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Abstract. An electroencephalography (EEG) coherence network is a
representation of functional brain connectivity. However, typical visual-
izations of coherence networks do not allow an easy embedding of spatial
information or suffer from visual clutter, especially for multichannel EEG
coherence networks. In this paper, a new method for data-driven visual-
ization of multichannel EEG coherence networks is proposed to avoid the
drawbacks of conventional methods. This method partitions electrodes
into dense groups of spatially connected regions. It not only preserves
spatial relationships between regions, but also allows an analysis of the
functional connectivity within and between brain regions, which could
be used to explore the relationship between functional connectivity and
underlying brain structures. In addition, we employ an example to illus-
trate the difference between the proposed method and two other data-
driven methods when applied to coherence networks in older and younger
adults who perform a cognitive task. The proposed method can serve as
an preprocessing step before a more detailed analysis of EEG coherence
networks.

1 Introduction

EEG records the electrical activity of the brain by attaching electrodes to the
scalp of a subject at multiple locations. Synchronous electrical activity in brain
regions is generally assumed to imply functional integration. Such synchroniza-
tion occurs over a large range of scales. A large number of methods have been
proposed to measure the synchrony between pairs of brain regions, and these
measures are often closely correlated [21]. EEG coherence is one of these mea-
sures, which is calculated between pairs of electrode signals as a function of
frequency [13,16].

An EEG coherence network represents functional brain connectivity, more
precisely, the coherences between pairs of signals recorded by the electrodes.

c© Springer International Publishing AG 2018
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Visualization of coherence networks plays an important role as a preprocess-
ing step in the exploration of brain connectivity [8]. It can provide insight into
unexpected patterns of brain functioning and help neuroscientists to understand
how the brain works, especially for the case where no a priori assumptions or
hypotheses about brain activity in specific regions are made. However, visual-
ization of high-density or multichannel EEG (at least 64 electrodes) coherence
networks is not always managed well [8]. Typical visualizations of coherence net-
works are a matrix representation with rows and columns representing electrodes
with cells representing coherences between electrode signals or a node-link dia-
gram with vertices representing electrodes and edges representing coherences.
However, such representations can suffer from some drawbacks. The matrix rep-
resentation is effective for visualizing large and/or dense networks, but the rela-
tive spatial location is hard to embed; the node-link diagram could preserve spa-
tial information to some extent, but it suffers from the potentially large number
of overlapping edges when visualizing dense networks.

To study connectivity patterns in the coherence graph, researchers often
employ a hypothesis-driven or semi-data-driven definition of certain regions of
interest (ROIs), in which all electrodes are assumed to record similar signals
because of volume conduction effects [12,15]. However, these methods generally
depend on certain assumptions or hypotheses.

As an alternative to the hypothesis-driven and semi-data-driven approaches,
ten Caat et al. [6–8] proposed a method for detection of data-driven ROIs,
referred to as functional units (FUs). The maximal clique based (MCB) method
of ten Caat et al. [6] focused on FUs defined as spatially connected maximal
cliques, for which vertex sets are as large as possible. Since the MCB method [6]
is very time-consuming, as an alternative a watershed based (WB) method was
proposed that detects spatially connected cliques in a greedy way [7]. To reduce
the potential over-segmentation of this approach, an improved watershed based
method (IWB) was proposed [8]. The FUs detected by the IWB method are
similar but not identical to the FUs detected by the MCB method. To distin-
guish them we therefore denote the corresponding FUs by FUMCB and FUIWB,
respectively.

A drawback of the MCB and IWB methods is that the analysis of local
synchronization is difficult, since these methods detect maximal cliques, that is,
groups of spatially-connected electrodes that are as large as possible.

