖H2 is bounded and small.

6.3 Model Reduction

The strategy of constructing a suitable reduced-order network system is discussed
with two parts in this section. The first part shows the conditions to guarantee the
boundedness of the approximation error ‖Σ− Σ̂‖H2 , and the second part develops
an effective scheme to find an appropriate clustering such that the reduction error
‖Σ− Σ̂‖H2

is small.

6.3.1 Clusterability

Denote the transfer matrices of Σ and Σ̂ by

η(s) = H (sIn + L)
−1
F, and η̂(s) = Ĥ(sIr + L̂)−1F̂ , (6.13)

respectively. Note that both Σ and Σ̂ are not asymptotically stable, which means
‖η(s)‖H2

or ‖η̂(s)‖H∞ may be unbounded potentially. The results in [41, 84] shows
that when G ∈ Gs, even a random partition of V can deliver an bounded reduction
error ‖η(s) − η̂(s)‖H2

with a properly chosen N . However, such a conclusion no
longer holds for more general digraphs G ∈ Gq or G ∈ Gw. Thereby, the following
definition is introduced based on the generalized balanced representation of Σ in
(6.8).
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Definition 6.3. In the network (6.2), the vertices i and j are clusterable if eij ∈ ker(L)⊥

and eij ∈ ker(LT )⊥ simultaneously, where L is defined in (6.8). Furthermore, the graph
clustering of G is proper if the vertices in each cell are clusterable.

Furthermore, the physical meaning of the clusterability is explained in the follow-
ing lemma.

Lemma 6.2. The vertices i and j are clusterable if and only if the following conditions hold:

• the vertices i and j reach consensus, i.e., when u = 0,

lim
t→∞

[xi(t)− xj(t)] = 0,

for all initial conditions.

• the vertices i and j are either contained in the same LSCC or i, j ∈ V\SL.

Proof. Consider the decomposition of L as in (3.10), and we obtain

LU = 0, V TL = 0, and V TU = Im, (6.14)

where U, V ∈ Rn×m with m the algebraic multiplicity of the zero eigenvalue of L, i.e.,
the number of LSCCs in G. It follows from L = ML that

im(U) = ker(L), im(M−1V ) = ker(LT ) (6.15)

with M given in (6.5). By Definition 6.3, the clusterability of vertices i and j is thus
equivalent to

eTijU = 0, and eTijM
−1V = 0. (6.16)

Hereafter, we prove that (6.16) holds if and only if the two conditions in this lemma
are satisfied.

Note that for any initial condition x0 ∈ Rn, the zero input response of Σ converge
to

lim
t→∞

e−Ltx0 = J x0 = UV Tx0. (6.17)

Thus, vertices i and j reach consensus ∀x0 equivalently means that the i-th and j-th
rows of U coincide, i.e., eTijU = 0. Furthermore, it follows from e.g., [176] that

eTi V = 0, ∀i ∈ V\SL. (6.18)

Thus, by the definition of generalized balanced graph, eTijM
−1V = 0 holds if and

only if vertices i and j belongs to the same LSCC, or i, j ∈ V\SL (in the latter case,
eTi M

−1V = eTj M
−1V = 0 due to (6.18)).
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Remark 6.2. The clusterability of different types of digraphs is discussed. If G ∈ Gs, we
have U = 1√

n
1n meaning that all the vertices achieve a global consensus, i.e., ∀i, j ∈ V,

xi(t) → xj(t) as t → ∞. Moreover, V ∈ Rn has all positive entries [41, 84] such that
1TL = 1TML = 0. Thus, all the vertices are clusterable. When G ∈ Gq, i.e., G contains a
single LSCC, the directed network can still reach a global consensus due to ker(L) = im(1n),
whereas there will be two sets of clusterable vertices, which are the vertices inside SL and
all the other vertices outside SL. In a more general case that G ∈ Gw, the system Σ in
(6.2) may not achieve a global consensus. Instead, a local consensus is achievable among
the vertices that are able to influence each other. Namely, Σ forms cells of consensus with
different consensus values in each cell. It is guaranteed that the vertices in the same LSCC
are clusterable.

The definition of clusterability is nontrivial as it determines the feasibility of a
graph clustering. More specifically, we find that the boundedness of the approxima-
tion error between the original and reduced systems is guaranteed only if clusterable
vertices are classified in the same cell.

Consider the permutation transformation in (6.3), and denote the following set of
diagonal matrices:

N :=
{
N ∈ Rn×n : ΠTNΠ is invertible, N1 ∈ im (Tµ · blkdiag(ν1, · · · , νm, I))} ,

(6.19)

where Tµ is the permutation matrix reforming L into a block upper triangular form,
and νi is the left eigenvector of the diagonal block matrix Lli in (6.3), i.e., LTliνi = 0.
Then, the clustering-based projection matrices in (6.11), i.e., N and Π, are selected ac-
cording to the following theorem to guarantee the boundedness of the error between
Σ and Σ̂.

Theorem 6.1. Consider the directed network system Σ in (6.2) and its reduced-order model
Σ̂ in (6.12). For all input and output matrices H and F , the error ‖η(s) − η̂(s)‖H2

is
bounded if and only if Π in (6.11) characterizes a proper clustering of G and N ∈ N.

Proof. TheH2-norm of the approximation error is given by

‖η(s)− η̂(s)‖2H2
=

∫ ∞
0

‖ξ(t)− ξ̂(t)‖22dt, (6.20)

where ξ(t) := He−LtF and ξ̂(t) := HΠe−L̂tΠ†F are the impulse responses of Σ

and Σ̂, respectively. Since both ξ(t) and ξ̂(t) are smooth functions over t ∈ R+, the
integral in (6.20) is finite if and only if the error ξ(t)− ξ̂(t) exponentially converges to
zero. Hence, for general H and F matrices, the boundedness of ‖η(s) − η̂(s)‖H2

is
equivalent to

J = ΠĴΠ†. (6.21)
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with J := lim
τ→∞

e−Lτ and Ĵ := lim
τ→∞

e−L̂τ .

To prove the “if” part, we assume {C1, C2, · · · , Cr} to be a proper clustering of G.
With N ∈ N, we verify

U = ΠΠ†U, and V T = V TΠΠ† (6.22)

as follows. Without loss of generality, assume that

Π = blkdiag
(
1|C1|,1|C2|, · · · ,1|Cr|

)
. (6.23)

Accordingly, the matrices U and V in (6.14) are partitioned as UT = [UT1 , · · · , UTr ]

and V T = [V T1 , · · · , V Tr ]. Meanwhile, the projection Γ = ΠΠ† is written in a block
diagonal form with the i-th diagonal entry as

Γi = 1|Ci|(1
T
|Ci|Ni1|Ci|)

−11T|Ci|Ni. (6.24)

Since Ni is the corresponding principal submatrix in N , i.e., it is diagonal and
nonsingular, the equations in (6.22) hold if and only if

Ui = ΓiUi, and V Ti = V Ti Γi. (6.25)

It follows from Lemma 6.2 that Ui = 1|Ci|, which verifies the first equation in (6.25).
Moreover, as the vertices in Ci are clusterable, Lemma 6.2 implies that these vertices
are either contained in the same LSCC or in the set V\SL. In the first case, Vi = Ni1|Ci|
owing to δ(N) ∈ N, and the second case indicates that Vi = 0 from (6.18). It is verified
that the second equation in (6.25) are satisfied in both cases. Thus, the equations in
(6.22) hold. Based on this, we compute Ĵ in (6.21) for the reduced-order system Σ̂.
Let Û := Π†U and V̂ T := V TΠ, which leads to

L̂Û = Π†LΠΠ†U = Π†LU = 0, V̂ T L̂ = V TΠΠ†LΠ = V TLΠ = 0. (6.26)

Furthermore, due to

V̂ T Û = V TΠΠ†U = V TU = Im, (6.27)

we obtain

Ĵ := Û V̂ T = Π†UV TΠ, (6.28)

and thus,

ΠĴΠ† = ΠΠ†UV TΠΠ† = UV T = J . (6.29)

Consequently, the error ‖η(s)− η̂(s)‖H2 is bounded.



6.3. Model Reduction 123

For the “only if” part, ‖η(s)− η̂(s)‖H2
is assumed to be bounded for all H and F

matrices, equivalently, (6.21) holds. Similarly, the block diagonal structure of Π in
(6.23) is assumed without loss of generality such that (6.21) is presented asU1

...
Ur

 [V T1 , · · · , V Tr ] =

1|C1|Ũ1

...
1|Cr|Ũr

[Ṽ T1 Π†1, · · · , Ṽ Tr Π†r

]
, (6.30)

where Π†i := (1T|Ci|Ni1|Ci|)
−11T|Ci|Ni, Ũi := eTi Ũ and Ṽi := eTi Ṽ , with Ũ and Ṽ

fulfilling
im(Ũ) = ker(L̂), im(Ṽ ) = ker(L̂T ), and Ṽ T Ũ = I. (6.31)

The matrices Ui, Vi ∈ R|Ci|×m are the corresponding submatrices of U and V , respec-
tively. Then, (6.30) yields

UiV
T
j = 1|Ci|ŨiṼ

T
j Π†j = αij · 1|Ci|1

T
|Cj |Nj , ∀i, j = 1, 2, · · · , r. (6.32)

with a scalar αij := ŨiṼ
T
j · (1T|Cj |Nj1|Cj |)

−1. It follows that

eTijUk = 0, and V Tk N
−1
k eij = 0, ∀i, j ∈ Ck. (6.33)

Note that LU = 0 and V TN−1L = 0 with L defined in (6.8). Thus, we obtain
∀i, j ∈ Ck, eij ∈ ker(L)⊥ and eij ∈ ker(LT )⊥. As the result holds for all cells
C1, C2, · · · , Cr, the graph clustering is proper by Definition 6.3.

Next, we prove that N ∈ N is also necessary for a bounded approximation error.
Clearly, ΠTNΠ has to be invertible in (6.11). A proper clustering {C1, C2, · · · , Cr}
means that each cell Ck (k = 1, · · · , r) is included in either V\SL or a LSCC, denoted
by Sµ. If Ck ⊆ V\SL, we have Vk = 0 owing to (6.18) such that (6.32) is equal to zero,
and thus Nk can be an arbitrary nonsingular diagonal matrix, that is Nk ∈ im(I).

For the second case that Ck ⊆ Sµ, we can assume, without loss of generality, that
the set Sµ is the union of µ disjoint cells C1, · · · , Ck, · · · , Cµ. Let Lµ be the Laplacian
matrix associated with Sµ and Us, Vs ∈ R|Sµ|×m be the rows of U , V that correspond
to Sµ. Thus, we obtain from [176] that

im(Us) = ker(Lµ) = im(1|Sµ|), im(Vs) = ker(LTµ ) = im(νs), (6.34)

where νs has strictly positive entries, and νs ∈ {ν1, · · · , νm}. Then, from (6.32), we
can find a permutation matrix Ts such that

TsUsV Ts = β1|Sµ|νs =


α111|C1|1

T
|C1|N1 · · · α1µ1|C1|1

T
|Cµ|Nµ

...
. . .

...
αµ11|Cµ|1

T
|C1|N1 · · · αµµ1|Cµ|1

T
|Cµ|N

T
µ

 ,
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with β and αij scalars. It follows that α1i = α2i = · · · = αµi, ∀i = 1, · · · , µ, and

blkdiag(N1, · · · , Nµ)1|Sµ| ∈ im(νs). (6.35)

The above reasoning can be applied to all the LSCCs such that N ∈ N is obtained.
That completes the proof.

Let nc be the number of the maximal clusterable cells, then Theorem 6.1 implies
that the reduction order r should not be less than nc. Otherwise, the approximation
error will be unbounded. Besides, we use Π† = (ΠTMΠ)−1ΠTM as the left projection
matrix with M in (6.5), where we choose νr = 1 in this chapter such that M ∈ N.
Thereby, the following section will focus on finding an appropriate clustering such
that the approximation error ‖Σ− Σ̂‖H2

is as small as possible.

Example 6.2. Consider the weakly connected graph in Fig. 2.2, whose Laplacian matrix is
given in (6.6). Then, the right and left nullspaces can be characterized by

UT =

[
0.25 0.25 0.25 0.125 0 0

0 0 0 0.125 0.25 0.25

]
, V T =

[
2 1 1 0 0 0

0 0 0 0 1 3

]
.

Thus, we can chooseM = diag(2, 1, 1, 1, 1, 3) such that a Laplacian matrix in the generalized
balanced form (6.8) is obtained. By Definition 6.3, a proper clustering of the digraph is given
by C1 = {1, 2, 3}, C2 = {4}, and C3 = {5, 6}, which yields

Π =

1 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

 . (6.36)

As a result, a 3-dimensional network system is obtained in form of (6.12) with the reduced
Laplacian matrix as

L̂ = Π†LΠ =

 0 0 0

−1 2 −1

0 0 0

 , (6.37)

which represents a simpler weakly connected digraph as shown in Fig. 6.1a. Next, we suppose
H = F = I6 in (6.2) and compute the approximation error: ‖Σ− Σ̂‖H2 = 0.7852, which is
bounded.

For comparison reasons, we consider an alternative clustering, namely, C1 = {1, 2},
C2 = {3, 4}, and C3 = {5, 6}, while keeping the same M matrix. Then, a different reduced-
order system Σ̂ is obtained with the Laplacian matrix

L̂ = Π†LΠ =

 2
3 − 2

3 0

− 3
2 2 − 1

2

0 0 0

 . (6.38)
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Figure 6.1: (a) A reduced digraph obtained by a proper graph clustering. (b) A
reduced digraph generated from an alternative graph clustering.

It represents a reduced digraph as in Fig. 6.1b, which is quasi strongly connected, and the
approximation error is shown to be unbounded. Next, we use the proper clustering as before
but a different M matrix, e.g., M = I and M = diag(1, 2, 2, 1, 1, 2). We find that both yield
unbounded reduction errors.

6.3.2 Vertex Dissimilarity

The concept of clusterability determines the boundedness of the approximation error
and is only dependent on the topology of the underlying network, i.e., the directed
Laplacian matrix, whereas this section investigates how to find a reduced-order
model such that the magnitude of the approximation error is small. To this end, the
structures of the inputs and outputs are considered as well to define the concept of
vertex dissimilarity that will be regarded as a criteria for selecting appropriate graph
clusterings.

Definition 6.4. Consider the directed network system Σ in (6.2) and its generalized balanced
form (6.8). The dissimilarity of a pair of clusterable vertices is defined by

Dij = DIij · DOij , (6.39)

where DIij and DOij are input and output dissimilarities of vertices i, j:

DIij : = ‖(ei − ej)
T (sM + L)−1MF‖H2 ,

DOij : = ‖H(sM + L)−1(ei − ej)‖H2
.

(6.40)

Remark 6.3. Note that when either DIij or DOij is zero, it is reasonable to have the dissimilar-
ity Dij = 0. This is the reason that in (6.39), we use the product of DIij and DOij instead of
the sum of them.
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The physical meanings of the input and output dissimilarities are explained. First,
to quantify the input dissimilarity between a pair of vertices i and j, we steer the
network system Σ by injecting a series of impulse signals, i.e., let u(t) in (6.2) be a
vector of delta functions. Then, the responses of the vertices i and j are compared,
i.e.,

Ξi(t)− Ξj(t) = [ξi1(t)− ξj1(t), · · · , ξip(t)− ξjp(t)] , (6.41)

with ξij(t) ∈ R the trajectory of the vertex i to the impulse in the j-th input channel.
Thus, a proper measurement of the input dissimilarity between the vertices i and j is
given by

DIij =

√∫ ∞
0

[Ξi(t)− Ξj(t)] [Ξi(t)− Ξj(t)]
T
dt. (6.42)

Essentially, the value of DIij indicates how controllable the error between vertices i
and j is. More precisely, the smaller DIij means a smaller amount of input energy
required to steer the vertices i and j to consensus. Similarly, the output dissimilarity
of the clusterable vertices i and j is characterized by

DOij =

√∫ ∞
0

[Ψi(t)−Ψj(t)]
T

[Ψi(t)−Ψj(t)] dt, (6.43)

where Ψi(t)−Ψj(t) ∈ Rq is the output of Σ when only vertices i, j are perturbed by
an impulse signal. Thus, DOij indicates how observable the error between vertices i
and j is, i.e., the larger DOij , the less energy generated by the natural response of the
perturbation on vertices i and j, and thus more difficult the error between vertices i
and j can be measured.

Remark 6.4. For vertices that are not clusterable, their dissimilarities are not properly de-
fined, since Theorem 6.1 implies that merging unclusterable vertices may cause an unbounded
reduction error. Therefore, we can simply assign Dij to be a sufficiently large positive value
when i and j are unclusterable.

