
 

 

 University of Groningen

The Faster the Better? Innovation Speed and User Interest in Open Source Software
Dong, John Qi; Wu, Weifang; Zhang, Yixin Sarah

Published in:
Information & Management

DOI:
10.1016/j.im.2018.11.002

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Dong, J. Q., Wu, W., & Zhang, Y. S. (2019). The Faster the Better? Innovation Speed and User Interest in
Open Source Software. Information & Management, 56(5), 669-680.
https://doi.org/10.1016/j.im.2018.11.002

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1016/j.im.2018.11.002
https://research.rug.nl/en/publications/b2fbde69-87b0-43b1-9cea-fe7c1f5a653d
https://doi.org/10.1016/j.im.2018.11.002


Contents lists available at ScienceDirect

Information & Management

journal homepage: www.elsevier.com/locate/im

The faster the better? Innovation speed and user interest in open source
software
John Qi Donga,⁎, Weifang Wub, Yixin (Sarah) Zhangc
a Faculty of Economics and Business, University of Groningen, 9747 AE Groningen, The Netherlands
bDepartment of Digitalization, Copenhagen Business School, DK-2000 Frederiksberg, Denmark
c Swedish Center for Digital Innovation, Department of Applied Information Technology, University of Gothenburg, 41756 Gothenburg, Sweden

A R T I C L E I N F O

Keywords:
Innovation speed
Signals
Software development
Open source software
Digital innovation
Open innovation
Crowdsourcing

A B S T R A C T

It is often believed that for open source software (OSS) projects the faster the release, the better for attracting
user interest in the software. Whether this is true, however, is still open to question. There is considerable
information asymmetry between OSS projects and potential users as project quality is unobservable to users. We
suggest that innovation speed of OSS project can signal the unobservable project quality and attract users’
interest in downloading and using the software. We contextualize innovation speed of OSS projects as initial
release speed and update speed and examine their impacts on user interest. Drawing on the signaling theory, we
propose a signaling effect through which a higher initial release speed or update speed increases user interest,
while the effect diminishes as initial release or update speed increases. Using a large-scale panel data set from
7442 OSS projects on SourceForge between 2007 and 2010, our results corroborate the inverted U-shaped re-
lationships between initial release speed and user downloads and between update speed and user downloads.

1. Introduction

Open source software (OSS) has gained great popularity in recent
years [1,64]. OSS projects are hosted on the online platforms and rely
on voluntary participation of crowd labor [2]. The online workforce
contributes to the code base of OSS, making it essentially a result of
crowdsourcing of the software innovation projects (e.g., [3,4]). Well-
known OSS projects include Apache, Linux, MySQL, R, Perl, and Open
Office, which have attracted numerous users [5]. For example, the ac-
cumulative downloads of Open Office grew over 63 times within three
and half years1. What factors may influence user interest in an OSS and
make it popular is, therefore, an important question [6–10].
For potential users, the adoption decision of an OSS involves the

information asymmetry regarding project quality, in terms of developer
quality and code quality [11]. To deal with such information asym-
metry, users need to rely on observable cues. Prior OSS research has
noted that certain project factors may serve as signals to reduce in-
formation asymmetry. For example, Stewart et al. [8] suggested that
organizational sponsorship to OSS projects could serve as a cue when
evaluating an OSS. Sen et al. [12] proposed that OSS license choice

could indicate the utility of OSS to potential users. Similarly, Wen et al.
[10] suggested that intellectual property rights (IPR) enforcement
provides a proximate signal about the risks to developers. Recently, Ho
and Rai [11] found that quality controls of firm-participating OSS
projects can signal project quality to developers and increase their
continuous participation. In this study, we broaden this stream of re-
search by examining the impacts of timing factors, which has been
understudied in the literature, on user interest in an OSS. We argue that
innovation speed can signal unobservable project quality to potential
users and influence their decisions to download and use an OSS.
The innovation literature suggests that innovation speed sub-

stantially impacts the success of new product development projects
[65,66]. Relevant to innovation speed, release management has been
suggested as one of the most important project management issues in
OSS development [13,14]. How does innovation speed of OSS projects
influence user interest in OSS projects? This is an important question
because in the OSS context, it is often reckoned that the faster the
better. For example, a general guideline for OSS projects on Source-
Forge suggests: ‘Release early, release often’ is the key motto in open
source development2. We challenge this wisdom by unveiling the

https://doi.org/10.1016/j.im.2018.11.002
Received 17 March 2017; Received in revised form 27 October 2018; Accepted 7 November 2018

⁎ Corresponding author at: Department of Innovation Management and Strategy, Faculty of Economics and Business, University of Groningen, 9747 AE Groningen,
The Netherlands.

E-mail address: john.dong@rug.nl (J.Q. Dong).
1 Available on http://www.openoffice.org/stats/downloads.html.
2 Available on http://sourceforge.net/apps/trac/sourceforge/wiki/Project%20control.

Information & Management 56 (2019) 669–680

Available online 11 November 2018
0378-7206/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03787206
https://www.elsevier.com/locate/im
https://doi.org/10.1016/j.im.2018.11.002
https://doi.org/10.1016/j.im.2018.11.002
mailto:john.dong@rug.nl
http://www.openoffice.org/stats/downloads.html
http://sourceforge.net/apps/trac/sourceforge/wiki/Project%20control
https://doi.org/10.1016/j.im.2018.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.im.2018.11.002&domain=pdf


complex signaling effects of innovation speed of OSS projects on user
interest by taking the information symmetry between OSS projects and
potential users into consideration.
Specifically, we contextualize the concept of innovation speed and

conceptualize initial release speed and update speed in the OSS context,
where initial release speed refers to how fast the first prototype is re-
leased in an OSS project, and update speed refers to how often updates
and patches are released in an OSS project. Drawing on the signaling
theory [67,68], we argue that there is notable information asymmetry
between OSS projects and users, while fast initial release and frequent
updates of an OSS have an overlooked side effect to signal unobservable
project quality to potential users. On the one hand, a high initial release
speed or update speed indicates strong capabilities of developers and
high quality of software, encouraging potential users to download and
use an OSS. On the other hand, however, a very high speed elicits users’
concerns regarding unobservable developer and code quality, reducing
their interest in the OSS. Using a large-scale panel data set from 7442
OSS projects on SourceForge between 2007 and 2010, we find em-
pirical evidence corroborating the inverted U-shaped relationships be-
tween initial release speed and user downloads, and between update
speed and user downloads.
This study has several contributions to the OSS literature. Drawing

on the signaling perspective, we recognize the information asymmetry
between OSS projects and potential users and theorize how innovation
speed may signal unobservable project quality to potential users.
Furthermore, we theorize and examine innovation speed in the OSS
context, a critical timing aspect of OSS projects that has not been sys-
tematically studied. Specifically, we conceptualize two dimensions of
innovation speed for OSS projects (i.e., initial release speed and update
speed) and postulate the inverted U-shaped relationships between in-
itial release speed and user downloads, and between update speed and
user downloads. Our empirical evidence enriches the OSS literature by
providing robust and generalizable findings corroborating the hy-
pothesized inverted U-shaped relationships.
This paper is organized as follows. Section 2 provides a review of

the relevant OSS literature. In Section 3, we first conceptualize in-
novation speed in the OSS context and characterize the context to il-
lustrate why the signaling theory can be used. We then develop theo-
retical arguments for the signaling theory articulating the impacts of
innovation speed on user interest in OSS projects. Empirical metho-
dology is described in Section 4, and results are reported in Section 5. In
Section 6, we conclude the paper by discussing the theoretical and
practical implications, as well as the limitations and directions for fu-
ture research.

2. Literature Review

Diverse topics have been investigated in the OSS literature [5,15],
such as developers’ motivations to contribute to OSS projects [2,16],
developers’ interaction and diversity [17], license choice [8,12,18],
code reuse [19], project team learning [20,21], firm sponsorship [16],
firms create and capture value from OSS [1,22], and competition be-
tween open source and proprietary software [23]. Since OSS innovation
process and user interest are explicitly relevant to our study, the lit-
erature review focuses on these two areas.

2.1. OSS innovation process

OSS projects usually require long term contribution from a group of
members [24]. Moon and Sproull [25] conducted a case study of Linux
and described how the Linux project started from Linus Torvalds’s
improvements of Minix and evolved into a large-scale collaboration.
Gallivan [26] performed a secondary analysis of published cases of OSS
studies and highlighted the role of trust among the different partici-
pants of OSS projects (core developers, peripheral developers, and
posters to mailing list). In addition to case studies, there are also studies

based on archival data. Lee and Cole [27] analyzed archival data of
Linux project and noted that developers naturally sort themselves into a
two-tier structure, a small group of core developers and a large group of
periphery developers. The core developers include a project leader and
hundreds of maintainers, and the periphery developers are organized
into the development team and the bug reporting team. Their roles
merge in the process of performing tasks. Using archival data from
SourceForge, Daniel et al. [6] recognized the diversity of OSS teams,
and examined the effects of team diversity, in terms of separation,
variety, and disparity, on responses to forum posts, artifact (e.g., bug
report and feature request) closure, and total number of downloads. Au
et al. [20] examined team learning effects, and found as the number of
bugs resolved increased, the average bug resolution time decreased.
Team size and developers experiences also influence bug resolution
time. Recognizing the complexity in OSS teams, Singh and Tan [17]
built non-cooperative game-theoretic model to study the network for-
mation in an OSS team and found there may exist several stable
structures that are inefficient and there may not always exist a stable
structure that is efficient. To examine developers’ learning, Singh et al.
(2011) built hidden Markov model to analyze archival data, and found
that there were different learning patterns, developers of low or high
statues may learn from their own experiences or from peers. Though
these studies provide insights about OSS innovation process, under-
standing about the dynamics in OSS projects from a timing perspective
is relatively limited.