Therefore, in this paper we propose an alternative, based on network commu-
nity structure [18]. The proposed method, referred to as the community clique-
based (CCB) method, partitions the set of electrodes into several data-driven
ROIs (communities) based on their connections and positions to find the most
relevant brain regions. As a result, electrodes within the same community are
spatially connected and are more densely connected than electrodes in different
communities. For brevity, the ROIs obtained by community detection will still
be called “functional units”, but denoted by the symbol FUCCB to distinguish
them from the functional units obtained by the MCB and IWB methods.
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Overall, the new community-based method for detecting functional units
is not only expected to reduce the drawbacks of the conventional hypothesis-
based approaches, but also to allow a more detailed analysis of the relationship
between functional connectivity and underlying brain structure than the data-
driven MCB and IWB methods.

2 Related Work

The principal concept in our approach is to visualize brain connectivity, and
to extract meaningful information from this representation for further analysis.
The challenge in visualization often lies in the analysis of a huge amount of data,
in our case the large number of EEG channels.

A straightforward method would be to visualize functional brain connectivity
data as 3D node-link diagrams: ROIs are shown as nodes and the relationships
between these nodes are encoded in the edges. But this approach suffers from
visual clutter, and side effects of 3D rendering such as occlusion are hard to
remedy [3,10].

An alternative approach is to depict the connectivity data by a 2D represen-
tation, which could reduce the work of 3D rendering. A wide variety of methods
has been developed to map data on 2D space to visualize neuronal interactions or
relations between brain regions. To preserve the spatial information of the data
to some extent, a node-link diagram based on a biologically meaningful layout
has been used [1]. In this biological layout, planar projections are used for the
3D electrode locations on the surface of a head. Vertices are usually mapped
according to a top view of the head, sometimes to two separate side views of the
left and right hemispheres. However, such a visualization with edges representing
connections may suffer from a large number of overlapping edges, resulting in a
cluttered representation, especially for a large amount of data.

Some methods were proposed to remedy the visual clutter by eliminating
overlaps and reducing the number of long-distance edges employing graph draw-
ing. For example, for 2D node-link diagrams the layout can be calculated by
multidimensional scaling or force-directed algorithms [11]. However, such meth-
ods usually change the layout of the vertices to reduce visual clutter. Yet, the
spatial context of the data is still vital for facilitating the interpretation of the
data by neuroscientists. Hence, node-link diagrams are often accompanied by a
separate picture showing the position of nodes, with nodes on the two repre-
sentations being matched by color encoding or labeling [17]. In this approach,
information about spatial context is not presented in a single image. Matrix rep-
resentations are also popular to represent functional connectivity networks. This
approach outperforms the node-link diagram in visualizing large networks. By
arranging ROIs along the rows and columns of a matrix, their spatial relations
are, however, lost [14].
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3 Method

3.1 EEG Coherence

During an EEG experiment, brain activity is recorded by electrodes attached to
the scalp of a subject at different locations. The degree of interaction between
two electrode signals can be measured by coherence which is a measure for the
similarity of signals as a function of frequency. The coherence cλ as a function
of frequency λ for two continuous time signals x and y is defined as the absolute
square of the cross-spectrum fxy normalized by the autospectra fxx and fyy [13],
having values in the interval [0, 1]: cλ(x, y) = |fxy(λ)|2

fxx(λ)fyy(λ)
.

3.2 Data Representation and EEG Coherence Network

A network is simply a collection of connected objects. We refer to the objects
as nodes or vertices and the connections between the nodes as edges. In mathe-
matics, networks are often referred to as graphs. In this paper, we use the terms
network and graph interchangeably.

Table 1. Coherence Matrix. Values above or equal to the significance threshold, in
this case 0.2, are indicated in bold.