Unlike the previous works in [34, 84] etc., the outputs of the system Σ are also
taken into account when defining the dissimilarity. As we find that the output struc-
tures also have an impact on the approximation error, see the numerical examples in
Section 6.4, which motivates us to combine the input and output dissimilarities in
order to obtain more accurate reduced networks.

Notice that the computation of Dij for each pair of clusterable vertices i, j using
the definition of norms may be a formidable task when the scale of the directed
network is large. Thereby, the notions of pseudo controllability and observability
Gramians in Section 3.3 are applied to facilitate the computation of vertex dissimilar-
ities.
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Theorem 6.2. Consider a connected directed network Σ. The dissimilarity between two
clusterable vertices i and j is computed as

Dij =
√

eTijPeijeTijM
−1QM−1eij , (6.44)

where eij := ei − ej , and P , Q are the pseudo controllability and observability Gramians of
Σ, respectively.

Proof. Using the clusterability of vertices i and j, we have

eTijJF = 0, and HJM−1eij = 0 (6.45)

Therefore, from Lemma 3.2, Dij is bounded for any clusterable vertices i, j, and

DIij =
√

eTijPeij , and DOij =
√

eTijM
−1QM−1eij , (6.46)

which gives (6.44).

6.3.3 Minimal Network Realization

We discuss a novel concept of minimal realization for network systems. Before
proceeding, the following definitions are introduced.

Let VI and VO be the subsets of V such that i ∈ VI and i ∈ VO if the vertex i is
steered directly by the input u and directly measured by the output y, respectively.

Definition 6.5. A vertex j is reachable if there exists a directed path from any vertex
i ∈ VI \ j to j, and detectable if there is a directed path from j to all vertex i ∈ VO \ j.
Two vertices i and j are 0-dissimilar if Dij = 0.

Physically, unreachable vertices cannot receive information from the inputs, and
thus their states is not controllable. Similarly, vertices that are undetectable cannot
pass their information to the outputs, namely, their states are unobservable. The
0-dissimilar condition relies on the specific structures of a network topology. For
some networks with special topologies, e.g., complete graphs, lattices, trees, rings,
star graphs, etc., we can obtain them directly from the underlying graphs. Consider
a digraph graph G = (V,E). An in-neighbor (resp. out-neighbor ) of a vertex i of
G is a vertex j with aji ∈ E (resp. aij ∈ E). The set of all the in-neighbors and
out-neighbors of i in G, denoted by NI(i) and NO(i), are called the in-neighborhood
and out-neighborhood of i, respectively. Generally, if two vertices i, j /∈ VI has a zero
input dissimilarity, i.e., DIij = 0 if they share the same in-neighborhood, and

wki = wkj , ∀k ∈ NI(i) = NI(j).
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Analogously, DOij = 0 for two vertices i, j /∈ VO, when

wik = wjk, ∀k ∈ NO(i) = NO(j).

More precisely, the condition for checking the 0-dissimilarity between a pair i, j is
given as follows.

Proposition 6.1. Consider the network system Σ with p inputs, clusterable vertices i and j
are 0-dissimilar if there exists a scalar β such that

eTij
[
F L − βI

]
= 0, or

[
HM−1 L − βI

]
eij = 0. (6.47)

Proof. By definition, vertices i and j are 0-dissimilar if DIij = 0 or DOij = 0. Thus, we
first derive the sufficient condition for DIij = 0, i.e.,∫ ∞

0

eTij(e
−Lt − J )FFT (e−L

T t − J T )eijdt = 0, (6.48)

which is equivalent to eTij(e
−Lt − J )F = eTije

−LtF = 0, ∀t ∈ R+. It follows from the
first equation in (6.47) that ∀k ≥ 1,

eTijLk = eTij(L − βI + βI)Lk−1 = βeTijLk−1 = · · · = βk−1eTijL = βkeTij . (6.49)

As a result, the Taylor expansion of eTije
−LtF yields

eTije
−LtF =

∞∑
k=0

(−t)k

k!
eTijLkF = eTijF +

∞∑
k=1

(−t)kβk

k!
eTijF = 0. (6.50)

Therefore, (6.48) holds. Analogously, the second equation in (6.47) implies that
H(e−Lt − J )M−1eij = He−LtM−1eij = 0, ∀t ∈ R+. Thus, DOij = 0.

Thereby, the following concept is proposed.

Definition 6.6. The network system Σ in (6.2) is called a minimal network realization
if all the vertices are reachable and detectable, and there does not exist 0-dissimilar vertices in
the underlying network.

Parallel to the minimal realization of general linear systems obtained by Kalman
decomposition, a minimal network realization is acquired by removing unreachable
and undetectable vertices and aggregating 0-dissimilar vertices. The following result
shows that no approximation error is generated in the realization of the network
minimality.

Theorem 6.3. If the reduced-order model Σ̂ is obtained by
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• removing all unreachable or undetectable vertices

• or merging all 0-dissimilarity vertices (i.e., Dij = 0),

then ‖Σ− Σ̂‖H2 = 0.

Proof. Neglecting the vertices that are not reachable or detectable is equivalent to
remove uncontrollable or observable states of Σ. Therefore, the reduction will not
change the transfer function of the system, namely, ‖Σ− Σ̂‖H2 = 0.

Next, we show that clustering all 0-dissimilarity vertices does not generate an
approximation error neither. To this end, we denote

χ(s) := (sIn + L)−1, χ̂(s) := (sIr + L̂)−1. (6.51)

and let Γ̃ := I −ΠΠ†, which satisfies

Γ̃T = Γ̃, and Γ̃2 = Γ̃. (6.52)

Consider the error system Σe = Σ− Σ̂, whose transfer function is η(s)− η̂(s) :=

HηeF with

ηe =
[
I −Π

] [χ(s) 0

0 χ̂(s)

] [
I

Π†

]
, (6.53)

where Π† is the reflexive generalized inverse of Π in (6.11). Then, using the following
nonsingular matrices

T1 =

[
I Π†

0 Ir

]
, T−1

1 =

[
In −Π†

0 Ir

]
, T2 =

[
In 0

Π† Ir

]
, T−1

2 =

[
In 0

−Π† Ir

]
, (6.54)

we further obtain

ηe =
[
I −Π

]
T1

(
T−1

[
χ(s) 0

0 χ̂(s)

]
T1

)
· T−1

1

[
χ(s)−1 0

0 χ̂(s)−1

]
T2

·
(
T−1

2

[
χ(s) 0

0 χ̂(s)

]
T2

)
T−1

2

[
I

Π†

]
=χ(s)

[
I −Γ̃Lχ̂(s)

]
·
[
χ(s)−1 −Πχ̂(s)Π† −Πχ̂(s)

χ̂(s)Π† χ̂(s)

]
·
[
I χ̂(s)Π†LΓ̃

]
χ(s)

=Γ̃
[
χ(s)−1 − LΠχ̂(s)Π†L

]
Γ̃.

where the property in (6.52) is used to obtain the above equation. Clearly, ‖ηe‖H2
= 0

if
Γ̃χ(s)F = 0 or Hχ(s)Γ̃ = 0. (6.55)
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To prove (6.55), we assume, without loss of generality, that vertices 1, 2, · · · , k
are 0-dissimilar, namely, eT1 χ(s)F = eT2 χ(s)F = · · · = eTk χ(s)F , or Hχ(s)M−1e1 =

Hχ(s)M−1e2 = · · · = Hχ(s)M−1ek, which means

χ(s)F :=

[
1ke

T
1 χ(s)F

∗

]
or Hχ(s) :=

[
Hχ(s)M−1e11

T
k ∗

]
M. (6.56)

When all the 0-dissimilar vertices are assigned into a single cell, the following block
matrices are obtained.

Π =

[
1k

In−k

]
, M =

[
Ma

Mb

]
,Ma ∈ Rk×k (6.57)

where Π is the characteristic matrix of the partition. When the vertices 1, 2, · · · , k are
0-input-dissimilar, we obtain

Γ̃χ(s)F =

Ik − 1k1
T
kMa

1TkMa1k
0

[1keT1 χ(s)F

∗

]

=

(1k − 1k1
T
kMa1k

1TkMa1k

)
eT1 χ(s)F

0

 = 0.

When the vertices 1, 2, · · · , k are 0-output-dissimilar, we also have

Hχ(s)Γ̃ =
[
Hχ(s)M−1e11

T
kMa ∗

] Ik − 1k1
T
kMa

1TkMa1k
0


=

Hχ(s)M−1e1

(
1TkMa −

1TkMa1k1
T
kMa

1TkMa1k

)
0

 = 0.

Therefore, when clustering 0-dissimilar vertices, the equation (6.55) holds, which
yields that ‖ηe‖H2 = ‖Σ− Σ̂‖H2 = 0.

Introducing the concept of the minimal network realization is to facilitate the
computation of a reduced-order model. As finding the minimal network takes much
less effort than solving the pseudo Gramians and calculating vertex dissimilarities,
see the simulation results in Section 6.4.

Remark 6.5. It is worth mentioning that the minimal network realization is different from
the concept of minimality in the sense of the controllability and observability of a state-space
model. In a minimal network realization, all the vertices should not only be reachable and
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detectable but also have a certain dissimilarity. The minimal network is defined in the
viewpoint of graph topologies. It, however, does not necessarily mean that the vertex states
have to be controllable and observable.

The following proposition concludes the relation between the two types of mini-
mal realizations, namely, the classical minimality is sufficient for network minimality,
but not vice versa.

Proposition 6.2. If the network system Σ is minimal, then Σ is also a minimal network
realization.

Proof. The system Σ in (6.2) is minimal means that it is both controllable and ob-
servable. Consider the pseudo Gramians of Σ, P and Q, which are defined in (3.7).
Thereby, we obtain from Theorem 3.2, (3.8b) and (3.9b) that

rank(P) = n−m, and ker(P) = im(V ), (6.58)

and
rank(Q) = n−m, and ker(Q) = im(U), (6.59)

where m is the number of LSCCs in G, and U, V ∈ Rn×m are defined in (6.14).
Now, assume that (6.2) is not a minimal network realization, i.e., it contains at

least a pair of vertices that are clusterable and 0-dissimilar. Thus,

DIij =
√

eTijPeij = 0 or DOij =
√

eTijM
−1QM−1eij = 0,

which means that eij ∈ ker(P) or eijM
−1 ∈ ker(Q). However, Lemma 6.2 implies that

for clusterable vertices i, j, eTijU = 0 and eTijM
−1V = 0. They mean that eij /∈ im(U)

and eij /∈ im(M−1V ), which cause contradictions to (6.58).
Therefore, 0-dissimilar vertices cannot exist in a directed network system that is

controllable and observable.

A simple counterexample for the converse statement is given by a network
example with only two vertices:

L =

[
1 −1

−1 1

]
, F = HT =

[
1 −1

]
. (6.60)

Both vertices are reachable and detachable by Definition 6.5, and the dissimilarity
of the two vertices is D12 = 1. Thus, this system is a minimal network realiza-
tion. However, rank [F,−LF ] = rank

[
HT ,−LTHT

]
= 1 implies that the system is

uncontrollable and unobservable.
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6.3.4 Clustering Algorithm and Error Computation

This subsection provides the algorithm for selecting an appropriate clustering for the
network system Σ. To this end, a distance graph of the network system Σ is defined.
Let X be a matrix whose (i, j)-entry is given by

Xij =

{
D−1
ij , if vertices i, j are clusterable;

0, otherwise.
(6.61)

A larger value of Xij ∈ R+ indicates a higher similarity between vertices i, j. Clearly,
X is nonnegative, symmetric and has zero diagonal entries. Thus, it can be seen as
a weighted adjacency matrix that characterizes an undirected disconnected graph,
namely a distance graph, denoted by GD. Denote the Laplacian matrix of GD by

LD = LTD = diag(X1)−X . (6.62)

Note that GD shares the same vertex set V with the original directed network G. From
e.g., [67], the rank of the undirected graph GD is defined by n− c with n = |V| and c
the number of connected components of GD which satisfies c = rank(LD).

The idea of clustering algorithm is to remove certain edges of GD such that it
leaves r connected components, i.e., V is partitioned into r cells. Then we aggregate
vertices in each cell as one vertex. Denote Ω := diag(ω1, ω1, · · · , ωne), where ne is the
number of the edges of GD, and ω1 ≥ ω2 ≥ · · · ≥ ωne > 0 are the descending sort of
the edge weights Xij . Let B ∈ Rn×ne be the incidence matrix of LD, then the graph
clustering problem becomes finding a matrix partition

LD = BΩBT =
[
B1 B2

] [Ω1 0

0 Ω2

] [
BT1
BT2

]
(6.63)

such that rank(B1Ω1BT1 ) = n − r, where r is the desired reduction order. B2 corre-
sponds the edges of GD with lower weights, namely, the edges connecting higher
dissimilar vertices, and thus these edges are supposed to be removed. Thereby, the
partition of V is generated by assign the vertices that are connected by the edges indi-
cated by B1 into the same cell. Specifically, we describe the proposed clustering-based
model reduction method as follows.

By Algorithm 3, a reduced-order network system Σ̂ is obtained, which achieves
a bounded approximation error, see Theorem 6.1. Based on the proposed pseudo
Gramians in Section 3.3, the following theorem then provides an efficient method to
compute theH2 error between the original and the reduced-order network systems.

Theorem 6.4. Let Po and Pr be the pseudo controllability Gramians of the full-order and
reduced-order network systems, Σ and Σ̂, respectively. Then, the approximation error
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Algorithm 3 Clustering-Based Reduction Algorithm

Input: L, F and H , desired order r
Output: L̂, F̂ , and Ĥ

1: Remove all the unreachable and undetectable vertices.
2: Find and merge the 0-dissimilar vertices by Proposition 6.1.
3: Compute the pseudo Gramians P and Q using Theorem 3.1 and Corollary 3.1.
4: Calculate the dissimilarity between clusterable vertices by Theorem 6.2, and

construct the Laplacian matrix LD in (6.62) for the distance graph.
5: Find a matrix partition (6.63) such that

rank(B1Ω1BT1 ) = n− r.

6: Compute Π ∈ Rn×r according to B1.
7: Generate L̂ and F̂ using the projection Π as in (6.12).

between Σ and Σ̂ is computed as

‖Σ− Σ̂‖2H2
= tr

[
H(Po + ΠPrΠT − 2ΠPx)HT

]
, (6.64)

where Px := P̃x − Π†JΠP̃xJ T ∈ Rr×n with P̃x an arbitrary symmetric solution of the
following Sylvester equation:

L̂T P̃x + P̃xLT −Π†(I − J )FFT (I − J T ) = 0. (6.65)

Proof. To derive the approximation error, we consider the following system.

Σe :

{
ω̇(t) = Aω(t) + Bu(t),

δ(t) = Cω(t),
(6.66)

where the state vectors ω(t)T :=
[
x(t)T , x̂(t)T

]T , δ(t) := y(t)− ŷ(t), and

A = −
[
L 0

0 L̂

]
, F =

[
F

F̂

]
, H =

[
H −Ĥ

]
.

Obviously, ‖Σe‖H2
= ‖Σ− Σ̂‖H2

. Observe that Σe is a semistable system due to A
matrix in (6.66), and by Theorem 6.1, theH2 norm of Σe is bounded. From Lemma
3.2, we obtain

‖Σe‖2H2
= tr(HPeHT ), (6.67)

where Pe is the pseudo controllability Gramian of the error system Σe.
To obtain Pe, we refer to Theorem 3.1 that Pe is a solution of the Lyapunov

equation
AP̃e + P̃eAT + (I − Je)FFT (I − J Te ) = 0. (6.68)
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Here, Je := blkdiag(J , Ĵ ) where Ĵ = Π†JΠ is implied by (6.21). Let

P̃e =

[
P̃o P̃Tx
P̃x P̃r

]
, (6.69)

with P̃o ∈ Rn×n and P̃r ∈ Rr×r. Accordingly, (6.68) is partitioned into three equa-
tions: 

LP̃o + P̃oLT − (In − J )FFT (In − J T ) = 0,

L̂P̃r + P̃rL̂T − (Ir − Ĵ )F̂ F̂T (Ir − Ĵ T ) = 0,

L̂P̃x + P̃xLT − (Ir − Ĵ )F̂FT (In − J T ) = 0,

(6.70a)

(6.70b)

(6.70c)

where (6.70c) is equivalent to (6.65) due to F̂ = Π†F and ĴΠ† = Π†JΠΠ† = Π†J
(see (6.22)). Then, using Corollary 3.1, the pseudo controllability Gramian of Σe is
computed.

Pe = P̃e − JeP̃eJ Te

=

[
P̃o − J P̃oJ T P̃Tx − J P̃Tx Ĵ T
P̃x − Ĵ P̃xJ T P̃r − Ĵ P̃rĴ T

]
:=

[
Po PTx
Px Pr

]
,

where Po and Pr are the pseudo controllability Gramians of the systems Σ and Σ̂,
respectively.