2.2. User interest in OSS

In the OSS literature, a significant portion of studies are about de-
veloper’s motivation to contribute to OSS projects (e.g.,
[2,11,16,28–30]). Fewer studies took the users’ perspective to examine
user interest in downloading and using OSS. Among such studies, Setia
et al. [7] noted the role of peripheral developers (who are not formal
members of the core development team and contribute much less code
to the projects) and showed that the existence of peripheral developers
has a positive effect on the popularization of OSS (measured by the
number of downloads). Stewart et al. [8] examined the impacts of li-
cense restrictiveness and organizational sponsorship on user interest
and noted projects that are sponsored by nonmarket organizations and
that employ nonrestrictive licenses attracted more subscribers. Wen
et al. [10] investigated the effects of intellectual property right (IPR)
enforcement on open source software project success, and their analysis
showed that the lawsuits of SCO v. IBM and FireStar/DataTern v. Red
Hat lead to decline in user downloads. Daniel et al. [6] founded that
developers’ diversities influence developer engagement and project
market success (operationalized by the number of downloads). Sutanto
et al. [9] discussed the relationship between properties of the user
support network and OSS popularity (in terms of the number of
downloads or the number of active users — users who are active in
contributing to the forum). These studies all consider user interest as an
important indicator of OSS project success, however, as we noted, the
studies either did not explicitly discuss how users assess the quality of
the OSS project before downloading the software (e.g., [6]) or only
alluded to the challenges users face when evaluating the quality of the
OSS project [8,10]. As we will discuss in the theory and hypotheses
section, users are facing difficulties when assessing project quality due
to information asymmetry, and innovation speed of OSS projects is
likely to be a signal influencing user interest in OSS.

3. Theory and hypotheses

3.1. Innovation speed in the OSS context

Innovation speed has been widely studied in the research on new
product development (e.g., [65,69,70,71]). Overall, three perspectives
have been used to conceptualize innovation speed. Kessler and

J.Q. Dong et al. Information & Management 56 (2019) 669–680

670



Chakrabarti [65] reviewed innovation speed research and categorized
two different perspectives: the initial release perspective and the
schedule tracking perspective (Table 2, p. 1151). Some other studies
took another perspective — the upgrading perspective (e.g., [71,72]),
as some products may have long lifetime and need to be periodically
upgraded. Table 1 summarizes the definitions and key references for
each perspective on innovation speed.
As for the initial release perspective, scholars have been focusing on

innovation speed based on how long it takes for an idea to be trans-
formed into a marketable entity (e.g., [65,73–75]). In this perspective,
innovation speed is defined as “the time elapsed between initial de-
velopment, including the conception and definition of an innovation
and ultimate commercialization, which is the introduction of a new
product into market place” ([65], p. 1144). From this perspective, we
define initial release speed in the OSS context as how soon an OSS project
releases its first version of software since project launch.
From the schedule tracking perspective, some scholars often com-

pare the actual progress of a project with its planned schedule (e.g.,
[76,77]). This perspective is, however, not suitable for OSS projects,
because typical schedules usually do not exist in OSS projects. The
schedule of OSS development is not written anywhere, and not made
visible [37]. Thus, we do not theorize innovation speed in the OSS
context from the schedule tracking perspective.
As for the upgrading perspective, innovation speed has been defined

as the timing strategy of introducing the upgrades of a product [72], or
the degree to which marginal products are weeded out [71]. Because
OSS, or software in general, needs to be updated continuously during its
lifecycle [79], the upgrading perspective is particularly relevant to OSS
projects. An important attribute of software innovation is that it is
continuously updated during the lifetimes [78]. After an initial release
of an OSS, users usually identify and report vulnerabilities or mal-
functions. Patches are created and released by developers to fix these
problems [79,80]. Meanwhile, users may require new features, so up-
grades are developed to address their requests. Modification requests,
bug fixes, and new enhancements are continuously released in OSS
projects [38,81]. Therefore, initial release is only a start of the in-
novation journey; after releasing the first version, OSS developers need
to persistently work on the project to update the software. Com-
plementary to initial release, updates reflect the innovation speed
during OSS project lifecycle. From the updating perspective, we define
update speed of OSS projects as how frequent an OSS project releases
new version or new patch of software.
Beyond the OSS context, time relevant factors have been considered

as important measures of performance in the broader software devel-
opment literature [39]. Software development research has discussed
delays in software projects, and the losses due to the delays were fre-
quently observed in practice [40,41]. Some studies examined the
antecedents of software development speed, such as how geographic
distance and cross-site communication among development team
members may influence development speed [42]. Others investigated
software development process management, in which time is con-
sidered as a measure of project input or constraint, or a measure of
outcome or success (e.g., [40,43]). For example, Boehm [44] noted the

emphasis on time-to-market and how this emphasis influenced changes
in software development processes, as “a major shift away from the
sequential waterfall model to models emphasizing concurrent en-
gineering…” (p. 18). To the best of our knowledge, however, none of
these studies have paid attention to how timely release and updating
frequency may influence user interest in software and instead, timely
release itself was considered as part of software project quality. In this
study, we specifically examine the role of innovation speed of OSS
project as a signal in influencing user interest in OSS.

3.2. Innovation speed of OSS projects as a signal

Downloading, installing, and learning software involve time and
effort and are even subject to risks due to malfunctions. Such costs
make users less likely to try every OSS, but rather urge them to select
one software that has good quality and reliable support. Different from
proprietary software products, OSS software products usually involve
more uncertainties that influence product quality and survival [7].
Proprietary software products are introduced to the market after con-
siderable testing, and companies have dedicated developer teams to
provide support and maintenance [45]. More importantly, potential
users of proprietary software have access to a vast amount of in-
formation released from advertising campaigns by software companies,
in conjunction with the reputation of software companies, considerably
helping them to assess the quality of proprietary software. [7]. Software
companies heavily invest in various commercial and marketing in-
itiatives, in order to reduce potential users’ information asymmetry
about their software products and promote user interest. Taking Mi-
crosoft — one of the largest development software companies — as an
example, its annual expenditure on marketing and sales have raised up
to more than 17 billion U.S. dollars in 20183. Similarly, Electronic Arts
(EA) — one of the largest games software companies — spent 641
million U.S. dollars on marketing and sales in 20184.
Prior studies have either explicitly or implicitly noted that it is

challenging for users to assess OSS project quality [8,11,82]. For ex-
ample, Stewart et al. [8] noted that “organizational sponsorship may
imply the availability of technical support, upgrades, and other re-
sources that may be needed over the long term by consumers of soft-
ware products” (p. 131). Sen et al. [12] proposed that OSS license
choice “can signal the overall utility of the software to potential users”
(p. 209). Wen et al. [10] suggested that “the implications of IPR en-
forcement through litigation actions rather than the existence of formal
IPR like patents or copyrights because the former provides a more
proximate signal about the risks to users and developers” (p. 1132). Ho
and Rai [11] noted developers may take quality control procedures
(i.e., accreditation, code reuse) as signals, and influence their decisions
to continue participate in OSS projects, and proposed that “this in-
formation is relatively limited, and therefore developers rely on signals

Table 1
Different Perspectives of Conceptualization Innovation Speed.

Perspective Conceptualization Reference

Initial release perspective The length of time elapsed from the beginning of applied research (if there were any) by the innovator on a new
product or process to the date of the new product’s or process’s first commercial introduction.

Mansfield [75]

The time elapsed between start of the development process and market introduction. Clark and Fujimoto [74]
Total project time from the beginning of idea generation to the end of market launch. Ali et al. [73]

Schedule tracking perspective The degree to which a project met an assigned schedule. Keller [76]
The degree to which a project was ahead, on or behind schedule. McDonough [77]

Upgrading perspective The timing of introducing the upgrades of a new release. Padmanabhan et al. [72]
The degree to which marginal products are regularly weeded out. Tambe et al. [71]

3 Available on https://www.statista.com/statistics/506534/microsoft-sales-
marketing-expenditure.
4 Available on https://www.statista.com/statistics/672141/electronic-arts-
marketing-and-sales-spending.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

671

https://www.statista.com/statistics/506534/microsoft-sales-marketing-expenditure
https://www.statista.com/statistics/506534/microsoft-sales-marketing-expenditure
https://www.statista.com/statistics/672141/electronic-arts-marketing-and-sales-spending
https://www.statista.com/statistics/672141/electronic-arts-marketing-and-sales-spending


associated with quality controls for a more comprehensive assessment
of project quality to inform their continued participation intentions” (p.
604).
Although OSS projects open the code of their software, it is very

labor-intensive and skill-demanding to inspect the code to assess project
quality [11]. For example, OSS projects with less than 100,000 lines of
code had a defect density of 0.4 and OSS projects with more than
100,000 lines of code had a defect density of 0.6 [46]. To find out a
defect in the code, an OSS developer needs to engage in an inspection of
on average 1700–2500 lines of code. While some OSS developers are
users, the majority users never participate in OSS development [47]. It
is difficult for them without sophisticated knowledge and skills to assess
project quality by checking the open code. Software development is a
knowledge intensive process and project quality depends on all aspects
of software development [48]. Even if a user is a software developer, he
or she may not be capable of assessing all aspects. Depending on their
roles, developers only read and write a small portion of code in the OSS
project with a modular architecture. Thus, the available code may not
be thoroughly assessed and automated inspection tools are limited in
their ability to inspect defects [49]. Different from proprietary software
customers who are informed by companies through various commercial
and marketing initiatives, OSS users have limited knowledge about the
quality of OSS projects. Potential users may rely on observable signals
to distinguish different projects and make their download decisions.
Although the signaling theory often assumes that signalers deliberately
send signals to receivers, it is possible that signalers signal receivers
without intent [50]. However, it does not affect how receivers respond
to signals [51].
The signaling theory is relatively new to OSS research, in which a

couple of prior studies briefly mentioned some OSS project character-
istics can serve as signals (e.g., [8,10,12]). To the best of our knowl-
edge, Ho and Rai [11] is the only study systematically using the sig-
naling theory to investigate continued participation intentions of
developers in firm-participating OSS projects. Their recent work pro-
vides useful insight into how OSS project features — OSS project lea-
ders’ quality controls (accreditation and code acceptance), though in a
different context in which firms are involved, produce a side effect by
signaling unobservable input and output quality of an OSS project —
developer quality and code quality [11]. Developer quality is critical to
OSS projects to produce successful and popular software, as 80% of OSS
projects failed during development [2]. Code quality determines the
usefulness of an OSS, and therefore users’ decision to download and use
the software [52]. Although there is a paucity of OSS studies drawing
on the signaling theory, it has been widely used across different con-
texts (see Table 2 for a summary).
Our study focuses on a different research context consisting of OSS

projects without firm participation, in which accreditation and code
acceptance are not formally established. For such projects based on
crowd only, we identify initial release speed and update speed of OSS
projects that can signal unobservable developer quality and code
quality. Our central argument is that signaling associated with in-
novation speed is helpful to users in assessing developer quality and
code quality of an OSS project when making their decisions to down-
load and use a software, while OSS project leaders may not be aware
that their decisions regarding innovation speed act as signals to inform
unobservable project quality to users. Next, we detail the rationale
about how initial release speed and update speed impact user interest in
OSS through signaling developer quality and code quality.

