University Medical Center Groninge

University of Groningen

Inexact cutting planes for two-stage mixed-integer stochastic programs

Romeijnders, Ward; van der Laan, Niels

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Romeijnders, W., \& van der Laan, N. (2018). Inexact cutting planes for two-stage mixed-integer stochastic programs. (SOM Research Reports; Vol. 2018013-OPERA). University of Groningen, SOM research school.

[^0]The publication may also be distributed here under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

2018013-OPERA

I nexact cutting planes for two-stage mixed-integer stochastic programs

October 2018

Ward Romeijnders
Niels van der Laan

SOM is the research institute of the Faculty of Economics \& Business at the University of Groningen. SOM has six programmes:

- Economics, Econometrics and Finance
- Global Economics \& Management
- Innovation \& Organization
- Marketing
- Operations Management \& Operations Research
- Organizational Behaviour

Research Institute SOM
Faculty of Economics \& Business
University of Groningen
Visiting address:
Nettelbosje 2
9747 AE Groningen
The Netherlands
Postal address:
P.O. Box 800

9700 AV Groningen
The Netherlands
T +31 50363 7068/3815
www.rug.nl/feb/research

I nexact cutting planes for two-stage mixedinteger stochastic programs

Ward Romeijnders
University of Groningen, Faculty of Economics and Business, Department of Operations w.romeijnders@rug.nl
Niels van der Laan
University of Groningen, Faculty of Economics and Business, Department of Operations n.van.der.laan@rug.nl

Inexact cutting planes for two-stage mixed-integer stochastic programs

Ward Romeijnders, Niels van der Laan
Department of Operations, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands, w.romeijnders@rug.nl, n.van.der.laan@rug.nl

Abstract

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer stochastic programs. Instead of using cutting planes that are always valid, our idea is to apply inexact cutting planes to the second-stage feasible regions that may cut away feasible integer second-stage solutions for some scenarios and may be overly conservative for others. The advantage is that it allows us to use cutting planes that are affine in the first-stage decision variables, so that the approximation is convex, and can be solved efficiently using techniques from convex optimization. We derive performance guarantees for using particular types of inexact cutting planes for simple integer recourse models. Moreover, we show in general that using inexact cutting planes leads to good first-stage solutions if the total variations of the probability density functions of the random variables in the model are small enough.

Key words: stochastic programming, integer programming, cutting plane techniques, convex approximations

1. Introduction

Many practical problems under uncertainty in, e.g., energy, finance, logistics, and healthcare involve integer decision variables. Such problems can be modelled as mixed-integer stochastic programs (MISPs), but are notoriously difficult to solve. In this paper, we do not attempt to solve these problems exactly. Instead, we introduce a novel approach to approximately solve two-stage MISPs, and we derive performance guarantees for the resulting approximating solutions.

Traditional solution methods for MISPs combine solution approaches for continuous stochastic programs and deterministic mixed-integer programs (MIPs). See, e.g., Ahmed et al. [1] for branch-and-bound, Sen and Higle [18] and Ntaimo [13] for disjunctive decomposition, Carøe and Schultz [5] for dual decomposition, Laporte and Louveaux [11] for the integer L-shaped method, and Zhang and Küçükyavuz [23] for cutting plane techniques. All these solution methods aim at finding the exact optimal solution for MISPs, but generally have difficulties scaling up to solve large problem instances. This is not surprising, since contrary to their continuous counterparts, these MISPs are non-convex in general [14]. This means that efficient techniques from convex optimization cannot be used to solve these problems.

Based on this observation and inspired by the success of cutting plane techniques for deterministic MIPs, we propose to use cutting planes to solve two-stage MISPs. However, we will use them in a fundamentally different way than in existing methods for both deterministic and stochastic MIPs. Instead of using exact cutting planes that are always valid, we propose to use inexact cutting planes for the second-stage feasible regions in such a way that the approximating problem remains convex in the first-stage decision variables, and thus efficient convex optimization techniques can be used to solve the approximation.

The disadvantage of using inexact cutting planes is that they may cut away part of the secondstage feasible region or that they may be overly conservative, so that we significantly over- or underestimate the second-stage costs, respectively. However, for MISPs this may be justified since our aim is not to find the exact and complete characterization of the integer hulls of the secondstage feasible regions, but rather to obtain good first-stage decisions. In fact, one of our main contributions is that we show that it is possible to find good or even near-optimal first-stage decisions despite the fact that the integer hulls of the second-stage feasible regions are inexactly approximated.

For simple integer recourse (SIR) models, a special type of MISP, our inexact cutting plane approximation turns out to be equivalent to convex α-approximations, derived by Klein Haneveld et al. [10] from a completely different perspective. By reinterpreting these α-approximations using inexact cutting planes, we connect two existing solution methodologies for MISPs that use convex approximations and exact cutting planes, respectively. Moreover, this reinterpretation allows us to apply existing performance guarantees derived in Romeijnders et al. [16] for α-approximations to inexact cutting plane techniques for SIR models. Furthermore, we use results from Romeijnders et al. [15] to derive conditions for general MISPs under which inexact cutting plane techniques are asymptotically accurate. Intuitively, this means that using inexact cutting planes yields good approximations if the variability of the random parameters in the model is large enough. We derive inexact mixed-integer Gomory cuts for general two-stage MISPs and inexact cutting planes for a nurse scheduling problem that are asymptotically accurate.

Summarizing, the main contributions of our paper are as follows.

- We propose a novel solution approach for two-stage MISPs by applying inexact cutting planes to second-stage feasible regions.
- We reinterpret α-approximations for SIR models as inexact cutting plane approximations, connecting two existing solution methodologies for MISPs, and yielding a tight error bound for applying inexact cutting planes to SIR models.
- We derive a performance guarantee for applying inexact cutting planes to MISPs in general, proving that inexact cutting plane techniques are asymptotically accurate.
- We derive inexact mixed-integer Gomory cuts for general MISPs and derive inexact cutting planes for a nurse scheduling problem.