a b c d e f g h i j k l

a k0 0.65 0.10 0.10 0.64 0.60 0.20 0.10 0.30 0.23 0.10 0.10

b 0.65 0 0.10 0.10 0.63 0.63 0.21 0.10 0.32 0.33 0.10 0.10

c 0.10 0.10 0.10 0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

d 0.10 0.10 0.10 0 0.10 0.10 0.70 0.71 0.10 0.10 0.10 0.70

e 0.64 0.63 0.10 0.10 0 0.62 0.20 0.10 0.33 0.20 0.10 0.10

f 0.60 0.63 0.10 0.10 0.62 0 0.70 0.10 0.30 0.31 0.10 0.10

g 0.20 0.21 0.10 0.70 0.20 0.70 0 0.69 0.20 0.20 0.10 0.70

h 0.10 0.10 0.10 0.71 0.10 0.10 0.69 0 0.10 0.10 0.10 0.72

i 0.30 0.32 0.10 0.10 0.33 0.30 0.20 0.10 0 0.32 0.10 0.10

j 0.23 0.33 0.10 0.10 0.20 0.31 0.20 0.10 0.32 0 0.10 0.10

k 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0 0.10

l 0.10 0.10 0.10 0.70 0.10 0.10 0.70 0.72 0.10 0.10 0.10 0

Functional brain connectivity obtained from EEG data is represented by an
undirected coherence graph G = (V,E), defined by a set of vertices V and a
set of edges E ⊆ V × V where vertices represent electrodes. Since weak coher-
ences may represent spurious connections and these connections tend to obscure
the topology of strong and significant connections [22], we only consider coher-
ences with values above a pre-defined significance threshold [8,13]. Coherences
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above the significance threshold are represented by edges, whereas coherences
below the threshold are ignored (see Fig. 1(c)); see Table 1. Vertices are not
self-connected. To determine spatial relationships between electrodes, a Voronoi
diagram is employed, which partitions the plane into regions of points with the
same nearest vertex (for a simple example, see Fig. 1(a)). For EEG data, the
vertex set is equal to the set of electrode positions. The vertices are referred
to as (Voronoi) centers, and the region boundaries as (Voronoi) polygons. The
area enclosed by a polygon is called a (Voronoi) cell. We call two cells Voronoi
neighbors if they have a boundary in common. A collection of cells C is called
Voronoi connected if for a pair φ0, φn ∈ C, there is a sequence φ0, φ1, ..., φn of
cells in C, with each pair φi−1, φi consisting of Voronoi neighbors. Cells, vertices,
nodes, and electrodes are interchangeable in this paper.
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Fig. 1. Example layout of a coherence network with coherence matrix as shown in
Table 1. (a) Voronoi diagram showing vertex positions with vertex labels within the
cells and Voronoi connections between vertices. Vertices are spatial neighbors if they
are 4-connected, e.g., the spatial neighbors of vertex f are vertices, b, e, g, and j. (b)
Layout preserving the vertex positions. Vertices are represented by solid circles and
lines represent coherences between vertices, while the coherence values are encoded by
the color of the lines (see the color bar on the right). (c) Manual layout of the significant
coherence graph without considering the vertex positions.

3.3 Community Clique Detection

3.3.1 Community Structure
The community structure of a network is defined as a grouping of nodes in a
set of groups (communities), with a high density of within-group connections



588 C. Ji et al.

and a lower density of between-group connections. Such structures have been
observed in many different types of networks including social, biological, and
tele-communication networks [9,19]. In particular, the community structure of a
brain functional connectivity network shows the groups of neuronal areas where
there is more synchronous activity within a group and less synchronous activity
between groups. These communities may be considered as functional areas in
the brain [2].

Various algorithms have been proposed for the identification of community
structure from complex networks. Many of these algorithms are based on the
idea of optimizing the modularity index Q of the partition of a network [19,20].
In the case of a weighted network, this index is defined as follows [4]:

Q =
1

2m

∑

v,v′

[
c(v, v′) − KvKv′

2m

]
δ(L(v), L(v′)) (1)

where c(v, v′) represents the weight (in our case the coherence value) of the edge
between nodes v and v′, Kv =

∑
l c(v, l) is the sum of weights of the edges

incident to vertex v, L(v) is the community label of vertex v, the function δ(i, j)
is 1 if i = j and 0 otherwise, and m = 1

2

∑
v,v′ c(v, v′).