3.3. Innovation speed of OSS projects and user interest

Information asymmetry exists between OSS projects and potential
users. This is especially difficult for the initial release of OSS, because
they cannot draw inferences about developer quality and code quality
from other users’ downloads or feedback in this stage. We propose that
initial release speed can serve as a signal of developer quality and code

quality when users consider whether to download and use the first
version of an OSS. Achieving a high initial release speed is costly,
making it a trustworthy signal to users [55]. Software development
requires considerable programming efforts and skills. Quick initial re-
lease can be interpreted as a positive signal indicating strong cap-
abilities of developers in an OSS project in the short run. Additionally,
more capable developers are likely to deliver high quality code in a
short cycle time. In other new product development contexts, fast re-
lease is often associated with project success [65,66,74]. Thus, a higher
initial release speed of an OSS project increases users’ confidence of
software quality and encourages their downloads.
On the other hand, however, OSS development is usually a time-

consuming and iterative process, as prototype is tested, modified, and
tested again [38,53]. Developers’ participation determines the sus-
tainability of an OSS project [16,30]. When the initial release is too fast,
an OSS is often developed by a small group of core developers in a
closed environment without outside audience or participant [54]. It
indicates that the software has benefited very little from developing,
testing, feature adding, bug reporting and fixing by a vast of crowd in a
distributed environment, lowering the quality of code. Thus, very fast
release also elicits users’ concern about the capability of developers as it
suggests the degree to which the project can attract more developers
and form a strong project team is highly uncertain. Also, very fast re-
lease may also indicate potential flaws in an OSS. Thus, users may in-
terpret a very high initial release speed as a negative signal of developer
quality and code quality. Overall, users are likely to interpret initial
release speed within the middle range in the most positive way. Hence,
we suggest that the positive signaling effect of initial release speed on
user downloads will diminish when initial release speed increases,
leading to an inverted U-shaped relationship between initial release
speed and user downloads.

H1. Initial release speed of an OSS project has an inverted U-shaped
relationship with its user downloads.

Compared to the initial release, the information asymmetry is less
serious in the later stage of OSS projects, as many users have down-
loaded and used the initial version of software. However, it is still
difficult for the users, especially for those who haven’t used the soft-
ware, to predict whether developers are capable to continuously offer
reliable support in an OSS project. While users’ downloads and feed-
back also provide information about unobserved project quality, update
speed provides unique, additional information compared with initial
release speed about the capabilities and dedications of developers to an
OSS project in the long term. Again, achieving a high update speed is
costly, making it a trustworthy signal to users [55]. Users can take
update speed as a signal, because frequent updates imply the devel-
opers’ capabilities in an OSS project to respond quickly to users’ pro-
blems and requests and the quality of software. More capable devel-
opers continue to respond promptly to the reports of bugs and requests
for new features, leading to better code quality. In other new product
development contexts, it has been suggested that responding quickly to
requests for changes and keeping the clients informed of project pro-
gress are critical for success [83]. A high update speed of an OSS project
can signal that developers have sufficient capabilities to address user
needs and increase users’ confidence of code quality, thereby en-
couraging their downloads.
On the other hand, however, too fast updates may lead potential

users to doubt the quality of developers, making them worried about
the developers’ capabilities to develop functional software. OSS devel-
opment requires significant long-term investment in maintenance as a
result of its long-term, interactive nature [56]. Frequent patches may
also suggest vulnerabilities in the earlier versions of software, inviting
potential users’ concerns about code quality of the software. Overall,
users are likely to interpret an update speed within the middle range in
the most positive way. Hence, we caution that the positive signaling
effect of update speed on user downloads will diminish when update

J.Q. Dong et al. Information & Management 56 (2019) 669–680

672



speed increases. Summarizing the above rationale, we hypothesize an
inverted U-shaped relationship between update speed and user down-
loads.

H2. Update speed of an OSS project has an inverted U-shaped
relationship with its user downloads.

4. Methodology

4.1. Data

We collected a large-scale panel data set from SourceForge (sour-
ceforge.net). SourceForge was selected because it is one of the largest
online OSS communities5. It provides a standard technology toolset for
OSS projects, including code repositories, download statistics, defect
reporting, and other project management tools. SourceForge organizes
projects under different categories. We selected all the projects from the
largest category — “development” projects. To construct a project-
month panel, we gathered the data over a 36-month period from the
launch date of each project. As we collected data in January 2013, to
ensure enough time spam we sampled all development projects that
were launched between 2007 and 2010.
Among the registered products on SourceForge, there are some

projects which provide no software for users to download. As including
such projects with no release and thus no downloads can bias our re-
sults, we only focused on the projects with at least one release of

software. Among a total of 20,212 development projects launched on
SourceForge between 2007 and 2010, there are 7521 projects with
releases. Moreover, there are projects with downloads before the “first”
release date, these downloads indicated that old version files might
have been removed by the project team. To avoid any contamination of
our data, such projects were dropped from our sample. Our final sample
consists of 7442 projects, launched between 2007 and 2010.

4.2. Measures

4.2.1. User downloads
Scholars have proposed various indicators of OSS project success,

such as the number of downloads, the number of individuals who have
subscribed to the project’s mailing list, release of new features, traffic
on the website, writes to codes, etc. [8,17,84,85]. Basically, these in-
dicators fall into two categories — developer activity and user interest
[8]6. As we are interested in how users make download decisions under
conditions of information asymmetry, we focus on user interest. Among
the indicators of user interest, user downloads are widely used in prior
OSS studies [8,85,86]. Though it cannot perfectly capture software use,
it can be considered a reasonable proxy7. Therefore, monthly numbers
of downloads were collected for each project to measure user down-
loads. To reduce the skewness, we take the natural logarithm of the

Table 2
A Summary of Prior Studies Using the Signaling Theory.

Reference Signals Context Findings

Boulding and Kirmani
[31]

Product warranties (e.g., warry length, and scope) Consumers The study examines consumers' perceptions of warranties through the
lens of signaling theory. Warranty’s quality in terms of length and scope
can signal product quality. Experiment results show that consumers
perceive a product with a better warranty is of higher quality than a
product with a poorer warranty, when firms face penalty for not-fulfilling
the warranty.

Albinger and Freeman
[32]

Firm’s corporate social performance (CSP) Job seekers Firms’ CSP may serve as signals of working conditions, organizational
values and norms to job candidates for job seeking population. For job
seekers with more choices, there exists a strong positive relationship
between organizations’ CSP and organization their attractiveness.

Wang et al. [33] Online retailers’ website cues Consumers Small online retailers may use website cues as signals. Experiment results
show that security disclosures and awards from neutral sources increase
consumers’ trust, and seals of approval and privacy disclosures increases
consumer’s likelihood to disclose information.

Cohen and Dean [34] Top management team (TMT) legitimacy Investors In the context of initial public offering (IPO), TMT legitimacy can serve as
signal to investors. Investors perceive legitimate TMT involvement as a
signal of the economic potential of the firm, and TMT legitimacy reduces
the likelihood of IPO underpricing.

Mavlanova et al. [35] E-commerce website contents and features (e.g., contact
information, privacy policy, their party seals, live chat,
and consumer feedback)

Consumers E-commerce pharmacies can signal their qualities through website
contents and features. The signals are classified according to cost of
signaling and difficult of verification. Analysis of archival data show that
low-quality pharmacies use fewer signals than high-quality pharmacies in
the pre-contractual phase. Low-quality pharmacies seem to avoid easily
verifiable signals, and high-quality pharmacies do not refrain from
displaying easily verifiable signals. Low-quality pharmacies also avoid
high-cost signals.

Ahlers et al. [36] Entrepreneurs retain equity and providing detailed
information about risks.

Investors In the context of equity crowdfunding, entrepreneurs can signal the
quality of a project by retaining equity and providing more detailed
information about risks. When entrepreneurs retain equity and provide
more information about risks, likelihood of funding success increases.

Ho and Rai [11] OSS accreditation and code acceptance OSS developers OSS accreditation can be perceived as a signal of input quality and code
acceptance can be perceived as a signal of output quality of OSS projects
for OSS developers. Results suggest accreditation and code use positively
influence developers’ continued participation intention in OSS projects.

5 At the time of data collection in January 2013, SourceForge provided free
hosting for more than 324,000 projects and more than 3.4 million members. It
attracted more than 46 million users and more than 4,000,000 downloads per
day.

6 Grewal et al. [86] similarly framed these two categories as technical success
and commercial success of OSS projects. Daniel et al. [6] framed them as
community engagement and market success.
7 “The number of downloads is a market-based measure of popularity, which
should relate to product use, particularly when software is distributed through a
single channel as in the case of SourceForge.net (e.g., [84]). When a software
product is freely available, researchers have used downloads as a surrogate for
‘sales’ (e.g., Chandrashekaran et al. 1999)” ([86], p. 1047).

J.Q. Dong et al. Information & Management 56 (2019) 669–680

673



number of downloads. To avoid reverse causality, we lag all variables to
user downloads for one period, namely one month8.