The remainder of this paper is organized as follows. In Section 2 we define MISPs and explain our inexact cutting plane approach. In Section 3, we reintrepret α-approximations for SIR models using inexact cutting planes, and in Section 4 we prove for MISPs in general that inexact cutting plane techniques are asymptotically accurate. In Section 5, we derive inexact mixed-integer Gomory cuts, and apply inexact cutting planes to a nurse scheduling problem. We end with a discussion in Section 6.

2. Problem definition and solution approach

2.1. Problem definition

Two-stage MISPs can be interpreted as hierarchical planning problems. In the first stage, decisions x have to be made before some random parameters ω are known, whereas in the second stage, decisions y are made after the realizations of these random parameters ω are revealed. We assume that the probability distribution of ω is known, with F denoting the cumulative distribution function and Ω the support of ω. The MISPs that we consider are defined as

$$
\begin{equation*}
\min _{x, z}\left\{c^{\top} x+Q(z): A x=b, z=T x, x \in X\right\}, \tag{1}
\end{equation*}
$$

where $z=T x \in \mathbb{R}^{m}$ represent tender variables. Moreover, the expected value function Q represents the expected second-stage costs

$$
\begin{equation*}
Q(z):=\mathbb{E}_{\omega}[v(\omega, z)], \quad z \in \mathbb{R}^{m}, \tag{2}
\end{equation*}
$$

where the second-stage value function v is defined as

$$
\begin{equation*}
v(\omega, z):=\min _{y}\left\{q^{\top} y: W y=\omega-z, y \in Y\right\}, \quad \omega \in \Omega, z \in \mathbb{R}^{m} . \tag{3}
\end{equation*}
$$

The second-stage decisions y are also called recourse actions. Indeed, if $T x=\omega$ represents random goal constraints, then the second-stage optimization problem v models all possible recourse actions y, and their corresponding costs, to compensate for infeasibilities of these goal constraints. Observe that we only consider randomness in the right-hand side of these goal constraints. Moreover, we assume that at least some of the second-stage decision variables y_{i} are restricted to be integer. This is captured by the feasible regions $X \subset \mathbb{R}_{+}^{n_{1}}$ and $Y \subset \mathbb{R}_{+}^{n_{2}}$ that may impose integrality restrictions on the first- and second-stage decision variables, respectively.

Throughout this paper we make the following assumptions. The first is often referred to as the complete recourse assumption, meaning that there always exists a feasible recourse action y,
ensuring that $v(\omega, z)<+\infty$ for all $\omega \in \Omega$ and $z \in \mathbb{R}^{m}$. The second is equivalent to the dual feasible region of the LP-relaxation of v being non-empty, implying that $v(\omega, z)>-\infty$ for all $\omega \in \Omega$ and $z \in \mathbb{R}^{m}$. Together with the third assumption, these assumptions guarantee that $Q(z)$ is finite for every $z \in \mathbb{R}^{m}$.

Assumption 1. We assume that

- there exists $y \in Y$ such that $W y=\omega-z$ for every $\omega \in \Omega$ and $z \in \mathbb{R}^{m}$,
- there exists $\lambda \in \mathbb{R}^{m}$ such that $W^{\top} \lambda \leq q$, and
- $\mathbb{E}_{\omega}\left[\left|\omega_{i}\right|\right]<+\infty$, for all $i=1, \ldots, m$.

2.2. Novel solution approach: inexact cutting planes

To solve the MISP defined in (1), we propose to relax the integrality restrictions on the second-stage decision variables y and to add inexact cutting planes to the second-stage feasible region

$$
Y(\omega, z):=\{y \in Y: W y=\omega-z\} .
$$

In particular, we assume that the cutting planes are of the form $\hat{W}(\omega) y \geq \hat{h}(\omega)-\hat{T}(\omega) z$, so that they are affine in the tender variables z.

Definition 1. Consider the second-stage value function v defined in (3). Then, we call \hat{v} an inexact cutting plane approximation of v if it is of the form

$$
\hat{v}(\omega, z)=\min _{y}\left\{q^{\top} y: W y=\omega-z, \hat{W}(\omega) y \geq \hat{h}(\omega)-\hat{T}(\omega) z, y \in \mathbb{R}_{+}^{n_{2}}\right\}, \quad \omega \in \Omega, z \in \mathbb{R}^{m} .
$$

Moreover, we define the inexact cutting plane approximation \hat{Q} of the expected value function Q, defined in (2), as $\hat{Q}(z):=\mathbb{E}_{\omega}[\hat{v}(\omega, z)], z \in \mathbb{R}^{m}$.

The main reason we use inexact cutting planes that are affine in z is that the approximating value function $\hat{v}(\omega, z)$ with feasible region

$$
\hat{Y}(\omega, z):=\left\{y \in \mathbb{R}_{+}^{n_{2}}: \begin{array}{l}
W y=\omega-z \\
\hat{W}(\omega) y \geq \hat{h}(\omega)-\hat{T}(\omega) z
\end{array}\right\}
$$

is convex in z for every fixed $\omega \in \Omega$, and thus the corresponding approximating expected value function \hat{Q} is convex. This means that the MISP in (1) with Q replaced by \hat{Q} can be solved efficiently using techniques from convex optimization.

Lemma 1. Consider the inexact cutting plane approximations \hat{v} and \hat{Q} of Definition 1. Then, \hat{Q} is convex, and $\hat{v}(\omega, z)$ is convex in z for every fixed $\omega \in \Omega$.