Thereby, we evaluate the approximation error as follows.

‖Σ− Σ̂‖2H2
= tr

([
H −Ĥ

] [Po PTx
Px Pr

] [
HT

−ĤT

])
= tr(HPoHT + ĤPrĤT − 2ĤPxHT ),

(6.71)

which leads to (6.64).

Notice that the error in (6.64) can be also characterized by pseudo observability
Gramians. Suppose Qo and Qr are the pseudo observability Gramians of Σ and Σ̂,
respectively. Then, an alternative computation for (6.64) is

‖Σ− Σ̂‖2H2
= tr

[
FT (Qo + (Π†)TQrΠ† − 2QxΠ†)F

]
, (6.72)

where Qx := Q̃x − J T Q̃xΠ†JΠ ∈ Rn×r with Q̃x an symmetric solution of the
Sylvester equation:

LT Q̃x + Q̃xL̂ − (I − J T )HTH(I − J )Π = 0. (6.73)

The proof for the above statement is similar to Theorem 6.4 and thus is omitted.
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6.4 Numerical Examples

6.4.1 Sensor Network

A sensor network in [41] is considered and adapted to illustrate the proposed method
in this chapter. The topology of the studied directed network is depicted in Fig.
6.2a, which is weakly connected and contains three LSCCs: {1, 2, 3, 4, 5}, {15, 16}
and {20}. All the directional edges have identical weights that equal to 1. The sets
VI := {2, 7, 16} and VO := {5, 9, 11} are collections of controlled and measured
vertices, respectively. The minimal network is realized by two steps. First, the
unreachable vertex 20 and undetectable vertices 17, 18 and 19. Then, three pairs of
0-dissimilar vertices, namely {1, 5}, {8, 9}, and {13, 14} are found by Proposition 6.1
and clustered to obtain Fig. 6.2b, which is still weakly connected as there are two
LSCCs.

By considering the effects of both inputs and outputs, we compute the vertex
dissimilarities of the minimal network using Theorem 6.2. Then, to yield a reduced-
order network system of 7 vertices, we apply Algorithm 3, that leads to the following
graph clustering

C1 = {1, 2, 3, 4}, C2 = {5, 6}, C3 = {7},
C4 = {8}, C5 = {9}, C6 = {10, 11}, C7 = {12, 13}.

Thus, a simplified directed network is constructed as in Fig. 6.3a, which indicates
that the network structure is preserved in the new model. Also, the approximation
error is computed: ‖Σ − Σ̂‖H2

= 0.1969. Next, we only use the input information
for selecting clusters, namely, only the input dissimilarities are considered as the
criteria for the partition of the vertices. As a result, we obtain a different clustering of
the minimal network, where C2 = {5, 7}, and C3 = {6}. This produces a simplified
directed network with a different topology as shown in Fig. 6.3b. In this case, the
approximation error is evaluated as ‖Σ − Σ̂‖H2 = 0.2514, which is almost 30%

larger than the one obtained in the former case. Thus, to better approximate the
input-output behavior of a network system, the output distributions should also be
considered in order to construct a more accurate reduced-order network model.

6.4.2 Large-Scale Directed Network

The efficiency of the proposed approach is verified by a large-scale directed network
example, see Fig. 6.4. Note that the methods in [41, 84] are not applicable for this
networks, since it is not strongly connected. The data of directed weighted graph
is acquired from The Harwell-Boeing Sparse Matrix Collection, which is available
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Figure 6.2: (a) A directed sensor network consisting of 20 vertices. (b) A minimal
network realization of this directed network, which is obtained by removing vertices
17, 18, 19, 20 and merging pairs {1, 5}, {8, 9}, {13, 14} in Fig. 6.2a. In both figures, the
controlled and measured vertices are labeled as diamonds and squares, respectively.
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Figure 6.3: (a) The reduced directed network generated by the proposed dissimilarity-
based clustering. (b) The alternative directed network obtained by only considering
the input dissimilarity. In the two figures, vertex 1 is labeled as a hexagram indicating
that it is controlled and measured simultaneously.

at https://math.nist.gov/MatrixMarket/data/Harwell-Boeing. In this
chapter, the simulation is implemented with Matlab 2018a in the environment of
64-bit operating system, which is equipped with Intel Core i5-3470 CPU @ 3.20GHz,
RAM 8.00 GB.

We select three controlled and three measured vertices: VI := {1, 152, 728} and
VO := {246, 615, 733}. For comparison purposes, we reduce the original networks by

https://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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Figure 6.4: A weakly connected directed network consisting of 735 vertices, where the
controlled and measured vertices are labeled as diamonds and squares, respectively.

the dissimilarity-based (proposed method in this chapter), input dissimilarity-based
(the methods in e.g., [41]) and random clustering methods, respectively. The H2-
norm approximation errors of the reduced models with different dimensions from 10
vertices to 700 are computed by Theorem 6.4, see the Fig. 6.5, which shows that the
proposed method considering the output efforts as well generally has a better perfor-
mance than the one only take into account the influence of inputs. The approximation
errors of both methods decay rapidly when the reduced order r < 100, and they both
have a distinct advantage over the random clustering method, where the cells are
selected randomly from the largest clusterable sets. Note that when r = 100, the
approximation errors ‖Σ− Σ̂‖H2 = 0.0011, while the maximal values of input and
output dissimilarities are 0.8839 and 3.6949, respectively. Hence, the reduced-order
network with 100 vertices provides a rather accurate approximation of the original
735-vertex network. To illustrate the efficiency of the proposed method, when pro-
ducing the 100-dimensional reduced network, we record and list the computational
cost for each step in Table 6.1. It indicates that the majority of the computation time
is spent on solving the pseudo Gramians. In contrast, the time for computing the
minimal network, vertex dissimilarities and for the clustering algorithm is much less.
To be more efficient for even larger networks, e.g., n > 5000, we can consider the
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Figure 6.5: Approximation error comparisons among the proposed dissimilarity-
based clustering, input dissimilarity-based clustering and random clustering algo-
rithms.

Alternating Direction Implicit (ADI) method or Krylov subspace method to generate
low rank approximations to the solutions of the Lyapunov equations in (3.8) and
(3.9). As these numerical algorithms are more effective than the standard approach
due to the sparsity of the Laplacian matrix L. We refer to e.g., [93, 105] for more de-
tails. However, we do not apply these here since we can still compute the Gramians
using standard approach within a reasonable time. Hence, it is no need for such an
approximation.

In Fig. 6.6, the topologies of reduced-order networks with different dimensions
are plotted to demonstrate the preservation of directed network structures. In conclu-
sion, this simulation example shows that the proposed clustering method is feasible
and effective in model reduction of large-scale directed network systems.

6.5 Conclusions

This chapter solves a structure preserving model reduction problem for directed
network systems that obey locally consensus protocols and have semistable dynamics.
The notion of clusterability is proposed to classify the groups of vertices that can be
aggregated to guarantee a bounded approximation error. The pairwise dissimilarity,
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Table 6.1: Computation time for each step

Minimal Network 23.8949s

Pseudo Gramians 538.0895s

Dissimilarity 99.5960s

Graph Clustering 0.0035s

(a) (b)

(c) (d)

Figure 6.6: Reduced directed networks with different dimensions. (a) r = 200; (b)
r = 100; (c) r = 50; (d) r = 20.
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quantifying the difference between two clusterable vertices, can be characterized for
a directed network based on the pseudo controllability and observability Gramians
of semistable systems in Chapter 3. A graph clustering algorithm then disassembles
the vertices that behave differently. The reduced-order model is obtained in the
Petrov-Galerkin framework with projections generated from the resulting clustering
of the network. It is shown that the reduced-order model preserves a network
structure among the clusters, as a reduced Laplacian matrix. The proposed method
provides an effective way to reducing the complexity of linear network systems.
However, the extension to this result to nonlinear networks is not straightforward.
For networks with nonlinear coupling or nonlinear nodal dynamics, the primary
problem to investigate is: how to determine and evaluate the dissimilarities between
the vertices when we cannot use the H2 norms as in the linear case? In this thesis,
we will not discuss the clustering-based approaches for nonlinear networks, and we
leave it for our future research.
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Balanced Truncation of Networked Linear
Passive Systems

This chapter studies model order reduction of multi-agent systems consisting
of identical linear passive subsystems, where the interconnection topology is

characterized by an undirected weighted graph. Balanced truncation based on a pair
of specifically selected generalized Gramians is implemented on the asymptotically
stable part of the full-order network model, which leads to a reduced-order system
preserving the passivity of each subsystem. Moreover, it is proven that there exists a
coordinate transformation to convert the resulting reduced-order model to a state-
space model of Laplacian dynamics. Thus, the proposed method simultaneously
reduces the complexity of the network structure and individual agent dynamics, and
it preserves the passivity of the subsystems and the synchronization of the network.
Moreover, it allows for the a priori computation of a bound on the approximation
error. Finally, the feasibility of the method is demonstrated by an example.

7.1 Introduction

For model order reduction with the preservation of network structure, mainstream
methodologies are focusing on graph clustering, see the results in Part I. From
the results of networked single integrators in Chapter 3, Chapter 5 and papers
[34, 36, 86, 87, 126, 127], we have observed that the clustering-based approaches natu-
rally maintain the spatial structure of networks and show an insightful physical inter-
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pretation for the reduction process. Further extensions to directed and second-order
networks can be found in [35, 84] and Chapter 3. Nevertheless, the approximation
accuracy of these methods highly relies on the selection of node clusters, and finding
a reduced network with the best approximation in general is an NP-hard problem,
see [94]. A combination of the Krylov subspace method with graph clustering is
proposed by [122], where a reduced-order model is firstly found by the Iterative
Rational Krylov Algorithm (IRKA), and then the partition of network nodes is ob-
tained by the QR decomposition with column pivoting on the projection matrix.
However, no error bound is provided for the network approximation. Differently,
the work [21] considers so-called edge dynamics of networks with a tree topology,
and the importance of edges is characterized by generalized edge controllability and
observability Gramians. Nodes linked by the less important edges are clustered, and
an a priori bound for the approximation error is then computed based on the gen-
eralized singular values of the edge dynamics. Nonetheless, the application of this
approach is still restrictive since the reduction process and error bound are heavily
reliant on the tree topology of the studied network. Another attempt to simplify
the complexity of network structure is developed based on singular perturbation
approximation, which is mainly applied to electrical grids and chemical reaction
networks (see e.g., [26, 46, 142] and references therein). The network structure is
preserved as the Schur complement of the Laplacian matrix of the original network
is again a Laplacian matrix, which represents a smaller-scale network. Despite the
simplicity, it is challenging to implement this approach for multi-agent systems with
higher-order agent dynamics as the Laplacian matrix is coupled with agent systems
in this case.

In contrast to clustering-based approaches, as discussed in Part I, the generalized
balanced truncation method can be applied to reduce multi-agent systems by lower-
ing the dimension of the individual subsystem while keeping the interconnection
topology untouched. Related methods can be found in [125, 152] which are devel-
oped based on the generalization of balanced truncation, and can be interpreted as
structure-preserving model reduction procedures.

In this chapter, we aim to find a technique that can reduce the complexity of
network structures and individual agent dynamics simultaneously, extending pre-
liminary results in [40]. This problem setting has been only seldom studied in the
literature so far, and different from [86], we aim to reduce the network structure and
agent dynamics in a unified framework. Particularly, this chapter considers multi-
agent systems composed of identical higher-order linear passive subsystems, where
the interconnection topology is characterized by an undirected weighted graph. It
is remarked that passive systems are natural candidates to model many types of
real physical systems and the passivity property benefits the synchronization and
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stability analysis of network systems [90, 100, 113, 172]. The core step in the proposed
reduction technique for networked passive systems is balancing the asymptotically
stable part based on generalized Gramians. After truncating the balanced model, we
obtain a reduced-order system that has a lower dimension and has preserved the pas-
sivity of the subsystems. Although the network structure is not necessarily preserved
in this step, a novel coordinate transformation is applied to convert the resulting
reduced-order model to its equivalent state-space realization of Laplacian dynamics,
which represents a simplified network with fewer agents. The network structure we
show that there exists a set of coordinates in which the reduced-order model can
again be interpreted as a network system. Specifically, the main contributions of this
chapter are summarized as follows:

First, the balancing method is used for the reduction of multi-agent systems in
a structure-preserving manner. Based on two selected generalized Gramians, the
balanced truncation is applied to reduce the network structure and agent dynamics
via a unified framework. The obtained reduced-order model can potentially achieve a
smaller approximation error than the other network reduction approaches, e.g., graph
clustering. Furthermore, unlike [86, 122, 126], the proposed method also guarantees
the a priori computation of a bound on the approximation error with respect to
external inputs and outputs.

Second, this chapter proposes the necessary and sufficient condition of a matrix
being similar to a Laplacian matrix (see Theorem 7.2). Using this result, the reduction
process is designed to preserve the Laplacian structure in the reduced network. It is
verified that the reduced-order model maintains the passivity of the agent dynamics
and inherits a network interpretation. Consequently, the synchronization property is
restored in the reduced-order multi-agent system.

Third, the studied models of the multi-agent dynamics are relatively general in
terms of the network topology and the structures of the input and output matrices.
Specifically, the underlying communication graph, in contrast to [21], can be formed
with various topologies, which do not restricted to tree graphs. Furthermore, there
are no restrictions on the input and output distributions. Unlike the clustering-based
approaches in e.g. [34, 35, 84, 86], the effort of state observability is also considered.
Moreover, we do not assume special structure of the output matrix as in [122, 126],
which consider weighted incidence matrix as an output matrix.

The remainder of this chapter is organized as follows. Section 7.2 provides
the preliminaries regarding passivity and formulates the model reduction problem
of networked passive systems. Then, the approximation procedure based on the
balanced truncation approach is presented in Section 7.3, which provides the main
results of this chapter. Finally, the proposed method is illustrated by means of an
example in Section 7.4 and some concluding remarks are summarized in Section 7.5.
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7.2 Preliminaries and Problem Formulation

Consider a network of N vertices, and the dynamics on each vertex is described by
the following linear time-invariant model

Σi :

{
ẋi = Axi +Bνi,

ηi = Cxi,
(7.1)

where xi ∈ Rn, νi ∈ Rm and ηi ∈ Rm are the states, control inputs and outputs of
agent i, respectively. Throughout the chapter, we assume that the system realization
in (7.1) is minimal and passive (see Definition 2.9). Passivity is a natural property of
many real physical systems, including mechanical systems, power networks, and
thermodynamical systems (see e.g., [76, 100, 172]).

In a multi-agent system, all the agents are interacting through a weighted undi-
rected connected graph G containingN vertices. For agent i, the static communication
protocol is implemented as

νi = −
N∑

j=1,j 6=i

wij (ηi − ηj) +

p∑
j=1

fijuj , (7.2)

where wij ∈ R ≥ 0 stands for the intensity of the coupling between vertices i and
j. Besides, uj ∈ Rm with j = {1, 2, · · · , p} are external control signals acting on the
agents, and fij ∈ R represents the amplification of the j-th input acting on agent i,
which is zero when uj has no effect on vertex i. Similarly, yi ∈ Rm is the i-th external
output, which is introduced as

yi =

N∑
j=1

hijηj , i = 1, 2, · · · , q, (7.3)

where hij ∈ R. Combining (7.1), (7.2), and (7.3), we obtain the total multi-agent
system in a compact form as

Σ :

{
ẋ = (IN ⊗A− L⊗BC)x+ (F ⊗B)u,

y = (H ⊗ C)x.
(7.4)

Here, F ∈ RN×p and H ∈ Rq×N are the collections of fij and hij , respectively,
and x :=

[
xT1 , · · · , xTn

]T ∈ RNn, u :=
[
uT1 , · · · , uTp

]T ∈ Rpm, y :=
[
yT1 , · · · , yTq

]T ∈
Rqm are the combined state vector, external control inputs and measured outputs,
respectively. Furthermore, L ∈ RN×N is the Laplacian matrix of the underlying graph
G with the (i, j)-th entry as

Lij = Lji =

{ ∑N
j=1,j 6=i wij , if i = j,

−wi,j , otherwise.
(7.5)
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This chapter assumes that the underlying graph G is undirected and connected, such
that the Laplacian matrix L has the properties described in Lemma 2.1.

Here, we address the model order reduction problem for multi-agent systems of
the form (7.4) as follows.

Problem 7.1. Given a multi-agent system Σ as in (7.4), find a reduced-order model

Σ̂ :

{
˙̂x = (Ik ⊗ Â− L̂⊗ B̂Ĉ)x̂+ (F̂ ⊗ B̂)u,

ŷ = (Ĥ ⊗ Ĉ)x̂,
(7.6)

such that the following objectives are achieved:

• L̂ ∈ Rk×k, with k ≤ N , is an undirected graph Laplacian satisfying the structural
conditions in Lemma 2.1.

