
 

 

 University of Groningen

An exploratory case study on reusing architecture decisions in software-intensive system
projects
Manteuffel, Christian; Avgeriou, Paris; Hamberg, Roelof

Published in:
Journal of Systems and Software

DOI:
10.1016/j.jss.2018.05.064

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Manteuffel, C., Avgeriou, P., & Hamberg, R. (2018). An exploratory case study on reusing architecture
decisions in software-intensive system projects. Journal of Systems and Software, 144, 60-83.
https://doi.org/10.1016/j.jss.2018.05.064

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1016/j.jss.2018.05.064
https://research.rug.nl/en/publications/0c930c66-f4d3-4c04-b01e-fba3dd39ba69
https://doi.org/10.1016/j.jss.2018.05.064


Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

An exploratory case study on reusing architecture decisions in software-
intensive system projects

Christian Manteuffel⁎,a, Paris Avgerioua, Roelof Hambergb

aUniversity of Groningen, Nijenborgh 9 9747 AG Groningen, The Netherlands
bOcé-Technologies B.V. P.O. Box 101, 5900 MA Venlo Sint Urbanusweg 43, 5914 CA Venlo The Netherlands

A B S T R A C T

Reusing architecture decisions from previous projects promises to support architects when taking decisions.
However, little is known about the state of art of decision-reuse and the benefits and challenges associated with
reusing decisions. Therefore, we study how software architects reuse architecture decisions, the stakeholders and
their concerns related to decision-reuse, and how architects perceive the ideal future state of decision-reuse. We
conducted a qualitative explorative case study in the software-intensive systems industry. The study has shown
that architects frequently reuse decisions but are confined to decisions they already know or have heard about.
The results also suggest that architects reuse decisions in an ad-hoc manner. Moreover this study presents a
conceptual model of decision-reuse and lists stakeholder concerns with regards to decision-reuse. The results of
this study indicate that improving the documentation and discoverability of decisions holds a large potential to
increase reuse of decisions and that decision documentation is not only important for system understanding or in
the context of architecture reviews but also to support architects in upcoming projects.

1. Introduction

Taking architecture decisions is widely regarded as a difficult ac-
tivity that often involves considerable effort spanning multiple days or
weeks (Manteuffel et al., 2014; Tofan et al., 2013). Taking decisions can
become especially aggravated in large-scale software-intensive system
projects, characterized by a multi-disciplinary and distributed devel-
opment environment, involving numerous stakeholders with conflicting
interests, and a competitive business environment. In such projects
there are multiple factors that increase the complexity and intricacy of
taking decisions, for example, aiming at a short time-to-market in
combination with the complexity of the to-be-developed systems; re-
quiring the architect to design for different modes of operation;
achieving compliance with controlled elements from other disciplines;
and handling robustness of variations in operating conditions.

Reusing architecture decisions from previous projects promises to
support the architect when taking decisions by reducing the effort as-
sociated with architecture analysis, synthesis and evaluation
(Hofmeister et al., 2007) and by increasing the quality of decisions
(Zimmermann et al., 2007). A systematic reuse of decisions allows the
architect to identify key architectural issues, common domain-related
stakeholders, recurring concerns, and decision-forces as well as proven
or failed architecture solutions, patterns and technologies. More

importantly a decision can also be reused in the context of a network of
related reusable decisions: through decision relationships it is possible
to identify corresponding architectural issues including conflicting or
compatible architecture solutions. These reusable decision networks
embody architectural knowledge relevant for a particular domain
(van Heesch et al., 2012a) and provide more added value than the sum
of individual decisions.

The idea of reusing architecture decisions and in general archi-
tecture knowledge (AK) is not new and has been explored in many ways
(Tang et al., 2010). Traditionally, the focus of researchers and practi-
tioners was on reusing system-generic AK, like patterns, tactics or
technologies. System-generic AK particularly qualifies for reuse due to
its system agnostic documentation, which makes it applicable to a wide-
variety of systems. In contrast, system-specific AK entities, like re-
quirements or decisions, are only reusable in the context of a particular
system, a family of systems, or a system domain. However, system-
generic AK is often not available or too high-level for niche or specia-
lized systems. In these cases, system-specific AK assists architects “on
the basis of reusable peer knowledge applied successfully in similar
situations (Zimmermann, 2011)”. Hence, there has been an increased
interest in recent years in exploiting system-specific AK as reusable
assets, in particular, architecture decisions (Zimmermann et al., 2007;
Zimmermann, 2011; Soliman and Riebisch, 2014; Anvaari and

https://doi.org/10.1016/j.jss.2018.05.064
Received 20 October 2016; Received in revised form 2 May 2018; Accepted 28 May 2018

⁎ Corresponding author.
E-mail addresses: c.manteuffel@rug.nl (C. Manteuffel), paris@cs.rug.nl (P. Avgeriou), roelof.hamberg@oce.com (R. Hamberg).

The Journal of Systems & Software 144 (2018) 60–83

Available online 29 May 2018
0164-1212/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.05.064
https://doi.org/10.1016/j.jss.2018.05.064
mailto:c.manteuffel@rug.nl
mailto:paris@cs.rug.nl
mailto:roelof.hamberg@oce.com
https://doi.org/10.1016/j.jss.2018.05.064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.05.064&domain=pdf


Zimmermann, 2014).
However, in industrial practice, architecture decisions are currently

not being systematically reused and there are no approaches used in
industry that facilitate systematic reuse; to be more specific, decisions
are often not even explicitly captured (Tyree and Akerman, 2005;
Capilla et al., 2015) which can be considered as a prerequisite for
systematic reuse. Moreover, researchers only paid little attention to
explore the benefits and challenges of systematically reusing decisions
in order to provide evidence to practitioners. Therefore, we conducted a
qualitative explorative case study in the software-intensive system in-
dustry, in which we study how software architects currently reuse ar-
chitecture decisions and how they perceive the ideal future state of
architecture decision-reuse.

This study allows us to identify how and to what extent architects
currently reuse architecture decisions in their daily practice, stake-
holders relevant to decision-reuse and their concerns, as well as in-
centives that motivate or inhibitors that discourage decision-reuse in
industry. The results of this study contribute to a better understanding
of the status quo of decision-reuse in the software-intensive system
industry and present an important step towards a systematic decision-
reuse approach which meets the needs of software architects.

The study has been conducted according to the guidelines for case
study research in software engineering proposed by
Runeson et al. (2012) and has been organized according to their tem-
plate for conducting and reporting case studies. This study first gives a
brief overview of related work on decision-reuse. It will then go on to
outline the case study design including research questions, object of
study, case selection, data collection and analysis. Section 4 presents
the findings of the case study, discussed per research question. The fifth
section is concerned with limitations of the study, followed by a con-
cluding summary and recommendations for further research in
Section 6.

2. Background and related work

The idea of reusable architectural knowledge that supports the ar-
chitect in solving recurring design problems is not new. A recent study
by Tang et al. (2010) found that several AK management tools facilitate
reuse of system-generic AK, such as architecture patterns or archi-
tectural tactics, which present well-proven reusable solutions for re-
curring design problems. However, system-generic AK is often tailored
to a particular domain like automotive systems or service-oriented ar-
chitecture. This limitation reduces their applicability especially for
companies that operate in a niche where architectural problems fre-
quently require custom solutions involving inter-disciplinary problem
solving (e.g. HW/SW Co-design). In these contexts, reusing system-
specific architecture decisions from previous projects within the same
company could provide several benefits. In a survey about the decision-
making process of architects, van Heesch and Avgeriou (2011) suggests
that “decisions from comparable projects can serve as a starting point to
develop [an architecture] vision and can furthermore help to make sure
that no important considerations were forgotten”, such as stakeholders,
architectural problems, architecture concerns, decision forces or can-
didate solutions. Likewise,Tofan et al. (2013) also found in a survey
that architects are eager to compare their decisions to previous deci-
sions that solve a similar problem and that the absence of those deci-
sions are considered to contribute to the perceived difficulty of deci-
sions. Zimmermann (2011) further states that the availability of
reusable decisions can help to increase the understanding of decision-
making needs and available solutions, support architecture reviews and
prioritization of work items, as well as, improve communication be-
tween architects.

In the past decade, several approaches for documenting architecture
decisions in software projects have been proposed (Tang et al., 2010; Capilla
et al., 2015). The majority of these approaches are codification-approaches,
in which decisions are explicitly documented like PADME (Babar et al.,

2005), EAGLE (Farenhorst et al. (2007a)), ADWiki (Schuster et al., 2007),
ADvISE (Lytra et al., 2013), or Decision Architect (Manteuffel et al., 2016).
Only a few approaches employ aspects of a knowledge personalization
strategy, capturing “who knows what” about a decision rather than doc-
umenting the decision itself (Dingsøyr and van Vliet, 2009). Most ap-
proaches identify decision-reuse as an important stakeholder concern. For
example, the decision management tools proposed by Nowak and
Pautasso (2013), Farenhorst and van Vliet (2008) and
Manteuffel et al. (2016) all mention support for reusing AK, although their
main focus lies on capturing decisions while no concrete guidance is given
on how decisions can actually be reused in the architecting process and for
which purposes. According to Nowak and Pautasso (2010), the creation of a
company-wide repository of reusable decisions and its adaptation into in-
dustry practices remains an unsolved problem. Approaches for capturing
design reasoning targeted more towards system engineering are Customer-
Application-Functional-Conceptual-Realization (CAFCR) (Muller, 2004) or
Questions-Options-Criteria (QOC) (MacLean et al., 1991). In CAFCR the
customer view and the application view capture the why of the product. The
functional view describes the what of the product. The conceptual and
realization describe the how of the product. In QOC questions represent the
problems, options link to candidate solutions, and criteria are used to de-
termine how well options solve the given problem.

In recent years new approaches have been developed that focus on
enabling decision-reuse. For example, Zimmermann (2011) explored
the idea of decision-reuse via decision guidance models, which identify
typical issues and solutions for a well-defined domain. However, a
limitation of their approach is that the effort to create the guidance
models is only justified for domains in which issues frequently reoccur,
for example, green-field service-oriented architecture projects
(Zimmermann, 2011). Another limitation is the extra effort required for
creating system-generic guidance models out of system-specific deci-
sion models. Recently, the approach received tool-support in the form
of a plugin for Enterprise Architect called ADMentor
(Zimmermann et al., 2015). Overall, numerous studies are related to the
subject of decision-reuse by codifying frequent domain-specific deci-
sions into decision models, for example, Zimmermann et al. (2007) for
service-oriented architectures or Lewis et al. (2016) for cyber-foraging
systems.

Compared with previous work, this study does not propose a con-
crete approach for reusing architecture decisions but rather examines
the current situation of decision-reuse and its potential within the
software-intensive system industry. Understanding the status-quo of
decision-reuse, along with the guidelines and recommendations ob-
tained from the findings of this study, is an important step for devel-
oping successful decision-reuse approaches that intend to find a larger
adoption within the software-intensive systems industry. Moreover, in
contrast to previous work, a special emphasis is put on the reusability of
system-specific knowledge.

3. Case study design

The design of our study can be described as an exploratory quali-
tative embedded single-case study. An exploratory study is ideal in si-
tuations when the research goal is to seek new insights or generate
ideas. In this study we want to explore the reuse of architecture deci-
sions and not confirm an existing theory about decision-reuse or vali-
date a decision-reuse approach. Moreover, we use qualitative data
collection techniques because we study human behavior
(Seaman, 1999), i.e. to gain an understanding of the underlying moti-
vation, opinions, and communication of architects reusing decisions, as
opposed to quantitative data collection techniques that aim to explain
causalities or study the order of magnitude of a phenomenon
(Runeson and Höst, 2009). A case study approach was adopted to ob-
tain further in-depth information on decision-reuse. In contrast to ex-
periments, a case study is pertinent when it is difficult to study the
phenomenon in isolation: in this case the software process, application

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

61



domain, and organizational guidelines influence to what extent deci-
sions can and will be reused (Runeson et al., 2012). Moreover, a case
study allows us to acquire an in-depth understanding of the phenom-
enon as opposed to a survey, which would only allow us to generalize
over a population. The case study follows an embedded design, which
allows us to observe more details in the case because we study multiple
units of analysis. This reduces the likeliness to miss important issues
and it allows us to discover differences within the case.

3.1. Research questions

The main goal of this study has been formulated according to the
GQM template by Basili (1993), which expresses the object of the study,
defines the particular angle of the study, and describes the context of
the study.

Analyze the architecting process for the purpose of understanding
with respect to reuse of architecture decisions from the point of view of
architects in the context of software-intensive system projects.

The research goal has been decomposed into five research ques-
tions:

RQ1 What is the current state of decision-reuse in the software ar-
chitecting process of a software-intensive systems company?
RQ2 Who are the typical stakeholders for reusing decisions?
RQ3 What are the stakeholders concerns with respect to reusing
decisions in the software architecting process?
RQ4 What are the characteristics of an ideal approach for reusing
decisions?
RQ5 How do stakeholders assess the cost and benefits of decision-
reuse?

We ask RQ1 to identify practices and approaches of reusing archi-
tecture decisions; for example consider how far architects revisit deci-
sions of previous projects for potential reuse and which information is
important to them. RQ2 identifies relevant stakeholders that would
produce or consume reusable decision documentation. A typical soft-
ware-intensive system project involves many different stakeholders that
are involved in decision-making, such as, product managers, marketing
experts, system architects, software architects, electrical engineers, or
mechanical engineers. RQ3 aims at identifying concerns of the stake-
holders identified in RQ2. In this case, a concern is any interest of a
stakeholder in decision-reuse; for example, which aspects of decisions
are relevant for reuse. We ask RQ4 to identify how architects imagine
the ideal decision-reuse approach. This question allows us to derive use
cases and requirements for a decision-reuse approach. RQ5 explores
how stakeholders evaluate the costs and benefits of reusing decisions in
a concrete project. This could provide important insights into potential
incentives or inhibitors for decision-reuse.

3.2. Case and subject selection

This study investigates decision-reuse in large-scale software-in-
tensive system companies. The case for this study has been selected
based on availability, which is common in software engineering re-
search (Runeson et al., 2012). Océ R&D provides the case for this case-
study because they are representative for the described study popula-
tion and they were a collaborator in the ITEA2 PROMES1 research
project. The units of analysis are software architects who are either
involved in product development or who regulate the architecting
process (i.e., architects with a management role). Software architects
working in concrete projects provide us with insights about their on-
the-job architecting experience. Architects with a management role will
give us insights about the blueprint of the architecting process as well as

allocation of resources and people in different phases of the project.
Moreover, they provide us with a higher-level long-term perspective on
the strategic planning of software architecture related aspects. This
high-level view is particular interesting for answering RQ4 and RQ5
since benefits of decision-reuse are not immediately visible or mea-
surable. We aimed for a variation of subjects in architecting experience,
architecting responsibilities, and roles in order to get a broad overview,
to judge the significance of findings and to identify disagreements in the
data.