4.2.2. Innovation speed
Two aspects of innovation speed were measured according to their

definitions. Initial release speed is defined as how soon an OSS project
releases its first version of software since project launch. We measure
initial release speed by the reciprocal of the number of days from
project launch on SourceForge9 to the initial release. Update speed is
defined as how frequent an OSS project releases new version or new
patch of software. We use the number of updates in each month after
the initial release as the measure of update speed. Because significant
updates matter to the users, four criteria were enforced to identify the
updates of a project: 1) not only updates in the root directory but also
updates in the second level and the third level directory of the file
folders are identified; 2) multiple updates on the same day are counted
only once; 3) small changes (e.g., a change of file of which the type is
text, pdf, jpg, etc.) are excluded; and 4) the updates are downloadable
files.

4.3. Control variables

While our study focuses on examining the impacts of initial release
speed and update speed on user downloads, other attributes may also
contribute to user interest in an OSS project. Hence, we control for a set
of factors that might affect user downloads based on prior OSS litera-
ture. We use monthly data for time-variant control variables, otherwise
we use time-invariant data for each project. We take the natural loga-
rithm of continuous variables to reduce the skewness.

4.3.1. User downloads in previous period
Technology adoption decisions are considerably influenced by prior

adopters [87,88]. We dynamically control user downloads in previous
period that provide potential users an important cue of project quality.
Dynamic control for the dependent variable over time also helps to
address endogeneity as the effects of unobservable omitted variables on
user downloads are controlled.

4.3.2. Developer writes
Prior studies have suggested that developers’ efforts are related to

the success of OSS projects [57,86,89,90]. We control the number of
writes made by developers into codes or files on SourceForge as a proxy
of their efforts to a project.

4.3.3. Length of project description
Clarity of goals and targets is related to project success [65]. We

follow Hahn et al.’s [82] measure of project information availability
and control the number of words in project description as a proxy of
goal clarity.

4.3.4. Number of categories
Audience type can influence user interest [8,21]. A project is pos-

sible for different types of use, and thus might be under different

categories. The number of categories indicates how many different
categories a project belongs to at the same time. Because the projects in
different categories usually have different target users, we use the
number of categories as a proxy for the variety of user type.

4.3.5. Number of leaders
Project leaders are usually the key developers of OSS projects [91],

which are listed on the project webpage on SourceForge. We control the
number of project leaders who are key developers in a project.

4.3.6. Multiple participations of leaders
Multiple participations of project leaders may indicate their ex-

perience and effort devoted to a project, which is controlled by the
average number of projects that they have participated in.

4.3.7. Initial release size
File size indicates the richness of features and functions in the

software, therefore it may affect user downloads. We control the size of
first version, as measured by kilobytes of the software.

4.3.8. Code reuse
There is a “fork” phenomenon in OSS projects, in which developers

reuse codes from other projects. We follow the approach of Nyman and
Mikkonen [92] and compile a list of keywords, including “clone”,
“fork”, and “repackage”, based on the terms identified in prior OSS
studies (e.g., [19,93–95]). We also included additional keywords, in-
cluding “reuse”, “library”, “libraries”, “integrate”, “integration”, “re-
define”, and “overlap”. We search these keywords in the description of
each project and identify the projects with code reuse. If so, we code it
as 1 and 0 otherwise.

4.3.9. License dummies
Researchers have suggested that license choice impacts OSS diffu-

sion, because license restrictiveness may affect the benefits and costs
from using the software [8,10,58,96]. We follow prior literature to code
and control for three types of licenses as highly restrictive, restrictive,
or unrestrictive [59,60,85]. First, strong copyleft indicates whether a
project has the GNU General Public License (GPL), which requires the
subsequent derivative programs based on the original must also be li-
censed similarly. Second, weak copyleft indicates whether a project has
the GNU Lesser General Public License (LGPL), which requires that the
subsequent programs based on the original must also be licensed si-
milarly, but the modified software can be released under a different
license under certain conditions. Finally, no copyleft indicates whether
a project has the Berkeley Software Distribution (BSD), in which de-
velopers are not obligated to inherit the original license when they
redistribute any derivative work.

4.3.10. Time dummies
Quarterly time dummies based on project registration date were

included. These dummy variables can control the temporal differences.
Table 3 provides the description for each variable. Descriptive sta-

tistics of all variables are reported in Table 4, and correlations of these
variables are reported in Table 5. There are statistically significant and
positive correlations between user downloads and the two innovation
speed variables. Besides, user downloads in continuous periods are
highly correlated.

4.4. Analysis strategy

Our research design leads to a nested structure as each OSS project
has multiple observations at different points of time. There are two
levels of random variations — the user downloads within OSS projects
over time and the user downloads between projects. We therefore ap-
plied a mixed effects hierarchical linear model to allow different in-
tercepts for each OSS project. This model can control for level-specific

8 In a robustness check, we also tried different time lags and found that our
results were consistent.
9 It is likely that some OSS projects may have developed the first version of
software before project launch on SourceForge. However, we argue that this
should not be the case for the majority as most projects launch on SorceForge
for obtaining useful input from other voluntary developers to complete the
software [2]. Even if this is the case for most of OSS projects, we should not be
able to observe any significant effect of initial release speed on user interest.
Thus, our measure of initial release speed could only be more conservative if
more projects completed the first version of software before project launch on
SourceForge. If we are still able to observe any significant effect of initial re-
lease speed on user interest, this concern actually makes our evidence stronger.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

674



unobserved heterogeneity by including random or fixed effects terms
[61]. In addition, it allows for unbalanced panel data and does not
require observation independence [61]. The parameters were estimated
by mixed effects maximum likelihood regression analysis. For hy-
potheses testing, we assessed z statistics and calculated p-values for the
regression coefficients. We compared the different models by using
goodness-of-fit statistics, including log likelihood, Akaike information
criterion (AIC) and Bayesian information criterion (BIC). We also
computed pairwise χ2 statistics to examine significance of the im-
proving model fit.

5. Results

5.1. Hypotheses testing

To test our hypotheses, we stepwise amended a baseline model with
control variables only and random intercepts included. We then added
initial release speed and its squared term to the control model. Next, we
added initial release speed and its squared term to the control model.
Finally, we estimated a full model with both initial release speed and
update speed, as well as their quadratic terms. To control for reverse
causality, we lagged all variables to user downloads for one month.
The regression results are reported in Table 6. Adding initial release

speed and its squared term significantly improved the model fit, com-
paring to that of the control model. Adding update speed and its
squared term also significantly improved the model fit, comparing to
that of the control model. The full model shows the best model fit,
comparing to that of the control model. The improvement of model fit
can also be seen from the decrease of AIC or BIC.
Initial release speed had a statistically significant and positive effect

on user downloads while the squared term of initial release speed had a

statistically significant and negative effect on user downloads. These
results indicate an inverted U-shaped relationship between initial re-
lease speed and user downloads. Thus, H1 was supported. Update speed
had a statistically significant and positive effect on user downloads
while its squared term is statistically significant and negative, sug-
gesting an inverted U-shaped relationship between update speed and
user downloads. Thus, H2 was also supported.
Besides, developer writes, length of description, number of cate-

gories, number of leaders, initial release size positively affected user
downloads. Consistent with previous findings in the literature [8,85],
restrictive licenses (i.e., strong and weak copyleft) negatively impacted
user downloads, as it might limit developer activity and thus lower user
interest.
To visualize the inverted U-shape of these relationships, we plotted

the relationships in the feasible ranges of initial release speed and up-
date speed. Fig. 1 shows the inverted U-shaped relationship between
initial release speed and user downloads, while Fig. 2 shows the in-
verted U-shaped relationship between update speed and user down-
loads.

5.2. Robustness checks

We conducted several robustness checks. First, we examined the
sensitivity of our results to different time lag specifications10. In hy-
potheses testing, we lagged all variables to user downloads for one
month. In this robustness check, we tried 3-month, 6-month, 9-month,
and 12-month time lags. Table 7 reports the results. We found that the
curvilinear effects of initial release speed and update speed on user
downloads still existed, even after 12 months.
Second, we examined the generalizability of our findings based on

another category on SourceForge — “games” projects, which is also a
big category but quite different from development projects. While de-
velopment projects focus on providing functionality and utility, games
projects may focus more on entertainment and fun and therefore may
attract a lot of tryouts from individual users11. We used the same
sampling procedure and ran the analysis again with 88,977 project-
month observations from 2634 games projects in 36 months since the
launch date of each project. The results in Table 8 show basically
consistent results supporting H1 and H2.
Third, since a number of project-month observations in our panel

data have no downloads, we used a Tobit model with left-censoring to
test H1 and H2 again. In the Tobit model, 33,776 observations were left
censored in the analysis. The results reported in Table 8 are qualita-
tively similar to the main results, providing support for H1 and H2.

Table 3
Description of Variables.

Variable Description

User downloads The logged number of downloads in the corresponding time period
Recommendation ratio The number of positive ratings divided by the total number of ratings
Initial release speed The reciprocal of the number of days from project launch to the initial release
Update speed The number of updates per month
Developer writes The logged number of times developers write the project code/file in the corresponding time period
Length of description The logged number of words in project description
Number of categories The logged number of categories the project belonged to (e.g., browsers, chat, and email)
Number of leaders The logged number of leaders of the project
Multiple participations of leaders The logged average number of projects that project leaders participate in
Initial release size The logged kilobytes of the first version released by the project
Code reuse Dummy variable indicates whether the focal project reuse codes from other projects
Strong copyleft Dummy variable indicates whether the project has a very restrictive license GLP
Weak copyleft Dummy variable indicates whether the project has a less restrictive license LGLP
No copyleft Dummy variable indicates whether the project has no restrictive license BSD

Table 4
Descriptive Statistics.