In Section 5 we derive inexact mixed-integer Gomory cuts and inexact cutting planes for a nurse scheduling problem. However, the main focus of this paper is not on how to obtain the inexact cutting plane approximation from Definition 1. Instead, we assume that the inexact cutting planes are given or can be iteratively generated by an algorithm, and we consider the performance of using such cutting planes.

The performance of these inexact cutting planes may be surprisingly good, even if they cut away feasible integer second-stage solutions or admit second-stage solutions outside the integer hull $\bar{Y}(\omega, z)$ of the second-stage feasible region $Y(\omega, z)$; in these cases, $\hat{v}(\omega, z)$ may significantly over- or underestimate $v(\omega, z)$, respectively. However, to obtain good first-stage decisions x, we do not require $\hat{v}(\omega, z)$ to be a good approximation of $v(\omega, z)$ for every $\omega \in \Omega$ and $z \in \mathbb{R}^{m}$, but merely require $\hat{v}(\omega, z)$ to be a good approximation of $v(\omega, z)$ on average for every $z \in \mathbb{R}^{m}$. This explains why applying inexact cutting planes may work for stochastic MIPs but not for deterministic MIPs.

Using a one-dimensional example, we illustrate the type of inexact cutting planes that we have in mind.

Example 1. Consider a special case of the second-stage value function defined in (3), given by

$$
\begin{array}{rl}
v(\omega, z)=\min _{y, u_{1}, u_{2}} & q y+r u_{1}+r u_{2} \\
\text { s.t. } & y-u_{1}+u_{2}=\omega-z \tag{4}\\
& y \in \mathbb{Z}_{+}, u_{1}, u_{2} \in \mathbb{R}_{+},
\end{array}
$$

where $0<q<r$. By rewriting the equality in (4) as $u_{2}=\omega-z-y+u_{1}$, we can eliminate the variable u_{2} from the second-stage value function to obtain

$$
\begin{align*}
v(\omega, z)=r(\omega-z)+\min _{y, u_{1}} & (q-r) y+2 r u_{1} \tag{5}\\
\text { s.t. } & y-u_{1} \leq \omega-z \\
& y \in \mathbb{Z}_{+}, u_{1} \in \mathbb{R}_{+} .
\end{align*}
$$

Since the minimization problem in (5) only has two decision variables, y and u_{1}, we can graphically depict its feasible region $Y(\omega, z)$. The left panel in Figure 1 shows this feasible region for $\omega=2.5$ and $z=1$, and also depicts the feasible region of the LP-relaxation of $v(\omega, z)$. Clearly, the latter is larger than the integer hull $\bar{Y}(\omega, z)$ of $Y(\omega, z)$.

It is well known that the integer hull $\bar{Y}(\omega, z)$ can be obtained by adding a mixed-integer rounding (MIR) inequality, so that for every $\omega \in \Omega$ and $z \in \mathbb{R}$, the integer hull $\bar{Y}(\omega, z)$ equals

$$
\bar{Y}(\omega, z):=\left\{\left(y, u_{1}\right) \in \mathbb{R}_{+}^{2}: y-u_{1} \leq \omega-z, y-\frac{1}{1-(\omega-z)+\lfloor\omega-z\rfloor} u_{1} \leq\lfloor\omega-z\rfloor\right\} .
$$

Figure 1 Illustration of the feasible region of $v(\omega, z)$ of Example 1 with $\omega=2.5$ and $z=1$. The feasible region $Y(\omega, z)$ is represented by the black dots and the thick black lines. In the left panel the shaded region corresponds to the feasible region of the LP-relaxation of v, whereas in the right panel, the MIR inequality is added, and the dark shaded region represents the integer hull $\bar{Y}(\omega, z)$ of the feasible region $Y(\omega, z)$ of $v(\omega, z)$.

The right panel in Figure 1 shows $\bar{Y}(\omega, z)$ and this MIR inequality.
Observe that the MIR inequality is not affine in z, which means that it will be hard to use for optimization purposes. However, if $z \in \mathbb{Z}$, then it reduces to

$$
\begin{equation*}
y-\frac{1}{1-\omega+\lfloor\omega\rfloor} u_{1} \leq\lfloor\omega\rfloor-z, \tag{6}
\end{equation*}
$$

which means it is of the form of the inexact cutting planes in Definition 1. Thus, a natural idea is to use the cutting planes in (6), also when $z \notin \mathbb{Z}$. For $z \in \mathbb{Z}$ they will be exact for all $\omega \in \Omega$, and for $z \notin \mathbb{Z}$ they will be inexact. Figure 2 shows the approximating feasible region

$$
\hat{Y}(\omega, z)=\left\{\left(y, u_{1}\right) \in \mathbb{R}_{+}^{2}: y-u_{1} \leq \omega-z, y-\frac{1}{1-\omega+\lfloor\omega\rfloor} u_{1} \leq\lfloor\omega\rfloor-z\right\},
$$

for $z=0.5$ and $\omega=1.5,1.75,2,2.25$. We observe that for $\omega=2$, the approximating MIR inequality coincides with the constraint $y-u \leq \omega-z$, so that $\hat{Y}(\omega, z)$ is equal to the feasible region of the LP-relaxation of $v(\omega, z)$, and thus admits solutions outside the integer hull $\bar{Y}(\omega, z)$. For $\omega=1.5$, on the other hand, the approximating MIR inequality cuts away feasible integer solutions. For $\omega=1.75$ and $\omega=2.25$ we see a combination of both.

In Section 5.2 we will numerically assess the performance of the inexact cutting plane approximation

$$
\begin{equation*}
\hat{v}(\omega, z):=r(\omega-z)+\min _{y, u_{1}}\left\{(q-r) y+2 r u_{1}:\left(y, u_{1}\right) \in \hat{Y}(\omega, z)\right\}, \quad \omega \in \Omega, z \in \mathbb{R} \tag{7}
\end{equation*}
$$

and show that for a normally distributed random variable $\omega \sim N\left(\mu, \sigma^{2}\right), \hat{Q}$ is a good approximation of Q for medium to large values of the standard deviation σ.