• The lower-order approximation of the agent dynamics

Σ̂i :

{
˙̂xi = Âx̂i + B̂ν̂i,

η̂i = Ĉx̂i,
(7.7)

with the reduced state vector x̂i ∈ Rr (r ≤ n), is passive, i.e., satisfies the KYP
condition in Lemma 2.4.

• The overall approximation error ‖Σ− Σ̂‖H∞ is small.

It is worth emphasizing that the simultaneous reduction of both the agent dynamics
and the interconnection structure is pursued in Problem 7.1.

Remark 7.1. If k = N and r < n, the above problem setting can be specialized to reduce
the dimension of each subsystems as in [125, 152]. When k < N and r = n, then the
simplification of the network structure is discussed as in [21, 122], where the reduction is
based on graph clustering.

This chapter proposes to address Problem 7.1 using the following two-step pro-
cedure. First, to pursue the preservation of passivity for the subsystem and a small
approximation error, we exploit a pair of generalized Gramians for the balanced trun-
cation of Σ. Second, a specific coordinate transformation is introduced that, when
applied to the reduced-order system obtained in the first step, recovers a network
interpretation for this model by guaranteeing the properties in Lemma 2.1.
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7.3 Main Results

The minimality and passivity of the subsystems does not guarantee that the whole
system Σ is asymptotically stable. Therefore, to apply Lyapunov balancing, Section
7.3.1 isolates the asymptotically stable part of Σ, and Section 7.3.2 then derives the
lower-order approximation of Σ using a balanced truncation method based on gen-
eralized Gramians. To preserve the network structure, a coordinate transformation
is proposed in Section 7.3.3, to restore the Laplacian structure in the reduced-order
model.

7.3.1 Separation of Network System

The split of Σ is based on the fact that L is a symmetric matrix with a single simple
zero eigenvalue, as stated in Lemma 2.1. We therefore consider the following spectral
decomposition of the Laplacian matrix as:

L = TΛTT =
[
T1 T2

] [Λ̄
0

] [
TT1
TT2

]
, (7.8)

where T2 = 1/
√
N ∈ RN by the first condition in Lemma 2.1, and

Λ̄ := diag(λ1, λ2, · · · , λN−1), (7.9)

with λ1 ≥ λ2 ≥ · · · ≥ λN−1 > 0 the nonzero eigenvalues of L. Then, applying a
coordinate transformation x = (T ⊗ I)z, to Σ yields{

ż = (I ⊗A− Λ⊗BC) z + (TTF ⊗B)u,

y = (HT ⊗ C)z.
(7.10)

Observe that (7.8) implies the structure

I ⊗A− Λ⊗BC = blkdiag(I ⊗A− Λ̄⊗BC,A). (7.11)

Since A in (7.1) is not necessarily Hurwitz, meaning that the overall system Σ may
not be asymptotically stable, a direct application of the balanced truncation method
to Σ is not feasible. To overcome this difficulty, we split the system Σ into two
components connected in parallel as in Fig. 7.1. In Fig. 7.1, we have the average
module as

Σa :


ża = Aza +

1√
N

(1TNF ⊗B)u,

ya =
1√
N

(H1N ⊗ C)za,
(7.12)
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Average Module:  Σs 

Stable System:  S 

§a

§s

u

ya

ys

y+

+

Figure 7.1: The separation of the multi-agent system.

with za ∈ Rn, and the stable system as

Σs :

{
żs = (IN−1 ⊗A− Λ̄⊗BC)zs + (F̄ ⊗B)u,

ys = (H̄ ⊗ C)zs.
(7.13)

where zs ∈ R(N−1)×n, F̄ = TT1 F , and H̄ = HT1. The synchronization property is
proved using the asymptotic stability of Σs in the following lemma.

Lemma 7.1. Consider the network system Σ in (7.4), where the graph G is connected, and
each subsystem Σi in (7.1) is observable. Then, Σ synchronizes for u = 0, i.e.,

lim
t→∞

[xi(t)− xj(t)] = 0, ∀i, j ∈ {1, 2, · · · , N} (7.14)

for any initial condition xi(0), i = 1, 2, · · · , N .

Proof. The connectedness implies that Λ̄ in (7.13) is diagonal and positive definite.
If the passive system in (7.1) is observable, then any negative feedback νi(t) =

−ληi(t) = −λBCxi, with λ > 0, asymptotically stabilizes the origin xi = 0 (see [76,
Thm. 2.18]). Then, a closed-loop system of (7.1) defined by

ẋ = (A− λiBC)x (7.15)

is asymptotically stable for any i = 1, 2, · · · , N − 1. Note that

I ⊗A− Λ̄⊗BC = blkdiag(A− λ1BC, · · · , A− λN−1BC).

Hence, Σs is asymptotically stable, which means the synchronization of Σ by e.g.
[107, 125].

The above proof implies that Σs is asymptotically stable. Thus, it can be balanced
and truncated to generate a lower-order approximation Σ̂s, which gives the reduced
subsystems (Â, B̂, Ĉ) resulting in a reduced-order average module Σ̂a. Then, combin-
ing Σ̂s with Σ̂a formulates a reduced-order model Σ̃ whose input-output behavior is
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Figure 7.2: The scheme for the structure preserving model order reduction of net-
worked passive systems

similar to that of the original system Σ. However, at this stage, the network structure
is not necessarily preserved by Σ̃. Therefore, in the second step, by a particular
coordinate transformation, we remodel Σ̃ as Σ̂, which restores the algebraic structure
of a Laplacian matrix. The whole procedure is summarized in Fig. 7.2, and the
detailed implementations are discussed in the following subsections.

7.3.2 Balanced Truncation by Generalized Gramians

Following [58], the generalized Gramians of the asymptotically stable system Σs are
defined.

Definition 7.1. Consider the stable system Σs in (7.13), and denote Φ := I ⊗A− Λ̄⊗BC.
Two positive definite matrices X and Y are said to be the generalized controllability and
observability Gramians of Σs, respectively, if they satisfy

ΦX + XΦT + (F̄ ⊗B)(F̄T ⊗BT ) 4 0, (7.16a)

ΦTY + YΦ + (H̄T ⊗ CT )(H̄ ⊗ C) 4 0. (7.16b)

Moreover, a generalized balanced realization is achieved when X = Y > 0 are diagonal. The
diagonal entries are called generalized Hankel singular values (GHSVs).

To find a pair of generalized Gramians, we first consider the following accompany-
ing system of Σs, which only contains the information of the network configuration:

˙̄z = −Λ̄z̄ + F̄ u, ȳ = H̄z̄, (7.17)
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where Λ̄ is defined in (7.9). Assume Λ̄ in (7.9) has s distinct diagonal entries ordered
as: λ̄1 > λ̄2 > · · · > λ̄s. We then rewrite it as

Λ̄ = blkdiag(λ̄1Im1
, λ̄2Im2

· · · , λ̄sIms), (7.18)

where mi is the multiplicity of λ̄i, and
∑s
i=1mi = N − 1.

In order to guarantee that the reduced-order model will satisfy the desired prop-
erties in Problem 7.1, we define the generalized controllability and observability
Gramians of (7.17) as the solutions X and Y to the following Lyapunov equation and
inequality, respectively:

−Λ̄X −XΛ̄ + F̄ F̄T = 0, (7.19a)

−Λ̄Y − Y Λ̄ + H̄T H̄ 4 0. (7.19b)

Here, X = XT � 0 and Y is

Y := blkdiag(Y1, Y2, · · · , Ys), (7.20)

with Yi = Y Ti � 0 and Yi ∈ Rmi×mi , for i = 1, 2, · · · , s. The block-diagonal structure
of Y in (7.20) is crucial as it guarantees that the reduced-order model, obtained by
performing balanced truncation on the basis of X and Y , can be interpreted as a
network system again, see Lemma 7.2 and Theorem 7.2. Note that a constraint on
the algebraic structure of X is not required for the preservation of network structure.
Therefore, we use the standard controllability Gramian characterized by (7.19a) in
order to achieve a lower error bound. Compared with our former notation in [40],
the definition of the observability Gramian is more general, since it is not necessary
to be strictly diagonal.

Remark 7.2. There exist a variety of networks, especially symmetric ones such as stars,
circles, chains or complete graphs, whose Laplacian matrices have repeated eigenvalues.
Particularly, when L refers to a complete graph with identical weights, all the eigenvalues
in (7.9) are equal. Then, Y becomes a full matrix, and (7.19b) is specialized to an equality.
Besides, by the duality between controllability and observability, we can also use

−Λ̄X −XΛ̄ + F̄ F̄T 4 0, (7.21a)

−Λ̄Y − Y Λ̄ + H̄T H̄ = 0. (7.21b)

to characterize the pair X and Y for the balanced truncation, where X now is constrained to
have a block-diagonal structure.

The existence of the solutions X and Y in (7.19a) and (7.19b) are guaranteed, as
Λ̄ � 0 is positive diagonal and has the structure as given in (7.18). Furthermore, in
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practice, the generalized observability Gramian is obtained by minimizing the trace
of Y , see e.g., [21, 152].

Next, based on X and Y , we further define a pair of generalized Gramians for
the stable system Σs, and therefore a balancing transformation can be applied in the
following theorem.

Theorem 7.1. Consider X , Y as the generalized Gramians of the accompanying system in
(7.17), and let Km � 0 and KM � 0 be the minimum and maximum solutions of

ATK +KA 4 0, C = BTK. (7.22)

Then, the matrices
X := X ⊗K−1

M and Y := Y ⊗Km (7.23)

characterize generalized Gramians of the asymptotically stable system Σs, i.e., satisfying the
inequalities in (7.16a) and (7.16b), respectively.

Moreover, there exists a nonsingular matrix T such that Σs is balanced, i.e.,

T XT T = T −TYT −1 = ΣG ⊗ ΣD, (7.24)

Here, ΣG := diag{σ1, σ2, · · · , σN−1}, and ΣD := diag{τ1, τ2, · · · , τn}, where σ1 ≥ σ2 ≥
· · · ≥ σN−1, and τ1 ≥ τ2 ≥ · · · ≥ τn are corresponding to the square roots of the spectrum
of XY and K−1

M Km, respectively.

Proof. The LMI (7.22) follows from the KYP condition in Lemma 2.4 as Σi in (7.1) is
passive. We verify that

ΦX + XΦT + (F̄ ⊗B)(F̄T ⊗BT )

=(X ⊗AK−1
M − Λ̄X ⊗BCK−1

M )

+ (X ⊗K−1
M AT −XΛ̄⊗K−1

M CTBT ) + F̄ F̄T ⊗BBT

=X ⊗ (AK−1
M +K−1

M AT )

+ (−Λ̄X −XΛ̄ + F̄ F̄T )⊗BBT 4 0,

where the inequality holds due to (7.19a) and KM being a solution of (7.22). Similarly,
it can be verify that Y in (7.23) satisfies the inequality in (7.16b). Thus, by Definition
(7.1), X and Y in (7.23) characterize the generalized Gramians of Σs. Next, by the
standard balancing theorem [7], there exists nonsingular matrices TG and TD such
that

TGXT
T
G = ΣG = T−TG Y T−1

G , (7.25a)

TDK
−1
M TTD = ΣD = T−TD KmT

−1
D . (7.25b)
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Thus, a balancing transformation for Σs is given by

T = TG ⊗ TD, (7.26)

which can be verified to satisfy (7.24). Moreover, due to

TGXY T
−1
G = TGXT

T
G T
−T
G Y T−1

G = Σ2
G ,

TDK
−1
M KmT

−1
D = TDK

−1
M TTDT

−T
D KmT

−1
D = Σ2

D,

the singular values in ΣG and ΣD are characterized by the square roots of the spec-
trum of XY and K−1

M Km, respectively.

There exist multiple choices of generalized Gramians as the solutions of (7.16a)
and (7.16b). This chapter specifically selects the pair of Gramians in (7.23) with the
Kronecker product structure such that the balancing transformation T in (7.26) is
composed of TG and TD, which are generated from the network topology part (7.17)
and agent dynamics (7.1) independently. Therefore, the topology part (7.17) and each
subsystem (7.1) can be balanced and reduced independently (see (7.27)), allowing
the resulting reduced-order model to preserve a network interpretation as well as
the passivity of subsystems.

Remark 7.3. The inequality in (7.22) characterizes the passivity of a linear system without
a direct feed-through. The LMI tools such as YALMIP, LMILAB (a toolbox of MATLAB), etc.
can be applied to compute Km and KM , which then define the available storage 1

2 〈x,Kmx〉
and the required supply 1

2 〈x,KMx〉 of the agent system [174]. Any K � 0 satisfying (7.22)
will lie between the two extremal solutions, i.e., 0 ≺ Km 4 K 4 KM , and 1

2 〈x,Kx〉 is a
quadratic storage function as defined in (2.9). Besides, it is noted that the solution of (7.22)
may be unique, i.e., KM = Km, e.g., when the system (7.1) is lossless [169] or B is square
and nonsingular [174]. In this case, we have ΣD = In meaning that the subsystems are not
suitable for reduction. If KM 6= Km, it can be verified that the diagonal entries of ΣD in
(7.24) satisfy τi ≤ 1, i = 1, 2, · · · , n.

In the balanced system of Σs, the diagonal entries of ΣG ⊗ ΣD are the GHSVs in
Definition 7.1, and the states are ordered in a descending order accordingly, thus
allowing the following matrix partitions:

TDAT
−1
D =

[
Ã11 Ã12

Ã21 Ã22

]
, TGΛ̄T

−1
G =

[
Λ̃11 Λ̃12

Λ̃21 Λ̃22

]
,

T−1
D B =

[
B̃1

B̃2

]
, T−1

G F̄ =

[
F̃1

F̃2

]
,

CTD =
[
C̃1 C̃2

]
, H̄TG =

[
H̃1 H̃2

]
,

(7.27)
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where Λ̃11 ∈ R(k−1)×(k−1), F̃1 ∈ R(k−1)×p, and H̃1 ∈ Rq×(k−1). The reduced-order
agent dynamics is denoted by the minimal realization of the triplet (Ã11, B̃1, C̃1):

Σ̂i := (Â, B̂, Ĉ), (7.28)

such that Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rm×r. Consequently, the reduced-order model
of the stable system Σs in (7.13) is presented as

Σ̂s :

{
˙̂zs = (Ik−1 ⊗ Â− Λ̄11 ⊗ B̂Ĉ)ẑs + (F̄1 ⊗ B̂)u,

ŷs = (H̄1 ⊗ Ĉ)ẑs.
(7.29)

Furthermore, the reduced-order subsystem Σ̂i yields a lower-dimensional average
module as

Σ̂a :


˙̂za = Âẑa +

1√
N

(1TNF ⊗ B̂)u,

ŷa =
1√
N

(H1N ⊗ Ĉ)ẑa.
(7.30)

Remark 7.4. The triplet (Ã11, B̃1, C̃1) is not necessarily minimal. (Actually, (Ã11, B̃1, C̃1)

is minimal when the original subsystem Σi is strictly passive, see [72].) However, we can
always replace Σ̂i by its minimal realization as in [137], and it can be verified that this
replacement does not change the transfer functions of Σ̂s and Σ̂a.

Notice that, by (7.24), the accompanying system (7.17) reflecting the intercon-
nection topology is generalized balanced, while the subsystems Σi are essentially
positive real balanced, as the solutions of (7.22) are used to compute the balancing
transformation for the subsystems. See more details about positive real balancing
in e.g., [7, 72, 144]. Hence, the passivity of the reduced-order agent dynamics is
preserved.

Next, by combining the average module Σ̂a and the obtained Σ̂s, a lower-
dimensional approximation of the overall system Σ is formulated as

Σ̃ :

{
˙̂z = (Ik ⊗ Â−N ⊗ B̂Ĉ)ẑ + (F ⊗ B̂)u,

ŷ = (H⊗ Ĉ)ẑ.
(7.31)

where

N =

[
Λ̄11

0

]
,F =

 F̄1

1√
N
1TF

 ,H =

[
H̄1

1√
N
H1

]
.

Here, N is not yet a Laplacian matrix, which prohibits the interpretation of Σ̃ as a
network system. This provides the motivation to study the properties of N in the
following lemma.
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Lemma 7.2. The matrix N in (7.31) has only one zero eigenvalue at the origin and all the
other eigenvalues are positive real.

Proof. The eigenvalue property of N heavily relies on the structures of Λ̄ in (7.18)
and Y in (7.20), by which we verify that Y Λ̄ = Y 1/2Λ̄Y 1/2. The reduced matrix Λ̄11

in (7.31) is obtained by the following standard projection

Λ̃11 =
[
(V T1 Y V1)−1V T1 Y

]
Λ̄V1

= (V T1 Y V1)−1V T1 Y
1/2Λ̄Y 1/2V1,

(7.32)

where V1 ∈ RN×k is the left projection matrix obtained by the singular value de-
composition of X1/2Y 1/2, see [7] for more details. As V1 is full column rank, (7.32)
implies that Λ̃11 is similar to the matrix

(V T1 Y V1)−1/2V T1 Y
1/2Λ̄Y 1/2V1(V T1 Y V1)−1/2,

which is positive definite. Thus, Λ̃11 only has positive and real eigenvalues, which
yields the spectrum property of N .