Mean SD Min Max

User downloads 2.394 1.704 0 14.540
Initial release speed 0.307 0.338 0.001 1
Update speed 0.113 0.510 0 27
User downloads in previous period 2.417 1.693 0 13.679
Developer writes 0.269 1.087 0 11.725
Length of description 3.226 0.563 0 5.170
Number of categories 1.023 0.332 0.693 1.946
Number of leaders 0.773 0.225 0.693 2.833
Multiple participations of leaders 1.274 0.716 0 4.615
Initial release size 5.658 2.432 0.004 14.451
Code reuse 0.007 0.082 0 1
Strong copyleft 0.380 0.485 0 1
Weak copyleft 0.130 0.336 0 1
No copyleft 0.090 0.286 0 1

10 We thank the anonymous associate editor and reviewer for suggesting this
point.
11 We thank one anonymous reviewer who suggested this point.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

675



Finally, we used recommendation ratio as an alternative measure
for user interest. User ratings have been widely used to evaluate user
satisfaction about products or services (e.g., [97,98]). We calculated
recommendation ratio as the number of positive ratings that an OSS
project received from users on SourceForge divided by the total number

of ratings. Because we can only observe user ratings and re-
commendation ratio at the time of data collection in January 2013, we
conducted a cross-sectional analysis by regressing recommendation
ratio on initial release speed, update speed, and their squared terms.
User downloads in previous period is omitted due to cross-sectional
design. As monthly data for a 36-month period is not required here, we
include all the 21,105 development projects with releases in the re-
gression. The results reported in Table 8 again support both H1 and H2.
Thus, we conclude that our results are robust.

Table 5
Correlations.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(1) User downloads
(2) Initial release speed −0.071
(3) Update speed 0.206 −0.017
(4) User downloads in previous period 0.890 −0.071 0.216
(5) Developer writes 0.193 −0.097 0.254 0.195
(6) Length of description 0.137 −0.018 0.028 0.136 0.027
(7) Number of categories 0.142 −0.071 0.033 0.141 0.066 0.153
(8) Number of leaders 0.164 −0.137 0.048 0.162 0.146 0.028 0.095
(9) Multiple participations of leaders −0.060 0.027 0.019 −0.064 0.004 −0.031 −0.007 −0.033
(10) Initial release size 0.192 −0.156 0.042 0.192 0.101 0.079 0.125 0.178 −0.025
(11) Code reuse 0.028 −0.000 0.002 0.028 0.005 0.030 0.008 0.019 −0.002 0.014
(12) Strong copyleft −0.036 -0.032 −0.036 −0.033 −0.085 −0.012 0.004 −0.059 −0.10 −0.021 0.003
(13) Weak copyleft −0.008 −0.040 −0.014 −0.008 −0.012 0.006 0.015 −0.016 −0.053 0.010 0.010 −0.191
(14) No copyleft 0.007 -0.029 0.012 0.007 0.025 −0.005 −0.007 0.041 0.008 −0.007 0.009 −0.206 −0.075

Note: Correlations in bold are significant at p<0.05.

Table 6
Mixed Effects Hierarchical Linear Model Results.

(1) (2) (3) (4)

Intercept 0.089
(-0.066)

0.046
(-0.068)

0.093
(-0.067)

0.050
(-0.068)

User downloads in
previous period

0.522***
(-0.002)

0.521***
(-0.002)

0.515***
(-0.002)

0.515***
(-0.002)

Developer writes 0.031***
(-0.002)

0.031***
(-0.002)

0.020***
(-0.002)

0.020***
(-0.002)

Length of description 0.148***
(-0.014)

0.146***
(-0.014)

0.149***
(-0.014)

0.147***
(-0.014)

Number of categories 0.233***
(-0.025)

0.235***
(-0.025)

0.234***
(-0.025)

0.236***
(-0.025)

Number of leaders 0.378***
(-0.036)

0.388***
(-0.036)

0.382***
(-0.036)

0.392***
(-0.036)

Multiple participations of
leaders

−0.057***
(-0.011)

−0.057***
(-0.011)

−0.059***
(-0.011)

−0.059***
(-0.011)

Initial release size 0.048***
(-0.003)

0.050***
(-0.003)

0.049***
(-0.003)

0.050***
(-0.003)

Code reuse 0.198*
(-0.098)

0.195*
(-0.098)

0.200*
(-0.099)

0.197*
(-0.099)

Strong copyleft −0.091***
(-0.018)

−0.094***
(-0.018)

−0.091***
(-0.018)

−0.094***
(-0.018)

Weak copyleft −0.078**
(-0.025)

−0.077**
(-0.025)

−0.078**
(-0.025)

−0.077**
(-0.025)

No copyleft −0.027
(-0.029)

−0.027
(-0.029)

−0.028
(-0.029)

−0.028
(-0.029)

Time dummies Yes Yes Yes Yes
Initial release speed 0.327***

(-0.091)
0.323***
(-0.091)

Initial release speed
squared

−0.316***
(-0.089)

−0.311***
(-0.089)

Update speed 0.099***
(-0.004)

0.099***
(-0.004)

Update speed squared −0.005***
(0.0005)

−0.005***
(0.0005)

Intercept variance 0.462***
(-0.009)

0.461***
(-0.009)

0.467***
(-0.009)

0.467***
(-0.009)

Residual variance 0.475***
(-0.001)

0.475***
(-0.001)

0.474***
(-0.001)

0.474***
(-0.001)

Log likelihood −276603 −276596 −276290 −276283
χ2 13.200** 626.650*** 639.300***
AIC 553264 553255 552641 552632
BIC 553566 553578 552965 552977

Note: n of projects= 7442; n of obs.= 251,807. * p<0.05; ** p<0.01; ***
p<0.001. Standard errors are in parentheses. Dependent variable is user
downloads with one-month time lag.

Fig. 1. The Relationship between Initial Release Speed and User Downloads.

Fig. 2. The Relationship between Update Speed and User Downloads.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

676



6. Discussion and conclusion

6.1. Theoretical implications

This study has three major theoretical implications for OSS research.
First, the signaling perspective emphasizes the importance of conveying
information about project quality to potential users, which is relatively
neglected in the OSS literature. Previous studies mainly discussed fac-
tors that may influence developers’ motivation to participate in OSS
projects (e.g., [2,16,62,63]) or factors that may influence user interest
in downloading and using OSS (e.g., [7,8,10]), but little attention was
paid to how the information about unobservable projects quality in
terms of developer quality and code quality can be communicated to
potential users. While Ho and Rai [11] recently drew on the signaling
theory to study how accreditation and code acceptance in firm-parti-
cipating OSS projects can signal project quality to developers and mo-
tivate their continued participation intentions, our study differs from
their work by explaining how innovation speed of OSS projects signals
project quality to users and attract their interest in OSS. We note that
users have limited knowledge about OSS projects, leading to a high
degree of information asymmetry between OSS projects and users. In
this context, OSS projects, and their project leaders in particular, may
signal developer quality and code quality to potential users through

innovation speed in release management.
Second, we introduce innovation speed, a timing concept from the

innovation literature, to OSS research. To the best of our knowledge,
ours is the first study taking a timing perspective to theorize the impacts
of OSS project characteristics. Prior OSS studies seldom discussed
timing factors and mostly focused on other factors that influence user
interest, such as developers’ motivations (e.g., developer values, and
prior experience) and project characteristics (e.g., license choice, and
project category [6,8]). We identify and theorize two constructs for
innovation speed in the OSS context — initial release speed and update
speed. Initial release speed refers to how soon an OSS project releases its
first version of software since project launch, and update speed refers to
how frequent an OSS project releases new version or new patch of
software. Our results indicate that the timing of initial release and
subsequent updates can significantly impact user interest in OSS.
Third, we theorize and empirically examine the effects of initial

release speed and update speed on user downloads in the OSS context.
Interestingly, both initial release speed and update speed could be
beneficial and detrimental depending on their levels. On the one hand,
fast initial release can indicate high developer quality and code quality.

Table 7
Sensitivity Analysis of Different Time Lags.

(1) (2) (3) (4)
3-month 6-month 9-month 12-month

Intercept 0.032
(-0.097)

0.062 (0.113) 0.088
(-0.134)

0.051
(-0.143)

User downloads in
previous period

0.329***
(-0.002)

0.221***
(-0.002)

0.083***
(-0.002)

0.036***
(-0.002)

Developer writes 0.021***
(-0.002)

0.024***
(-0.002)

0.027***
(-0.002)

0.026***
(-0.002)

Length of description 0.203***
(-0.020)

0.232***
(-0.024)

0.268***
(-0.028)

0.280***
(-0.030)

Number of categories 0.336***
(-0.035)

0.390***
(-0.041)

0.458***
(-0.049)

0.487***
(-0.052)

Number of leaders 0.573***
(-0.051)

0.664***
(-0.060)

0.791***
(-0.071)

0.866***
(-0.076)

Multiple participations
of leaders

−0.075***
(-0.016)

−0.085***
(-0.019)

−0.098***
(-0.022)

−0.093***
(-0.024)

Initial release size 0.070***
(-0.005)

0.081***
(-0.006)

0.095***
(-0.007)

0.010***
(-0.007)

Code reuse 0.273
(-0.14)

0.316
(-0.163)

0.374
(-0.192)

0.385
(-0.203)

Strong copyleft −0.144***
(-0.026)

−0.173***
(-0.030)

−0.207***
(-0.036)

−0.221***
(-0.038)

Weak copyleft −0.115**
(-0.036)

−0.135**
(-0.042)

−0.163***
(-0.049)

−0.178***
(-0.052)

No copyleft −0.045
(-0.041)

−0.058
(-0.048)

−0.066
(-0.057)

−0.075
(-0.060)

Time dummies Yes Yes Yes Yes
Initial release speed 0.427***

(-0.129)
0.475**
(-0.151)

0.566**
(-0.178)

0.595**
(-0.189)

Initial release speed
squared

−0.420***
(-0.126)

−0.469**
(-0.147)

−0.567**
(-0.174)

−0.601**
(-0.185)

Update speed 0.037***
(-0.004)

0.044***
(-0.005)

0.077***
(-0.005)

0.084***
(-0.005)

Update speed squared −0.002***
(-0.001)

−0.002***
(-0.001)

−0.004***
(-0.001)

−0.004***
(-0.001)

Intercept variance 0.947**
(-0.017)

1.290***
(-0.023)

1.798***
(-0.031)

2.019***
(-0.035)

Residual variance 0.536***
(-0.002)

0.548***
(-0.002)

0.549***
(-0.002)

0.532***
(-0.002)

Log likelihood −277321 −257239 −233377 −205890
AIC 554707 514543 466820 411846
BIC 555050 514883 467155 412177
n of projects 7422 7404 7378 7340
n of obs. 236,929 216,083 193,899 171,802

Notes: * p<0.05; ** p<0.01; *** p<0.001. Standard errors are in par-
entheses. Dependent variable is user downloads with different time lags.