Figure 2 Illustration of the feasible region of $v(\omega, z)$ of Example 1 with $z=0.5$ and $\omega=1.5,1.75,2$, and 2.25. The feasible region $Y(\omega, z)$ is represented by the black dots and the thick black lines. The dotted line represents the inexact MIR inequality defined in (6), and the shaded regions the approximating feasible region $\hat{Y}(\omega, z)$.

3. Inexact cutting planes for simple integer recourse models

In this section we show that existing convex approximations for simple integer recourse (SIR) models can be interpreted as inexact cutting plane approximations. SIR models are introduced by Louveaux and Van der Vlerk [12], and can be considered the most simple version of a MISP as defined in (1). For ease of exposition, we consider here the one-sided and one-dimensional version of SIR, where the second-stage value function v is defined as

$$
v(\omega, z)=\min _{y}\left\{q y: y \geq \omega-z, y \in \mathbb{Z}_{+}\right\}, \quad \omega \in \Omega, z \in \mathbb{R} .
$$

Observe that we can derive a closed-form expression for v since for every $\omega \in \Omega$ and $z \in \mathbb{R}$, the optimal solution is $y^{*}=\lceil\omega-z\rceil^{+}:=\max \{0,\lceil\omega-z\rceil\}$, and thus $v(\omega, z)=q\lceil\omega-z\rceil^{+}$. Clearly, $v(\omega, z)$ is a non-convex function of z because of the round-up operator.

We, however, focus on the feasible region $Y(\omega, z)=\left\{y \in \mathbb{Z}_{+}: y \geq \omega-z\right\}$ and its integer hull

$$
\bar{Y}(\omega, z)=\left\{y \in \mathbb{R}_{+}: y \geq\lceil\omega-z\rceil\right\}, \quad \omega \in \Omega, z \in \mathbb{R} .
$$

Here, the cutting plane $y \geq\lceil\omega-z\rceil$ makes the original constraint $y \geq \omega-z$ redundant. Similar to Example 1, this exact cutting plane is not affine in z and thus not suitable for optimization purposes. However, if $z \in \mathbb{Z}$, then the cutting plane is equivalent to $y \geq\lceil\omega\rceil-z$, which we can use as an inexact cutting plane for $z \notin \mathbb{Z}$. In fact, we define a family of inexact cutting plane approximations \hat{v}_{α}, each of them using the cutting plane $y \geq\lceil\omega-\alpha\rceil+\alpha-z$ that is exact for $z \in \alpha+\mathbb{Z}$.

Definition 2. For every $\alpha \in \mathbb{R}$, define the inexact cutting plane approximation \hat{v}_{α} for the SIR second-stage value function v as

$$
\hat{v}_{\alpha}(\omega, z)=\min _{y}\left\{q y: y \geq\lceil\omega-\alpha\rceil+\alpha-z, y \in \mathbb{R}_{+}\right\}=q(\lceil\omega-\alpha\rceil+\alpha-z)^{+}, \quad \omega \in \Omega, z \in \mathbb{R} .
$$

Moreover, define the corresponding inexact cutting plane approximation \hat{Q}_{α} for the SIR expected value function Q as $\hat{Q}_{\alpha}(z)=q \mathbb{E}_{\omega}\left[([\omega-\alpha\rceil+\alpha-z)^{+}\right], z \in \mathbb{R}$.

Surprisingly, the inexact cutting plane approximation \hat{Q}_{α} equals the α-approximations of Klein Haneveld et al. [10], derived from a completely different perspective. They first identify all probability distributions of ω for which the expected value function Q is convex. This turns out to be all continuous distributions with probability density function f satisfying $f(s)=G(s+1)-G(s)$, $s \in \mathbb{R}$, for some cumulative distribution function G with finite mean. For all other distributions, they use this condition to generate an approximating density function \hat{f}, resulting in a convex approximation \hat{Q} of Q. Selecting $G(s+1)=F(\lceil s-\alpha\rceil+\alpha), s \in \mathbb{R}$, yields the α-approximation $\hat{Q}_{\alpha}(z):=q \mathbb{E}_{\omega}\left[(\lceil\omega-\alpha\rceil+\alpha-z)^{+}\right], z \in \mathbb{R}$, equivalent to the inexact cutting plane approximation of Definition 1.

In this paper, we reinterpret \hat{Q}_{α} as an inexact cutting plane approximation, connecting the convex approximation solution philosophy, introduced by Van der Vlerk [20] and continued by among others $[10,15,16,17,19,21]$, with exact cutting plane techniques for MISPs, studied in, e.g., $[4,7,8,23]$. This is particularly relevant, since performance guarantees are available for using convex approximations that may be used for inexact cutting plane approximations. In fact, for SIR models, Romeijnders et al. [16] derive an upper bound on $\left\|Q-\hat{Q}_{\alpha}\right\|_{\infty}:=\sup _{z \in \mathbb{R}}\left|Q(z)-\hat{Q}_{\alpha}(z)\right|$ for every $\alpha \in \mathbb{R}$, that depends on the total variation of the probability density function f of the random variable ω.