Remark 7.5. Generally, balanced truncation does not preserve the realness of eigenvalues.
Lemma 7.2 is the result of using a generalized observability Gramian Y with a special
structure as in (7.20). As mentioned in Remark 7.2, we may also exchange the equality and
inequality in (7.19) because of duality. Then, the eigenvalue realness of Λ̃11 is also guaranteed
due to the similar reasoning as in the proof of Lemma 7.2. In sum, for the eigenvalue property
of Λ̃11, either the generalized controllability Gramian X or the generalized observability
Gramian Y should be in a block diagonal form as (7.20).

7.3.3 Network Realization

Now we show that the reduced-order model Σ̃ in (7.31) can be interpreted as a
network system again. This result is due to the following Theorem.

Theorem 7.2. A real square matrix N is similar to a Laplacian matrix L associated with
an undirected connected graph, if and only if N is diagonalizable and has exactly one zero
eigenvalue while all the other eigenvalues are real positive.

Proof. The “only if” part can be seen from Lemma 2.1. The rest of the proof shows
the “if” part. Let N ∈ Rn×n be diagonalizable, and denote its eigenvalues as

λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0. (7.33)

Then, there exists a spectral decomposition N = T1D1T
−1
1 with

D1 = diag(λ1, λ2, · · · , λn)
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.
On the other hand, any undirected graph Laplacian L can be written in the form

of

L =


α1 −w1,2 · · · −w1,n

−w2,1 α2 · · · −w2,n

...
...

. . .
...

−wn,1 −wn,2 · · · αn

 , (7.34)

where wi,j = wj,i ≥ 0 denotes the weight of edge (i, j), which is the same with wij in
(7.2). The sum of the off-diagonal entries in the i-th row (or column) of L is denoted
by αi, i.e.,

αi =

n∑
j=1,j 6=i

wi,j . (7.35)

There exists a spectral decomposition L = T2D2T
−1
2 . If D1 = D2, the we have the

following similarity transformation

L = (T2T
−1
1 )N (T2T

−1
1 )−1. (7.36)

Hence, it is sufficient to prove that there always exists a set of weights wi,j such that
the resulting Laplacian matrix L in (7.34) and N have the same eigenvalues (7.33).

Consider the characteristic polynomial of L, i.e.,

|L − λIn| =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 − λ −w1,2 · · · −w1,n−1 −w1,n

−w1,2 α2 − λ · · · −w2,n−1 −w2,n

...
...

. . .
...

...
−w1,n−1 −w2,n−1 · · · αn−1 − λ −wn−1,n

−w1,n −w2,n · · · −wn−1,n αn − λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

As elementary row operations do not change the determinant, we sum all rows to
the final row to obtain

|L − λIn| =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 − λ −w1,2 · · · −w1,n−1 −w1,n

−w1,2 α2 − λ · · · −w2,n−1 −w2,n

...
...

. . .
...

...
−w1,n−1 −w2,n−1 · · · αn−1 − λ −wn−1,n

−λ −λ · · · −λ −λ

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the expression in (7.35) is applied.
Using a similar argument, adding the last column to all other columns then leads

to (7.37). Note that the eigenvalues of L are determined by the roots of |L − λIn| = 0,
and we can assign the eigenvalues of L by manipulating the weights wi,j .
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|L − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 + w1,n − λ w1,n − w1,2 · · · w1,n − w1,n−1 −w1,n

w2,n − w1,2 α2 + w2,n − λ · · · w2,n − w2,n−1 −w2,n

...
...

. . .
...

...
wn−1,n − w1,n−1 wn−1,n − w2,n−1 · · · αn−1 + wn−1,n − λ −wn−1,n

0 0 · · · 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

(7.37)

When n = 2, we have a special case, and therefore it is considered separately.
Equation (7.37) becomes

|L − λI2| =
∣∣∣∣α1 + w1,2 − λ −w1,2

0 −λ

∣∣∣∣ =

∣∣∣∣2w1,2 − λ −w1,2

0 −λ

∣∣∣∣ .
To match the eigenvalues 0, λ1, we let w1,2 = 0.5λ1, which yields a Laplacian matrix
as

L =

[
0.5λ1 −0.5λ1

−0.5λ1 0.5λ1

]
, (7.38)

and proves the desired result for n = 2.
Now we continue the proof for the case n > 2. To match the eigenvalues of L

with the desired ones in (7.33), we let the off-diagonal entries in the lower triangular
part of the determinant in (7.37) be zero and use the diagonal entries to match the
eigenvalues λi (i = 1, 2, · · · , n). Specifically, the weights wi,j in (7.34) need to satisfy

w2,n = w1,2

w3,n = w1,3 = w2,3

w4,n = w1,4 = w2,4 = w3,4

...

wn−1,n = w1,n−1 = w2,n−1 = · · · = wn−2,n−1.

(7.39)

and
αi + wi,n = λi, ∀i ∈ {1, 2, · · · , n− 1}. (7.40)

Hereafter we prove that the equations (7.39) and (7.40) produce a unique set of
nonnegative real weights wi,j , which is an essential property of a Laplacian matrix,
see Lemma 2.1.

For simplicity, we denote

al = wn−l,n, l = 1, 2, · · · , n− 1. (7.41)
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For any 1 ≤ l ≤ n− 2, it follows from (7.39) and the symmetry of L that

al = wk,n−l = wn−l,k, ∀k ∈ {1, · · · , n− l − 1}. (7.42)

Furthermore, denote the sum of the above series as

Sl :=

l∑
k=1

ak, l = 1, 2, · · · , n− 1. (7.43)

From the equation (7.40) and the expression (7.35), we have

λi = (wi,1 + · · ·+ wi,i−1)

+ (wi,i+1 + · · ·+ wi,n−1) + 2wi,n

= (i− 1)an−i + (an−i−1 + · · ·+ a1) + 2an−i

= (i+ 1)an−i + Sn−i−1,

(7.44)

for i = 1, 2, · · · , n − 2. Here, the first equality follows from (7.42) (with i = n − l
for the first term) and the definition (7.41). The latter equation is the result of the
definition (7.43).

Rewriting (7.44) for l = n− i leads to

al =
1

n− l + 1
(λn−l − Sl−1) . (7.45)

Now, we prove that al > 0, ∀l ∈ {1, 2, · · · , n− 1}. To do so, we consider the cases
l = 1 and l = 2 explicitly and then proceed by induction.

For l = 1, it follows from (7.35) and the last equation in (7.39) that (7.40) can be
written as nwn−1,n = λn−1, which leads to

a1 =
λn−1

n
= S1 > 0, (7.46)

by the definitions in (7.41) and (7.43).
For l = 2, (7.45) gives

a2 =
1

n− 1
(λn−2 − S1)

≥ 1

n− 1
(λn−1 − S1) =

λn−1

n
> 0,

(7.47)

where the inequality follows from the ordering of the eigenvalues in (7.33).Then,
using the definition (7.43), it follows that

S2 = S1 + a2 =
λn−2

n− 1
+

(n− 2)λn−1

n(n− 1)
. (7.48)
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Note that
1

n−m
+
m(n−m− 1)

n(n−m)
=
m+ 1

n
, ∀m 6= n, n 6= 0. (7.49)

Using the above equation with m = 1 and the inequality λn−2 ≥ λn−1, we show
bounds on S2 as

S2 ≥
[

1

n− 1
+

(n− 2)

n(n− 1)

]
λn−1 =

2λn−1

n
,

S2 ≤
[

1

n− 1
+

(n− 2)

n(n− 1)

]
λn−2 =

2λn−2

n
.

(7.50)

To proceed with induction on l for l > 2, we assume both al > 0 and

lλn−1

n
≤ Sl ≤

lλn−l
n

, (7.51)

for 2 < l < n− 1. Then, we obtain from (7.45) and (7.51) that

al+1 =
1

n− l
(λn−l−1 − Sl)

≥ 1

n− l

(
λn−l−1 −

lλn−l
n

)
≥ λn−l

n
> 0,

(7.52)

after which the first line in (7.52) yields

Sl+1 = Sl + al+1 =
λn−l−1

n− l
+

(n− l − 1)Sl
n− l

. (7.53)

The upper and lower bounds on Sl+1 are implied by (7.51) as

Sl+1 ≥
λn−l−1

n− l
+
l(n− l − 1)λn−1

(n− l)n
,

Sl+1 ≤
λn−l−1

n− l
+
l(n− l − 1)λn−l

(n− l)n
.

(7.54)

Using the relation λn−l−1 ≥ λn−l ≥ λn−1 and the equation (7.49) with m = l, we
obtain

(l + 1)λn−1

n
≤ Sl+1 ≤

(l + 1)λn−l−1

n
. (7.55)

Consequently, by induction, we now verify that al > 0, ∀l ∈ {1, 2, · · · , n− 1}. As the
parameters al uniquely characterize all the the weights wi,j in (7.34) through (7.41)
and (7.42), it follows that wi,j > 0 for all (i, j).

In summary, there always exist a set of weights wi,j > 0 such that L in (7.34) has
the eigenvalues matching the desired spectrum λ1 ≥ · · · ≥ λn−1 > λn = 0. The
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matrix L satisfies all properties stated in Lemma 2.1 and can indeed be regarded as
the Laplacian matrix of an undirected graph. Therefore, we conclude that if N is
diagonalizable and has a single zero eigenvalue while all the other eigenvalues are
real positive, then there always exists a similarity transformation between N and a
Laplacian matrix. This finalizes the proof of Theorem 7.2.

The proof of Theorem 7.2 provides a procedure to construct a Laplacian matrix L
for a given matrix N . Here, we illustrate this procedure by means of an example in
4-dimension.

Example 7.1. Given a diagonalizable matrix N , whose eigenvalues are λ1 ≥ λ2 ≥ λ3 >

λ4 = 0. The goal is to find an undirected graph Laplacian matrix L whose spectrum exactly
matches the given one. Let wi,j be the weight of the edge linking agents i and j, such that the
Laplacian matrix can be explicitly expressed as

L =


α1 −w12 −w13 −w14

−w12 α2 −w23 −w24

−w13 −w23 α3 −w34

−w14 −w24 −w34 α4

 , (7.56)

where wij = wji ≥ 0 and αi =
∑4
j=1,j 6=i wij . Furthermore, the eigenvalues of L are

computed as the roots of the equation

|L − λI4| = 0. (7.57)

Following (7.37), the algebraic manipulation of (7.57) then leads to∣∣∣∣∣∣∣∣
α1 + w14 − λ w14 − w12 w14 − w13 −w14

w24 − w12 α2 + w24 − λ w24 − w23 −w24

w34 − w13 w34 − w23 α3 + w34 − λ −w34

0 0 0 −λ

∣∣∣∣∣∣∣∣ = 0.

The strategy is to let the lower triangular part to be zero and use the diagonal entries to match
the desired eigenvalues. Precisely, we have

w24 − w12 = 0,

w34 − w13 = 0,

w34 − w23 = 0,

w12 + w13 + 2w14 = λ1,

w12 + w23 + 2w24 = λ2,

w13 + w23 + 2w34 = λ3,

⇒



w34 = w23 = w13 =
1

4
λ3,

w24 = w12 =
1

3

(
λ2 −

1

4
λ3

)
,

w14 =
1

2

(
λ1 −

1

3
λ2 −

1

6
λ3

)
.
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For instance, when λ1 = 3, λ2 = λ3 = 2, λ4 = 0, the Laplacian matrix is given by

L =


2 −0.5 −0.5 −1

−0.5 1.5 −0.5 −0.5

−0.5 −0.5 1.5 −0.5

−1 −0.5 −0.5 2

 . (7.58)

Finally, we note that the obtained L satisfies all the properties in Lemma 2.1 as expected.

Remark 7.6. Note that reduced Laplacian matrices obtained by the procedure in Theorem
7.2 represent undirected complete graphs, since all the weights are strictly positive. However,
the matrixN in (7.31) may very well be similar to a Laplacian matrix of an incomplete graph,
though there are examples where N can only be similar to a complete graph Laplacian. We
illustrate this by an example of 3 dimension. Suppose vertex 2 is not adjacent to vertex 3, i.e.,
w23 ≡ 0. Then, the Laplacian matrix is given by

L =

w12 + w13 −w12 −w13

−w12 w12 0

−w13 0 w13

 (7.59)

whose characteristic polynomial is

|λI3 − L| = λ
[
λ2 − 2(w12 + w13)λ+ 3w12w13

]
.

Let λ1 ≥ λ2 > λ3 = 0 be the desired eigenvalues. We then obtain

2(w12 + w13) = λ1 + λ2, (7.60a)

3w12w13 = λ1λ2. (7.60b)

Expressing w12 as a function of w13 using (7.60a) and substitution of the result in (7.60b)
gives

w2
13 −

1

2
(λ1 + λ2)w13 +

1

3
λ1λ2 = 0

⇔
[
w13 −

1

4
(λ1 + λ2)

]2

− λ2
1 + λ2

2

16
+

5λ1λ2

24
= 0.

(7.61)

Obviously, it has a real solution if and only if

3(λ2
1 + λ2

2) ≤ 10λ1λ2. (7.62)

Therefore, when λ1 ≤ 3λ2, we can find suitable weightsw12 andw13 such that the eigenvalues
of the incomplete graph Laplacian L in (7.59) match the given real spectrum λ1, λ2, and λ3.
However, if λ1 > 3λ2, then it is impossible to find a set of suitable weights.
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In this chapter, we can only guarantee to find a network realization of the system
Σ̃ with a complete graph topology. Observe that N in (7.31) is diagonalizable,
and Lemma 7.2 implies that it has only one eigenvalue at the origin and all the
other poles are real and strictly positive. Therefore, by Theorem 7.2, there exists a
Laplacian matrix L̂ which has the same spectrum as N . In other words, we can find
a nonsingular matrix Tn such that

L̂ = T −1
n NTn. (7.63)

Here, L̂ is a Laplacian matrix representing a reduced connected undirected graph Ĝ,
which contains k nodes.

Applying a coordinate transform ẑ = (Tn ⊗ Ir)x̂ to the system Σ̃ in (7.31) yields a
reduced-order network model

Σ̂ :

{
˙̂x = (Ik ⊗ Â− L̂⊗ B̂Ĉ)x̂+ (F̂ ⊗ B̂)u,

ŷ = (Ĥ ⊗ Ĉ)x̂,
(7.64)

with F̂ = T −1
n F and Ĥ = HTn. We show in the following theorem that the reduced-

order network Σ̂ is also synchronized for u = 0. The proof is a direct application of
Lemma 7.1, as the reduced subsystem (Â, B̂, Ĉ) is passive and minimal.

Theorem 7.3. The reduced networked passive system Σ̂ preserves the synchronization, i.e.,
when u = 0, for any initial condition, it holds that

lim
t→∞

[x̂i(t)− x̂j(t)] = 0, ∀i, j ∈ {1, 2, · · · , k}. (7.65)

7.3.4 Error Analysis

Following the separation of the multi-agent system Σ in Section 7.3.1, we analyze
the approximation error for the overall system as follows.

‖Σ− Σ̂‖H∞ = ‖(Σs + Σa)− (Σ̂s + Σ̂a)‖H∞
≤ ‖Σs − Σ̂s‖H∞ + ‖Σa − Σ̂a‖H∞ .

(7.66)

The overall approximation error can be evaluated based on the reduction results of
the stable system Σs and the average module Σa.

First, the a priori bound on the approximation error of the stable part is provided
as follows.

Lemma 7.3. Consider the original stable system Σs in (7.13) and its truncated model Σ̂s in
(7.7). The approximation error has an upper bound as

‖Σs − Σ̂s‖H∞ ≤ γ, (7.67)
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where

γ = 2

N−1∑
i=k

n∑
j=1

σiτj + 2

k−1∑
i=1

n∑
j=r+1

σiτj . (7.68)

with σi and τi the diagonal entries of ΣG and ΣD in (7.24), respectively.

Proof. The GHSVs of the balanced system of Σs are ordered and located in the
diagonal of ΣG ⊗ ΣD, forming the structure as

ΣG ⊗ ΣD = blkdiag

σ1

τ1 . . .
τn

 , · · · , σN−1

τ1 . . .
τn


 . (7.69)

Then, recall the standard error bound for balanced truncation based on generalized
Gramians in [58], we obtain aH∞ bound as

‖Σs − Σ̂s‖H∞ ≤ γ. (7.70)

The constant γ is computed as (7.67) since we truncate the system according to the
block diagonal structure of ΣG ⊗ ΣD as in (7.69).