3.3. Data collection

We employed three data collection techniques: semi-structured in-
terviews, documentation analysis, and observational techniques. All
three data collection techniques have been long established in quali-
tative software engineering research (Seaman, 1999). Using multiple
data sources and data collection techniques allows for data triangula-
tion that strengthens conclusions because it limits the threats to validity
caused by the reliance on a single data source or data collection tech-
nique (Runeson et al., 2012).

We conducted semi-structured interviews because they are parti-
cularly useful for exploratory studies as they do not strictly follow a
predefined interview guide but leave room to explore ideas and con-
cepts that emerge during an interview. Due to the slight variations in
the roles of the interviewees (i.e., focus on architecting or focus on
management) we tailored the interview guides towards the current role
of the interviewee, e.g., in interviews with a management role we put
more emphasis on assessing the cost and benefits of decision-reuse by
asking additional questions and by dedicating more time to this topic
during the interview.Table 1 shows that the interviews help in an-
swering all research questions.

A major difficulty in the design of this study was that in practice
decisions are rarely reused explicitly and systematically but rather
implicitly and ad-hoc. Therefore, asking directly about the decision
reuse process would not yield the desired information but rather let
interviewees hypothesize about an imaginary reuse process. This would
threaten the degree of realism in the study. Instead, we aimed at ob-
serving to what extent and how decision-reuse plays a role in practice
by asking open questions and by letting the interviewees explain their
daily work. This allowed us to infer what role decision reuse plays in
practice and to get a holistic view on decision-reuse (Runeson et al.,
2012). The complete interview design including questions can be found
in the Appendix A.3. A mapping of interview questions to research
questions can be found in Appendix A.4. In total, we interviewed six
architects and recorded six hours of audio.

Participant observation is a data collection technique in which a
researcher collects data by observing subjects in their typical environ-
ment, e.g., the researcher joins a development team (Lethbridge et al.,
2005). The technique allows the researcher to capture first-hand be-
havior and interactions in a systematic and unobtrusive way that might
not be noticed otherwise (Seaman, 1999). In typical observation stu-
dies, the observer is visibly present and collects data with the knowl-
edge of those being observed. Compared to interviews, respondents are
more likely to be “comfortable with a team member and to act naturally
during observations” (Lethbridge et al., 2005). Observing subjects in
addition to interviewing them helps to mitigate the inherent risk of
interviews that answers are often given in a socially desirable way

Table 1
Mapping of data collection methods to research questions.

RQ1 RQ2 RQ3 RQ4 RQ5
Interviews • • • • •

Documentation analysis • • •
Observation • • •

1 https://itea3.org/project/promes.html.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

62

https://itea3.org/project/promes.html


(Yin, 2008). In this study, one of the authors became part of a newly
formed architecture team that was tasked with the redesign and evo-
lution of an embedded systems component (hereinafter: redesign pro-
ject).

Over the period of one year we observed fifteen design meetings.
Data collected consisted of field notes and audio recordings. In total, we
recorded seven meetings, which resulted in 11.5 hours of audio. As
suggested by Lethbridge et al. (2005), the researcher was not involved
in key activities in order to not lose the perspective on the research
goal. Instead the researcher performed support tasks, such as writing
minutes of meetings. Observing architecture design meetings allows us
to witness how architecture decisions are currently being reused and
which aspects of decisions are being reused (e.g., candidate solutions,
decision rationale, forces, etc.). It also provides us with insights about
who is interested in reuse and their concerns. As shown in Table 1,
participant observation does not contribute to answering RQ4, since an
non-existing ideal approach cannot be observed, nor RQ5, as the
method is unfit to elicit costs/benefits assessments from stakeholders’
perspective.

In addition to the data collected through observation, we also col-
lected architectural documents related to the redesign project as sup-
plementary data (Lethbridge et al., 2005). Collecting documents from a
real project provides us with additional insights about decision-reuse as
we expect to find traces of reused decisions (like cross-references to
other projects) in the documentation. In particular, it contributes to the
question if and which aspects of decisions are being reused. In total, we
had access to 28 documents consisting of 11 meeting minutes and 17
general documents (e.g., architectural descriptions, architecture views,
plan and vision documents, and memos) Moreover, the collected
documents allow us to cross check our findings from the interviews and
therefore, broaden our perspective on decision-reuse. As shown in
Table 1 the analysis of documents does not contribute to answering
RQ4 nor RQ5, since we do not expect to find assessment of the costs and
benefits of decision-reuse nor any information on a ideal reuse ap-
proaches in architecture documents.

In total, the data collection was performed in between May 2015
and July 2016. The observation of the redesign project started in May
2014 and concluded in May 2015. The observed design meetings took
place in a frequency of two to four weeks. The interviews were con-
ducted in June/July 2015.

3.4. Data analysis

The collected qualitative data has been analyzed using the constant
comparative method (also called constant comparison). The constant
comparative method is a systematic iterative analysis method for qua-
litative data (Miles et al., 2013). In each iteration the researcher gen-
erates, refines or rejects theories (Adolph et al., 2011) by continually
comparing new data against previously observed data.

Constant comparison follows a systematic process, in which theories
are developed bottom-up in a hierarchical manner. In every iteration, a
subset of the data is coded, which is the process of assigning labels
(codes), to chunks of data (incidents) that are of particular interest for
answering the research questions. We coded the data using a descriptive
coding approach in combination with sub-codes. Descriptive codes
summarize the basic topic of an incident (e.g., “Reuse Approach”)
(Miles et al., 2013). The resulting code system will be an inventory of
discussed topics. Sub-codes were used to further detail the topics by
assigning second-orders tags to the primary tag (e.g., “Reuse Ap-
proach:Template”) (Miles et al., 2013). For instance, if an interviewee
told us how s/he reused architectural knowledge in one of their pro-
jects, we assigned the code “State of the Art” to the corresponding in-
cident. If the same incident only talked about reuse based on the ar-
chitect’s experience, we additional assigned the sub-code “State of the
Art”:“Tacit Knowledge”. The advantage of this coding style is that it is
applicable to a diverse range of data (e.g., interviews, documents, or

field notes). However, descriptive codes are usually neutral (e.g., they
do not indicate if the incident is a positive or negative statement about a
topic), which makes it necessary to perform an additional analysis step
to qualify the coded incidents. Due to the exploratory nature of the
study, we decided against a predefined set of codes generated from
hypotheses or an existing theory. Instead, we let the codes progressively
emerge during the data analysis. This approach is also called inductive
coding. Inductive codes are better grounded empirically since the re-
search is not determined to force-fit the data into preexisting codes
(Miles et al., 2013). According to Miles et al. (2013), coding is a
heuristic method of discovery in which the researcher is forced to
deeply reflect on the data’s core meaning and therefore, can be con-
sidered a vital part of the analysis. In later iterations, the researcher
discovers similarities between new codes and previously established
codes across data sources. Similar codes and the incidents they re-
present are carefully compared and analyzed and, if possible, sum-
marized into overarching concepts, which represent early theories
about the data. This comparison allows to cross-check different data
sources. By following the constant comparative process the researcher
further summarizes, refines or rejects concepts. These concepts mature
over time upon reviewing additional data and eventually result in a
theory that answers the research questions.

In this study, we analyzed the data (i.e., interviews, documents,
field notes, and observations) in the following way.

1. The interview and meeting recordings were transcribed by two re-
searchers. The transcribed recordings were crosschecked for accu-
racy and quality.

2. We applied the constant comparative method, starting with itera-
tively coding the interviews, observations, field notes, and docu-
ments using MAXQDA2, which is a tool for qualitative data analysis.
After each iteration, we harmonized the coding system (e.g., similar
codes were combined) and all previously coded data was checked if
one of the added codes was also applicable. The harmonized coding
system was then used as a basis for the next iteration. Fig. 1 shows
an example of a code and the related incident within MAXQDA.

3. After the second step was repeated for all data, we mapped the codes
onto research questions and summarized the codes into overarching
concepts. For example, the incident “you should automate it so that
people that do not share this opinion can easily work with it” was
coded with “Low effort tool support”, which was summarized in the
concept “(4.15) Providing incentives”.

4. To increase the reliability of the coding, we asked another re-
searcher who was neither involved in the study design nor in the
data collection to code all data using the code system from step 3.
He was allowed to make modifications to the code system, e.g., add,
remove or rename codes. However, he was blinded to the previously
coded incidents, so he could not see how the data has been coded by
the other researcher. Afterwards we discussed the changes to the
code system and also discussed a random sample of coded incidents
to check the level of agreement. Based on the results of the discus-
sion another iteration of constant comparison was performed.

The resulting concepts were discussed and described in detail by the
researchers. This list of concepts served as a basis for the interpretation
of results reported in Section 4, in which we also reference corre-
sponding codes within the text in superscript (i.e.,(x.y)) to increase data
transparency. Additionally, we also indicate the source of a quote, e.g.,
“xyz”<1> originates from interview 1 (cf. Appendix A.2). According to
Hiles (2008), transparency is achieved by being explicit, clear, and open
about the production, analysis and data of the study, which is a sub-
stantial concern for establishing the quality of qualitative research.

In the following, an example of the analysis process is given. The

2 http://www.maxqda.com.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

63

http://www.maxqda.com


quotes are taken from different interviews: “People are busy, so they
easily have a too small focus. People should talk to others and ask other to
review. The challenge is always that people keep their team too small and
they dont get the knowledge in that is available. They tend to start either
again or with a too small team. Just invite guys that have a lot of knowledge
but they are not in your project.”<6> This reply was initially labeled with
“RQ1”, “Problem: Lack of communication / knowledge exchange”,
“RQ4” and “Facilitating communication” as the architect talks about
challenges in the context of decision-reuse and also about ways to im-
prove decision reuse. Using the constant comparative method, other
passages were found that had a similar subject, e.g., “I walk around a lot
and talk to everyone. I share this vision with everyone always, for example at
the coffee machine, everyday.”<6> or “It is only by talking.”<4> or “In the
current situation by asking someone who has done the project before me,
which is already quite a nice way.”<1>. All these passages, in their re-
spective context, refer to the need of personal interactions between
architects in order to distribute knowledge about architecture decisions
in the company. Thus, the code “(4.13) Facilitate interactions between
architects” had been established.

The complete list of codes can be found in Table A.6 in
Appendix A.2. Table A.6 also indicates the number of incidents per data
source for a given concept and thus, provides further insights about
how the evidence is grounded in data. However, neither the frequency
of a code nor its distribution over data sources necessarily allows
conclusions about its importance or significance with respect to the
findings. The coding style and the corresponding size of incidents can
result in multiple incidents that are only a few words long or a single
incident that spans over multiple paragraphs.

4. Results

In this section, we describe the case and subjects of this study and
present and discuss the results of the qualitative analysis. In order to
present the results in a structured and meaningful way, we first discuss
a conceptual model of decision-reuse. The conceptual model iteratively
emerged through the data analysis as it is based on the patterns that we
discovered during the analysis of the interviews and our observations of
the architecting process in the case company. The rest of the section is
organized according to research questions.

4.1. Case and subject description

Océ is a Netherland-based manufacturer of printing and copying
hardware and related software. Océ operates worldwide and has re-
search and development centers in Germany, Hungary, Romania,
France, Belgium, Canada and Malaysia. The core business of Océ can be
described as new product development, i.e., the transformation of a
market opportunity into a tangible product. The creation of new

products is taking place in large multi-disciplinary development teams,
in which development and manufacturing is often distributed over
multiple-sites and countries. The product development process is
commonly organized according to the phase-gate process
(Yazdani, 1999) and model-based development is increasingly prac-
ticed. Within the framework of the phase-gate process, sub-teams em-
ploy discipline-specific development processes. In the case of embedded
software engineering it is commonly a variant of an iterative process,
such as the Rational Unified Process (RUP) or Scrum.

The architecture decisions taken in the context of a project are
usually cross-disciplinary and therefore, are taken within a group of
architects from different domains. As one interviewee puts it: “At Océ
[...] the architectural level is the multi-disciplinary level”<1>. The archi-
tects mentioned that the typical decision-making process usually takes
place over a longer period of time and involves “a lot of discussion be-
tween the architects”<6>. The decision-making process has been de-
scribed as highly iterative and sometimes feasibility checks are per-
formed and prototypes are created along the way. Eventually, the
discussions result in proposals, which are reviewed by a technical
committee. “In the end, decisions are taken in the technical com-
mittee.”<6>

The project that we observed as part of this study aimed to redesign
and evolve an existing internal component of a product family of wide-
format printers. In total four architects were involved in this redesign
project. The goal was to make the software architecture of this com-
ponent reusable for a wide-variety of existing and future products. The
internal component is responsible for translating bitmaps into concrete
jetting instructions for print nozzles and consists of software, firmware
and electronics. Key architectural drivers were performance, print
quality, variability, quick setup and flexibility (for development). One
of the interviewees was responsible for the redesign project.

The interviewees stated their roles as follows: 2 Software Architects,
1 Domain Architect, 2 Workflow Architects, 1 Department Manager.
Since job roles are not universally defined, we asked participants to
describe their tasks and responsibilities to make sure that these match
the typical role description of an architect, as defined by
Kruchten (2008). For examples, typical responsibilities include asses-
sing technical risks and mitigation strategies, taking key decisions about
the architecture of the system, participating in project planning, or
maintaining the architectural integrity of the system. The various roles
mainly differ in focus, for example, the domain architect described his
role as follows: “I am more occupied with the multi-disciplinary total
aspects [qualities] of the product itself, like productivity or diag-
nostics”. In contrast, the workflow architects’ focus is more on the re-
quirements, e.g., “determining the functionalities and costumer value of
the product” or “taking the key decisions and validate that they will
lead to a working product“, while the department manager’s role in-
volves making sure that “architecture is at the right level and the

Fig. 1. Coded incident in the minutes of meeting #4.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

64



company stays fit from the discipline point of view”. As shown in Fig. 2,
the participants all have several years of experience with software en-
gineering (min. 13 years, max. 31 years, avg. 19.8 years). With regards
to their experience in software architecture , the participants can be
divided into two groups: four participants with more than ten years of
professional experience and two participants who have started working
in the area only a few years ago (min. 3 years, max. 30 years, avg. 13.5
years).