Table 8
Robustness Checks for Different Projects, Alternative Models and Measures.

(1) (2) (3)
Games projects Tobit model Recommendation ratio

Intercept −0.048
(-0.106)

−0.080
(-0.071)

−0.012
(0.064)

User downloads in
previous period

0.574***
(-0.003)

0.561***
(-0.002)

0.019***
(0.001)

Developer writes 0.029***
(-0.003)

0.021***
(-0.002)

0.026***
(0.005)

Length of description 0.114***
(-0.020)

0.161***
(-0.015)

0.078***
(0.009)

Number of categories 0.186***
(-0.045)

0.247***
(-0.026)

0.144***
(0.013)

Number of leaders 0.370***
(-0.061)

0.402***
(-0.037)

−0.029***
(0.004)

Multiple
participations of
leaders

0.068**
(-0.022)

−0.156***
(-0.012)

0.012***
(0.001)

Initial release size 0.052***
(-0.005)

0.049***
(-0.004)

0.098*
(0.040)

Code reuse 0.078
(-0.062)

0.212*
(-0.102)

−0.062***
(0.007)

Strong copyleft −0.108***
(-0.028)

−0.072***
(-0.019)

−0.043***
(0.009)

Weak copyleft −0.205***
(-0.058)

−0.061*
(-0.026)

−0.017
(0.011)

No copyleft −0.120*
(-0.058)

−0.030
(-0.030)

0.019***
(0.001)

Time dummies Yes Yes Yes
Initial release speed 0.179

(-0.134)
0.315***
(-0.095)

0.096**
(0.033)

Initial release speed
squared

−0.229+

(-0.128)
−0.302**
(-0.093)

−0.091**
(0.034)

Update speed 0.153***
(-0.007)

0.101***
(-0.005)

0.468***
(0.041)

Update speed squared −0.007***
(-0.001)

−0.00530***
(-0.001)

−0.064***
(0.014)

Intercept variance 0.362***
(-0.012)

0.501***
(-0.010)

Residual variance 0.479***
(-0.002)

0.595***
(-0.002)

Log likelihood −97813 −295741
AIC 195691 591548
BIC 196001 591893
Adj. R2 0.108
n of projects 2634 7442
n of obs. 88,977 251,807 21,105

Notes: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001. Standard errors are in
parentheses. Dependent variable is user downloads with one-month time lag or
recommendation ratio at the time of data collection.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

677



On the other hand, as initial release speed is too high, users may doubt
the possibility of accumulating sufficient developers in project team and
the quality of software that is produced in a rush. Similarly, frequent
updates may be interpreted as a favorable signal indicating developers’
capabilities to provide high-quality software and continuous support to
users on the one hand, and may also be interpreted as a warning signal
suggesting the quality of software is not satisfying on the other. We
theorize the contradictory signaling effects of initial release speed and
update speed on user downloads and empirically demonstrate the evi-
dence that corroborates our theoretical arguments. Overall, our results
suggest that innovation speed has both usefulness and downsides to
signal developer quality and code quality of OSS projects.

6.2. Practical implications

Our findings shed light on the importance of release management
for OSS projects. Both initial release speed and update speed are under
the control of OSS project teams and project leaders can strategically
manage the timing of first and subsequent releases of software. Our
results indicate that initial endeavor to deliver first version of software
and continuous effort to update the software are both important to
attract user interest. For the marginal effect in our sample of OSS
projects, an increase of initial release speed for one standard deviation
can lead to a 45% increase of downloads relative to the average number
of downloads of our sampled OSS projects. At the same time, one extra
update per month also leads to a 46% increase of downloads relative to
the average number of downloads of our sampled OSS projects. These
findings offer actionable guidance for OSS project leaders to strategi-
cally plan for the timing of releases.
In fact, the OSS community has long recognized that innovation

speed is critical, and it however holds a general guidance of “the faster
the better”. For example, SourceForge claims: “The Open Source com-
munity lives by ‘Release Early, Release Often’”12. Our findings chal-
lenge this wisdom and show that it only captures part of the story. A
very high speed of release may sometimes do more harm than good and
have a detrimental effect to user interest in OSS. When the initial re-
lease is introduced in the project launch day or one day after, or more
than 10 updates are released per month, the number of user downloads
could decline in our sampled OSS projects. Our study reminds OSS
project leaders to be very cautious in release management, as we do
observe that some projects released the first version too soon on the
project launch date and the maximum number of updates per month is
as high as 27 in some sampled projects.

6.3. Limitations and future research

Our study has some limitations. First, we collect archival data from
OSS projects, which are objective but provide limited information about
what developers and users perceive and behave. Future study may use
other methodologies, such as survey or experiment, to test how users’
perceived innovation speed of OSS projects may influence their interest
in OSS. Second, although we use time lag to avoid reverse causality and
dynamically control the dependent variable and other control variables
in the analysis, we cannot fully test the causality. Future research may
look for instrumental variables or conduct controlled experiments to
better examine the causal relationship between innovation speed of OSS
projects and user interest. Last but not least, although we use a large-
scale sample in this study, we only include development projects, and
games projects in a robustness check, on SourceForge. Future study may
collect data from other types of projects or from other OSS communities
(e.g., CodePlex, GitHub, and Google Code) to examine the general-
izability of our findings.

Acknowledgements

We thank Sirkka Jarvenpaa, James Jiang, Gary Klein, Arun Rai, Kar
Yan Tam, Sean Xu, the editor-in-chief Patrick Chau, the associate
editor, and three anonymous reviewers for their comments and gui-
dance. The authors are listed alphabetically and contribute equally. Any
opinions, findings, and suggestions expressed in this paper are those of
the authors, which do not necessarily reflect the views of SourceForge.

References

[1] M. Germonprez, J.E. Kendall, K.E. Kendall, L. Mathiassen, B. Young, B. Warner, A
theory of responsive design: a field study of corporate engagement with open source
communities, Inf. Syst. Res. 28 (1) (2017) 64–83.

[2] Y. Fang, D. Neufeld, Understanding sustained participation in open source software
projects, J. Manag. Inf. Syst. 25 (4) (2009) 9–50.

[3] J.Q. Dong, W. Wu, Business value of social media technologies: evidence from
online user innovation communities, J. Strateg. Inf. Syst. 24 (2) (2015) 113–127.

[4] T. Ogink, J.Q. Dong, Stimulating innovation by user feedback on social media: the
case of an online user innovation community, Technol. Forecast. Soc. Change
(2018) In Press.

[5] K. Crowston, K. Wei, J. Howison, A. Wiggins, Free/Libre open-source software
development, ACM Comput. Surv. 44 (2) (2012) 1–35.

[6] S. Daniel, R. Agarwal, K.J. Stewart, The effects of diversity in global, distributed
collectives: a study of open source project success, Inf. Syst. Res. 24 (2) (2013)
312–333.

[7] P. Setia, B. Rajagopalan, V. Sambamurthy, R. Calantone, How peripheral developers
contribute to open-source software development, Inf. Syst. Res. 23 (1) (2012)
144–163.

[8] K.J. Stewart, A.P. Ammeter, L.M. Maruping, Impacts of license choice and organi-
zational sponsorship on user interest and development activity in open source
software projects, Inf. Syst. Res. 17 (2) (2006) 126–144.

[9] J. Sutanto, A. Kankanhalli, B.C.Y. Tan, Uncovering the relationship between OSS
user support networks and OSS popularity, Decis. Support Syst. 64 (1) (2014)
142–151.

[10] W. Wen, C. Forman, S.J.H. Graham, The impact of intellectual property rights en-
forcement on open source software project success, Inf. Syst. Res. 24 (4) (2013)
1131–1146.

[11] S.Y. Ho, A. Rai, Continued voluntary participation intention in firm-participating
open source software projects, Inf. Syst. Res. 28 (3) (2017) 603–625.

[12] R. Sen, C. Subramaniam, M.L. Nelson, Determinants of the choice of open source
software license, J. Manag. Inf. Syst. 25 (3) (2008) 207–240.

[13] K. Crowston, J. Howison, H. Annabi, Information systems success in free and open
source software development: theory and measures, Softw. Process. Improv. Pract.
11 (2) (2006) 123–148.

[14] J. Hahn, C. Zhang, An exploratory study of open source projects from a project
management perspective, Working Paper, Purdue University, West Lafayette, IN,
2005.

[15] A. Aksulu, M. Wade, A comprehensive review and synthesis of open source re-
search, J. Assoc. Inf. Syst. 11 (11) (2010) 576–656.

[16] S. Spaeth, G. von Krogh, F. He, Perceived firm attributes and intrinsic motivation in
sponsored open source software projects, Inf. Syst. Res. 26 (1) (2015) 224–237.

[17] P.V. Singh, Y. Tan, Developer heterogeneity and formation of communication
networks in open source software projects, J. Manag. Inf. Syst. 27 (3) (2010)
179–210.

[18] R. Sen, C. Subramaniam, M.L. Nelson, Open source software licenses: Strong-
copyleft, non-copyleft, or somewhere in between? Decis. Support Syst. 52 (1)
(2011) 199–206.

[19] S. Haefliger, G. von Krogh, S. Spaeth, Code reuse in open source software, Manage.
Sci. 54 (1) (2008) 180–193.

[20] Y.A. Au, D. Carpenter, X. Chen, J.G. Clark, Virtual organizational learning in open
source software development projects, Inf. Manag. 46 (1) (2009) 9–15.