The approximation error on the average module of the network system is then
discussed. From (7.12) and (7.30), we write the transfer function of Σa − Σ̂a as

∆a(s) =
1

N
(H1N ⊗ C)(sIn −A)−1(1TNF ⊗B)

− 1

N
(H1N ⊗ Ĉ)(sIr − Â)−1(1TNF ⊗ B̂).

Using the properties of Kronecker products, it then leads to

∆a(s) =
H1N1

T
NF

N
⊗∆i(s), (7.71)

where ∆i(s) := C(sIn −A)−1B − Ĉ(sIr − Â)−1B̂ is the transfer function of Σi − Σ̂i.
Hence, the approximation error on the average module is actually bounded if and
only if the error between the original and reduced agent dynamics is bounded.
However, since the agent system in (7.1) is not necessarily asymptotically stable,
∆i(s) may not have anH∞-norm bound, so does ∆a(s). If ‖∆i(s)‖H∞ exists, we can
take theH∞-norm of ∆a(s) and obtain

‖Σa − Σ̂a‖H∞ ≤
γa
N
‖Σi − Σ̂i‖H∞ (7.72)
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by triangular inequality of norms, where γa := ‖H1N1TNF‖2. Note that Σ̂i is essen-
tially obtained from positive real balancing of Σi. Generally, there does not exist
an a priori bound on ‖Σi − Σ̂i‖H2 . Nevertheless, a posteriori bound can be obtained,
see [72].

In the rest of this section, three special cases are discussed where a priori error
bounds on ‖Σ− Σ̂‖H∞ in (7.66) can be obtained.

The first case is when we only reduce the dimension of the network while the
agent dynamics are untouched as in [21, 122]. Then, we have the following result.

Theorem 7.4. Consider the network system Σ with N agents and its reduced-order model
Σ̂ with k agents. If the agent system Σi is not reduced, the error bound

‖Σ− Σ̂‖H∞ = ‖Σs − Σ̂s‖H∞ ≤ 2
N−1∑
i=k

n∑
j=1

σiτj , (7.73)

holds, where σi and τi are defined in Theorem 7.1.

Proof. If the agent dynamics are untouched, we have ‖Σa − Σ̂a‖H∞ = 0 due to
(7.72). Then, the error bound straightforwardly follows from (7.66) and (7.67). Even
though the agent dynamics are retained, τj , j = 1, 2, · · · , n still show up because of
(7.69).

The second case is when the average module is not observable from the outputs
of the overall system Σ or uncontrollable by the external inputs. Specifically, we have

H1 = 0, or 1TF = 0, (7.74)

which implies ‖Σa − Σ̂a‖H∞ = 0 from (7.71). In practice, this means that we only
observe or control the differences between the agents due to the coupling. Such
differences usually play a crucial role in distributed control of networks, since they
indicate whether two nodes or two clusters of nodes are synchronized as time evolves.
A typical example can be found in [122, 125, 126] where H in (7.4) is the incidence
matrix of the underlying network. If (7.74) holds, the following result is obtained
immediately.

Corollary 7.1. Consider the network system Σ withN agents and its reduced-order network
model Σ̂ with k agents. If H1N = 0 or 1TNF = 0, the approximation between Σ and Σ̂ is
bounded by

‖Σ− Σ̂‖H∞ = ‖Σs − Σ̂s‖H∞ ≤ γ,

where γ is given in (7.67).
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The third case is when A in (7.1) is Hurwitz, and both KM and Km satisfy

ATK +KA+ βCTC 4 0 (7.75)

with β := 1/N ·min{1TFFT1,1THTH1}. Thereby, K−1
M and Km can be interpreted

as the generalized Gramians of the average system Σa. Consequently, standard
results apply and an a priori bound on ‖Σa − Σ̂a‖H∞ in (7.66) can be evaluated by
the GHSVs of Σa, namely τi. Then the following bound is obtained.

‖Σ− Σ̂‖H∞ ≤ γ + 2

n∑
i=r+1

τi, (7.76)

where γ is given in (7.67).

7.4 Illustrative Example

To demonstrate the feasibility of the proposed method, we consider networked
robotic manipulators as a multi-agent system example.

Following [50], the dynamics of each rigid robot manipulator is described as a
standard mechanical system in the form (7.1) with

A =

[
0 M−1

−I −DM−1

]
, C = BT c ·

[
I 0

0 M−1

]
, (7.77)

where D ≥ 0 and M > 0 are the system damping and mass-inertia matrices, respec-
tively. By Lemma 2.4, each manipulator agent is passive since there exists a positive
definite matrix P := blkdiag(I,M−1) satisfying the KYP condition in (2.12).

In this example, the system parameters in (7.77) are specified as M = 1
2I4, B =

[0, 0, 0, 0, 1, 0, 0, 0]T , and

D =


2 −1 0 0

−1 4 −2 0

0 −2 4 −1

0 0 −1 2

 .
which yields the dynamics of each individual agent with state and input dimensions
as n = 8 and m = 1.

Furthermore, the agents communicate according to an undirected cyclic graph
depicted in Fig. 7.3a, which contains N = 6 agents. Suppose that nodes 1 and
2 are actuated, and the output error between the nodes 1 and 3 are the external



166 7. Balanced Truncation of Networked Linear Passive Systems

1

2 3

4

56

§i

§i §i

§i

§i§i

1

1

1

11

1

(a)

1'

2'

3'

§̂i

§̂i

§̂i

1
3

1
3

4
3

(b)

Figure 7.3: (a) and (b) illustrate the original and reduced communication graph,
respectively.

measurement. Then, the Laplacian matrix and external input and output matrices
are given by

L =



2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2


, F =



1

0.5

0

0

0

0


, HT =



1

0

−1

0

0

0


.

It can be verified that the subsystems Σi is minimal. Thus, the original network
system is synchronized as time evolves by Lemma 7.1.

Note that the nonzero eigenvalues of L are λ1 = 4, λ2 = λ3 = 3, λ4 = λ5 = 1.
Solving the LMI (7.19b) by minimizing the trace of Y , we obtain the generalized
observability Gramian of the accompanying system in (7.17) as

Y = blkdiag

([
0.0120 0.0964

0.0964 0.7766

]
,

[
0.3416 0.1972

0.1972 0.1139

]
, 2.23 · 10−5

)
.

Moreover, the controllability Gramian X of (7.17) and the maximal and minimal real
symmetric solutions, KM and Km, of the LMI in (7.22) are computed. The results
show that, in this example, KM 6= Km.

The goal is to reduce the dimension of the agent systems to r = 2 and the number
of nodes to k = 3. Applying the generalized balanced truncation discussed in Section
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Figure 7.4: The Bode magnitude plots of the original and reduced multi-agent sys-
tems, which are represented by the solid and dashed lines in the plot respectively.

7.3.2, we obtain the reduced-order dynamics of the agents Σ̂i as

Â =

[
0 −1.4142

1.4142 −4

]
, B̂ = ĈT =

[
0

−1.4142

]
.

Furthermore, by the network realization method presented in Section 7.3.3, the
lower-dimensional Laplacian matrix and external input and output matrices can be
computed as

L̂ =
1

3

 5 −1 −4

−1 2 −1

−4 −1 5

 , F̂ =

−0.9270

1.1380

0.8496

 , ĤT =

−0.4939

0.4249

0.0690

 .
Note that L̂ represents a reduced interconnection network as shown in Fig. 7.3b,
which consists of 3 fully connected reduced agents. We observe that Σ̂i is pas-
sive and minimal. Therefore, the reduced-order multi-agent system preserves the
synchronization property.

Next, to compare the input-output behavior of the reduced-order network to
the original one, we compute the actual model reduction error: ‖Σ − Σ̂‖H∞ ≈
0.0295. Since H16 = 0, we then obtain the a priori error bound by Corollary 7.1 as
‖Σ− Σ̂‖H∞ ≤ 0.0773. Therefore, the original network is well approximated by the
reduced-order model. This conclusion can been seen from the plots of both systems
in Fig. 7.4 as well.
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7.5 Concluding Remarks

In this chapter, we have developed a novel structure-preserving model reduction
method for networked passive systems. The identical agents are assumed to be linear
time-invariant systems, and the communication topology is connected and undi-
rected. The observability and passivity of each agent guarantee the synchronization
of networks. Balanced truncation based on generalized Gramians is applied to reduce
the dimension of each subsystem and the scale of the network in a unified framework.
The resulting model can be converted to a new representation of Laplacian dynamics,
which again has a network interpretation. Moreover, an a priori error bound on
the multi-agent system has been provided. Finally, the proposed model reduction
scheme was demonstrated by a numerical example. The simulation results indicate
that the reduced-order model approximates the original one with a high accuracy.

Based on the balancing method, this chapter first proposes a unified framework
to reduce the network topology and agent dynamics. In contrast to the other network
reduction methods, the mechanism of balanced truncation potentially allows for
a better approximation accuracy and also provides an a priori error bound, but
obtaining a complete reduced graph that is less correlated with the original one is
the corresponding price. Namely, the balancing transformation does not enforce a
restriction on the structure of projection matrix as in the clustering-based approaches.
For future works, multi-agent systems with heterogeneous agents are of interest, and
the extensions to nonlinear agent dynamics and communication protocols can be
further investigated.
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8
Balanced Truncation of Robustly Synchronized
Lur’e Networks

This chapter considers a model order reduction problem that reduces the complex-
ity of interconnected Lur’e-type subsystems while simultaneously preserving

the synchronization property of the network. Differently from the previous chapters,
the system in this chapter is nonlinear which consists of multiple identical Lur’e
systems. A sufficient condition of the robust synchronization of the Lur’e network is
first related to the passivity of a linear time-invariant auxiliary system. Consequently,
a passivity preserving model reduction scheme is applied to the auxiliary system,
leading to reduced-order Lur’e subsystems, and the resulting reduced network sys-
tem is still robustly synchronized. In addition, an a prior error bound is established to
compare the behaviors of the full-order and reduced-order Lur’e subsystem. Finally,
the proposed method is illustrated by means of an example.

8.1 Introduction

In Chapter 5 and Chapter 7, a network of multiple interconnected subsystems is con-
sidered, whose behavior is a collection of responses from all individual subsystems
and their interactions on a certain communication network. However, the methods
used in Chapter 5 and Chapter 7 are developed only for linear dynamic networks. In
this chapter, we consider a network of identical nonlinear Lur’e-type dynamics, and
partial information of the subsystems is exchanged through a static output-feedback
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protocol such that all the subsystems may achieve a common solution. This is called
network synchronization, which is an important property of networks, and the syn-
chronization problem of networks with linear subsystems have been extensively
studied, see [145] and the references therein. In [49, 106, 180], the results are extended
to Lur’e subsystems.

Lur’e systems is an important class of nonlinear engineering systems consisting
of linear dynamics with static nonlinearities in the feedback loop. Examples can be
found in Chua’s circuits or some hyper-chaotic systems [99]. In a Lur’e network,
when the dynamic order of each Lur’e-type subsystem becomes large, the overall
network system will be of high complexity, which hinders fast prediction and tran-
sient analysis of the network states. Applications, such as controller design and fault
diagnosis will also be inefficient. Hence, it is desired to apply some model reduction
techniques to generate much smaller-sized models of the Lur’e subsystems that can
approximate the input-output relation of the original subsystems. Meanwhile, we
require the reduction process to preserve the synchronization property in the reduced
network system.

There are a variety of methods developed for model order reduction. For example,
moment matching and proper orthogonal decomposition, as efficient numerical tech-
niques, can be applied to both linear and nonlinear systems [8,10,143]. However, they,
in general, do not guarantee the stability of the reduced-order model and the bound
on the approximation error. In contrast, balanced truncation and optimal Hankel
norm approximation are well-known for their properties of stability preservation and
error boundedness and have been intensively studied in stable linear time-invariant
systems, see [7, 66, 70] for an overview. These methods rely on the controllability
and observability energy functionals of the system, i.e., the Gramian matrices. These
concepts then have been extended to nonlinear balancing, see [25, 65, 156] and the
references therein. In general, implementing nonlinear balancing is expensive, as it
requires the solutions of a large-scale nonlinear partial differential equation, namely
the Hamilton-Jacobi equation. Moreover, as the other methods for model reduction
of nonlinear systems, the truncated model from nonlinear balancing lacks an error
bound on the approximation.

For linear network system, balanced truncation has only recently been studied.
For example, [40] applies balanced truncation based on generalized Gramians to
simplify the network topology. Some pioneering results in [125,152] present methods
to approximate network systems by reducing the complexity of linear subsystems.
In this chapter, we attempt to adopt balanced truncation to networked nonlinear
systems, whose subsystems are identical and cast in Lur’e-type form. In [22], a
reduction procedure is presented for absolutely stable Lur’e systems. The method
essentially applies balanced truncation to the linear component of a Lur’e system
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and therefore is computationally cheap. Furthermore, both stability and the error
bound for the reduced-order model are guaranteed.

However, in this chapter, as the preservation of network synchronization is
needed, we can not directly apply standard balanced truncation to each Lur’e sub-
system. Instead, we establish a linear time-invariant auxiliary system associating
the Lur’e network, and relate the robust synchronization condition to the passivity
of this auxiliary system. Consequently, a passivity preserving model reduction on
the auxiliary system yields reduced-order Lur’e subsystems and a synchronized
reduced network system. Furthermore, the a priori bound on the approximation error
is established to compare the behaviors of the full-order and reduced-order Lur’e
subsystem.

This chapter is organized as follows. Section 8.2 introduces the balanced trun-
cation method and the model of a Lur’e network. Section 8.3 then presents the
proposed method for synchronization preserving model reduction of Lur’e networks,
and Section 8.4 gives the analysis of the approximation error on each subsystem.
The proposed method is illustrated in Section 8.5 by an example. Finally, Section 8.6
concludes the chapter.

8.2 Problem Formulation

We present the mathematical model of a Lur’e network. Consider a weighted graph
is defined by a triplet G = (V, E ,W). The sets V and E ⊆ V × V present the sets of
nodes and edges, respectively. W is called weighted adjacency matrix. The (i, j)-th
entry ofW , denoted by wij , is positive if edge (i, j) ∈ E , and wij = 0 otherwise. The
Laplacian matrix of graph G, denoted by L, is then introduced with the (i, j)-th entry
as

Lij =

{ ∑n
j=1,j 6=i wij , i = j

−wij , otherwise.
(8.1)

Assumption 8.1. We assume, in this chapter, the network is defined on an undirected
connected graph consisting of N (N ≥ 2) nodes. In this case, we have L = LT < 0, and
the eigenvalues of L are 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN .

The dynamics of nodes on the network are described by identical nonlinear
dynamical systems as follows.

Σi :


ẋi = Axi +Bui + Ezi
yi = Cxi
zi = −φ(yi, t)

, i = 1, 2, · · · , N, (8.2)
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Figure 8.1: The illustration of a Lur’e subsystem

where xi ∈ Rn, ui, yi, zi ∈ R. The subsystem Σi is in the Lur’e-type form, whose
structure is illustrated in Fig. 8.1. Each Lur’e subsystem consists of a linear part Σlin

i

formulated by

Σlin
i :

 ẋi = Axi +
[
B E

] [ui
zi

]
yi = Cxi

, i = 1, 2, · · · , N, (8.3)

and a continuous static output-dependent nonlinearity φ(yi) : R× R 7→ R.

Assumption 8.2. We assume that the uncertain feedback nonlinearity φ(·) in (8.2) is
slope-restricted as

0 ≤ φ(ya)− φ(yb)

ya − yb
≤ µ, (8.4)

for all ya, yb ∈ R and ya 6= yb, where µ > 0 and φ(0) = 0. Furthermore, the Lur’e dynamics
Σi is assumed to be absolutely stable, i.e., A is Hurwitz, and the linear transfer function
from zi to yi fulfills

‖C(sIn −A)−1E‖H∞ < µ−1. (8.5)

We refer to [49, 99] and the references therein for the definitions of absolute
stability and slope-restrictedness, respectively.

All the subsystems on the network are interconnected according to the following
static output-feedback protocol.

ui =

N∑
j=1

wij(yi − yj), i = 1, 2, · · · , N, (8.6)

where wij ∈ R ≥ 0 is the (i, j)-th entry of weighted adjacency matrix of the under-
lying graph and stands for the intensity of the coupling between subsystem i and
j. Then, combining (8.6) and (8.2) leads to a compact form of the Lur’e dynamical
network as

Σ :

{
ẋ = (IN ⊗A− L⊗BC)x− (IN ⊗ E) Φ(y),

y = (IN ⊗ C)x,
(8.7)
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where x ∈ RNn and y ∈ RN are the collections of the states and outputs of the N
subsystems.

x =


x1

x2

...
xN

 , y =


y1

y2

...
yN

 , and Φ(y) :=


φ(y1)

φ(y2)
...