4.2. A conceptual model for decision-reuse

Decision-reuse can be described as the use of a previously made
decision in the decision-making process of an architectural problem
that is similar to the problem addressed by the original decision.
Reusing decisions supports the architect in accumulating knowledge
about the problem- and solution-space (also called design-space) by
providing reusable knowledge about the problem (e.g., forces, con-
cerns, stakeholders) and at the same time provide insights about pre-
viously selected or considered solutions, as well as the rationale for
choosing or rejecting those. In that sense, architecture decisions can be
seen as a potential source of reusable architectural knowledge.

Architecture decisions usually do not constitute off-the-shelf reu-
sable solutions like generic architectural knowledge entities, such as
architecture patterns or reference architectures, since both problem and
solution of a decision are closely linked to the original system-specific
context. Hence, before a decision can be reused in a different system
context, the architectural knowledge embedded in a decision must first
be converted from one system-specific context to a different system-
specific context. According to Farenhorst and de Boer (2009), this
conversion can be performed through abstraction and utilization. Ab-
straction is the conversion between system-specific to system-generic
AK, which is AK that is applicable to a wide variety of systems. Utili-
zation is the conversion from system-generic to system-specific AK,
which is AK that is only applicable to one specific system. An example
of a decision-reuse approach that is based on the principles of ab-
straction and utilization is Zimmermann’s decision guidance model
(Zimmermann, 2011). A decision guidance model abstracts reusable
decisions in a system-generic manner, which can be utilized by an ar-
chitect to reuse decisions in a system-specific context.

However, the results of our study show no evidence of a systematic
process of turning system-specific decisions to system-generic deci-
sions(1.1). The architects did not invest in abstracting decisions but ra-
ther immediately converted a decision from one system-specific context
to a different system-specific context. The system context describes the

circumstances that prevailed when taking a decision. It embodies the
conditions, the situation and the environment that influenced the de-
cision-making process. It is defined by the problem that had to be
solved, the set of forces and their priority that influenced the architect
when taking the decision, the stakeholders involved in the process, the
considered alternatives and the set of previous decisions that affected
the choice of alternatives as well as the final decision with its rational
(cf. van Heesch et al. (2012b)). It is important to note that the system
context does not only depend on the system-being-developed but also
has a temporal dependency, such as, the solution alternatives that were
available at a particular point in time. Hence, the system context pro-
vides important information that is necessary to fully understand a
decision and to assess its reusability and applicability in a different
system. As shown in Fig. 3, this immediate conversion implies that the
architect understands and evaluates the reused decision as well as the
system context in which the decision was taken. The architect compares
the original system context to the new system context, internalizes the
architecture knowledge embedded in the decision (conversion of ex-
plicit to tacit knowledge Farenhorst and de Boer, 2009), and finally
applies the knowledge embedded in the reused decision in the decision-
making process of a new problem. This ad-hoc reuse approach can ra-
ther be seen as a form of knowledge refinement, the conversion from
system-specific AK to system-specific AK (Farenhorst and
de Boer, 2009), rather than a combination of abstraction and utiliza-
tion.

The results of this study suggest that organizations do not invest
resources on abstracting decisions. In contrast to an ad-hoc decision-
reuse, a systematic reuse approach based on an explicit abstraction of a
decision into a system-generic format and a subsequent utilization re-
quires an upfront investment that is not guaranteed to pay-off as it
remains open if the abstracted decision will be reused after all.

Reuse approaches can be distinguished into implicit reuse, explicit
reuse and hybrid reuse, a combination of the first two(1.2). When im-
plicitly reusing decisions the architect relies only on his experience. That
is, the architects only consider decisions that s/he has taken or which s/
he has heard of. These decisions are part of the architect’s tacit re-
pository of reusable decisions. Often this type of reuse happens sub-
consciously and is motivated by the tendency of architects to prefer
known solutions. Several studies show that architects often implicitly
reuse solutions that they have previously considered when making a
decision (van Heesch and Avgeriou, 2011; van Vliet and Tang, 2016).
Implicit reuse can be associated with naturalistic decision-making,
which is based on intuition and experience. The architect does not
exhaustively explore the problem and available solutions but primarily

0

5

10

15

20

25

30

35

Architect 1

Architect 2

Architect 3

Architect 4

Architect 5

Architect 6

1514

30

16

33

20
17

31

1919

13

Software Engineering
Software Architecture

Fig. 2. Experience of the interviewed architects with software engineering and software architecture.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

65



relies on his expertise (van Vliet and Tang, 2016).
Explicit decision-reuse involves the architect actively seeking for

reusable knowledge, e.g., by asking colleagues, scanning documenta-
tion of past decisions, or using decision guidance models. Explicit de-
cision-reuse can be systematic, like Zimmermann’s guidance models
(Zimmermann, 2011) that is based on abstraction and utilization, or ad-
hoc as we observed in this case study. This style of reuse resembles a
rational decision-making approach, which is based on a careful ex-
ploration of the problem, alternatives and trade-offs (van Vliet and
Tang, 2016). We found that in practice there is no hardline between
implicit and explicit decision-reuse. Often architects rely on a hybrid
form of reuse that is partly based on experience and partly requires the
architect to explicitly seek for reusable knowledge. For instance, the
architect’s experience is often only a starting point for discovering po-
tentially reusable decisions. In many cases detailed knowledge about
these candidate decisions vaporized and needs to be actively sought,
e.g., by talking to colleagues.

By looking at decision-reuse from a process perspective we can es-
tablish a general decision-reuse process(1.7-1.12). The general decision-
reuse process shown in Fig. 4 is based on Markus (2001a), who pro-
posed a general process of knowledge reuse. We adapted this general
process to the software architecture domain based on the results of this
case study.

The reuse process can be divided into two phases: preparation and
execution. Preparation and execution are not likely to take place at the
same time and might not be performed by the same person. The pre-
paration phase involves the documentation of a decision for reuse and its
distribution. The execution phase is the actual reuse of a decision in a
different system and consists of discovery, retrieval, evaluation, and
adaptation. The process is generic enough that we can map reuse ap-
proaches onto it that are based on abstraction and utilization as well as
ad-hoc refinement. It also supports explicit, implicit and hybrid reuse.
Depending on the concrete reuse strategy some activities might not be
performed or are only performed implicitly, e.g., discovering decisions
by recalling them from memory.

Documentation is the process of documenting a decision in way that
makes it reusable. The documentation approach and the information
that needs to be codified depends on the documentation strategy. The

strategy determines which knowledge remains personalized and which
knowledge must be made explicit. Basically any decision documenta-
tion approach is sufficient, e.g., decision views (van Heesch et al.,
2012a), decision templates (Tyree and Akerman, 2005). In the case of
implicit reuse, this activity concerns the internalization of the existing
decision.

Distribution is the process of announcing or publishing a decision in
a way that makes it discoverable. According to Markus (2001b), dis-
tribution can either be passive, for example, by storing it in a searchable
knowledge repository, or active, for example, by announcing it during
daily scrum meetings. The goal of distribution is that architects are able
to discover a decision.

Discovery is the process of identifying or finding a decision that is
applicable for reuse because it solves the same or a similar architectural
problem. The discovery activity leads to a set of candidate decisions.
However, it is not yet determined if a decision is relevant or that it will
help the architect in decision-making. Moreover, the discovery activity
does not need to provide the complete decision but might only show
some meta-information that is necessary to judge if a decision is po-
tentially relevant and where the remaining information can be found.
Decisions can be discovered in multiple ways like searching information
systems, asking colleagues or recalling from memory. The way deci-
sions can be discovered depends on the adopted reuse strategy in the
preparation phase.

Retrieval is the process of retrieving the full description of a decision,
for example, by accessing a decision repository (codification strategy),
by interviewing colleagues (personalization), or a combination of the
two.

Evaluation is the process of understanding the original context of a
decision and assessing whether the decision is applicable in the new
context. When reusing a decision, the original context must be eval-
uated, e.g., what were the forces and their priorities, what trade-offs
were made, what was the impact of the decisions on the system (i.e.,
was it a good or bad decision), etc.

Adaptation is the process of using a decision or parts of it, like a
subset of forces or a considered alternative, in the decision-making
process of a different decision. The reused decision will be converted
from the original context to the new context.

Fig. 3. Ad-hoc decision-reuse as a form of architectural knowledge refinement.

Fig. 4. A conceptual decision-reuse process.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

66



4.3. RQ1 - Current state of reuse

In RQ1 we investigate the current state of decision-reuse. The in-
terviews and observations show that reuse is an important concern(1.1) for
architects when making decisions and that decisions are frequently being
reused(1.3). As one of the architects put it: “I reuse a lot of what I did in
previous projects with previous experiences. I sometimes look, how did I do
that in 2003, how did I do that in another project”<3>. The motivation for
decision-reuse is manifold(1.4). The architects reported that the main
motivation to reach out to other projects is seeking inspiration, for ex-
ample, how a similar architectural problem has been solved before.
They are hoping to find information about considered alternatives and the
decision rationale as well as models and simulations that were used to
evaluate alternatives, such as performance models. For example, one
architect said: “We use decisions from previous products to make it better,
but we always need to consider the context we are in. It is not one-to-one
reuse but it is more what was the reasoning there and also some experience is
what I want to have and then, yes, I reuse it”<3>. Another important
motivation for decision-reuse is the fact that new projects usually start
as forks of previous products, as shown in Fig. 5. These forking projects
require the architect to revisit important decisions and, if need be, adapt
those decisions to the new context. However, the data showed no evi-
dence of a systematic reuse of decisions in the architecting process.

The interviews showed that architects often face similar decision
problems in different projects(1.5). Yet, the context of the decisions can be
different and so could be the actual outcome of the decisions as they
might address concerns with a different priority. For instance, one
project focused on reducing the cost-price of a printer while another
project has the primary goal to improve the quality of prints. In both
projects the high-level architecture problems are similar, e.g., software-
hardware decomposition, task scheduling, or power management.
Nevertheless, many aspects of the decision can be reused even if the
system context is slightly different. For example, a reused decision can
serve as inspiration or guideline, and models and simulations can be
adapted to a new decision problem. As one interviewee put it: “Some
things tend to come back but there are differences each time. They could
reuse the methodology. Productivity, timing, power management is always
an issue. [...] Right now this [reuse of decisions] is not really happening. It is
either from experience or by doing it again.”<1>

Talking about this issue an interviewee stated that many reappearing

problems are solved in the company-specific reference architecture or other
reusable artifacts(1.6). Also from a management perspective reuse of
decisions is an important concern since aligning decisions across pro-
jects and reusing solutions can save both money and time. As one in-
terviewee stated: “There are similar problems in multiple projects. [...] It
happens, that they take different decisions”<6>. One architect particularly
highlighted that a challenge with regards to reuse in software-intensive
system projects is the cooperation between different disciplines(1.17)

since there is no common domain language and often no common
tooling available. As he puts it: “[...] group[s] mostly have their own way
of working for years, so it is hard to mess around with that. What we do lack
is some support for multi-disciplinary interactions and multi-disciplinary
corporation”<2>.

Below we illustrate, using the conceptual model for decision-reuse
(cf. Fig. 4), how decisions are being reused and to what extent and how
the development process of the case company supports or impedes
decision-reuse.

4.3.1. Preparation
Several issues related to the documentation of decisions were iden-

tified. Architecture decisions are not represented as first-class entities in the
documentation, although, they play an important role in the develop-
ment process of Oc . The documentation is solution-oriented specifying
the components, interfaces and connectors of the chosen alternative
rather than the rationale of the decision, considered alternatives or
other information about the decision-making process. Only in a few
occasions decisions were elaborately described. However, the inter-
viewees stated that this is the exception and that it is usually very hard
to find the rationale documented let alone considered alternatives and
the argumentation. One interviewee stated that “a lot of the discussion is
lost and in the end the discussion leads to one or two proposals but whether
all rational behind the proposals is documented, I am afraid not. In the end
the final proposal is there but not the reasoning how we came to the proposal
or why.”<6>

Architecture documentation is not coherent. We found that the ma-
jority of documents do not follow a predefined structure and that it is
often the responsibility of the architect to decide what needs to be
documented. Overall, reuse did not seem to be a concern that was
prominent when documenting.

Information about decisions are scattered over multiple documents,

Fig. 5. Excerpt of a document illustrating functionality in the architecture of an existing project and the target functionality in the spin-off project (obfuscated).

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

67



e.g., in separate memos. These documents often do not link to each
other, which makes it hardly possible to identify all documents that
contain information about a decision.“The problem is that there is no
template for such a document. You would end up with quite a lot of docu-
ments that have parts of the information.”<2> The observation that de-
cisions are not explicitly, comprehensively, and concisely documented
is typical in industry and has been reported by other industrial case
studies, such as Manteuffel et al. (2014). Moreover, the focus on a so-
lution-oriented documentation may also be related to the involvement
of multiple disciplines in the development process since other dis-
ciplines might not acknowledge architecture decisions in the same way
as software architecture. Moreover, the interviews indicated that ar-
chitects often do not find the information that they were looking for in
the documentation(1.16.) For example, “[a colleague] asked me about a
[decision] in a component. And then I looked back how good did I describe
that [decision]. I could have done a better job, so I know why he asked.”<3>

and “You ask [a colleague about] some documentation or rationale, and
most of the time he just explains it to you. [F]rom the documentation you
wont get the rationale, you will only find the specification.”<5>

Documents are stored in a variety of information systems. Although
decisions are not explicitly documented, documents still hold in-
formation about decisions. However, there are multiple information
systems in use, which makes it difficult to find the corresponding
document. One example is an unstructured company-wide archive that
primarily serves as a storage for all sort of documents including memos
and meeting minutes. Another example is a project-specific information
system that takes specific project-related documents, such as archi-
tecture specifications or milestone reports. Additionally, decisions can
be found Microsoft Sharepoint or Wikis, which are often dedicated to
sub-projects or reusable assets.

The goal of decision distribution is to make architects aware of de-
cisions and thus, it is closely linked to corporate knowledge sharing.
Our findings show that multiple mechanisms are used to facilitate
knowledge sharing, which includes: advocating personal interactions;
frequent meetings; shared office spaces; careful team composition; roaming
experts; and intranet.