[21] P.V. Singh, Y. Tan, N. Youn, A hidden markov model of developer learning dy-
namics in open source software projects, Inf. Syst. Res. 22 (4) (2010) 790–807.

[22] L. Morgan, J. Feller, P. Finnegan, Exploring value networks: theorising the creation
and capture of value with open source software, Eur. J. Inf. Syst. 22 (5) (2013)
569–588.

[23] R. Sen, A strategic analysis of competition between open source and proprietary
software, J. Manag. Inf. Syst. 24 (1) (2007) 233–257.

[24] C. Herstatt, D. Ehls, Open Source Innovation: The Phenomenon, Participant’s
Behaviour, Business Implications, Routledge, New York, NY, 2018.

[25] J.Y. Moon, L.S. Sproull, Essence of distributed work: the case of the Linux kernel, in:
P.J. Hinds, S. Kiesler (Eds.), Distributed Work, MIT Press, Cambridge, MA, 2002, pp.
381–404.

[26] M.J. Gallivan, Striking a balance between trust and control in a virtual organiza-
tion: a content analysis of open source software case studies, Inf. Syst. J. 11 (4)
(2001) 277–304.

[27] G.K. Lee, R.E. Cole, From a firm-based to a community-based model of knowledge
creation: The case of the linux kernel development, Organ. Sci. 14 (6) (2003)
633–649.

[28] Y. Li, C.-H. Tan, H.-H. Teo, Leadership characteristics and developers’ motivation in
open source software development, Inf. Manag. 49 (5) (2012) 257–267.

12 Available on http://sourceforge.net/apps/trac/sourceforge/wiki/Get
%20started%20with%20your%20new%20project.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

678

http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0005
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0005
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0005
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0010
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0010
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0015
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0015
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0020
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0020
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0020
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0025
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0025
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0030
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0030
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0030
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0035
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0035
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0035
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0040
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0040
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0040
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0045
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0045
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0045
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0050
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0050
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0050
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0055
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0055
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0060
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0060
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0065
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0065
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0065
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0070
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0070
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0070
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0075
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0075
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0080
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0080
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0085
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0085
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0085
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0090
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0090
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0090
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0095
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0095
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0100
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0100
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0105
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0105
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0110
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0110
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0110
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0115
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0115
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0120
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0120
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0125
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0125
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0125
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0130
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0130
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0130
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0135
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0135
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0135
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0140
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0140
http://sourceforge.net/apps/trac/sourceforge/wiki/Get%20started%20with%20your%20new%20project
http://sourceforge.net/apps/trac/sourceforge/wiki/Get%20started%20with%20your%20new%20project


[29] C.-G. Wu, J.H. Gerlach, C.E. Young, An empirical analysis of open source software
developers’ motivations and continuance intentions, Inf. Manag. 44 (3) (2007)
253–262.

[30] B. Xu, D.R. Jones, B. Shao, Volunteers’ involvement in online community based
software development, Inf. Manag. 46 (3) (2009) 151–158.

[31] W. Boulding, A. Kirmani, A consumer-side experimental examination of signaling
theory: Do consumers perceive warranties as signals of quality? J. Consum. Res. 20
(1) (1993) 111–123.

[32] H.S. Albinger, S.J. Freeman, Corporate social performance and attractiveness as an
employer to different job seeking populations, J. Bus. Ethics 28 (3) (2000) 243–253.

[33] S. Wang, S.E. Beatty, W. Foxx, Signaling the trustworthiness of small online re-
tailers, J. Interact. Mark. 18 (1) (2004) 53–69.

[34] B.D. Cohen, T.J. Dean, Information asymmetry and investor valuation of IPOs: top
management team legitimacy as a capital market signal, Strateg. Manage. J. 26 (7)
(2005) 683–690.

[35] T. Mavlanova, R. Benbunan-Fich, M. Koufaris, Signaling theory and information
asymmetry in online commerce, Inf. Manag. 49 (5) (2012) 240–247.

[36] G.K.C. Ahlers, D. Cumming, C. Günther, D. Schweizer, Signaling in equity crowd-
funding, Entrep. Theory Pract. 39 (4) (2015) 955–980.

[37] P. Vixie, Software engineering, in: M. Stone, S. Ockman, C. Dibona (Eds.), Open
Sources: Voices from the Open Source Revolution, O’Reilly & Associates,
Sebastopol, CA, 1999, pp. 80–88.

[38] M.-W. Wu, Y.-D. Lin, Open source software development: an overview, Computer
34 (6) (2001) 33–38.

[39] J.D. Blackburn, G.D. Scudder, L.N. Van Wassenhove, Improving speed and pro-
ductivity of software development: a global survey of software developers, IEEE
Trans. Softw. Eng. 22 (12) (1996) 875–885.

[40] J.J. Jiang, G. Klein, H.G. Hwang, J. Huang, S.Y. Hung, An exploration of the re-
lationship between software development process maturity and project perfor-
mance, Inf. Manag. 41 (3) (2004) 279–288.

[41] K.R. Linberg, Software developer perceptions about software project failure: a case
study, J. Syst. Softw. 49 (2-3) (1999) 177–192.

[42] J.D. Herbsleb, A. Mockus, An empirical study of speed and communication in
globally distributed software development, IEEE Trans. Softw. Eng. 29 (6) (2003)
481–494.

[43] J.H. Iversen, L. Mathiassen, P.A. Nielsen, Managing risk in software process im-
provement: an action research approach, Mis Q. 28 (3) (2004) 395–433.

[44] B. Boehm, A view of 20th and 21st century software engineering, Proceedings of
International Conference on Software Engineering (2006) 12–29.

[45] A. Boulanger, Open-source versus proprietary software: Is one more reliable and
secure than the other? IBM Syst. J. 44 (2) (2005) 239–248.

[46] Synopsys. 2015. Open Source Report 2014. Available on http://go.coverity.com/rs/
157-LQW-289/images/2014-Coverity-Scan-Report.pdf.

[47] M. Saini, K. Kaur, A review of open source software development life cycle models,
Int. J. Softw. Eng. Appl. 8 (3) (2014) 417–434.

[48] M.A. Weiss, Data Structures and Algorithm Analysis in Java, Addison-Wesley
Longman Publishing., Boston, MA, 1998.

[49] J. Zheng, N. Nagappan, J.P. Hudepohl, M.A. Vouk, On the value of static analysis
for fault detection in software, IEEE Trans. Softw. Eng. 32 (4) (2006) 1–14.

[50] M. Spence, Signaling in retrospect and the informational structure of markets, Am.
Econ. Rev. 92 (3) (2002) 434–459.

[51] B.L. Connelly, S.T. Certo, R.D. Ireland, C.R. Reutzel, Signaling theory: a review and
assessment, J. Manage. 37 (1) (2011) 39–67.

[52] I. Stamelos, L. Angelis, A. Oikonomou, G.L. Bleris, Code quality analysis in open
source software development, Inf. Syst. J. 12 (1) (2002) 43–60.

[53] A. Mockus, R. Fielding, J.D. Herbsleb, Two case studies of open source software
development: apache and Mozilla, Acm Trans. Softw. Eng. Methodol. 11 (3) (2000)
309–346.

[54] A. Capiluppi, M. Michlmayr, From the cathedral to the bazaar: an empirical study of
the lifecycle of volunteer community projects, in: J. Feller, B. Fitzgerald,
W. Scacchi, A. Sillitti (Eds.), Open Source Development, Adoption and Innovation,
Springer, Boston, MA, 2007, pp. 31–44.

[55] R.B. Bird, E.A. Smith, Signaling theory, strategic interaction, and symbolic capital,
Curr. Anthropol. 46 (2) (2005) 221–248.

[56] V. Midha, A. Bhattacherjee, Governance practices and software maintenance: a
study of open source projects, Decis. Support Syst. 54 (1) (2012) 23–32.

[57] J.A. Roberts, I. Hann, S.A. Slaughter, Understanding the motivations, participation,
and performance of open source software developers: a longitudinal study of the
apache projects, Manage. Sci. 52 (7) (2006) 984–999.

[58] S. Daniel, K. Stewart, Open source project success: resource access, flow, and in-
tegration, J. Strateg. Inf. Syst. 25 (3) (2016) 159–176.

[59] J. Lerner, J. Tirole, The scope of open source licensing, J. Law Econ. Organ. 21 (1)
(2005) 20–56.

[60] C. Fershtman, N. Gandal, Open source software: motivation and restrictive licen-
sing, Int. Econ. Econ. Policy 4 (2) (2007) 209–225.

[61] W.H. Greene, Econometric Analysis. Upper Saddle River, Prentice Hall, NJ, 2003.
[62] I.-H. Hann, J.A. Roberts, S.A. Slaughter, All are not equal: an examination of the

economic returns to different forms of participation in open source software com-
munities, Inf. Syst. Res. 24 (3) (2013) 520–538.

[63] G.V. Krogh, S. Haefliger, S. Spaeth, M.W. Wallin, Carrots and rainbows: motivation
and social practice in open source software development, Mis Q. 36 (2) (2012)
649–676.

[64] G. von Krogh, E. von Hippel, The promise of research on open source software,
Manage. Sci. 52 (7) (2006) 975–983.

[65] E.H. Kessler, A.K. Chakrabarti, Innovation speed: a conceptual model of context,
antecedents, and outcomes, Acad. Manage. Rev. 21 (4) (1996) 1143–1191.

[66] E.H. Kessler, P.E. Bierly, Is faster really better? An empirical test of the implications
of innovation speed, IEEE Trans. Eng. Manage. 49 (1) (2002) 2–12.

[67] M. Spence, Job market signaling, Q. J. Econ. 87 (3) (1973) 355–374.
[68] M. Spence, Signaling in retrospect and the informational structure of markets, Am.

Econ. Rev. 92 (3) (2002) 434–459.
[69] S.L. Brown, K.M. Eisenhardt, Product development: past research, present findings,

and future directions, Acad. Manage. Rev. 20 (2) (1995) 343–378.
[70] P. Carbonell, A.I. Rodriguez, The impact of market characteristics and innovation

speed on perceptions of positional advantage and new product performance, Int. J.
Res. Mark. 23 (1) (2006) 1–12.