φ(yN )

 .
The matrix L is the graph Laplacian of underlying network, see the definition in
Section 2.1.

In the context of networks, synchronization is one of the important properties,
which substantially means that the states of the subsystems can achieve a common
value. For a Lur’e network system in (8.7), the definition of robust synchronization is
given as follows.

Definition 8.1. [145, 180] A Lur’e network system in form of (8.7) are called robustly
synchronized if

lim
t→∞

(xi(t)− xj(t)) = 0, ∀i, j = 1, 2, · · · , N,

for all initial conditions and all uncertain nonlinearities φ(·, t) satisfying (8.4).

Moreover, if the nonlinear function φ(·) in (8.2) is slope-restricted as in (8.4), then it
is also incremental passive [136]. Thus, a sufficient condition for robust synchronization
of the Lur’e network as in (8.7) can be obtained from [180] as follows.

Lemma 8.1. Consider the Lur’e network Σ as in (8.7) with a slope-restricted nonlinear
function φ(·). If there exists a matrix Q � 0 such that

QE = CT (8.8)

and
(A+ λiBC)TQ+Q(A+ λiBC) ≺ 0, (8.9)

for all i = 2, · · · , N , then Σ robustly synchronize. In (8.9), λi are the eigenvalues of the
Laplacian matrix L.

8.3 Synchronization Preserving Model Reduction

In this section, the original Lur’e network Σ is assumed to be synchronized, and
then we reduce the dimension of each subsystem in (8.2) such that synchronization
is preserved in the reduced-order network.
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First, the robust synchronization condition of the Lur’e network Σ is reinterpreted
by the passivity of a set of auxiliary linear systems as follows.

Γ(λi) :

{
ξ̇ = (A− λiBC)ξ + Eν,

η = Cξ,
(8.10)

where ξ ∈ Rn, ν, η ∈ R, and λi is the i-th smallest eigenvalue of the Laplacian
matrix L in (8.7). Note that Γ(λi) is a single-input and single-output system. If the
synchronization condition of the multi-agent system Σ in Lemma 8.1 is satisfied,
then A− λiBC is Hurwitz for all i = 2, 3, · · · , N , due to (8.9). That is the auxiliary
system Γ(λi) being asymptomatically stable.

Furthermore, following [174], the conditions in (8.8) and (8.9) coincide with the
(strict) passivity of Γ(λi). Therefore, it provides us a way to preserve the robust
synchronization in the reduced-order Lur’e network. That is firstly reducing the
auxiliary system Γ(λi) with passivity preservation and then substituting the reduced
system matrices to the network framework in (8.7) to generate the reduced-order
network system.

Before implementing the above procedure, we introduce the following lemma,
where the synchronization condition in Lemma 8.1 is further relaxed by only consid-
ering the largest eigenvalue λN .

Lemma 8.2. If there exists a positive definite matrix Q such thatATQ+QA+ CTC λNQB QE − CT
λNB

TQ −I 0

ETQ− C 0 0

 ≺ 0, (8.11)

with λN is the largest eigenvalue of L in (8.7), then the auxiliary linear system Γ(λi) in
(8.10) is positive real for all λi ≤ λN , and hence the Lur’e network Σ robustly synchronizes.

Proof. The above LMI is equivalent to

ATQ+QA+ λ2
NQBBTQ+ CTC ≺ 0, QE = CT . (8.12)

For a matrix Q � 0, we have

(A− λiBC)TQ+Q(A− λiBC)

= ATQ+QA− λi(BTCTQ+QBC).
(8.13)

Note that

λi(B
TCTQ+QBC)

= (λiB
TQ+ C)T (λiB

TQ+ C)− λ2
iQBBTQ− CTC.

(8.14)
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For any λi ≤ λN , it then leads to

(A− λiBC)TQ+Q(A− λiBC)

4 ATQ+QA+ λ2
iQBBTQ+ CTC

4 ATQ+QA+ λ2
NQBBTQ+ CTC ≺ 0

(8.15)

where the facts that (BTQ + λNC)T (BTQ + λNC) < 0 and QBBTQ < 0 are used.
Together with the relation QE = CT in (8.12), we conclude that the system Γ(λi)

with the dynamics in (8.10) is passive for all λi ≤ λN .

Remark 8.1. Lemma 8.2 is convenient to be applied as a sufficient condition to check the
robust synchronization of the Lur’e network Σ, since one just need to show the existence
of Q in (8.11) rather than the solutions of (8.8) and (8.9) for all λi with i = 2, · · · , N .
Furthermore, only using the solutions of the LMI in (8.11), we can reduce the dimension of
the auxiliary system Γ(λi), for any λi ≤ λN .

The passivity-preserving model reduction is now introduced in the framework
of balanced truncation. Let KM and Km be the maximum and minimal solutions of
(8.11). Let T be a nonsingular coordinate transformation such that

TK−1
M TT = T−TKmT

−1 = Θ = diag(θ1, θ2, · · · , θn), (8.16)

with θ1 ≥ θ2 ≥ · · · ≥ θn > 0. We define the balanced system of Γ(λi) by Γ̄(λi) :=

(Ā− λiB̄C̄, Ē, C̄), where

Ā := TAT−1, B̄ := TB, Ē := TE, and C̄ := CT−1. (8.17)

Now, we truncate the n− k states corresponding to the smallest θi of the balanced
system Γ̄(λi). To do so, we consider the following matrix partitions.

Ā =

[
A11 A12

A21 A22

]
, B̄ =

[
B1

B2

]
, Ē =

[
E1

E2

]
,

C̄ =
[
C1 C2

]
,Θ =

[
Θ1

Θ2

]
,

(8.18)

where A11 ∈ Rk×k, B1 ∈ Rk, E1 ∈ Rk, C1 ∈ R1×k, and Σ1 := diag(θ1, θ2, · · · , θk).
Hereafter, denote

Â = A11, B̂ = B1, Ê = E1, and Ĉ = C1. (8.19)

It can be shown that the matrix Â− λiB̂Ĉ is the k-th order principal submatrix of the
system matrix, Ā− λiB̄C̄, in the balanced system Γ̄(λi). Thus, the truncated model
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of Γ(λi) is presented as

Γ̂(λi) :

{
˙̂
ξ = (Â− λiB̂Ĉ)ξ̂ + Êν,

η̂ = Ĉξ̂,
(8.20)

where ξ̂ ∈ Rk and η̂ ∈ R.

Remark 8.2. Lemma 8.2 actually requires a stricter synchronization condition than Lemma
8.1. However, this is computationally cheaper, as it only need to check the feasibility of (8.11).
Moreover, the same pair KM and Km can be used for balanced truncation of the linear system
Γ(λi) for all λi ≤ λN .

Then, the reduced-order dynamics of each agent is constructed by substituting
the truncated matrices Â, B̂, Ê, and Ĉ to the Lur’e form as in (8.2).

Σ̂i :


˙̂xi = Âx̂i + B̂ui + Êẑi
ŷi = Ĉx̂i
ẑi = −φ(ŷi)

, i = 1, 2, · · · , N, (8.21)

with x̂i ∈ Rk, and ẑi, ŷi ∈ R. Consequently, it leads to reduced-order Lur’e network
dynamics as

Σ̂ :

{
˙̂x = (IN ⊗ Â− L⊗ B̂Ĉ)x̂− (IN ⊗ Ê)Φ(ŷ),

ŷ = (IN ⊗ Ĉ)x̂,
(8.22)

comparing to (8.7).
The following theorem shows that the synchronization property is preserved after

the above reduction process.

Theorem 8.1. Consider the full-order Lur’e network Σ in (8.7) and its reduced-order model
Σ̂ in (8.22). If Σ robustly synchronizes due to Lemma 8.2, then Σ̂ also robustly synchronizes.

Proof. By Lemma 8.1, the system Σ̂ robustly synchronizes if the auxiliary system of
Σ̂ is passive. Therefore, it is sufficient to prove that Γ̂(λi) in (8.20) is passive for all
λi ≤ λN .

Lemma 8.2 implies that the auxiliary system Γ(λi) is passive, so does the balanced
system Γ̄(λi). It means that

(Ā− λiB̄C̄)TΘ + Θ(Ā− λiB̄C̄) ≺ 0, and ΘĒ = C̄T , (8.23)

for i = 2, 3, · · · , N , where Θ is given in (8.16), and Ā, B̄, Ē, and C̄ are defined in
(8.17). Expanding (8.23) using the partitions as in (8.18) then yields

(Â− λiB̂Ĉ)TΘ1 + Θ1(Â− λiB̂Ĉ) ≺ 0, and Θ1Ê = ĈT .

for i = 2, 3, · · · , N . Hence, the reduced auxiliary system is also passive, which gives
the synchronization of the reduced-order model Σ̂ by Lemma 8.1.
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8.4 Error Analysis

We start with the analysis of the approximation of the linear dynamics Σlin
i in (8.3).

The linear part of the reduced-order Lur’e subsystem truncation in (8.21) is given by

Σ̂lin
i :

 ˙̂xi = Âx̂i +
[
B̂ Ê

] [ui
ẑi

]
ŷi = Ĉx̂i

, i = 1, 2, · · · , N. (8.24)

For simplicity, we hereafter denote

gB(s) : = C(sIn −A)−1B, gE(s) := C(sIn −A)−1E,

ĝB(s) : = Ĉ(sIk − Â)−1B̂, ĝE(s) := Ĉ(sIk − Â)−1Ê.
(8.25)

Then, we provide the a priori error bounds on the linear part in the following lemma.

Lemma 8.3. Consider the following transfer functions in (8.25) corresponding to the linear
parts of the full-order and reduced-order Lur’e subsystems, Σlin

i and Σ̂lin
i , respectively. The

following error bounds hold.

‖gB(s)− ĝB(s)‖H∞ ≤
2

λN

n∑
k=r+1

θk, (8.26a)

‖gE(s)− ĝE(s)‖H∞ ≤ 2

n∑
k=r+1

θk, (8.26b)

where θk are defined in (8.16).

Proof. The minimal solution of (8.11), Km, satisfies

Km � 0, ATKm +KmA+ CTC ≺ 0. (8.27)

Analogously, the maximum solution of (8.11), KM � 0, satisfies (8.12), which is
reformulated as

AK−1
M +K−1

M AT +K−1
M CTCK−1

M + λ2
NBB

T ≺ 0,

E = K−1
M CT .

(8.28)

Substituting the latter equation into the inequality yields

AK−1
M +K−1

M AT + EET + λ2
NBB

T ≺ 0. (8.29)

Thus, the following two Lyapunov inequalities hold.

AK−1
M +K−1

M AT + λ2
NBB

T ≺ 0, (8.30a)
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AK−1
M +K−1

M AT + EET ≺ 0. (8.30b)

Recall the definitions of generalized Gramians in Chapter 2. From (8.27), (8.30a)
and (8.30b), the pair K−1

M , Km can be regarded as generalized Gramians of the
systems λN · gB(s) and gE(s). Since the reduced matrices Â, B̂, Ê and Ĉ in the
reduced-order models in (8.25) are obtained by the balanced truncation based on the
pair K−1

M and Km. Application of (2.30) in Chapter 2 then leads to the error bounds
in (8.26a) and (8.26b).

Moreover, the approximation error for Σlin
i in (8.3) is also bounded.

Proposition 8.1. Let Σlin
i and Σ̂lin

i be the linear parts of the full-order and reduced-order
Lur’e subsystems, respectively. The approximation error between the two system is bounded
by

‖Σlin
i − Σ̂lin

i ‖H∞ ≤
2

min{λN , 1}

n∑
k=r+1

θk, (8.31)

with θk given in (8.16).

Proof. It then follows from (8.29) that

AK−1
M +K−1

M A+ min{λ2
N , 1}

[
B E

] [BT
ET

]
≺ 0. (8.32)

Therefore, K−1
M and Km in (8.27) are generalized Gramians for the linear system

min{λN , 1} · Σlin
i . Following the same reasoning in the proof of Lemma 8.3, we

obtain (8.31).

Now, we investigate the approximation error of each Lur’e subsystem with
uncertain nonlinearity φ(·). Following the procedure in [22], the condition of absolute
stability of the reduced-order Lur’e system Σ̂i is first discussed.

Proposition 8.2. By performing the balanced truncation in Section 8.3, the reduced Lur’e-
type agent Σ̂i in (8.21) is absolutely stable if

‖gE(s)‖H∞ < µ−1 − 2

n∑
k=r+1

θk, (8.33)

where µ is defined in (8.4).

Proof. The result follows from [22]. If the equation (8.33) holds, then it can be shown
that ‖ĝE(s)‖H∞ < µ−1. With a Hurwitz Â matrix in Σ̂i, we conclude that Σ̂i is
absolutely stable.
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Then, by assuming that Σ̂i in (8.21) is absolutely stable, namely satisfying (8.33),
we explore an error bound for the reduction of Lur’e subsystems Σi. The proof of
the following theorem outline is inspired by [22]. Differently, an a priori error bound
is provided.

Theorem 8.2. Consider the full-order Lur’e system Σi in (8.2) satisfying the slope-restrictedness
condition in Assumption 8.2 and the synchronization condition in Lemma 8.2. Denote the
reduced-order model of Σi by Σ̂i in (8.21), which satisfies the absolute stability condition in
(8.33). Then, the error of the outputs of Σi and Σ̂i is bounded by

‖yi(t)− ŷi(t)‖2 ≤
δ(1 + δ + ε)

λNµε(δ + ε)
‖ui(t)‖2, (8.34)

where δ = 2
∑n
k=r+1 θk and ε := µ−1 − δ − ‖gE(s)‖H∞ > 0.

Proof. Taking the Laplace transform of the differential equations in (8.2) and (8.21),
respectively, we first obtain

yi(s) =

[
gB(s)ui(s)

gE(s)zi(s)

]
, ŷi(s) =

[
ĝB(s)ui(s)

ĝE(s)ẑi(s)

]
, (8.35)

where the transfer functions gB(s), gE(s), ĝB and ĝE(s) are defined in (8.25). Thus,
the output error in Laplace domain is presented as

yi(s)− ŷi(s) =

[
[gB(s)− ĝB(s)]ui(s)

gE(s)zi(s)− ĝE(s)ẑi(s)

]
, (8.36)

which leads to

‖yi(t)− ŷi(t)‖2 ≤ ‖gB(s)− ĝB(s)‖H∞‖ui(t)‖2
+ ‖gE(s)− ĝE(s)‖H∞‖zi(t)‖2
+ ‖ĝE(s)‖H∞‖zi(t)− ẑi(t)‖2.

(8.37)

Hereafter, we analyze the bound for each component in (8.37) as follows.
First, the transfer function of yi(s) implies

‖yi(t)‖2 ≤ ‖gB(s)‖H∞‖ui(t)‖2 + ‖gE(s)‖H∞‖zi(t)‖2, (8.38)

and the slope-restrictedness on the uncertain function φ(·) gives

‖zi(t)‖2 ≤ µ‖yi(t)‖2. (8.39)

Substituting (8.38) to (8.39) then yields a bound on zi(t) as

‖zi(t)‖2 ≤
‖gB(s)‖H∞

µ−1 − ‖gE(s)‖H∞
‖ui(t)‖2. (8.40)
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Following [58], the Riccati inequality (8.12) implies that the transfer function gB(s) is
bounded by ‖gB(s)‖H∞ ≤ λ−1

N . Together with the H∞ bound on gE(s) assumed in
(8.33), we further obtain

‖zi(t)‖2 ≤ λ−1
N (δ + ε)−1‖ui(t)‖2. (8.41)

Second, using the slope-restrictedness of φ(·), we obtain

‖ĝE(s)‖H∞‖zi(t)− ẑi(t)‖2
≤ (‖ĝE(s)− gE(s)‖H∞ + ‖gE(s)‖H∞) · µ‖yi(t)− ŷi(t)‖2
≤
[
δ + (µ−1 − δ − ε)

]
· µ‖yi(t)− ŷi(t)‖2

= (1− µε)‖yi(t)− ŷi(t)‖2.

(8.42)

Now, consider the bounds in Lemma 8.3. Substitution of (8.26a), (8.26b), (8.41)
and (8.42) in (8.37) then leads to

‖yi(t)− ŷi(t)‖2
≤ λ−1

N δ‖ui(t)‖2 + λ−1
N δ(δ + ε)−1‖ui(t)‖2

+ (1− µε)‖yi(t)− ŷi(t)‖2,
(8.43)

which gives the bound in (8.34).

Remark 8.3. The error bound in (8.34) indicates the H∞-norm of the error between two
Lur’e systems Σi and Σ̂i, see [170].