The majority of decisions are announced in meetings and personal
interactions (like desk-visits or phone calls). It was mentioned that Océ
actively advocates personal interactions and meetings as part of their
development process. For example, the majority of employees related to
a product development team share an office space. Another example are
architecture steering group meetings to align decisions across product-
lines. In addition to that team composition is an important factor to
increase decision reuse as one interviewee mentioned. “I always look at
who is needed in a project so that I can be sure that they are going to do the
right things. Because the knowledge is in the people and not because it is
nicely documented somewhere and they can easily get it. So if I have a new
clean team, there is no way that they can setup a better software for a project
or discuss architecture. Experienced individuals are very important.”<6>

Another approach to increase knowledge-sharing are domain experts,
which move between projects as consultants and thus, take the decision
knowledge with them to the next project. In a few but rare occasions,
decisions were also announced via the intranet (news bulletin).
However, one interviewee also stated that many opportunities for reuse
are still missed due to a lack of communication(1.15) despite the com-
pany’s effort to increase knowledge sharing. “There are similar choices in
multiple projects and sometimes there is hardly any communication between
these guys.”<6> and “People are busy, so they easily have a too small focus.
They should talk to others.”<6>

4.3.2. Execution
The interviews showed that decisions are primarily discovered based

on either experience (recall from memory) or by talking to colleagues who
are experts in a particular field. Again, the experience of the architect
plays an important role for discovery. As one of the interviewees stated:
“I guess [architect reuse knowledge] a lot. But it is in the people. It is the
experience of the architects. Of course they have documents that they use but
most of the reuse is because people know”<6>. The interviewees stated
that they often recall a decision from memory since they were responsible
for it or otherwise involved in the decision-making process. It is im-
portant to note that this does not imply that they remember the com-
plete decision with all of its aspects but rather that they have a hunch

Fig. 6. Obfuscated minutes excerpt from Meeting #3. A participant remembers a similar decision in Project F (discovery) and agrees to search for documentation
(retrieval).

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

68



that something similar has been decided before. This hunch is the start
for further investigations (retrieval) (cf. Fig. 6 and 7).

Another common way of discovering decisions is through discussions
with colleagues, via desk-visits, hallway discussions, or during meetings.
A general concern expressed by the interviewed architects is the effort
associated with finding suitable decisions for reuse (discovery) and
processing the documentation to find the relevant information (re-
trieval)(1.14).

The interviews show that architects do not systematically scan existing
documentation from other projects for potential decisions. Two issues
were identified that hinder systematic scanning. First, it is not clear
where to search since there are multiple information systems that might
contain relevant information. Second, the search is not considered pow-
erful enough as it does not allow for a targeted search of decisions, e.g.,
by problem, by solution, etc. As one architect stated this issue: he must
know that the documents exists in order to find it. Talking about this
issue an interviewee said: “There could be very good things done in other
projects and I would only know them because I would talk to people and not
because I would find the information very quickly.[...] There are the projects
I know, where I know my way around and then I can refer to those. But there
is no structured way of finding information”<1>. The interviews show that
it is hardly the case that architects explicitly search for decisions that can be
reused. In most cases, reuse is limited in the sense that architects only
reuse familiar decisions, in which they were involved or they have heard
about from colleagues. This leaves a large amount of potential deci-
sions, and thus important architectural knowledge, ignored.

After identifying potential decisions, detailed information about a
decision are retrieved by searching in the document management sys-
tems for a particular document; by asking experts who were involved in
the decision-making process or worked on a part of the system that has
been affected by the decision; by keeping personal archives (e.g. file
archives or email archives) related to a subject or architectural problem
that lies within the responsibility of the architect. Overall we found that
due to the incompleteness of decision documentation (no rationale, no
requirements, etc.), architects employ a hybrid approach when retrieving a
decision using both codified and personalized knowledge by searching
for documentation and by asking experts. However, the interviews also
indicate a preference of architects towards personalized knowledge as
the documentation often does not contain the information they are
looking for.

The interviews showed that architects do not follow a systematic

approach for evaluating the context of a decision and adapting it to a new
architectural decision problem. While evaluation can be supported by a
systematic process, such as, checklists, the adaption of a decision is
more complex since it depends on what information the architect wants
to reuse. Talking about this issue an interviewee said: “So we use the
work from previous products lines to make it better, but we need always to
take on the context we are in. So it is not one-to-one reuse but it is more what
was reasoning there and also some experience (outcome) is what I want to
have and then, yes I use it”<3>. In Section 4.5 we present the stakeholder
concerns related to evaluating the context of a decision. The concerns
illustrate which information architects are looking for when evaluating
decisions for reuse.

4.3.3. Discussion
The observation that architects rarely reuse decisions but rather

tend to use them as inspiration is closely related to the software-in-
tensive systems domain. In the studied domain new products often
contain innovations coming from other disciplines, like chemical,
hardware or mechanical improvements, which then need to be reflected
in the software realm. Although the high-level architectural decom-
position remains the same (since it has been solved in a reference ar-
chitecture) the innovations still have a huge impact on the software.
Since the solution to these architectural problems usually require some
sort of custom solution, systematic reuse like guidance models or
system-generic AK like patterns are less applicable. This is also reflected
in the interviews, which indicate that architects at Océ rarely consult
system-generic AK sources(1.13), such as patterns (5 out of 6 architects
indicated no use or very little use of system-generic AK). In mono-dis-
ciplinary components of the systems, such as a web-based remote user
interface, systematic reuse and generic AK tends be more applicable.

Our results also show that experience plays an important role in the
decision-making process. This supports the argument of van Vliet and
Tang (2016) that decision-making in software architecture is not en-
tirely rational and to some extent based on intuitions and experiences
with a tendency of architects to reuse known solutions. This is further
supported by the following excerpts from the interviews: “Most of time
we only discuss the most promising [alternative] and if someone says it is not
going to work we should do it [differently][.] we work it out”<2>; “It
doesn’t happen that often that you really compare alternatives. You work out
two or three and then you say, now we are going to compare.”<4>. Like-
wise, van Heesch and Avgeriou (2011) also found that architects prefer

Fig. 7. Obfuscated minutes excerpt from Meeting #5. Further investigation is needed to evaluate if the decision taken in Project F is applicable in the new project.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

69



solutions they are familiar with as they impose a manageable risk since
shortcomings are often well understood and can be mitigated. More-
over, unfamiliar alternatives require substantial extra effort to analyze,
which conflicts with the strict time-to-market characteristics of the
observed industry.

The reliance on experience and knowledge personalization has the
inherent risks that experts might leave the company or fail to re-
member. Although, it was stated that this happens rarely and that most
of the time large parts of the decision can be reconstructed. In many
cases the available documentation helps experts to remember sufficient
details. Overall, knowledge vaporization has more severe consequences
for decision discovery when it is not possible to discover a decision
because it was forgotten. As long as a decision can be discovered,
knowledge pertaining to this decision can be, at least partially, re-
covered.

4.4. RQ2 - Typical stakeholders

RQ2 aimed at identifying typical stakeholder groups that have a
stake in decision-reuse. We distinguish between two roles: producer of
reusable decisions and consumer of reusable decisions. The stake-
holders that are involved in the preparation phase of decision-reuse are
producers while the stakeholders who actively reuse decisions are con-
sumers (Tang et al., 2010). The categorization of stakeholders into
producers and consumers follows ISO/IEC/IEEE (2011) standard for
architecture specifications. Table 2 presents the stakeholders that we
identified in this case study. The case study showed that architecture
decisions usually concern cross-disciplinary problems, while mono-
disciplinary decisions are regarded as high-level design. Based on this
notation of architecture, the presented stakeholder cannot be uniquely
associated with a single domain.

4.5. RQ3 - Concerns of stakeholders

RQ3 aimed at identifying concerns of stakeholders with respect to
decision-reuse. The term “concern” here refers to a stakeholder’s in-
terest in an architecture description as defined in ISO/IEC/IEEE 42010.
The study found several stakeholder concerns related to reusing ar-
chitecture decisions. Table 3 provides an overview of the identified
concerns. However, due to the exploratory nature of this study we do
not claim that the list of concerns is exhaustive or prioritized. More-
over, the concerns are linked to the activities of the decision-reuse
process. Concerns may play a role in more than one activity. For ex-
ample, C1 plays a role when documenting and distributing a decision
since the stakeholders needs to know whether a decision is a key de-
cision or not. Likewise, it is important during discovery to identify all
key decisions of a particular project. Several of the concerns that we
identified were also identified by earlier studies related to the doc-
umentation and utilization of architecture decisions (i.e., C1, C3, C6,
C7, C8, C9 (van Heesch et al., 2012a; van Heesch et al., 2012b). A
complete description of the concerns is shown in Appendix A.1.

4.6. RQ4 - Characteristics of an ideal approach

Any decision reuse approach that does not purely rely on persona-
lized knowledge, i.e., the sole experience of an architect and his peers,
requires some level of decision documentation. While decision doc-
umentation approaches and their ideal characteristics have been dis-
cussed in several studies (Farenhorst and van Vliet, 2009; Hoorn et al.,
2011; Manteuffel et al., 2014; Capilla et al., 2015), our study focusses
particularly on the demands that arise from the context of software-
intensive system projects.

Software-intensive system projects can be characterized by a multi-
disciplinary and distributed development environment, involving nu-
merous stakeholders with conflicting interests, and a competitive
business environment that requires a short time-to-market. As shown in
Table 4, for each of these characteristics certain demands arise. We will
discuss these demands and present recommendations that solve aspects
of the demand, following the structure presented in Table 4.

The results of RQ1 show that both documentation and discovery have
a large potential for improvement. It is important note that due to the
design of the study the list of characteristics, demands, and re-
commendations is not exhaustive. However, practitioners can turn to
these recommendations and in combination with the stakeholder con-
cerns identified in RQ3, they serve as a first step to derive concrete
requirements for an approach that facilitates decision-reuse.

(a) Time-to-market
Time-to-market is an important concern at Oc . “It is always a bal-

ance between time-to-market and the time to get a real good product
out.”<6>The high time-pressure to release a product means that deci-
sion documentation has a lower priority as it does not directly con-
tribute to the product. “When we have to change something in the software
we had so much time pressure that we didnt update the documents. So at the
end, documents are completely out of date and nobody reads
them.”<5>“Because at the time you are [making a decision], the barrier to
document it is too high. [... ] I dont want to write a memo about that because
it would probably take two hours.”<5>

The two statements illustrate that it is important to reduce the effort
to document and maintain decision documentation but also to make it
very easy and fast to discover reusable decisions. RQ1 showed that

Table 2
Typical stakeholders for decision-reuse.

Stakeholder Role Description

Architect(2.1) Producer The architect, as a producer, is responsible for documenting and distributing a decision. This stakeholder has the goal to make decisions
reusable.

Consumer As a consumer, the architect is in the process of taking a decision and is seeking for a reusable decision.
Reviewer(2.2) Consumer The reviewer is a consumer of decisions. The primary goal of the reviewer is to reuse decisions as source of information in the review

process, e.g., to compare a decision to past solutions or to assess how another project solved a comparable problem.
Product-line Architect(2.3) Consumer The product (line) architect is responsible for a product-family or product-line. As such, this stakeholder’s goal is to align the architecture

of multiple products and bundle the efforts of multiple teams. Therefore, it is necessary that synergies, like shared architectural problems,
can be identified. This stakeholder aims at planning and streamlining the reuse of decisions.

Table 3
Stakeholder concerns related to reusing architecture decisions.

ID Concern

C1 What were key decisions in project X (for subsystem S)?
C2 Which decisions Di addressed problem P?
C3 Which decisions D1 considered to use alternative A?
C4 Which projects PRi share problem P?
C5 What decision Di has been reused in the decision-making process of

decision 2?
C6 Which stakeholders SHi were involved in decision D?
C7 What is the rationale behind decision D?
C8 Which alternatives Ai were considered for decision D?
C9 What forces Fi influenced decision D?
C10 Which trade-offs Ti were made for decision D?
C11 What is the high-level system context of decision D?
C12 Which model M was used for decision D?

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

70



architects complain that architecture documentation is often too long,
which makes it hard to find the right information, or it does not contain
the right information at all, i.e., design rationale or decision alter-
natives. AS one architect puts it: “Finding it should be easier then doing it
again.”<1>.

a.1) Documentation
a.1.1) Guidance A common concern expressed by the interviewees

was the need for guidance that instructs architects when to document
what for which purpose. Guidance can also increase the level of stan-
dardization of decision documentation, which is important to know
what information is actually recorded and can be found in the doc-
umentation. Several approaches were discussed that potentially offer
guidance(4.6), which include decision templates like the one proposed
by Tyree and Akerman (2005), decision viewpoint-based approaches as
proposed by van Heesch et al. (2012a), or simple checklists that let
architects choose their own format but ensures a certain standard with
regards to decision documentation.

a.1.2) Value-based Documentation The results of RQ1 suggest that
architects believe that a large amount of a decision can be reconstructed
based on a few hints. “So there is probably some pragmatic balance be-
tween structured documentation of architecture decisions or knowledge and
whats in the head of the people.”<6> It can therefore be argued that in the
context of decision-reuse, documentation can be kept to a minimum as
a long as the decisions can be discovered. The idea of a value-based
documentation of decisions has also been explored by
Falessi et al. (2013), who claim that a full documentation of decisions
“is typically too onerous for systematic industrial use as it is not cost-
effective” and therefore, should be tailored to the intended use case.
van Heesch et al. (2012a) argue in a similar way, that any decision
documentation produced should be based on the concerns of intended
stakeholders. Also Manteuffel et al. (2014) found in a study that ar-
chitects do not want a tool that enforces complete documentation but
should offer the possibility to document only certain aspects of a de-
cision. However, we need to gain a better understanding of which as-
pects of a decision should be documented so that it can be discovered
and be reconstructed. For example, a hybrid decision documentation
approach, combining codification and personalization, which briefly
describes the problem and solution, and captures ‘who knows what’
about a decision might be promising, as also suggested by
Farenhorst et al. (2007b).

a.1.3) Split Documentation A strategy discussed in the interviews to
reduce the effort of documenting and maintain decisions is to split
decision documentation into two parts: a brief summary that is being
kept up-to-date and extended information that are not being main-
tained(4.3). “What I think would be the right way, is a very limited set of
documentation that you really maintain and [it] should focus on helping
somebody [... ] on finding its way through the knowledge. All other things
should be archived and not maintained.”<1> This split reduces the effort
of documentation and its maintenance while still allowing architects to
discover potentially reusable decisions. The decision summary refers to

further information pertaining to a decision(4.5). A prerequisite for these
kind of decision overview documents is a system that allows to create
trace links between documents, e.g., based on unique IDs or URIs.

a.1.4) Incremental Documentation To further lower the effort of
documentation one interviewee suggested that when reusing decisions
an incremental documentation could be often sufficient by only doc-
umenting the differences compared to the original decision(4.4). “So we
have got this documentation. What we used to do was to create an addenda
to that on how things changed in the actual project. So we have a general
description of action control. And then I would write an addenda on that
saying now we using action control [in the following way]”.”<2>

a.2) Discovery
a.2.1) Decision Overviews To reduce the effort associated with deci-

sion discovery, it has been suggested that decision documentation
should be brief and centered on the most important information(4.1) by
providing an overview. For example, one interviewee proposed to
create mandatory decision overviews for every project at the end of
certain milestones, e.g., in the form a decision relation viewpoint as
proposed by van Heesch et al. (2012a). These overviews provide a
summary of the key architectural decisions(4.2) and make it easy to
discover important decisions in a project that qualify for reuse (cf.
Concern C1). Moreover, the documentation of decisions after-the-fact is
considered to reduce the effort of documentation (Jansen et al., 2008).
This recommendation can be combined with split documentation and
value-based documentation.