Definition 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function and let $I \subset \mathbb{R}$ be an interval. Let $\Pi(I)$ denote the set of all finite ordered sets $P=\left\{x_{1}, \ldots, x_{N+1}\right\}$ with $x_{1}<\cdots<x_{N+1}$ in I. Then, the total variation of f on I, denoted $|\Delta| f(I)$, is defined as

$$
|\Delta| f(I)=\sup _{P \in \Pi(I)} V_{f}(P)
$$

where $V_{f}(P)=\sum_{i=1}^{N}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right|$. We write $|\Delta| f:=|\Delta| f(\mathbb{R})$.
Theorem 1. Consider the SIR expected value function $Q(z)=q \mathbb{E}_{\omega}\left[\lceil\omega-z\rceil^{+}\right], z \in \mathbb{R}$, and its inexact cutting plane approximation $\hat{Q}_{\alpha}(z)=q \mathbb{E}_{\omega}\left[(\lceil\omega-\alpha\rceil-\alpha-z)^{+}\right], z \in \mathbb{R}$, for $\alpha \in \mathbb{R}$. Then, for every continuous random variable ω with probability density function f, we have

$$
\left\|Q-\hat{Q}_{\alpha}\right\|_{\infty} \leq q h(|\Delta| f),
$$

where $h:[0, \infty) \mapsto \mathbb{R}$ is defined as

$$
h(|\Delta| f)=\left\{\begin{aligned}
|\Delta| f / 8, & |\Delta| f \leq 4 \\
1-2 /|\Delta| f, & |\Delta| f \geq 4
\end{aligned}\right.
$$

Proof. See Romeijnders et al. [16].
For unimodal density functions, such as the normal density function in Example 2 below, it holds that the total variation $|\Delta| f$ of the probability density function f of ω decreases as the variance of the random variable ω increases. In general, we conclude from Theorem 1 that the larger the variability in the model the better the inexact cutting plane approximation.

Example 2. Let ω be a normal random variable with mean μ and standard deviation σ. Then, the probability density function f of ω is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad x \in \mathbb{R},
$$

which is unimodal with mode μ, and thus has total variation $|\Delta| f=2 f(\mu)=\sigma^{-1} \sqrt{2 / \pi}$. Hence, if the standard deviation σ increases, then the total variation $|\Delta| f$ of f will decrease, and thus the upper bound on $\left\|Q-\hat{Q}_{\alpha}\right\|_{\infty}$ in Theorem 1 will decrease. In other words, if the standard deviation is large, then \hat{Q}_{α} is a close approximation of Q, and thus the resulting approximating first-stage decision \hat{x}_{α} will be good.

4. Inexact cutting plane approximations for general MISPs

Based on Section 3 and Example 1 in Section 2, we observe that it is possible to use exact cutting planes, that are valid for all $\omega \in \Omega$ and for z on a grid of points, as inexact cutting planes for all ω and z. That is why we make the following assumption for inexact cutting plane approximations.

Assumption 2. There exist $\alpha \in \mathbb{R}^{m}$ and $\beta \in \mathbb{Z}^{m}$ such that for all $z \in \mathbb{R}^{m}$ with $z \in \alpha+\beta \mathbb{Z}^{m}$ and for all $\omega \in \Omega$,

- $\left\{y \in \mathbb{Z}_{+}^{p_{2}} \times \mathbb{R}_{+}^{n_{2}-p_{2}}: W y=\omega-z\right\} \subset\left\{y \in \mathbb{R}_{+}^{n_{2}}: W y=\omega-z, \hat{W}(\omega) y \geq \hat{h}(\omega)-\hat{T}(\omega) z\right\}$,
- $\hat{v}(\omega, z)=v(\omega, z)$.

Remark 1. With slight abuse of notation we will use $\alpha+\beta \mathbb{Z}^{m}$ to represent the grid of points

$$
\alpha+\beta \mathbb{Z}^{m}:=\left\{\left(\alpha_{1}+\beta_{1} l_{1}, \ldots, \alpha_{m}+\beta_{m} l_{m}\right): l \in \mathbb{Z}^{m}\right\}
$$

In the remainder of this section we will prove that under Assumption 2, inexact cutting plane approximations are asymptotically accurate. That is, the error of using inexact cutting planes vanishes as the total variations of the one-dimensional conditional pdfs of the random vector ω in the model go to zero. For example, for normally distributed ω this means that the solutions obtained by using inexact cutting planes are good if the variance of ω is large enough. The final result is Theorem 2, which is conveniently stated here below. This result also holds when only the first condition in Assumption 2 holds, but then the inexact cutting plane approximation is an asymptotic lower bound.

Definition 4. For every $i=1, \ldots, m$ and $t \in \mathbb{R}^{m}$, we let $t_{-i} \in \mathbb{R}^{m-1}$ denote the vector t without its i-th component.

Definition 5. For every $i=1, \ldots, m$ and $t_{-i} \in \mathbb{R}^{m-1}$, define the i-th conditional density function $f_{i}\left(\cdot \mid t_{-i}\right)$ of the m-dimensional joint pdf f as

$$
f_{i}\left(t_{i} \mid t_{-i}\right)=\left\{\begin{aligned}
\frac{f(t)}{f_{-i}\left(t_{-i}\right)}, & f_{-i}\left(t_{-i}\right)>0 \\
0, & f_{-i}\left(t_{-i}\right)=0
\end{aligned}\right.
$$

where f_{-i} represents the joint density function of ω_{-i}, the random vector obtained by removing the i-th element of ω.

Definition 6. Let \mathcal{H}^{m} denote the set of all m-dimensional joint pdfs f whose conditional density functions $f_{i}\left(\cdot \mid t_{-i}\right)$ are of bounded variation.

Theorem 2. Consider the mixed-integer recourse function Q and its inexact cutting plane approximation \hat{Q}. Under Assumptions 1 and 2, there exists a constant $C \in \mathbb{R}$ with $C>0$ such that for all ω with pdf $f \in \mathcal{H}^{m}$,

$$
\|Q-\hat{Q}\|_{\infty} \leq C \sum_{i=1}^{m} \mathbb{E}_{\omega_{-i}}\left[|\Delta| f_{i}\left(\cdot \mid \omega_{-i}\right)\right]
$$

The proof of Theorem 2 is postponed to Section 4.4. First, however, we discuss preliminary results required for this proof. In particular, in Section 4.1 we discuss properties of the mixed-integer value function $v(\omega, z)$, in Section 4.2 we show that the inexact cutting plane approximation $\hat{v}(\omega, z)$ is affine in z on parts of its domain, and in Section 4.3 we derive bounds on \hat{v}. The proofs of our auxiliary lemmas and propositions in these sections are postponed to the Appendix.