3.3.2 Community Clique Detection Method
A simple and efficient method of optimizing modularity was proposed by Blon-
del et al. [4]. Here, we extend this method to obtain dense spatially-connected
cliques, the community clique, consisting of Voronoi-connected vertices of the
EEG coherence network.

The outline of our method can be summarized as follows. The difference
with Blondel’s method is in step 2, the calculation of the modularity gain, where
an extra condition is applied which ensures that the resulting communities are
spatially connected cliques (see the introduction for the motivation):

1. Assign a unique community to each node of the network.
2. Use Eq. 2 to calculate the modularity gain ΔQ for node v caused by removing

node v from its community and placing it in another community such that
the node v is connected to each node of that community and has at least one
Voronoi neighbour in that community.

3. Place the node v in the community for which the gain is the highest and
positive. If no positive gain is available, nothing is done.

4. Continue repeating steps (2) and (3) until every node is processed.
5. Repeat steps (2) -(4) until no further improvement of the modularity index

Q is achieved.

The following equation is used to calculate the modularity gain ΔQ when
removing one node v from its community CL(v) to an arbitrary community Ci [4,
22,23]:

ΔQ =
1

2m

(∑

l∈Ci

c(v, l) −
∑

l∈CL(v)

c(v, l) −
Kv(

∑
Ci

−∑
CL(v)

+Kv)

2m

)
(2)
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where
∑

CL(v)
is the sum of the weights of the links incident to nodes in CL(v),∑

Ci
is the sum of the weights of the links incident to nodes in Ci, and Kv is

the sum of the weights of the links incident to node v.
Note that the algorithm’s output depends on the order in which the nodes

are processed in step 2. The ordering does not have a significant influence on
the modularity that is obtained, but can influence the computation time [4]. In
our case, a decreasing order is chosen based on the average local coherence of
vertices, which is also used to detect basins in the IWB method [8]. For a data
set of 119 electrodes, the computing time was around 0.84 s on a modern desktop
computer (Intel 3.2Ghz, 8GB RAM).

Figure 2 illustrates the procedure of community clique detection for an EEG
coherence network, with the coherence matrix shown in Table 1. The following
detailed description contains references to Fig. 2.

Fig. 2. Illustration of Voronoi-connected community clique detection for a coherence
network with the coherence matrix shown in Table 1. Each colored symbol represents
a community at T1. For each step Ti, the gain ΔQ is shown on the right. Before
the dash: the node to be removed; after the dash: the node or nodes constituting a
community. T28 shows the vertex positions in 2D space.

At T1, the initial stage, each of these twelve vertices correspond to a unique
community represented by a specific colored symbol: L(a) = 1, L(b) = 2, L(c) =
3, L(d) = 4, L(e) = 5, L(f) = 6, L(g) = 7, L(h) = 8, L(i) = 9, L(j) = 10, L(k) =
11, L(l) = 12. Then, we calculate the modularity gain ΔQ caused by removing
k (since k has the highest local average coherence, and the descending order
of vertices based on their local average coherence is: h, a, f, e, b, l, d, g, i, j, c, k)
from its community to the other communities; all the values of ΔQ are listed
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on the right in Fig. 2. T2-T12. At every next step, the next vertex v will be
chosen and the gain of removing v from its community CL(v) to the remaining
communities will be computed. If the positive highest gain maxΔQ results from
the movement of node v to the community in which v has at least one Voronoi
neighbour and is connected with each vertex in that community, then the vertex
v will be removed from its original community to the destination community
CDes, CL(v) is updated by deleting v from CL(v) and CDes is replaced by the
union of itself with v. At T2, v = h, CL(v) = C8 = ∅, CDes = C12 = {h, l}. At
T3, v = a, CL(v) = C1 = ∅, CDes = C5 = {a, e}. At T4, v = f , CL(v) = C6 = ∅,
CDes = C5 = {a, e, f}. At T5, v = e, nothing is done since maxΔQ is negative
when merging e and i into one community. At T6, v = b, CL(v) = C2 = ∅,
CDes = C5 = {a, b, e, f}. At T7, v = l, nothing is done since all the communities
except C12, the original community, have no connected Voronoi neighbours of
l. At T8, v = d, CL(v) = C4 = ∅, CDes = C12 = {d, h, l}. At T9, v = g,
CL(v) = C7 = ∅, CDes = C12 = {g, d, h, l}. At T10, v = i, CL(v) = C9 = ∅,
CDes = C5 = {a, b, e, f, i}. At T11, v = j, CL(v) = C10 = ∅, CDes = C5 =
{a, b, e, f, i, j}. At T12, v = c, and at T13, v = k, nothing is done since the
vertex v has no connected Voronoi-neighbours.