a.2.2) Comprehensive search Information systems (IS) can support deci-
sion-reuse in various way, for example, by providing a central repository of
AK. The interviews showed that several IS are in use but that it is too dif-
ficult to find information. Therefore, a comprehensive search function-
ality(4.11) that allows to semantically search for decisions, e.g., based on the
decision problem, considered alternatives, or related forces, is an important
requirement for an effect IS that aims to increase reuse.

a.2.3) Relating Decisions A further suggestion to ease discoverability
it the possibility to link decisions to related decisions. These decision
relationship allow architects to find potential decisions that are useful
in the context of the reused decision and therefore, might also be re-
levant when reusing a particular decision.

b) Multi-disciplinary Due to the involvement of multiple disciplines
in the development process, a decision-reuse approach for the em-
bedded systems industry needs to consider additional aspects compared
to a mono-disciplinary project. According to one architect “the com-
plexity in the software architecture [in software-intensive systems] is in the
multi-domain part, the interactions and the different information to keep
them consistent. [T]he scope is not only the software here but it is multi-
domain.”<5>b.1) Documentation

b.1.1) Discipline-Independent Tooling In a multi-disciplinary en-
vironment it is difficult for a tool to interface with all discipline-specific
tools (e.g., CAD3 in mechanical engineering; IDEs4 in software en-
gineering; circuit simulator in electrical engineering) due to the lack of
a common plugin architecture. However, decisions concerning the ar-
chitecture of a system often involve the input from multiple-disciplines
and therefore, any tool must be available to all disciplines involved in
the development process(4.7), for example, either as a standalone tool or
by integrating with general-purpose tools, such as Microsoft Office, that
are used by all disciplines.

b.1.2) Flexibility Decision-documentation approaches for software-
intensive system project requires a high degree of flexibility(4.8); it
should be versatile and not limit the use of multiple modeling ap-
proaches (e.g. UML) since there is no common graphical notation that is
able to express the concerns of all disciplines (e.g., interfaces between
software and mechanical components). Depending on the problem and
involved disciplines, a decision can sometimes be easily documented in

Table 4
Overview of characteristics & recommendations.

Characteristic Reuse activity Recommendation

(a) Time-to-market Documentation Guidance
Split documentation
Value-based documentation
Incremental documentation

Discovery Decision overviews
Comprehensive search
Relating decisions

(b) Multi-disciplinary Documentation Discipline-independent
tooling
Flexibility

Discovery One source of information
(c) Distributed

development
Documentation &
discovery

Informationsystem support

3 Computer-aided Design.
4 Integrated Development Environments.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

71



textual form, sometimes a graphical form is more appropriate, and in
other situations a matrix is more suitable. Moreover, some decisions can
be documented in a single sentence, while other require an elaborate
documentation. Farenhorst et al. (2007b) also emphasize flexibility due
to the creative nature of architecting, tools should be descriptive rather
than being prescriptive.

b.2) Discovery
b.2.1) One source of information Due to involvement of multiple

disciplines, architectural knowledge is often replicated and compart-
mentalized across disciplines, making it difficult to judge whether a
certain decision is the latest and only version, especially with regards to
discovery and retrieval. A single source of information is desirable(4.7),
especially, with regards to propagating changes in decisions as illu-
strated by the following story. “What we did in the past is that we use CAD
data from mechanics. They export the CAD data and we use it directly in the
embedded software, so the distance between two sensors is based on data
from the CAD. In other projects we had to ask for the distance between two
sensors, they would measure it tell us it is 5cm. Then we documented this in
another document stating the distance is 5cm. And then finally they decided
to change the position and of course all the data was not updated anymore.
So now we dont have to put the number 5 everywhere but the data is in the
CAD data. Instead of documenting it in Microsoft Word we prefer to refer to
models. CAD is a model for us.”<5> The story shows that it doesn’t have
to be a centralized repository of decisions(4.9) as proposed by
Liang et al. (2010) but also that in a multi-disciplinary settings a dis-
tributed approach could be a solution.

Another aspect to facilitate reuse is to provide convincing in-
centives(4.15) for architects. For example, by fostering a company reuse
culture, by offering low effort tool-support, or by offering rewards for
reusing decisions or making decisions reusable, e.g., as part of the
compensation system. “Well in general it helps if you encourage people to
do something if you reward them because that drives the
motivation.”<1>“You need to convince people that it is worth doing it this
way. And you should automate it so that people that do not share this
opinion can easily work with it.”<5>

c) Distributed Development A company-wide approach for reusing
decisions in a distributed development environment must take into
account that experts, teams and projects are located at multiple de-
velopment sites, countries and timezones.

c.1) Documentation & Discovery
c.1.1) Information System Support A solution to improve the doc-

umentation and discovery of decisions in a distributed setting requires
some information system support(4.10), which can act as a global AK
repository(4.9) or allows to link local AK repositores. Notifications re-
lated to certain topics or projects (e.g. RSS feeds, Mailing lists) that are
relevant for a particular architect are a desirable feature as it is difficult
to stay up-to-date on relevant subjects. Farenhorst et al. investigated
tool-support to improve knowledge sharing

Farenhorst et al. (2007b)
Besides recommendations that aim at codification of decisions, we also

observed strategies at Oc that aim to improve decision-reuse and knowl-
edge-sharing through personalization. Personalization remains important for
knowledge-sharing due to the lower effort required compared to codifica-
tion, as acknowledged by Capilla et al. (2015), although it has the inherent
risk of knowledge vaporization. Moreover, personalization can be better
combined with agile development practices that tend to reduce the amount
of documentation in order to be able “to react to changes in its environment
faster than the rate of these changes (Kruchten, 2013)”. As shown in RQ1,
frequent changes, coming from innovations in other disciplines, require a
higher degree of agility in the software domain. This need for agility is one
reason to emphasize personalized knowledge as codified knowledge might
be outdated by the pace of these changes. We identified three strategies that
are used at Océ: a) Facilitating social interactions, e.g, by encouraging fre-
quent meetings, offering shared office space, and co-locating teams of the
same project(4.13); b) Careful composition of project teams that ensures that
certain knowledge is available(4.12) (cf. Section 4.3.1); c) Roaming experts

that act as architecture consultants and join a project for a period of time to
assist with a particular architectural problem.

4.7. RQ5 - cost and benefits of decision-reuse

RQ5 examined how architects perceive the costs and benefits of reusing
decisions. The interviews show that architects perceive several benefits from
reusing decisions. Facilitating decision-reuse helps to train inexperienced
architects in decision-making(5.1) by exposing them to architecture decisions
that were made by experienced architects, as illustrated by the following
quotes: “These [decision views], if I would have them available in the next project
this would really help me.”<1>;“Yes, that is true. I think good documents [to see
how an experienced architect would do sth.] as a reference that helps.”<3> As
discovered by van Heesch and Avgeriou (2010) inexperienced architects
often do not follow a systematic reasoning process. Exposing them to reu-
sable decisions guides them in how to reason about alternatives and how to
make informed, well-balanced trade-offs. Moreover, decision-reuse pro-
mises to save time when making decisions(5.2) by reducing the effort asso-
ciated with architectural analysis and synthesis. The interviewees stated that
an extensive body of past decisions is particularly helpful in the beginning of
a project and that it in general supports projects(5.12). “You gain time to
market without a doubt. Everything would immediately be available; what has
been done in that area or with respect to these topics. That helps a lot.”<6> Even
if a decision is only partially reusable (e.g., when the decision-context is not
exactly the same), it provides inspiration for solving architectural pro-
blems(5.4) by providing examples of reasoning processes from other archi-
tects. From a product-line architect’s perspective a systematic decision-reuse
approaches saves resources and effort when aligning decisions across pro-
jects(5.3). And lastly, the availability of reusable decisions can facilitate ar-
chitecture evaluations in several ways, especially when decision-based
evaluation methods are being employed, such as Decision-Centric Archi-
tecture Reviews (DCAR) (van Heesch et al., 2014). In DCAR, architects can
use a catalog of past decisions to elicit forces relevant for a review by ex-
amining which forces were previously considered relevant as well as to
identify decisions relevant for the review (e.g., in case the system is part of a
product family or based on a previous system). Moreover, architecture
evaluations are facilitated by allowing the reviewer to compare the to-be-
reviewed decision to similar decisions made in the past(5.6) and thus, to
identify potentially omitted design options, decision-forces, arguments, as
well as consequences and implications on the system.

On the other hand, architects also expressed their worries regarding
decision-reuse. The interviewees showed a hesitance towards a systematic
reuse of decisions because of they fear that it might decrease innovation(5.7).
It was expressed that if decisions are being reused, the architects would
invest less in finding original solutions and rather select well-known solu-
tions from the past. “Reuse is always important but it shouldn’t block you in
making changes.”<6> However, several studies already show that architects
are biased by their experience when making decisions by favoring solutions
they have considered before (van Vliet and Tang, 2016). Therefore, it could
also be argued that with a systematic reuse approach the architect considers
a larger set of potential solutions exceeding his own experience. Another
concern expressed by the interviewees is that reuse might decrease the un-
derstanding of a problem(5.8) as the architects would spend less effort on the
analysis of architectural problems. While this might be the case for off-the-
shelf reusable solutions, it is questionable if a similar effect would occur
when reusing decisions. As shown in the conceptual model, reusing a de-
cision always requires to transfer knowledge from one system context to
another system context, in which the architect evaluates and adapts a de-
cision. In order to perform these steps, the architect needs a thorough un-
derstanding of the problem. Another concern articulated is that decisions
can be reused in the wrong way or for the wrong purposes(5.13) as illustrated
by the following quote: “[I see that people use] the available technology in the
wrong way and then develop something else for the way it was actually supposed
to be used.”<2>.

Architecture decisions are considered an important corporate asset by
one of the interviewed architects(5.5), underlining that architectural

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

72



knowledge reuse is a frequent and important organizational concern
(Markus, 2001b). Nevertheless, it was argued that in product development
the most important concern is to get the product to the market as fast as
possible. This focus on immediate benefits complicates the introduction of
systematic decision-reuse within an organization(5.9), as one interviewee
said: “It is all a matter of, do they spend time on it, documentation is very
important and still it is very difficult to really get everything nicely documented.
Because people are really extremely busy.It is not immediately important to the
project success. So short term [goals] often prevail.”<6> The mandatory reuse
preparation phase, in which decision need to be documented and dis-
tributed, does not have direct advantages for a project (w.r.t to reuse), but
only for potential future projects. However, once a certain number of de-
cisions has been prepared for reuse, the actual reuse of decisions has im-
mediate benefits for a project. Investing in decision-reuse is considered a
long-term investment that does not have an immediate return of value and,
depending on whether a decision will be reused or not, possibly has no
return at all. Still, the point has been raised that due to the increasing size
and complexity of software-intensive system projects, not investing in reu-
sable architectural knowledge is considered a risk for the company. This is
in line with observations from (Hoorn et al. (2011)), who found that ben-
efits of documenting decisions are only visible in the longer term; in the
short term the most important thing is to meet the deadline, and move on to
the next project.

5. Evaluation of validity

Our study is subject to limitations which can be categorized into con-
struct validity, external validity, and reliability following
Runeson et al. (2012). Internal validity is not a concern for this study because
we did not examine causal relations (Runeson et al., 2012).

Construct validity indicates to what extent the operational measures
that are studied really represent what was intended to be studied
(Runeson et al., 2012). Interview studies often suffer from poorly
worded or difficult to understand questions, which lead to ambiguous
responses (Verner et al., 2009). Following the suggestion of
Lethbridge et al. (2005), we conducted a pilot interview with a software
architect that works in a comparable domain. The pilot interview
showed that the questions are clear and understandable. Moreover,
interview studies are subject to inaccuracies due to poor recall and
reflexivity (Verner et al., 2009), the phenomenon that interviewees
tend to answer questions in a socially desirable way or do not answer
truthfully because they fear negative consequences, e.g., for their job
(Runeson et al., 2012). We aimed to mitigate this risk by ensuring
confidentiality of everything discussed during the interview, stating the
voluntariness of participation and that there is no obligation to answer,
as well as the fact that there are no right or wrong answers. We also
asked open-ended questions and asked interviewees to motivate their
answer in order to eliminate this bias.

A common limitation of observational studies is the Hawthorne
effect, which refers to the fact that subjects tend to change their be-
havior simply because they are being observed (Lethbridge et al.,
2005). We factored potential distortions of the results due to this effect
into the analysis. Furthermore, we ensured to not bias the participants
of the observed design meetings, for example, by exposing them to the
research goals and questions.

Reliability is an aspect of validity that is concerned with the dependence
of the data and the analysis on specific researchers (Runeson et al., 2012).
The use of qualitative data is susceptible to several limitations of reliability
due to the interpretative and subjective nature of qualitative data analysis.
The biggest limitation of our study is the fact that the constant comparative
method and observations were conducted by an individual researcher due
to resource limitations. Therefore, the interpretation of the architect’s re-
sponses and the observations depend on the researcher’s belief system.
Though, the study was exploratory and did not aim to validate or reject an
a-priori hypothesis, we cannot ensure that ambiguous indicators were in-
terpreted in a favorable way to the study’s goal, e.g., the importance of reuse

as a concern to architects might be overestimated. We mitigated this con-
cern by regularly discussing intermediate results of the coding procedure
and the final results between the authors of this study. Moreover, we per-
formed an additional coding step with an unbiased researcher that re-coded
all data in order to increase the reliability and quality of the coding. In
addition, we used several data sources which allowed us to cross-check our
findings (Creswell and Miller, 2000). For example, the observation of ar-
chitectural design meetings over a period of one year gave us in-depth in-
sights and allowed us to put the interviews into perspective, which lowered
the risk of being biased by one person (Runeson and Höst, 2009).

Moreover, we allow an assessment of validity and reliability by
being explicit and open about all research decisions and activities as
suggested by Creswell and Miller (2000). We also appended the inter-
view guide and the final code system to increase the level of trans-
parency as suggested by Hiles (2008). Transparency is an important
concern for establishing the quality of qualitative research by being
explicit, clear, and open about the production, analysis and data of the
study (Hiles, 2008).