[71] P. Tambe, L.M. Hitt, E. Brynjolfsson, The extroverted firm: how external informa-
tion practices affect innovation and productivity, Manage. Sci. 58 (5) (2012)
843–859.

[72] V. Padmanabhan, S. Rajiv, K. Srinivasan, New products, upgrades, and new re-
leases: a rationale for sequential product introduction, J. Mark. Res. 34 (4) (1997)
456–472.

[73] A. Ali, R.J. Krapfel, D. LaBahn, Product innovativeness and entry strategy: impact
on cycle time and break-even time, J. Prod. Innovation Manage. 12 (1) (1995)
54–69.

[74] K.B. Clark, T. Fujimoto, Product Development Performance: Strategy, Organization,
and Management in the World Auto Industry, Harvard Business Press, Cambridge,
MA, 1991.

[75] E. Mansfield, The speed and cost of industrial innovation in japan and the united
states: external vs. internal technology, Manage. Sci. 34 (10) (1988) 1157–1168.

[76] R.T. Keller, Technology-information processing fit and the performance of R&D
project groups: a test of contingency theory, Acad. Manage. J. 37 (1) (1994)
167–179.

[77] E.F. McDonough, Faster new product development: investigating the effects of
technology and characteristics of the project leader and team, J. Prod. Innovation
Manage. 10 (3) (1993) 241–250.

[78] C.D. Rosso, Continuous evolution through software architecture evaluation: a case
study, J. Software Maint. Evol.: Res. Pract. 18 (5) (2006) 351–383.

[79] H. Cavusoglu, H. Cavusoglu, J. Zhang, Security patch management: share the
burden or share the damage? Manage. Sci. 54 (4) (2008) 657–670.

[80] O. Temzikan, L.K. Ram, P. Sungjune, S. Chandrasekar, Patch release behaviours in
response to vulnerabilities: an empircal analysis, J. Manage. Inf. Syst. 28 (4) (2012)
308–338.

[81] J.O. Gilliam, Improving the Open Source Software Model with UML Case Tools,
(2001) Available on http://www.unixuser.org/lg/issue67/gilliam.html.

[82] J. Hahn, J.Y. Moon, C. Zhang, Emergence of new project teams from open source
software developer networks: impact of prior collaboration ties, Inf. Syst. Res. 19
(3) (2008) 369–391.

[83] G. Winch, A. Usmani, A. Edkins, Towards total project quality: a gap analysis ap-
proach, Constr. Manage. Econ. 16 (2) (1998) 193–207.

[84] K. Crowston, H. Annabi, J. Howison, Defining open source software project success,
Proceedings of International Conference on Information Systems, Association for
Information Systems, Atlanta, GA, 2003, pp. 1–14.

[85] C. Subramaniam, R. Sen, M.L. Nelson, C. Subramaniama, R. Senb, M.L. Nelsonc,
Determinants of open source software project success: a longitudinal study, Decis.
Support Syst. 46 (2) (2009) 576–585.

[86] R. Grewal, G.L. Lilien, G. Mallapragada, Location, location, location: how network
embeddedness affects project success in open source systems, Manage. Sci. 52 (7)
(2006) 1043–1056.

[87] G. Peng, D. Dey, A dynamic view of the impact of network structure on technology
adoption: the case of OSS development, Inf. Syst. Res. 24 (4) (2013) 1087–1099.

[88] E. Rogers, Diffusion of Innovations, Free Press, New York, NY, 2003.
[89] S.K. Shah, Motivation, governance, and the viability of hybrid forms in open source

software development, Manage. Sci. 52 (7) (2006) 1000–1014.
[90] K.J. Stewart, S. Gosain, The impact of ideology on effectiveness in open source

software developent teams, MIS Q. 30 (2) (2006) 291–314.
[91] E. von Hippel, G. von Krogh, Open source software and the “private-collective”

innovation model: issues for organization science, Organ. Sci. 14 (2) (2003)
209–223.

[92] L. Nyman, T. Mikkonen, To fork or not to fork: fork motivations in SourceForge
Projects, Int. J. Open Sour. Softw. Process. 3 (3) (2011) 1–9.

[93] A. Majchrzak, L.P. Cooper, O.E. Neece, Knowledge reuse for innovation, Manage.
Sci. 50 (2) (2004) 174–188.

[94] M. Sojer, J. Henkel, Code reuse in open source software development: quantitative
evidence, drivers, and impediments, J. Assoc. Inf. Syst. 11 (12) (2010) 868–901.

[95] G. von Krogh, S. Spaeth, S. Haefliger, Knowledge reuse in open source software: an
exploratory study of 15 open source projects, Proceedings of Hawaii International
Conference on System Sciences, Washington, DC: IEEE Computer Society, 2005, p.
198b.

[96] W. Scacchi, Free and open source development practices in the game community,
IEEE Softw. 21 (1) (2004) 59–66.

[97] S. Ba, P.A. Pavlou, Evidence of the effect of trust building technology in electronic
markets: price premiums and buyer behavior, MIS Q. 26 (3) (2002) 243–268.

[98] F. Zhu, X. Zhang, Impact of online consumer reviews on sales: the moderating role
of product and consumer characteristics, J. Mark. Res. 74 (2) (2010) 133–148.

John Qi Dong is an Associate Professor of Strategy and Organization at Faculty of
Economics and Business, University of Groningen in the Netherlands. He holds a PhD
degree in information systems from Hong Kong University of Science and Technology. He
also received a master degree and a bachelor degree, both in management, from Renmin
University of China. His research interests include big data and analytics, collaborative
innovation, digital entrepreneurship, digital innovation, and organizational learning. His

J.Q. Dong et al. Information & Management 56 (2019) 669–680

679

http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0145
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0145
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0145
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0150
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0150
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0155
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0155
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0155
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0160
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0160
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0165
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0165
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0170
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0170
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0170
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0175
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0175
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0180
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0180
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0185
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0185
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0185
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0190
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0190
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0195
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0195
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0195
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0200
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0200
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0200
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0205
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0205
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0210
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0210
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0210
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0215
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0215
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0220
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0220
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0225
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0225
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0235
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0235
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0240
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0240
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0245
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0245
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0250
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0250
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0255
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0255
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0260
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0260
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0265
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0265
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0265
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0270
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0270
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0270
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0270
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0275
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0275
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0280
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0280
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0285
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0285
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0285
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0290
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0290
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0295
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0295
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0300
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0300
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0305
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0310
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0310
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0310
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0315
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0315
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0315
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0320
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0320
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0325
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0325
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0330
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0330
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0335
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0340
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0340
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0345
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0345
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0350
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0350
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0350
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0355
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0355
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0355
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0360
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0360
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0360
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0365
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0365
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0365
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0370
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0370
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0370
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0375
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0375
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0380
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0380
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0380
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0385
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0385
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0385
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0390
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0390
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0395
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0395
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0400
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0400
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0400
http://www.unixuser.org/lg/issue67/gilliam.html
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0410
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0410
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0410
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0415
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0415
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0420
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0420
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0420
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0425
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0425
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0425
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0430
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0430
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0430
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0435
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0435
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0440
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0445
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0445
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0450
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0450
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0455
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0455
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0455
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0460
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0460
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0465
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0465
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0470
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0470
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0475
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0475
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0475
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0475
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0480
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0480
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0485
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0485
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0490
http://refhub.elsevier.com/S0378-7206(17)30229-X/sbref0490


work has been published or forthcoming in MIS Quarterly, Journal of Management, Journal
of Product Innovation Management, Long Range Planning, Journal of Strategic Information
Systems, Information and Management, Technological Forecasting and Social Change, and
Journal of Business Research, among others. His research was awarded for the best paper
award runner-up at Academy of Management Annual Meeting and was nominated for the
best paper award at Strategic Management Society Special Conference. He was the winner
of the outstanding junior researcher award from Faculty of Economics and Business at
University of Groningen. He currently serves as the associate editor for Information and
Management and the editorial board member for Journal of Strategic Information Systems.
He was the associate editor for Decision Support Systems special issue on omnichannel
business. He is also the founding chair of big data and analytics track at Wuhan
International Conference on E-Business.

Weifang Wu is an Assistant Professor at Department of Digitalization, Copenhagen
Business School in Denmark. She holds a PhD degree in information systems from Hong

Kong University of Science and Technology. She also received a master degree and a
bachelor degree, both in information systems, from Harbin Institute of Technology. Her
research interests include big data and analytics, digital innovation, online advertising,
and social media. Her work has been published or forthcoming in Journal of Strategic
Information Systems, and Information and Management, among others.

Yixin (Sarah) Zhang is a Senior Lecturer at Department of Applied Information
Technology, University of Gothenburg in Sweden. She is also a member of Swedish Center
for Digital Innovation. She holds a PhD degree in information systems from Hong Kong
University of Science and Technology. She also received bachelor degrees (first class
honors) in information systems and software engineering from University of Hong Kong.
Her research interests include digital activism, green consumption, human computer in-
teraction, and social media. Her work is forthcoming in Information and Management and
has been published in other outlets. She was the associate editor for International
Conference on Information Systems.

J.Q. Dong et al. Information & Management 56 (2019) 669–680

680


	The faster the better? Innovation speed and user interest in open source software
	Introduction
	Literature Review
	OSS innovation process
	User interest in OSS

	Theory and hypotheses
	Innovation speed in the OSS context
	Innovation speed of OSS projects as a signal
	Innovation speed of OSS projects and user interest

	Methodology
	Data
	Measures
	User downloads
	Innovation speed

	Control variables
	User downloads in previous period
	Developer writes
	Length of project description
	Number of categories
	Number of leaders
	Multiple participations of leaders
	Initial release size
	Code reuse
	License dummies
	Time dummies

	Analysis strategy

	Results
	Hypotheses testing
	Robustness checks

	Discussion and conclusion
	Theoretical implications
	Practical implications
	Limitations and future research

	Acknowledgements
	References