8.5 Illustrative Example

The feasibility of the proposed method is illustrated through a simulation, which
considers a network consisting of 4 Lur’e subsystems. The interconnection topology
is given in Fig 8.2. The dynamics of Lur’e subsystems Σi are in (8.2) are given by
matrices

A =



0 0 0 0 1 0 0 0

0 0 0 0 0 0.25 0 0

0 0 0 0 0 0 0.5 0

0 0 0 0 0 0 0 1

−1 0 0 0 −3 0.25 0 0

0 −1 0 0 1 −1 1 0

0 0 −1 0 0 0.5 −2 1

0 0 0 −1 0 0 0.5 −2


,

B =
[
0 0 0 0 0 1 −2 2

]T
,

C = ET =
[
0 0 0 0 1 0 0 0

]
,
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Figure 8.2: Interconnection topology of the Lur’e network

and a nonlinearity
φ(y) = 0.5 (|y + 1| − |y − 1|) . (8.44)

By (8.4), we have µ = 1. Therefore, each subsystem is absolutely stable, due to the
fact that

‖gE(s)‖H∞ = ‖C(sI −A)−1E‖H∞ = 0.3606 < µ−1 = 1

It can be checked that the LMI in (8.11) is feasible, i.e., the solutions of (8.11) exists.
Thus, by Lemma 8.2, the original Lur’e network in form of (8.7) synchronizes under
the interconnection topology as in Fig. 8.2.

Then, solving the LMI in (8.11) gives maximum and minimal solutions KM and
Km, which can be simultaneously digitalized as

TK−1
M TT = T−TKmT

−1 = Θ =

diag(1, 1, 0.1149, 0.1126, 0.0493, 0.0425, 0.0225, 0.0098).

Using the balanced truncation procedure of Section 8.3 to eliminate the last four
states in the balanced system leads to the following reduced matrices.

A =


0 −1 0 0

1 −3 −1.0742 0.7406

0 −0.1943 −1.1737 0.3472

0 0.1412 1.2461 −0.5473

 ,
B =

[
0 0 −0.1248 0.0841

]T
,

C = ET =
[
0 1 0 0

]
,

Therefore, the reduced Lur’e subsystems Σ̂i are obtained. For comparison, we
show the Bode magnitude plots of the transfer functions gB(s), ĝB(s), gE(s), and
ĝE(s) in Fig 8.3, which indicates that the approximation error on the linear part of
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Figure 8.3: The comparison of the Bode magnitude plots of linear parts in the full-
order and reduced-order Lur’e subsystems, which show that the linear part of each
Lur’e subsystem is well-approximated.
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Figure 8.4: The trajectories of the states and outputs of the full-order Lur’e network
(in the top two figures) and reduced-order network (in the bottom two figures). The
initial states are set to random values for both systems. It shows that both full-order
and reduced-order networks are synchronized.
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each Lur’e subsystem is small. Moreover, we measure the linear reduction errors by
H∞ norm as ‖gB(s)− ĝB(s)‖H∞ ≈ 0.0112, and ‖gE(s)− ĝE(s)‖H∞ ≈ 0.0183, which
using Lemma 8.3, the a priori bounds are obtained as 0.0620 and 0.2481, respectively.

Next, with the dynamics of the reduced-order Lur’e subsystems Σ̂i, we construct
the a lower-dimensional Lur’e network as in (8.22). Note that both original and
reduced Lur’e network in (8.7) and ((8.22)) are autonomous. To investigate the syn-
chronization phenomenon in both systems, we stimulate both systems by assigning
random values as their initial states. The trajectories of the states and outputs of
both networks are then plotted in Fig. 8.4. We can see that, by the proposed model
reduction scheme, the reduced-order Lur’e network preserves the synchronization
property.

8.6 Conclusions

In this chapter, we have investigated the problem of model order reduction for Lur’e
networks. The proposed method aims at preserving the robust synchronization
through the reduction process. To this end, a sufficient condition for robust syn-
chronization of Lur’e networks was presented, which relates to the passivity of a
linear auxiliary system. Using the maximum and minimum solutions of (8.11), we
reduce the auxiliary system and then obtain the reduced system matrices for Lur’e
subsystems. An a priori error bound for the Lur’e subsystems can be obtained since
the reduction process can also be regarded as Lyapunov balanced truncation based
on generalized Gramians for the linear part of each Lur’e subsystem. In the time
domain, an a priori bound on the input-output error between the full-order and
reduced-order Lur’e subsystems is established using the error bound for the linear
part and the slope-restrictedness of the uncertain nonlinear function.
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Conclusions and Future Research

This thesis has discussed the structure preserving model reduction problem of dy-
namic network systems. This final chapter summarizes the main results presented in
Chapter 3 - 8 and provide an outlook on some potential directions for future research.

9.1 Conclusions

In science and engineering, dynamical systems with interconnection structures are
ubiquitous. Since their dynamics are often complex due to large-scale underlying
networks and high-dimensional vertex dynamics, this thesis developed model re-
duction methods to approximate their behaviors by simpler models. The proposed
solutions use two methodologies, namely clustering-based projection and general-
ized balanced truncation, which can reduce the complexity of the network topology
and vertex dynamics, respectively. Meanwhile, we also have shown that the pro-
posed methods preserve certain properties of network systems, e.g., synchronization,
passivity, and stability throughout the approximation. Therefore, applying the results
of this thesis captures the essential properties of interest of large-scale networks and
leads to simpler analysis and control design of large-scale interconnected systems.

The framework of clustering-based projection has been developed in Part I, which
can be applied to effectively reduce the complexity of different kinds of network
systems, e.g., second-order networks, controlled power networks, multi-agent sys-
tems, and directed networks. The method provides an effective way of reducing the
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number of vertices in dynamic networks and shows a great potential for retaining net-
work structures, namely, obtained reduced-order models can be always interpreted
as smaller-sized network systems. In the clustering-based approach, the concept of
vertex dissimilarity plays an important role, as it characterizes how different two
vertices in a network behave with respect to the external control inputs. With this
notation, graph clustering algorithms, that are adapted from data ming or computer
graphics [94], can be performed to aggregate the vertices with smaller dissimilarities.
Therefore, the results in Part I have extended the domain of clustering problems from
static graphs or data to dynamic networks. In Part I, we also introduced the pseudo
Gramians for general semistable linear networks. We have shown how one can use
them to efficiently evaluate the vertex dissimilarities and then choose an appropriate
graph clustering for a large-scale network.

To reduce the dimensions of the subsystems, we have proposed a method based
on a conventional model reduction technique, namely, balanced truncation in Part II.
First, linear networked passive systems are studied. It is the first time that the cele-
brated balancing method is used for simultaneously reducing the network topology
and nodal dynamics of a network system in a structure preserving manner. Based
on two selected generalized Gramians, the balanced truncation is applied to reduce
the network structure and agent dynamics in a unified framework. Moreover, we
have shown that the synchronization of the network system is preserved, and the
approximation error is computed a priori, i.e., independent of the dynamics of the
reduced-order network model. Furthermore, the generalized balanced truncation
has been applied to model reduction of nonlinear Lur’e networks. We have shown
that by carefully choosing the generalized Gramian matrices, the linear component
of each Lur’e subsystem can be reduced and the robust synchronization property
of overall Lur’e networks can be preserved. The idea used in this method provides
meaningful insights into the robust synchronization preserving model reduction of
networks with nonlinear dynamics.

9.2 Future Research

The clustering-based model reduction approach proposed in this thesis is applied to
different types of linear network systems. The reason for that is for linear systems we
are able to capture the dynamics of vertices by transfer functions and characterize the
vertex dissimilarities by system norms. Moreover, for a linear time-invariant system,
the pairwise dissimilarities can be calculated via the Gramian matrices effectively,
as shown in Part I. These benefits may not exist when time-variant or nonlinear
network dynamics are considered. The nonlinearity of a network can come from
two aspects: nonlinear subsystems and nonlinear coupling among the subsystems,
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see e.g., [63, 109–111, 147, 176, 179] for more details. Nonlinearities in a network may
cause much difficulty with the analysis of graph clustering. The first problem that
needs to be tackled is how to design a metric for evaluating the dissimilarities of
vertex dynamics. Indeed, in the time domain, L2 or L∞ can be the candidate for
the evaluation. However, computing the dissimilarities of every pair of vertices in
a large-scale network will be a formidable task. Generally, the further extension to
nonlinear networks is still an open question.

The method based on the generalized balanced truncation potentially allows for a
better approximation accuracy and also provides an a priori error bound, but the price
to pay is losing more structure information in the reduced-order model. Although the
method in Chapter 7 recovers a network interpretation from the obtained simplified
model, the new network is fully connected, i.e., is a complete graph, and the relation
between the reduced network and the original one is not clear. Thus, how to design
a method that produces sparser reduced networks is another possible research
direction. Furthermore, the results in Chapter 8 can be further extended to more
general nonlinear systems. For instance, instead of slope-restricted functions, we
can consider incremental sector bounded nonlinear functions as the static feedback
[38, 180]. Moreover, we may further replace the static nonlinearity with nonlinear
dynamics [23, 24], and as a general framework for describing nonlinearities and
system uncertainty, we also may use the integral quadratic constraints (IQC), see
[5, 115]. This framework includes a number of well-known constraints such as
passivity and norm bounds. By exploring the synchronization condition, generalized
balanced truncation may be applied.
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Summary

This thesis is devoted to the model reduction of network systems. Generally, the study
aims to find a low-dimensional approximation with a network structure for a given
large-scale dynamical network system. The proposed solutions are developed using
two methodologies, namely clustering-based projection and generalized balanced
truncation, which are presented in separated parts of this thesis.

A novel reduction method using graph clustering is proposed in Part I to simplify
different types of networks. First, interconnected second-order systems are studied.
The proposed framework is based on the Petrov-Galerkin projection constructed by
graph clustering. The notion of vertex dissimilarity is introduced to characterize how
differently the vertices behave with respect to the external control inputs. Then graph
clustering is then performed to aggregate the vertices with smaller dissimilarities. The
resulting reduced-order model has shown to preserve not only the second-order form
but also the network structure. The second network model considered in this thesis is
a controlled power network with distributed controllers, which contains two layers:
physical transmission links and a communication network interconnecting power
generators. The proposed method reduces the two networks simultaneously, and the
reduced-order model inherits a network interpretation for the interconnections of
the power units and the communication among the generators. Third, we extend the
reduction framework of structure preserving model reduction to multi-agent systems,
where the subsystems are of higher-dimensions. By comparing the outputs of the
agents with respect to external control inputs, we characterize the dissimilarities
of the agents. Then, the clustering-based model reduction is applied to obtain a
reduced-order model that can be interpreted as a multi-agent system but with fewer
agents. At last, we investigate directed network systems that obey locally consensus
protocols and have semistable dynamics. The notion of clusterability is proposed
to classify the groups of vertices that can be aggregated to guarantee a bounded
approximation error. The pairwise dissimilarity, quantifying the difference between
two clusterable vertices, is now with respect to both inputs and outputs.
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Part II switches our focus to a conventional model reduction technique, balanced
truncation, and discusses the possibility of applying this technique to the structure
preserving model reduction of network systems. First, we consider networked
passive systems, where vertex dynamics are identical and linear time-invariant. Two
generalized Gramians that are structured by the Kronecker product are selected such
that the balanced truncation is applied to reduce the network structure and agent
dynamics in a unified framework. The resulting model can be converted to a new
representation of Laplacian dynamics, which again has a network interpretation. We
propose a necessary and sufficient condition of a matrix being similar to a Laplacian
matrix. Using this result, the reduction process is designed to preserve the Laplacian
structure in the reduced network. The method guarantees the a priori computation
of a bound on the approximation error with respect to external inputs and outputs.
Second, we study another application of generalized balanced truncation to nonlinear
Lur’e networks. We aim to reduce the dimension of each nonlinear subsystem and
meanwhile preserve the synchronization property of the overall network. The robust
synchronization of a Lur’e network can be characterized by a linear matrix inequality,
whose solutions then are treated as generalized Gramians for the balanced truncation
of the linear component of each Lur’e subsystem. It is verified that, with the same
communication topology, the resulting reduced-order network system is still robustly
synchronized, and the a priori bound on the approximation error is guaranteed to
compare the behaviors of the full-order and reduced-order Lur’e subsystems.



Samenvatting

Dit proefschrift is gewijd aan modelreductie van netwerksystemen. In het algemeen
wordt getracht een lage-orde benadering van een gegeven groot-schalige dynamis-
che netwerksysteem te vinden. De voorgedragen oplossingen zijn ontwikkeld met
behulp van twee methodologieën: clustervorming-gebaseerde projectie en de gegen-
eraliseerde balanced truncation (gebalanceerde afkappingsmethode). Deze komen
aan de orde in aparte delen van dit proefschrift.

In deel I wordt op basis van graaf clustervorming een nieuwe reductie meth-
ode voorgedragen voor het vereenvoudigen van verschillende typen netwerken.
Allereerst worden tweede-orde systemen bestudeerd. De voorgedragen methode
is gebaseerd op de Petrov-Galerkin projectie die geconstrueerd wordt op basis van
graaf clustervorming. We introduceren hierbij het begrip knoop ongelijkheid om het
verschillende gedrag van de knopen ten opzichte van externe regel inputs te karak-
teriseren. Graaf clustervorming is toegepast om knopen met minimaal verschillend
gedrag bijeen te voegen. Het wordt aangetoond dat in het verkregen gereduceerde-
orde model zowel de tweede-orde vorm als de netwerkstructuur behouden worden.

Het tweede netwerk model dat bestudeerd wordt in dit proefschrift is energie
netwerk met gedistribueerde regelaars die uit twee lagen bestaan: een fysieke
laag, bestaande uit transmissie verbindingen, en een communicatie laag voor het
verbinden van energie generatoren. De voorgedragen methode reduceert beide
netwerken tegelijkertijd, en het gereduceerde-orde model heeft een netwerk inter-
pretatie voor de verbindingen tussen de krachtbronnen en communicatie tussen de
generatoren.

Als derde breiden we de structuur behoudend modelreductie methode uit naar
multi-agent systemen met hoge-orde deelsystemen. Door de outputs van de agen-
ten ten opzichte van de externe regel inputs met elkaar te vergelijken, kan het
verschillende gedrag van de agenten gekarakteriseerd worden. Hierna kan de op
clustervorming-gebaseerde modelreductie toegepast worden om een gereduceerd-
orde model te verkrijgen die geïnterpreteerd kan worden als een multi-agent systeem,
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maar dan met minder agenten.
Als laatst bestuderen we gerichte netwerksystemen die zich aan lokale consen-

sus protocollen houden en semistabiele dynamica hebben. Het begrip van cluster-
baarheid is voorgesteld om knoop groepen te classificeren die bijeengebracht kunnen
worden waarbij een begrensde reductiefout gegarandeerd is. De ongelijkheid van
een paar knopen kwantificeert het verschil tussen twee clusterbare knopen nu ten
opzichte van zowel de inputs als de outputs.

Deel II is gericht op de klassieke modelreductie techniek balanced truncation
(gebalanceerde afkapping). We bestuderen de mogelijkheid voor het toepassen
van deze techniek voor structuur behoudend modelreductie van netwerksystemen.
Allereerst focussen we op netwerk passieve systemen, waarbij de knoop dynamica
identiek en lineair tijds-invariant zijn. Twee gegeneraliseerde Gramians, die gestruc-
tureerd zijn door het Kronecker product, zijn geselecteerd opdat de gebalanceerde
afkapping toegepast kan worden voor het reduceren van de netwerk structuur en
knoop dynamica in een uniform methode. Het verkregen model kan hierna getrans-
formeerd worden naar een nieuwe representatie van Lapliacian dynamica met een
duidelijke netwerk interpretatie. We formuleren een noodzakelijke en voldoende
voorwaarde voor een matrix om overeenkomstig te zijn met een Laplacian matrix.
Middels dit resultaat, wordt het reductie proces ontworpen voor behoud van de
Laplacian structuur in het gereduceerde netwerk. De methode garandeert een a
priori berekening van een grens voor de reductiefout ten opzichte van externe in-en
outputs.

Ten tweede bestuderen we een andere toepassing van gegeneraliseerde gebal-
anceerde afkapping voor niet-lineaire Lur’e systemen. Ons doel hierbij is het reduc-
eren van de orde van alle individuele niet-lineaire deelsysteem dusdanig dat het
synchronisatie karakter van het gehele netwerk behouden blijft. De robuuste synchro-
nisatie van een Lur’e netwerk kan gekarakteriseerd worden door een lineaire matrix
ongelijkheid, wiens oplossingen aangemerkt kunnen worden als gegeneraliseerde
Gramians voor de gebalanceerde afkapping van het lineaire component van elk Lur’e
systeem. Het is geverifieerd dat, met dezelfde communicatie topologie, het verkregen
gereduceerde-orde netwerk systeem nog steeds robuust gesynchroniseerd is, en dat
de a priori grens voor de reductiefout kan worden berekend om het gedrag van de
originele en de gereduceerde-orde Lur’e deelsystemen met elkaar te vergelijken.
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