External validity is concerned with the extent to which findings and
conclusions can be transferred to other contexts and to which extent they
help to derive useful theories. As critics sometimes state (Yin, 2008), find-
ings of case studies are limited in the sense that they are not necessarily fully
valid in a broader context. Because this study is qualitative, the results are
not statistically representative and due to the single-case design statical
generalization is not possible. Instead, we use analytical generalization to
discuss the findings for our research questions and their generalizability
(Runeson and Höst, 2009; Yin, 2008). Another limitation of the study is the
geographical location of the company and the nationality of the interviewed
architects. Although Océ operates globally and has a internationally diverse
workforce, we conducted our case study at the R&D site in the Netherlands
and all interviewees were Dutch. Consequently, in order to eliminate any
factors related to country or culture, the study needs to be replicated in a
different setting.

In RQ1, we present the current state of decision-reuse in Océ including
company-specific approaches and tools. Consequently, neither the descrip-
tion of the current state of decision-reuse nor the discussed approaches are
generalizable to other companies. Nevertheless, the absence of a systematic
decision documentation approach and the resulting difficulties to discover
decisions are typical problems in the software industry as pointed out by
(Capilla et al., 2015). In addition, a key finding of RQ1 is the tendency of
architects to reuse decisions in an ad-hoc manner, immediately converting
decision from one system-specific context to another system-specific con-
text. This finding is not company-specific as it deals with the fundamental
way of working of architects. The conceptual model of decision-reuse that
we present is generic enough to be independent of case-specific factors and
therefore, can be used to map existing decision-reuse approaches. The sta-
keholders identified in RQ2 were described in a abstract manner in-
dependent from the roles we observed in Oce. However, we acknowledge
that the profiles are heterogenous and have different meanings in different
companies (e.g., software architect). Nevertheless, the presented classifica-
tion can be used to map our stakeholders to actual stakeholders in other
companies. The concerns presented for RQ3 are applicable to the wider
domain of embedded systems engineering. This is because the identified
concerns are generic enough and do not include case-specific factors. Sev-
eral of the concerns were identified in previous studies (van Heesch et al.,
2012a; van Heesch et al., 2012b), which further supports their general-
izability. An exception to this are the concerns C15 (“Which model was used
to evaluate alternatives for decision D?”) and C16 (“What are open or up-
coming problems P in architecture R?”). C15 is specific to organizations that
employ the model-based system engineering methodology in which domain
models are used as a means for information exchange and experimental
simulation. C16 only applies to situations in which a reference architecture
is shared by several simultaneously developed products. The general-
izability of the findings of RQ4 (ideal approach) and RQ5 (cost and benefits
of decision-reuse) are limited by the degree to which the characteristics of
an ideal approach as well as the benefits and limitations of decision-reuse

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

73



depend on the case-specific experiences of the subjects.

6. Conclusions and future work

The main goal of the study was to investigate the decision-reuse in
software-intensive system projects. The study set out to describe the
current state of decision-reuse, to identify the responsible stakeholders
and their reuse-related concerns, to characterize the ideal approach for
reusing decisions and to analyze how stakeholders assess the costs and
benefits of decision-reuse.

As a first step, we introduced a conceptual model for decision-reuse,
and based on this model, we have illustrated the current state of deci-
sion-reuse at Océ. The results demonstrate that reuse is an important
concern and architects frequently reuse decisions when architecting.
However, due to the lack of explicit decision documentation and in-
adequate possibilities to discover decisions, architects are confined to
decisions they already know or have heard about. Overall, the evidence
suggests that a lot of architectural knowledge embodied in decisions is
not utilized by architects and has to be re-acquired. Improving the
documentation and discoverability of decisions holds a large potential
to increase the amount of decision-reuse and thus, to spread archi-
tectural knowledge within a company, improving the architecting
process.

Despite its exploratory nature, this study offers insight into how
architects reuse decisions. A major finding was that architects do not
abstract decisions into a system-generic form before they reuse them
but instead do an ad-hoc conversion. Likewise, we found that organi-
zations do not spend resources on abstracting architectural knowledge
into a system-/generic reusable form. Taken together, the findings
suggest that abstracting decisions into a system-generic form is often
not necessary and might not yield a positive return on investment,
especially if there is not a high degree of decision reuse.

Moreover, our study identified important reuse-related concerns of

stakeholders. Notwithstanding the fact that we only observed a single
company, the identified concerns offer valuable insights to improve
architectural documentation with regards to decision-reuse. These
concerns should inform the design of any decision reuse approach.

With regards to an ideal decision-reuse approach, we found that the
reuse activities of documentation and discovery have a large potential
for improvement and dedicated tool-support. Nevertheless, our study
also highlights the importance of hybrid approaches that supports co-
dification as well as personalization of knowledge. Furthermore, our
study emphasizes the importance of architectural knowledge-sharing,
especially, with respect to reusing decisions across projects and sites.

A final significant finding, is that decision documentation is not only
important for system understanding or in the context of architecture
reviews but also to support architects in upcoming projects.

This research will serve as a base for future studies on decision-reuse
and enhances our understanding of the role of architecture decisions in
the architecting process. Moreover, the findings further support the
importance of managing architectural knowledge and especially, of
documenting decision rationale and alternative solutions.

This study further raises questions in need of further investigation
including: what is an optimal approach for reusing decisions in in-
dustrial projects; how to determine in advance which decisions are
candidates for reuse; and what documentation is optimal to balance the
effort of documenting decisions compared to the effort of retrieving
decisions? Moreover, we need more empirical evidence to evaluate the
cost, benefits and implications of decision-reuse.

Acknowledgment

We would like to thank all participants of the case study and
Michael Stal for participating in the pilot study. We thank our colleague
Chen Yang for his valuable support in the data analysis of this study.
This research has been sponsored by the ITEA2 project 11013 PROMES.

Appendix A

A1. Description of stakeholder concerns

C1 What were key decisions in project X (for subsystem S)? Identifying the key architecture decisions that were taken for a particular system
or subsystem provide a good starting point for reusing AK that already exists within the company. For example, architects working on system S’ are
looking at decisions in system S because it resembles S’, it is in the same family, or it is a followup project. Answering this concern helps architects to
discover decisions that can be reused or provide inspiration that supports the architecting process.

C2 Which decisions Diaddressed problem P? The interviews showed that architects are interested to learn how other projects solved an
architectural problem, which is similar to the one they are working on. Especially, since a set of architectural problems reappear from project to
project as shown in RQ1, architects are interested in applying similar solutions. “Most of the time, I look once or twice at previous solutions. For example,
double storage of counters, I want to know how [ProjectA] solved this”<3>

C3 Which decisions Diconsidered to use alternative A? Being able to discover decisions in which a particular alternative has been considered
provides an important basis for reusing architectural knowledge. From these decisions, architects increase their understanding about an alternative
and learn about the arguments that lead to the selection or rejection of it. When using an alternative, architects want to know if the alternative has
been used in previous projects and if the choice of the alternative had a positive or negative impact on the project in hindsight, for example, were
there any unforeseen negative or positive consequences?

C4 Which projects PRishare problem P? Aligning products from a product portfolio point-of-view promises to save resources and effort.
Therefore, knowing which projects share similar architectural problems is an important concern that allows the identification of potential synergies
across projects and enables cross-project decision-reuse. “So most of the times when you want to improve, you discuss with the projects that are developing
to see if there is some synergy, if they also want to achieve something in that direction? And then you cooperate and you find the common functionality.”<5> It
is in the interest of the company to align the architectures of different projects as much as possible in order to facilitate reuse and shorten devel-
opment time. Therefore from a portfolio point of view it is important to be aware of solved or upcoming problems that affect multiple projects.
“Because then we have huge projects, they all have their own choices and implementations and designs and it is all different. in the end it will be a disaster. I
really believe that we should have an alignment in architecture choices across projects, to save resources in the end.”<6>

C5 What decision D1 has been reused in the decision-making process of decision D2?
This concern asks which decisions were reused by the architects when making a particular decision. The need for this concerns is mainly related

to establishing traceability between decisions for impact analysis and system understanding. “You want to change something which you dont know why
it is, so you have to go back into the first design to understand why it is that way. Maybe because it was reused or maybe because it was the easiest thing to do or
maybe it has a functional reason.”<5>

C6 Which stakeholders SHiwere involved in decision D?
It is widely acknowledged that a large part of knowledge cannot be easily documented (Farenhorst and de Boer, 2009), so called tacit knowledge.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

74



Table A1
Frequency and distribution of codes per data source.

Code M
in

u
te

s†

D
o
cu

m
en

ts
†

In
te

rv
ie

w
1

In
te

rv
ie

w
2

In
te

rv
ie

w
3

In
te

rv
ie

w
4

In
te

rv
ie

w
5

In
te

rv
ie

w
6

(1.1) Decision-reuse in ind. practice

(1.2) Implicit vs. explicit reuse

(1.3) Frequency of reuse

(1.4) Motivation for reuse

(1.5) Recurrence of decision problems

(1.6) Recurring problems solved in
reuse components

(1.7) Documentation

(1.8) Distribution

(1.9) Discovery

(1.10) Retrieval

(1.11) Evaluation

(1.12) Adaptation

(1.13) System-generic AK is rarely
reused

(1.14) Problem: Effort of find-
ing/processing documentation

(1.15) Problem: Lack of communica-
tion / knowledge exchange

(1.16) Problem: Decision Documents
lack relevant information

(1.17) Problem: Multi-disciplinary co-
operation

(2.1) Architect

(2.2) Reviewer

(2.3) Product-line Architect

3.1) What were key decisions in
project X (for subsystem S?)

(continued on next page)

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

75



Table A1 (continued)

Code M† D† 1 2 3 4 5 6

3.2) Which decisions Di addressed
problem P?

3.3) Which decisions Di considered to
use alternative A?

3.4) Which projects PRi share problem
P?

3.5) Which decision D1 has been
reused in the decision-making process
of decision D2?

3.6) Which stakeholder SHi were in-
volved in decision D

3.7) What is the rationale behind de-
cision D?

3.8) Which alternatives Ai were con-
sidered for decision D?

3.9) What forces Fi influenced deci-
sion D?

3.10) Which trade-offs Ti were made
for decision D?

3.11) What is the high-level system
context of decision D?

3.12) Which model M was used for
decision D?

(4.1) Focus on the important AK (e.g.
rationale)

(4.2) Overview of decisions

(4.3) Reduce documentation mainte-
nance effort

(4.4) Incremental Documentation

(4.5) Reference (trace) documents

(4.6) Guidance

(4.7) Multi-disciplinary tool availabil-
ity

(4.8) Flexibility of documentation

(4.9) Collaborative central repository
of AK and AE

(4.10) Information System Support

(4.11) Powerful Search

(4.12) Assign experienced members
on a project

(continued on next page)

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

76



Therefore, a complete documentation is often not feasible nor desirable as it requires too much effort. Therefore, being able to identify the stakeholders that
were involved in the decision is important in order to fill in the gaps left by the documentation. Being able to answer this concern is necessary when retrieving
decisions.The following line from the redesign project exemplifies the concern: “In case more information is needed please contact [PERSON1] or [PER-
SON1]”<M>. Also several architectural views were created in the redesign project that indicate the responsible architects of components.

C7 What is the rationale behind decision D?
The interview showed that access to design rationale is considered very important when reusing architecture decisions. As one if the interviewee

stated: “The insight why a decisions was taken is very important for reuse. Architects should understand where and why certain choices were made in
projects in the past. If that is lost that really hampers success in the future.”. When reusing decisions it is important to understand the reasoning
behind a decision, not only for selecting a certain alternative but also why other alternatives were rejected.

C8 Which alternatives Aiwere considered for decision D? The alternatives considered in previous decisions sometimes present reusable
solutions. If the alternative cannot be reused off-the-shelf, it still might provide a source for inspiration. This does not only apply to the selected
alternative but is also relevant for rejected ones as illustrated by the following statement: “We had to understand why they didn’t do it and we found
out because [one of the considered solution] did not had a [particular] capability [at that time]”. In contrast to C3, which aims at the evaluation of a
particular alternative, C8 aims at inspiration (e.g., identifying potential alternatives).

C9 What forces Fiinfluenced decision D? When reusing a decision it is important to be aware of the forces that influenced the architects when they
made the decision, since they determine the context in which the original decision was made. The selection and prioritization of forces explains why a certain
alternative was favored over another solution. A force is a broad concept, capturing anything that impacts the architect, such as, requirements, architectural
concerns, expertise of the team, as well as business and projects constraints. Especially forces that are not directly related to the system (e.g., requirements,
architectural concerns) are often hard to find in the documentation, although, they fundamentally shape the decision. As one interviewee reported:
““Sometimes a decision has nothing to do with architecture. For example, no one wanted to make a particular component. However, there was one team that had some
spare time and agreed to take it over. So you get some features or components in a subsystem that you would have expected in a different subsystem. When you dive into
the architecture you could experience that this is a bit strange. Why was it solved that way?””<3>

Table A1 (continued)

Code M† D† 1 2 3 4 5 6

(4.13) Facilitate interactions between
architects

(4.14) Explicit documentation reviews

(4.15) Providing incentives

(5.1) Benefit:Training junior archi-
tects

(5.2) Benefit: Reuse saves time

(5.3) Benefit:Align Decisions across
project to save resources

(5.4) Benefit:Reuse decisions as inspi-
ration for problem-solvin

(5.5) Benefit: Decisions are corporate
assests

(5.6) Benefit:Comparing decisions for
architecture evaluation

(5.7) Risk:Reuse decreases innovation

(5.8) Risk:Reuse knowledge decreases
understanding of a problem

(5.9) Cost: Short-term benefits pre-
vail

(5.10) Cost:Effort of documentation

(5.11) Cost:Willingness to invest in
reuse

(5.12) Benefit: Provide guidance
(general proj. support)

(5.13) Risk: Mis-reuse
† Documentation analysis of the redesign project

Legend:
1 2-3 4-6 7-10 11-15 16-21 22-29 30-38

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

77



C10 Which trade-offs Tiwere made for decision D?
The interviews showed that architects frequently make trade-offs, which need to be made explicit in the documentation.“So we have to reconsider

the product and we have to do cost-price action and the cost-price action hits the architecture. Maybe I can reduce the cost by half but then the productivity of
the printer goes down.”<5> When reusing decisions it is important that the reusing architect is aware of potential trade-offs that were made when
making the decision. In practice the considered alternatives are not able to address all forces equally well and therefore, do not perfectly solve an
architectural problem. Instead the architect must decide which of the alternatives optimally balances the relevant forces and which trade-offs are
acceptable. For example, the architect might trade-off productivity in order to lower the cost-price or to deliberately accumulate technical debt in
order to reduce the time-to-market.

C11 What is the high-level system context of decision D?
When looking for existing decisions the reader might not be familiar with the system context of the decision (e.g., unfamiliar terminology).