4.1. Properties of mixed-integer value functions

Let B be a dual feasible basis matrix of the LP-relaxation $v_{L P}$ of v. Then, we can rewrite $v_{L P}$ as

$$
\begin{align*}
v_{L P}(\omega, z)=\min _{y_{B}, y_{N}} & q_{B}^{\top} y_{B}+q_{N}^{\top} y_{N} \\
\text { s.t. } & B y_{B}+N y_{N}=\omega-z \tag{8}\\
& y_{B} \in \mathbb{R}_{+}^{m}, y_{N} \in \mathbb{R}_{+}^{n_{2}-m},
\end{align*}
$$

where y_{B} denote the basic variables and y_{N} the non-basic variables. Using the equality in (8) to solve for the basic variables y_{B}, we obtain the equivalent representation

$$
\begin{align*}
v_{L P}(\omega, z)=q_{B}^{\top} B^{-1}(\omega-z)+\min _{y_{N}} & \bar{q}_{N}^{\top} y_{N} \tag{9}\\
\text { s.t. } & B^{-1}(\omega-z)-B^{-1} N y_{N} \geq 0 \\
& y_{N} \in \mathbb{R}_{+}^{n_{2}-m},
\end{align*}
$$

with reduced costs $\bar{q}_{N}^{\top}:=q_{N}^{\top}-q_{B}^{\top} B^{-1} N \geq 0$. Obviously, it is optimal to select the non-basic variables y_{N} equal to zero in the minimization problem in (9) if $B^{-1}(\omega-z) \geq 0$. The latter condition can conveniently be rewritten as $\omega-z \in \Lambda$, where the simplicial cone Λ is defined as $\Lambda:=\left\{t \in \mathbb{R}^{m}\right.$: $\left.B^{-1} t \geq 0\right\}$. Thus, if $\omega-z \in \Lambda$, then

$$
v_{L P}(\omega, z)=q_{B}^{\top} B^{-1}(\omega-z) .
$$

This result holds for every dual feasible matrix B. In fact, the basis decomposition theorem of Walkup and Wets [22] shows that there exist basis matrices B_{k} and corresponding simplicial cones $\Lambda^{k}:=\left\{t \in \mathbb{R}^{m}: B_{k}^{-1} t \geq 0\right\}, k=1, \ldots, K$, such that these cones Λ^{k} cover \mathbb{R}^{m}, the interiors of these cones Λ^{k} are mutually disjoint, and $v_{L P}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)$ for $\omega-z \in \Lambda^{k}$ for every $k=1, \ldots, K$.

Romeijnders et al. [15] prove a similar result for the mixed-integer value function v, involving the same basis matrices B_{k} and simplicial cones $\Lambda^{k}, k=1, \ldots, K$. They show that there exist distances $d_{k} \geq 0$ such that if $\omega-z \in \Lambda^{k}\left(d_{k}\right)$, i.e., if $\omega-z \in \Lambda^{k}$ and $\omega-z$ has at least Euclidean distance d_{k} to the boundary of Λ^{k}, then

$$
v(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-z),
$$

where ψ^{k} is a B_{k}-periodic function, see Definition 7 below. The first term is the same as the LP-relaxation $v_{L P}$, and thus the second term can be interpreted as the additional costs of having integer variables instead of continuous ones. Theorem 3 summarizes these results.

Definition 7. Let $B \in \mathbb{Z}^{m \times m}$ be an integer matrix. Then, a function $\psi: \mathbb{R}^{m} \mapsto \mathbb{R}$ is called B periodic if and only if $\psi(z)=\psi(z+B l)$ for every $z \in \mathbb{R}^{m}$ and $l \in \mathbb{Z}^{m}$.

Theorem 3. Consider the mixed-integer value function

$$
v(\omega, z)=\min \left\{q^{\top} y: W y=\omega-z, y \in \mathbb{Z}_{+}^{n_{2}} \times \mathbb{R}_{+}^{n_{3}}\right\}, \quad z \in \mathbb{R}^{m}
$$

where W is an integer matrix, and $v(\omega, z)$ is finite for all $\omega \in \Omega$ and $z \in \mathbb{R}^{m}$ by Assumption 1. Then, there exist dual feasible basis matrices B_{k} of $v_{L P}, k=1, \ldots, K$, simplicial cones $\Lambda^{k}:=\{t \in$ $\left.\mathbb{R}^{m}: B_{k}^{-1} t \geq 0\right\}$, distances $d_{k} \geq 0$, and bounded B_{k}-periodic functions ψ^{k} such that

- $\bigcup_{k=1} \Lambda^{k}=\mathbb{R}^{m}$,
- $\left(\operatorname{int} \Lambda^{k}\right) \cap\left(\operatorname{int} \Lambda^{l}\right)=\emptyset$ for every $k, l \in\{1, \ldots, K\}$ with $k \neq l$, and
- $v(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-z)$ for every $\omega-z \in \Lambda^{k}\left(d_{k}\right)$.

Proof. See [15].