From T14 on, all vertices will be traversed again. The gain ΔQ can be easily
computed and it can be observed that there is no more positive gain, which means
the modularity can not be improved anymore. So the detection procedure stops.
Finally, we obtain two community cliques {a, b, e, f, i, j} and {g, d, h, l} at T25.

3.4 FU Visualization

The functional units detected by the CCB method are visualized in an FUCCB

(functional unit) map, in exactly the same way as for the FUMCB and FUIWB

maps. Spatial groups of similarly colored (in gray scale) cells correspond to FUs
with a size of at least four, while white cells are part of smaller FUs. Circles
overlayed on the cells represent the barycenters of the FUs and are connected
by lines whose color reflects the average coherence between all electrodes of the
FUs. See [6] for details. In addition, we use the colour of the circle over the
geographic centre of FU C1 to reflect its average coherence ĉλ(C1), which is
defined as ĉλ(C1) =

∑
i,j{cλ(vi,vj)|vi∈C1,vj∈C1}

|C1|(|C1|−1) . See Fig. 3 for examples of FU
map visualization.

4 Results

4.1 Experimental Setup

Brain responses were recorded during an auditory oddball detection experiment
(For further detail, see [8]. A significance threshold for the estimated coherence
is then given by Halliday et al. [13]: θ = 1 − p1/(L−1), where p is a probability
value associated with a confidence level α, such that p = 1−α. Throughout this
section, we use p = 0.01, and L = 13 segments. In addition, we set the inter-FU
coherence threshold to the same value as the significance threshold θ.
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4.2 FU Maps

FU maps for two participants are shown in Fig. 3.
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Fig. 3. Illustration of FU maps (top view, nose on top) obtained by using the three
FU detection methods for three different EEG frequency bands. Data obtained from
a young participant with corresponding FU maps in the first three columns, and from
an older participant with corresponding FU maps in the last three columns.

We make the following observations:

1. For the young participant, it can be observed that the MCB and CCB meth-
ods detect similar numbers of FUs and connections between FUs in the fre-
quency bands of [1–3]Hz and [4–7]Hz. The number of connections between
FUs in the frequency band [8-12]Hz is clearly more different.

2. For the old participant, in the frequency band of [1–3] Hz, large differences
occur between the FU maps obtained by the three different methods. The
MCB method detects two large FUs located anteriorly and posteriorly, with
significant inter-FU coherence between them. The IWB method has a similar
result, except for the frontal-central connection. The CCB method finds a
total of nine FUs with size above four. Compared to the CCB method, FU
1 obtained by the MCB and IWB methods is split into five FUs 1, 2, 3,
4, 5 in the CCB method due to the weak inter-community connections with
each other. FUCCB1 in the CCB method has the highest average coherence
among these 5 FUs, and electrodes of this FUCCB are distributed over both
left and right parietal-occipital regions of the brain. This means there is a high
interhemispheric coherence, which decreases at the central-parietal areas, as
can be seen from the average coherence of FUCCB4 and the inter-FU coherence
between FUCCB3 and FUCCB5 . The FUCCB2 and FUCCB4 in the central-
parietal areas of the brain have a lower average coherence compared to the
FUCCB1, 3, 5 . In addition, the inter-FU coherences between FUCCB1, 3, 5
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are larger than the inter-FUCCB coherences between 2, 4 and 1, 3, 5 . From
a global view, the two FUsCCB having the strongest connection are 1 and
9 , which are located at the frontal and parietal-occipital areas of the brain,
respectively. The next largest inter-FU coherence occurs between FUsCCB1,
9 and FUsCCB3, 5 ; that is, the parietal-temporal area of the brain is more
synchronized with the frontal and parietal-occipital areas of the brain.