Therefore, it is important to provide a brief description that explains the system context for a particular decision. This description might show where
the decision problem is located within the system by showing related components or steps within a sequence. “When I want to know on a subject I
sometimes only need the problem around. For example, when you have the failure correction and this mechanism. I wanted to know more about the concept. I
had troubles to find out about the concept but I could find a lot of documents on how to solve this or that, but where is now the concept? That is sometimes not
written down and that could help us.”<3>

C12 Which model M was used for decision D?
Océ employs the model-based system engineering methodology, in which domain models are used as a means for information exchange and

experimental simulation.Therefore, the decision for a certain alternative is often supported by a model, which evaluates aspects of the solution, such
as a performance model. “If you talk about big data handling, there is a lot of things you can do with a really simple model. If you have resolution, you have
pages per minute. If you stuff that into the model you can quite quickly come up with a data rate and see if it fits on a disk or if you need something [else].”<4>

These models often embed a high degree of architectural knowledge and represent reusable entities by themselves.

A2. Code system

Table A2
Mapping of Interview Questions (cf. Appendix A.3.1) to
Research Questions.

In
te

rv
ie

w
Q

u
es

ti
o
n
s

R
Q

1
-

S
ta

tu
s

Q
u
o

R
Q

2
-

S
ta

ke
h
o
ld

er
s

R
Q

3
-

C
o
n
ce

rn
s

R
Q

4
-

Id
ea

l

R
Q

5
-

B
en

efi
ts

/
C
o
st

s

1a •
1b •
1c • • •
1d •
2a • •
2b • •
2c • •
2d • •
2e •
3a • •
3b • •
3c • •
3d • •
4a • • •
4b • •
4c • •
4d •
4e •

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

78



A3. Interview guides

The interview guides were defined upfront by the three authors in an iterative process. The interview guide was split into four blocks that focused
on a particular area of discussion. This first block aimed at understanding the current architecting and decision-making process. It provides us with
background information about the interviewees, their concrete role and their understanding of software architecture. Understanding the background
of the interviewee is important to put other answers into perspective (e.g., the interviewees understanding of architecture decisions when asking
about reusing decisions). The second block of questions identifies current reuse of architectural knowledge. It establishes the current state of
decision-reuse and helps to identify which information about a decision is most frequently being reused. It primarily contributes to answering RQ1.
The third block of questions discusses recurring architecture problems, solutions, and decisions in order to identify their decision-reuse potential by
examining to what extent they recur in the architecting process and how they can be reused. Moreover, this block aims to identify which information
is most relevant for reuse. This third block of questions helps in answering RQ1,RQ2 and RQ3. The last block of questions aims at identifying
concerns related to decision-reuse, the ideal approach for decision-reuse and the cost and benefits of reusing of decisions; thus, it helps to answer
RQ2, RQ3, RQ4 and RQ5. The interview guide does not equally cover the research questions. More questions are devoted to RQ1 and RQ3 compared
to RQ2, RQ4, and RQ5. The reason is that the research questions vary in scope and complexity. For example, RQ1 asks about the status quo of reuse
while RQ3 aims to elicit a list of stakeholders involved in decision-reuse.

• Explain about the study, what we are looking for, and how they will benefits from the results.

• We want to explore to what extent architecture decisions can be reused across projects. Therefore, your views and experiences on architecture
decision-making in the context of large-scale embedded system projects.

• Reusing architecture decisions from previous projects (e.g., decompositions of systems aspects, selection of technologies or components, or the
application of patterns)

• promises to support the architect,

• to reduce the effort associated with architecture analysis, synthesis and evaluation

• and to increase the quality of decisions.
The information that you give us in the interview will be used

(a) to gain a better understanding of the current situation of decision-reuse in industry;
(b) to identify prerequisites and requirements of a systematic decision-reuse approach that meets the needs of software architects;
(c) and to identify stakeholders relevant to decision-reuse, their concerns as well as incentives that motivate or inhibitors that discourage

decision-reuse in industry.

• There are no right or wrong answers to this. We are keen to gain a wide variety of opinions.

A3.1. Interview guide for software architects
Block 1:(≈ 10min) Understanding the current architecting and decision-making process

1a) Could you describe your role as a software architect?

• What are your typical tasks, responsibilities and duties?

• What is not included in your responsibilities?

• How long do you usually stay in a project?
1b) Please describe the typical software architecture process in your projects?

• How do you usually do architectural analysis, synthesis and evaluation?

• In which phases do you interact with other disciplines?
1c) Please describe the process that you follow when making architecture decisions (even if it is not structured, what are typical steps)?

• How do you identify the architectural issues that require a decision?

• How do you identify the forces (requirements) that primarily influence the decision outcome?

• How do you identify and evaluate architectural alternatives for a problem?

• How many alternatives do you usually identify?

• Who is usually involved in the decision-making process and how do you reach consensus?

• Who takes the responsibility for taking the decision?

• How far do you document decisions and which aspects?
1d) In the beginning of a project, to what extent are you familiar with the problem domain?

• Problem-domain: Understanding and awareness of requirements and how they influence the architecting process

• When are you able to sufficiently estimate/anticipate the problem that will/might occur in a project?

Block 2:(≈ 10min) Identifying current reuse of architectural knowledge
The second block of questions aims to establish the current state of decisions reuse and to identify the decision reuse potential by examining to

what extent architectural issues, alternatives and decisions reoccur in the architecting process and how those can be reused.

2a) To what extent do you consult documentation from past projects when making architecture decisions?

• Could you give a rough estimate, e.g., in x out of 10 decisions?

• What information are you looking for?
2b) To what extent do you consult software architects from other projects (finished and ongoing) when making decisions? (RQ1)

• Could you give a brief estimate, e.g., in x out of 10 decisions?

• What information are you asking for?
2c) To which extent do you consult other information sources when making decisions, e.g., internet, intranet, blogs, etc.?
2d) To what extent do you consider patterns and technologies (libraries, framework, etc.) when architecting? (RQ1)
2e) How far are your decisions influenced by your experience, for example, by decisions that worked well in the past ?

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

79



• Could you give a brief estimate, e.g., in x out of 10 decisions?

Block 3:(≈ 10min) Identifying reoccurring problems, solutions, and decisions

3a) Are there architectural issues or decision problems that occur in the same or a similar way, in every project?. These decisions can be related to
the system’s decomposition, properties, trade-offs, development process, etc.

• How far do those decision topics have the same or a similar outcome?
3b) To what extent are forces, such as functional requirements and non-functional requirements, recurring form project to project?

• Are the requirements to some extent similar and only the concrete values change?

• Are there typical forces that you consider when making a decision?
3c) To what extent are stakeholders and their concerns similar from project to project?
3d) How often do you think that an architectural solution has been already considered or evaluated in a previous project?

• To what extent do you see the potential to reuse solutions from previous projects?

• To what extent would you trust such solutions?

• If you could not reuse the solution, would you see any advantage or possibility reusing the evaluation of the alternative (if present) , e.g.,
performance models or pugh-matrices? If yes, how?

Block 4:(≈ 15min) Identify concerns related to decision-reuse, ideal approach of decision-reuse and the cost benefits of reusing of decisions.

• For the next questions, please imagine a typical project in which your are the responsible Software Architect.

• I would like to ask you to imagine an approach for reusing decisions from previous projects.

• And by decisions I am referring to the complete ecosystem of a decisions, which includes the problem, associated requirements, interested
stakeholders, the rationale, considered alternatives, evaluations, you name it.

• This approach should be the best possible solution in your eyes.

(4a) Could you briefly describe the approach that came to your mind?

• How would you use the approach during your daily work as an architect?

• What kind of capabilities and features would the approach support?

• Which information would you be most interested in for reuse?

• What kind of use cases for decision reuse came to your mind?

• Who would use this approach?

• How would you envision tool-support for this approach?
(4b) What are the benefits and costs of this ideal decision-reuse approach?

• What would be the greatest incentive (or motivation) of reusing decisions?

• What would be the largest inhibitor of reusing decisions?
(4c) To what extent would the ideal approach support you when you are first assigned the role of a software architect in a new project?
(4d) How much effort would and could you spend on making your decisions reusable for other architects?
(4e) What kind of incentives would you propose to convince your colleagues to make their decisions reusable?
(4f) Who else would benefit from reusable decisions?

A3.2. Interview guide for software architects (Management role)
Block 1:(≈ 10min) Understanding the current architecting and decision-making process

(1a) Could you describe your role and responsibilities in Oce?

• What is not included in your responsibilities?
(1b) In how far are you concerned with software architecture as part of your job?
(1c) Could you describe the role of a software architect in your department?

• What are their typical tasks, responsibilities and duties?

• What is not included in their responsibilities?

• Are there significant differences compared to SA in other departments?
(1d) Please describe the ideal software architecture process in your department?

• How is the architecting process managed?

• How are architects supported?

• How do architects and managers interact and in what topics?
(1e) What is the typical process that they should follow when making architecture decisions?

• Are managers involved in making architecture decisions and what are typical concerns?

• Who takes the responsible for taking the decision?

• In how far do they document decisions and which aspects?

• Is documentation of architecture decisions an important issue for management?
(1f) How important do you consider reuse of architecture decisions (or knowledge in general)?
(1g) Would you consider reusable decisions as corporate assets?

Block 2:(≈ 10min) Identifying current reuse of architectural knowledge
The second block of questions aims to establish the current state of decisions reuse and to identify the decision reuse potential by examining to

what extent architectural issues, alternatives and decisions reoccur in the architecting process and how those can be reused.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

80



(2a) To what extent do architects in your department reuse architectural knowledge?
(2b) In how far do you facilitate reuse of architecture knowledge in your department?

• What tools and approaches do you provide to support reuse?

• Which sources for reusable architectural knowledge do you provide?

• Access to existing documentation of past project

• Reference Architectures or pattern catalogues

• Other information sources (internet, intranet, blogs, etc.)

• Are there knowledge bases in Oce that cut across departments or individual projects?
(2c) Can you quantify the benefits and costs of reusing architecture knowledge?

Block 3:(≈ 10min) Identifying reoccurring problems, solutions, and decisions
The following set of questions aims to identify the potential of decision reuse

(3a) Are there architectural issues or decision problems that occur in the same or a similar way, in every project? These decisions can be related to
the system’s decomposition, properties, trade-offs, development process, etc.

• In how far do those decision topics have the same or a similar outcome?
(3b) To what extent do you see the potential to reuse solutions from previous projects?

• To what extent would you trust such solutions?
(3c) If you could not reuse the solution, would you see any advantage or possibility reusing the evaluation of the alternative (if present) , e.g.,

performance models or pugh-matrices? If yes, how?
(3d) To what extent are forces, such as functional requirements and non-functional requirements, recurring form project to project?

• Are the requirements to some extent similar and only the concrete values change?

• Are there typical forces that you consider when making a decision?
(3e) To what extent are stakeholders and their concerns similar from project to project?

Block 4:(≈ 15min) Identify concerns related to decision-reuse, ideal approach of decision-reuse and the cost benefits of reusing of decisions.

(4a) How would you assess the improvement potential for reusing architecture decisions?
(4b) How can decision reuse be increased in your department?

• How could management (better) support reuse?

• What information would you be most interested in for reuse?
(4c) What would be the greatest incentive (or motivation) for reusing decisions?
(4d) What would be the largest inhibitor for reusing decisions?
(4e) How much effort would you allow architects to spend on making decisions reusable for other architects?
(4f) What kind of arguments would you propose to convince architects to make their decisions reusable?

A4. Mapping of interview questions to research questions

A5. Participant invitation letter

Dear LASTNAME,
We would kindly invite you to participate in a case study about reusing software architecture decisions at Océ.
As part of this study, we would like to invite you to a one-off interview with a researcher to tell us about your views and experiences on

architecture decision-making in the context of large-scale embedded system projects. In particular, we want to explore to what extent architecture
decisions can be reused across projects. Reusing architecture decisions from previous projects (e.g., decompositions of systems aspects, selection of
technologies or components, or the application of patterns) promises to support the architect, to reduce the effort associated with architecture
analysis, synthesis and evaluation and to increase the quality of decisions. The information that you give us in the interview will be used

(a) to gain a better understanding of the current situation of decision-reuse in industry;
(b) to identify prerequisites and requirements of a systematic decision-reuse approach that meets the needs of software architects;
(c) and to identify stakeholders relevant to decision-reuse, their concerns as well as incentives that motivate or inhibitors that discourage decision-

reuse in industry.

There are no right or wrong answers to this we are keen to gain a wide variety of opinions. If you are interested in taking part in this study, please
send us a list of time slots that would work for you. The interview will approximately take 45 min.

The study is part of the ITEA2 PROMES research project, and is conducted by the Software Engineering and Architecture group of the University
of Groningen in collaboration with Oce: Christian Manteuffel , Paris Avgeriou, and Roelof Hamberg. If you have any questions about the study then
please do contact us.

Thank you very much for reading this letter,
Yours sincerely,
Christian Manteuffel, Paris Avgeriou, Roelof Hamberg

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

81



References

Adolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the experience of
software development. Empir. Softw. Eng. 16 (4), 487–513. http://dx.doi.org/10.
1007/s10664-010-9152-6.

Anvaari, M., Zimmermann, O., 2014. Towards reusing architectural knowledge as design
guides. Proceedings of the SEKE 2014. pp. 181–186.

Babar, M., Gorton, I., Jeffery, R., 2005. Toward a Framework for Capturing and Using
Architecture Design Knowledge. Technical Report June. University of New South
Wales.

Basili, V.R., 1995. Applying the Goal/Question/Metric Paradigm in the Experience
Factory. In: Norman, E.F., Robin, W., Whitty, Y.I. (Eds.), Software Quality Assurance
and Measurement:Worldwide Perspective. International Thomson Computer Press,
pp. 21–44.

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A., 2015. 10 Years of software
architecture knowledge management: practice and future. J. Syst. Softw. http://dx.
doi.org/10.1016/j.jss.2015.08.054.

Creswell, J.W., Miller, D.L., 2000. Determining validity in qualitative inquiry. Theory
Pract. 39 (3), 124–130. http://dx.doi.org/10.1207/s15430421tip3903_2.

Dingsøyr, T., van Vliet, H., 2009. Introduction to software architecture and knowledge
management BT - software architecture knowledge management. In: Babar, M.A.,
Dingsøyr, T., Lago, P., van Vliet, H. (Eds.), Software Architecture Knowledge
Management. Springer-Verlag, Berlin Heidelberg, pp. 1–17.

Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P., 2013. The value of design
rationale information. ACM Trans. Softw. Eng. Method 22 (3), 1.

Farenhorst, R., de Boer, R.C., 2009. Knowledge management in software architecture:
state of the art. In: Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (Eds.), Sotware
Architecture Knowledge Management. Springer, Berlin, Heidelberg.