4.2. Linearity regions of inexact cutting plane approximations

Let $k=1, \ldots, K$ be given and consider a fixed $\omega \in \Omega$. Theorem 3 shows that for all $z \in \mathbb{R}^{m}$ with $\omega-z \in \Lambda^{k}\left(d_{k}\right)$, i.e., for all $z \in \omega-\Lambda^{k}\left(d_{k}\right)$, the mixed-integer value function v is given by

$$
v(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-z) .
$$

Since ψ^{k} is B_{k}-periodic there exist values of β for which $\psi^{k}(\omega-z)=\psi^{k}(\omega-\alpha)$ for all $z \in \alpha+\beta \mathbb{Z}^{m}$; see the proof of Proposition 1. For simplicity, however, assume for the moment that β equals such a value. Then, for all $z \in \omega-\Lambda^{k}\left(d_{k}\right)$ and $z \in \alpha+\beta \mathbb{Z}^{m}$, we have $\hat{v}(\omega, z)=v(\omega, z)$, and thus the inexact cutting plane approximation \hat{v} equals

$$
\begin{equation*}
\hat{v}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha) . \tag{10}
\end{equation*}
$$

Thus, for a fixed $\omega \in \Omega$, the inexact cutting plane approximation $\hat{v}(\omega, z)$ is affine in z over a grid of points in $\omega-\Lambda^{k}\left(d_{k}\right)$. Since $\hat{v}(\omega, z)$ is convex in z, we intuitively expect $\hat{v}(\omega, z)$ to satisfy (10) for points outside the grid in $\omega-\Lambda^{k}\left(d_{k}\right)$ as well. Lemma 2 confirms our intuition.

Lemma 2. Let $v: \mathbb{R}^{m} \mapsto \mathbb{R}$ be a convex function and let $C \subset \mathbb{R}^{m}$ be a closed convex set with extreme points $z^{j} \in C, j=1, \ldots, J$, and interior point $z^{0} \in C$. Suppose that there exist $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}$ such that $v\left(z^{j}\right)=a^{\top} z^{j}+b$ for all $j=0, \ldots, J$. Then, $v(z)=a^{\top} z+b$ for all $z \in C$.

To apply Lemma 2 to $\hat{v}(\omega, z)$ we introduce hyperrectangles $C^{l}(\alpha, \beta)$ that have extreme points on the grid $\alpha+\beta \mathbb{Z}^{m}$.

Definition 8. Let $\alpha \in \mathbb{R}^{m}$ and $\beta \in \mathbb{R}^{m}$ be given. For every $l \in \mathbb{Z}^{m}$, we define the hyperrectangle $C^{l}(\alpha, \beta)$ as

$$
C^{l}(\alpha, \beta):=\prod_{i=1}^{m}\left[\alpha_{i}+\beta_{i}\left(l_{i}-1\right), \alpha_{i}+\beta_{i}\left(l_{i}+1\right)\right] .
$$

For every value of $\alpha, \beta \in \mathbb{R}^{m}$ and $l \in \mathbb{Z}^{m}$, the hyperrectangle $C^{l}(\alpha, \beta) \subset \mathbb{R}^{m}$ is convex. Moreover, all its extreme points and the interior point $\left(\alpha_{1}+\beta_{1} l_{1}, \ldots, \alpha_{m}+\beta_{m} l_{m}\right)$ are on the grid $\alpha+\beta \mathbb{Z}^{m}$. Thus, if $C^{l}(\alpha, \beta) \subset \omega-\Lambda^{k}\left(d_{k}\right)$, then we can apply Lemma 2 to $\hat{v}(\omega, \cdot)$ with $C:=C^{l}(\alpha, \beta)$ to conclude that $\hat{v}(\omega, z)$ satisfies (10) for all $z \in C^{l}(\alpha, \beta)$, and thus $\hat{v}(\omega, z)$ is affine in z over $C^{l}(\alpha, \beta)$. Applying Lemma 2 for all $C^{l}(\alpha, \beta)$ that are completely contained in $\omega-\Lambda^{k}\left(d_{k}\right)$, we can show that $\hat{v}(\omega, z)$ is affine in z over at least $\omega-\Lambda^{k}\left(d_{k}+2\|\beta\|\right)$. This is true since the diameter of $C^{l}(\alpha, \beta)$ is $2\|\beta\|$, and $\Lambda^{k}\left(d_{k}+2\|\beta\|\right)$ represents all points in Λ^{k} with at least Euclidean distance $d_{k}+2\|\beta\|$ to the boundary of Λ^{k}. Thus, for every $z \in \omega-\Lambda^{k}\left(d_{k}+2\|\beta\|\right)$ there exists a hyperrectangle $C^{l}(\alpha, \beta) \subset \omega-\Lambda^{k}\left(d_{k}\right)$ that contains z. Here, the diameter of $C^{l}(\alpha, \beta)$ is defined as

$$
\max _{z_{1}, z_{2}}\left\{\left\|z_{1}-z_{2}\right\|: z_{1}, z_{2} \in C^{l}(\alpha, \beta)\right\}=2\|\beta\| .
$$

Proposition 1 shows all linearity regions of $\hat{v}(\omega, z)$ for fixed $\omega \in \Omega$. These are subsets of the domain of $\hat{v}(\omega, \cdot)$ on which $\hat{v}(\omega, z)$ is affine in z.

Proposition 1. Consider an inexact cutting plane approximation $\hat{v}(\omega, z)$ as defined in Definition 1, and let $\Lambda^{k}, k=1, \ldots, K$, denote the simplicial cones from Theorem 3. Then, under Assumptions 1 and 2, for every $k=1, \ldots, K$, there exists a distance $d_{k}^{\prime} \geq 0$ such that if $\omega-z \in \Lambda^{k}\left(d_{k}^{\prime}\right)$, then

$$
\hat{v}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha) .
$$

4.3. Bounds on the value function of an inexact cutting plane approximation

Proposition 1 defines $\hat{v}(\omega, z)$ on the linearity regions $\Lambda^{k}\left(d_{k}^{\prime}\right)$. In fact, on these linearity regions, $v(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-z)$ and $\hat{v}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)$, so that the difference between the two equals

$$
v(\omega, z)-\hat{v}(\omega, z)=\psi^{k}(\omega-z)-\psi^{k}(\omega-\alpha), \quad z \in \omega-\Lambda^{k}\left(d_{k}^{\prime}\right) .
$$

This difference is B_{k}-periodic and bounded, since ψ^{k} is a bounded B_{k}-periodic function by Theorem 3. These properties will be exploited to derive an error bound for the inexact cutting plane approximation \hat{Q} in Section 4.4.