3. In the frequency band of [4-7] Hz for the old participant, the MCB and IWB
methods have similar results, except in the frontal-central area of the brain.
Because the IWB method is an approximation of MCB, we only compare the
MCB and CCB methods here. The main difference is that the FUMCB1 of the
MCB method is split into FUsCCB1 and 2 in the CCB method due to weak
inter-community connections. The FUsCCB 1, 2 have a high coherence with
the FUCCB 8 located at the frontal area of the brain, and FUCCB 8 has the
highest average coherence among the FUs detected by the CCB method. In
the mid line of the brain, there are two large FUsCCB 3, 7, which means that
electrodes within FUsCCB 3, 7 are more coherent with each other. We also
observe that FUCCB 3 is spatially close to FUsCCB 1, 2 but their inter-FU
coherence is less than the inter-FU coherence between FUCCB 8 and FUsCCB

1, 2.
4. Again for the old participant, in the frequency band of [8-12] Hz, more FUs

and connections between FUs appear in the MCB and IWB methods com-
pared with the lower frequency bands. In this frequency band, the three meth-
ods tend to have similar results, particularly for the MCB and IWB method.
The three methods share an almost similar FU (FUMCB 8, FUIWB 9, FUCCB 9,
which is located frontally). The largest difference between methods is in the
composition of the FUs, which is caused by different FU-detection criteria.

In the CCB method, the older participant has higher local and global synchro-
nization compared to the younger participant over three frequency bands, which
is in accordance with Maurits et al. [16], i.e., higher interhemispheric coherence
was found in the older subjects in the frequency band [1–3]Hz, and aging is asso-
ciated with increased EEG coherence during a relatively easy cognitive task. It
should be noted, however, that we here only discuss examples. Throughout the
three frequency bands, FUs with high average coherence are found in frontal
and parietal-occipital regions for the older participant. These FUs usually have
high inter-FU coherence as well, in accordance with previous observations in the
literature [5,8]. In contrast, FUs in the mid line are less synchronized. For the
young participant, the FUs are generally less synchronized. The left- and right-
temporal regions are less synchronized, as the average coherence of FUs are very
low in our examples.

5 Conclusions and Future Work

Visualization is an important aspect in the analysis of EEG coherence, espe-
cially for multichannel EEG coherence networks. While conventional methods
are either suffering from reduced spatial information or visual clutter, they have
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inherent limitations when applied to EEG coherence networks. We developed a
visualization approach based on the functional unit (FU) concept that attempts
to preserve spatial relationships between functional brain regions and allows
analysis of functional connectivity within and between regions.

This method first partitions an EEG coherence network into dense groups of
spatially connected electrodes recording pairwise significantly coherent signals.
The resulting communities (groups of electrodes) were visualized in an FU map,
which makes it possible to investigate the relationship between functional brain
connectivity and underlying brain structure. Results were compared to earlier
FU detection methods based on maximal clique or improved watershed based
algorithms. This comparison showed that there is a considerable difference for a
strong coherence network, in which the CCB method detects more FUs compared
to the MCB and IWB methods. For weak coherence networks, in which nodes are
usually significantly connected with their neighbours while being less connected
with nodes at a longer distance, the three methods detect FUs locally and the
difference in the number of detected FUs decreases.

Our method is a visually aided pre-processing method that can be used before
analysis questions about data are well defined. Although our method is specific
to EEG coherence networks, we believe that it can be easily adapted to other
network visualizations which need to capture the whole structure of networks and
that do not only depend on the analysis of single nodes or specified connections
between pairs of nodes.
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