Farenhorst, R., Lago, P., van Vliet, H., 2007. Eagle: effective tool support for sharing
architectural knowledge. Int. J. Coop. Inf. Syst. 16 (03n04), 413–437. http://dx.doi.
org/10.1142/S0218843007001706.

Farenhorst, R., Lago, P., van Vliet, H., 2007. Effective tool support for architectural
knowledge sharing. In: Oquendo, F. (Ed.), Proceedings of Software Architecture: First
European Conference, ECSA 2007 Aranjuez, Spain, September 24–26, 2007. Springer,
Berlin, Heidelberg, pp. 123–138. http://dx.doi.org/10.1007/978-3-540-75132-8_11.

Farenhorst, R., van Vliet, H., 2008. Experiences with a wiki to support architectural
knowledge sharing. 3rd Workshop on Wikis for Software Engineering (Wikis4SE).

Farenhorst, R., van Vliet, H., 2009. Understanding how to support architects in sharing
knowledge. Sharing and Reusing Architectural Knowledge, 2009. SHARK ’09. ICSE
Workshop on 17–24.

van Heesch, U., Avgeriou, P., 2010. Naive architecting - understanding the reasoning
process of students. In: Babar, M.A., Gorton, I. (Eds.), Proceedings of the 9th Working
IEEE/IFIP Conference on 4th European Conference Software Architecture, ECSA
2010, Copenhagen, Denmark, August 23-26, 2010. 6285. Springer, Berlin,
Heidelberg, pp. 24–37. http://dx.doi.org/10.1007/978-3-642-15114-9_5.

van Heesch, U., Avgeriou, P., 2011. Mature architecting - a survey about the reasoning
process of professional architects. Proceedings of the Software Architecture (WICSA),
2011.IEEE. pp. 260–269.

van Heesch, U., Avgeriou, P., Hilliard, R., 2012. A documentation framework for archi-
tecture decisions. J. Syst. Softw. 85 (4), 795–820. http://dx.doi.org/10.1016/j.jss.
2011.10.017.

van Heesch, U., Avgeriou, P., Hilliard, R., 2012. Forces on architecture decisions - a
viewpoint. Proceedings of the Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA) and European Conference on Software Architecture (ECSA),
2012. pp. 101–110.

van Heesch, U., Eloranta, V.P., Avgeriou, P., Koskimies, K., Harrison, N., 2014. Decision-
Centric architecture reviews. IEEE Softw. 31 (1), 69–76.

Hiles, D.R., 2008. Transparency. In: Given, L.M. (Ed.), The Sage Encyclopedia of
Qualitative Research Methods. SAGE Publications, Inc., pp. 891–893. http://dx.doi.
org/10.4135/9781412963909.

Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P., 2007. A general
model of software architecture design derived from five industrial approaches. J.
Syst. Softw. 80 (1), 106–126.

Hoorn, J.F., Farenhorst, R., Lago, P., van Vliet, H., 2011. The lonesome architect. J. Syst.
Softw. 84 (9), 1424–1435. http://dx.doi.org/10.1016/j.jss.2010.11.909.

ISO/IEC/IEEE, 2011. Systems and software engineering–Architecture description. ISO/
IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000)
1–46. http://dx.doi.org/10.1109/ieeestd.2011.6129467.

Jansen, A., Bosch, J., Avgeriou, P., 2008. Documenting after the fact: recovering archi-
tectural design decisions. J. Syst. Softw. 81 (4), 536–557.

Kruchten, P., 2008. What do software architects really do? J. Syst. Softw. 81 (12),
2413–2416. http://dx.doi.org/10.1016/j.jss.2008.08.025.

Kruchten, P., 2013. Contextualizing agile software development. J. Softw.: Evol. Process
25 (4), 351–361. http://dx.doi.org/10.1002/smr.572.

Lethbridge, T.C., Sim, S.E., Singer, J., 2005. Studying software engineers: data collection
techniques for software field studies. Empir. Softw. Eng. 10 (3), 311–341. http://dx.
doi.org/10.1007/s10664-005-1290-x.

Lewis, G.a., Lago, P., Avgeriou, P., 2016. A decision model for cyber-foraging systems.
Proceedings of the 13th Working IFIP/IEEE Conference on Software Architecture.
http://dx.doi.org/10.1109/WICSA.2016.38.

Liang, P., Jansen, A., Avgeriou, P., 2010. Collaborative Software Architecting through
Knowledge Sharing. In: Mistrík, I., Grundy, J., Hoek, A., Whitehead, J. (Eds.),
Collaborative Software Engineering. Springer, Berlin, Heidelberg, pp. 343–367.

Lytra, I., Tran, H., Zdun, U., 2013. Supporting consistency between architectural design
decisions and component models through reusable architectural knowledge

transformations. In: Drira, K. (Ed.), Software Architecture. ECSA 2013. Lecture Notes
in Computer Science, vol 7957. Springer, Berlin, Heidelberg, pp. 224–239. http://dx.
doi.org/10.1007/978-3-642-39031-9_20.

MacLean, A., Young, R.M., Bellotti, V.M.E., Moran, T.P., 1991. Questions, options, and
criteria: elements of design space analysis. Hum.-Comput. Interact. 6 (3), 201–250.

Manteuffel, C., Tofan, D., Avgeriou, P., Koziolek, H., Goldschmidt, T., 2016. Decision
architect - A decision documentation tool for industry. J. Syst. Softw. 112, 181–198.
http://dx.doi.org/10.1016/j.jss.2015.10.034.

Manteuffel, C., Tofan, D., Koziolek, H., Goldschmidt, T., Avgeriou, P., 2014. Industrial
implementation of a documentation framework for architectural decisions.
Proceedings of the IEEE/IFIP Conference on Software Architecture (WICSA), 2014.
pp. 225–234.

Markus, L.M., 2001. Toward a theory of knowledge reuse: types of knowledge reuse si-
tuations and factors in reuse success. J. Manag. Inf. Syst. 18 (1), 57–93. Article

Markus, L.M., 2001. Toward a theory of knowledge reuse: types of knowledge reuse si-
tuations and factors in reuse success. J. Manag. Inf. Syst. 18 (1), 57–93. Article

Miles, M.B., Huberman, A.M., Saldaña, J., 2013. Qualitative Data Analysis: A Methods
Sourcebook. SAGE Publications, pp. 69–104.

Muller, G., 2004. CAFCR: a multi-view Method for embedded systems architecting :
balancing genericity and specificity. University of Delft, Delft. (Ph.D. thesis)

Nowak, M., Pautasso, C., 2010. Architectural decision modeling with reuse : challenges
and opportunities. Proceedings of the SHARK ’10 of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge. pp. 13–20. http://dx.doi.org/10.
1145/1833335.1833338.

Nowak, M., Pautasso, C., 2013. Team situational awareness and architectural decision
making with the software architecture warehouse. Proceedings of the 7th European
Conference, ECSA 2013, Montpellier, France, July 1–5, 2013. Springer, Berlin
Heidelberg, pp. 146–161. http://dx.doi.org/10.1007/978-3-642-39031-9_13.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14 (2), 131–164. http://dx.doi.org/10.
1007/s10664-008-9102-8.

Runeson, P., Höst, M., Rainer, A., Regnell, B., 2012. Case Study Research in Software
Engineering. John Wiley & Sons, Inc., Hoboken, NJ, USA. http://dx.doi.org/10.1002/
9781118181034.

Schuster, N., Zimmermann, O., Pautasso, C., 2007. ADkwik: Web 2.0 collaboration system
for architectural decision engineering. Proceedings of the 19th International
Conference on Software Engineering and Knowledge Engineering, SEKE, 2007. pp.
255–260.

Seaman, C.B., 1999. Qualitative methods in empirical studies of software engineering.
IEEE Trans. Softw, Eng. 25 (4), 557–572.

Soliman, M., Riebisch, M., 2014. Modeling the interactions between decisions within
software architecture knowledge. In: Avgeriou, P., Zdun, U. (Eds.), Software
Architecture, 8627. Springer International Publishing, pp. 33–40. http://dx.doi.org/
10.1007/978-3-319-09970-5_3.

Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A., 2010. A comparative study of
architecture knowledge management tools. J. Syst. Softw. 83 (3), 352–370.

Tofan, D., Galster, M., Avgeriou, P., 2013. Difficulty of architectural decisions: a survey
with professional architects. Proceedings of the Seventh European Conference on
Software Architecture, ECSA’13. Springer-Verlag.

Tyree, J., Akerman, A., 2005. Architecture decisions: demystifying architecture. IEEE
Softw. 22 (2), 19–27.

Verner, J., Sampson, J., Tosic, V., Bakar, N.A., Kitchenham, B.A., 2009. Guidelines for
industrially-based multiple case studies in software engineering. Proceedings of the
Third International Conference on Research Challenges in Information Science. Fez.
pp. 313–324. http://dx.doi.org/10.1109/RCIS.2009.5089295.

van Vliet, H., Tang, A., 2016. Decision making in software architecture. J. Syst. Softw.
http://dx.doi.org/10.1016/j.jss.2016.01.017.

Yazdani, B., 1999. Four models of design definition: sequential, design centered, con-
current and dynamic. J. Eng. Des. 10 (1), 25–37. http://dx.doi.org/10.1080/
095448299261407.

Yin, R.K., 2008. Case Study Research: Design and Methods, 4. Sage Publications Ltd.
Zimmermann, O., 2011. Architectural decisions as reusable design assets. IEEE Softw. 28

(1), 64–69. http://dx.doi.org/10.1109/MS.2011.3.
Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N., 2007. Reusable

architectural decision models for enterprise application development. In: Szyperski,
C.A., Reussner, R., Stafford, J.A. (Eds.), Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Springer, Berlin Heidelberg, pp. 15–32. http://dx.doi.org/10.1007/978-3-540-
77619-2_2.

Zimmermann, O., Wegmann, L., Koziolek, H., Goldschmidt, T., 2015. Architectural de-
cision guidance across projects problem: problem space modeling, decision backlog
management and cloud computing knowledge. Proceedings of the Twelfth Working
IEEE/IFIP Conference on Software Architecture.Montreal. pp. 85–94. http://dx.doi.
org/10.1109/WICSA.2015.29.

Dr. Paris Avgeriou is Professor of Software Engineering at the University of Groningen,
the Netherlands, where he has led the Software Engineering research group since
September 2006. Before joining Groningen, he was a post-doctoral Fellow of the
European Research Consortium for Informatics and Mathematics. He has co-organized
several international conferences and workshops (mainly at ICSE). He sits on the editorial
board of IEEE Software and Springer Transactions on Pattern Languages of Programming
(TPLOP). His research interests lie in the area of software architecture, with strong em-
phasis on architecture modeling, knowledge, technical debt, patterns and link to re-
quirements.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

82

http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1007/s10664-010-9152-6
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1207/s15430421tip3903_2
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005p
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005p
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005p
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005p
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0007
http://dx.doi.org/10.1142/S0218843007001706
http://dx.doi.org/10.1142/S0218843007001706
http://dx.doi.org/10.1007/978-3-540-75132-8_11
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0011
http://dx.doi.org/10.1007/978-3-642-15114-9_5
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0013
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0016
http://dx.doi.org/10.4135/9781412963909
http://dx.doi.org/10.4135/9781412963909
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0018
http://dx.doi.org/10.1016/j.jss.2010.11.909
http://dx.doi.org/10.1109/ieeestd.2011.6129467
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0020
http://dx.doi.org/10.1016/j.jss.2008.08.025
http://dx.doi.org/10.1002/smr.572
http://dx.doi.org/10.1007/s10664-005-1290-x
http://dx.doi.org/10.1007/s10664-005-1290-x
http://dx.doi.org/10.1109/WICSA.2016.38
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005a
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005a
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0005a
http://dx.doi.org/10.1007/978-3-642-39031-9_20
http://dx.doi.org/10.1007/978-3-642-39031-9_20
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0027
http://dx.doi.org/10.1016/j.jss.2015.10.034
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0033
http://dx.doi.org/10.1145/1833335.1833338
http://dx.doi.org/10.1145/1833335.1833338
http://dx.doi.org/10.1007/978-3-642-39031-9_13
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1002/9781118181034
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0039
http://dx.doi.org/10.1007/978-3-319-09970-5_3
http://dx.doi.org/10.1007/978-3-319-09970-5_3
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0043
http://dx.doi.org/10.1109/RCIS.2009.5089295
http://dx.doi.org/10.1016/j.jss.2016.01.017
http://dx.doi.org/10.1080/095448299261407
http://dx.doi.org/10.1080/095448299261407
http://refhub.elsevier.com/S0164-1212(18)30111-0/sbref0047
http://dx.doi.org/10.1109/MS.2011.3
http://dx.doi.org/10.1007/978-3-540-77619-2_2
http://dx.doi.org/10.1007/978-3-540-77619-2_2
http://dx.doi.org/10.1109/WICSA.2015.29
http://dx.doi.org/10.1109/WICSA.2015.29


Christian Manteuffel is currently pursuing his Ph.D. at the Software Engineering and
Architecture research group of the University of Groningen in the Netherlands. He ob-
tained his M.Sc. in computer science at the University of Groningen in September 2013
with highest distinctions and he is a graduate of the Honours College of the University of
Groningen. His primary research focus are software architecture decisions, particularly
architecture decision management in the domain of embedded systems.

Roelof Hamberg holds a Ph.D. degree in Physics from the University of Leiden. He joined
Philips Research Labs Eindhoven in 1992 to work on perceptual image quality modeling
and evaluation methods. Later he joined Océ as in-product control software developer,
digital system architect, and department manager in R&D. In 2006 Roelof joined the
Embedded Systems Institute (TNO-ESI) as research fellow, doing applied research in the
field of system behavior and systems architecting. He was involved in research projects
with Océ, Vanderlande, NXP, and European partners. Currently, he works as a product
architect and project leader with Océ.

C. Manteuffel et al. The Journal of Systems & Software 144 (2018) 60–83

83


	An exploratory case study on reusing architecture decisions in software-intensive system projects
	Introduction
	Background and related work
	Case study design
	Research questions
	Case and subject selection
	Data collection
	Data analysis

	Results
	Case and subject description
	A conceptual model for decision-reuse
	RQ1 - Current state of reuse
	Preparation
	Execution
	Discussion

	RQ2 - Typical stakeholders
	RQ3 - Concerns of stakeholders
	RQ4 - Characteristics of an ideal approach
	RQ5 - cost and benefits of decision-reuse

	Evaluation of validity
	Conclusions and future work
	Acknowledgment
	Appendix A
	Description of stakeholder concerns
	Code system
	Interview guides
	Interview guide for software architects
	Interview guide for software architects (Management role)

	Mapping of interview questions to research questions
	Participant invitation letter

	References