Outside the linearity regions, i.e., on $\mathcal{N}:=\mathbb{R}^{m} \backslash \bigcup_{k=1}^{K} \Lambda^{k}\left(d_{k}^{\prime}\right)$, we cannot prove such properties for $v(\omega, z)$ and $\hat{v}(\omega, z)$. However, we can show that the difference between the two is bounded. That is, there exists $R \in \mathbb{R}$ such that

$$
\|v-\hat{v}\|_{\infty}:=\sup _{\omega, z}|v(\omega, z)-\hat{v}(\omega, z)| \leq R .
$$

To prove this result we use that \mathcal{N} can be covered by finitely many hyperslices $H_{j}, j \in \mathcal{J}$, see [15].
Definition 9. Let $\delta>0$ and normal vector $a \in \mathbb{R}^{m} \backslash\{0\}$ be given. Then, the hyperslice $H(a, \delta)$ is defined as

$$
H(a, \delta):=\left\{z \in \mathbb{R}^{m}: 0 \leq a^{\top} z \leq \delta\right\}
$$

However, before we derive an upper bound on $\|v-\hat{v}\|_{\infty}$, we first derive a lower bound and upper bound on the value function $\hat{v}(\omega, z)$ of the inexact cutting plane approximation. The lower bound follows directly from Proposition 1 and the fact that $\hat{v}(\omega, z)$ is convex in z for every fixed $\omega \in \Omega$.

Lemma 3. Consider an inexact cutting plane approximation $\hat{v}(\omega, z)$ as defined in Definition 1. Then, under Assumptions 1 and 2, we have for every $\omega \in \Omega$ and $z \in \mathbb{R}^{m}$ that

$$
\hat{v}(\omega, z) \geq \max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)\right\} .
$$

The lower bound of $\hat{v}(\omega, z)$ in Lemma 3 is not only valid on the linearity regions of $\hat{v}(\omega, \cdot)$, but also on $\omega-\mathcal{N}$. We will show that the difference between $\hat{v}(\omega, z)$ and this lower bound is bounded. Again, we use the fact that $\hat{v}(\omega, z)$ is convex in z for every fixed $\omega \in \Omega$.

Lemma 4. Consider an inexact cutting plane approximation $\hat{v}(\omega, z)$ as defined in Definition 1. Then, under Assumptions 1 and 2, there exists $R^{\prime} \in \mathbb{R}$ such that

$$
\begin{equation*}
\hat{v}(\omega, z)-\max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)\right\} \leq R^{\prime} \tag{11}
\end{equation*}
$$

Now we are ready to prove an upper bound on $\|v-\hat{v}\|_{\infty}$. The idea of the proof is that we can use Lemma 3 and 4 to bound $\left\|\hat{v}-v_{L P}\right\|_{\infty}$, where the LP-relaxation $v_{L P}(\omega, z)$ of $v(\omega, z)$ is equal to

$$
\begin{equation*}
v_{L P}(\omega, z)=\max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)\right\}, \tag{12}
\end{equation*}
$$

and the maximum difference between v and $v_{L P}$ is known.
Proposition 2. Consider an inexact cutting plane approximation $\hat{v}(\omega, z)$ as defined in Definition 1. Then, under Assumptions 1 and 2, there exists $R \in \mathbb{R}$ such that

$$
\|v-\hat{v}\|_{\infty} \leq R .
$$

4.4. Proof of error bound

In this section we give the proof of Theorem 2. Whereas the focus in Sections 4.2 and 4.3 was on $\hat{v}(\omega, z)$ as a function of z for fixed $\omega \in \Omega$, we now consider the difference $v(\omega, z)-\hat{v}(\omega, z)$ as a function of ω for fixed $z \in \mathbb{R}^{m}$. This is because $Q(z)-\hat{Q}(z)=\mathbb{E}_{\omega}[v(\omega, z)-\hat{v}(\omega, z)], z \in \mathbb{R}^{m}$, and thus $v(\omega, z)-\hat{v}(\omega, z)$ can be interpreted as the underlying difference function for fixed $z \in \mathbb{R}^{m}$. Based on Propositions 1 and 2, we know that for $\omega \in z+\Lambda^{k}\left(d_{k}^{\prime}\right), k=1, \ldots, K$,

$$
v(\omega, z)-\hat{v}(\omega, z)=\psi^{k}(\omega-z)-\psi^{k}(\omega-\alpha),
$$

and for $\omega \in z+\mathcal{N}$,

$$
|v(\omega, z)-\hat{v}(\omega, z)| \leq R .
$$

We will use these two main properties to derive an upper bound for $\|Q-\hat{Q}\|_{\infty}$ that depends on the total variations of the one-dimensional conditional probability density functions of the random variables in the model, showing that inexact cutting plane approximations are asymptotically accurate.

Proof of Theorem 2. Combining Theorem 3 and Proposition 1, there exist basis matrices B_{k}, corresponding simplicial cones Λ^{k}, distances $d_{k}^{\prime} \geq 0$, and bounded B_{k}-periodic functions ψ^{k} such that for $\omega-z \in \Lambda^{k}\left(d_{k}^{\prime}\right)$,

$$
v(\omega, z)-\hat{v}(\omega, z)=\psi^{k}(\omega-z)-\psi^{k}(\omega-\alpha) .
$$

Moreover, by Proposition 2 , there exists $R \in \mathbb{R}$ such that $\|v-\hat{v}\|_{\infty} \leq R$.
Fix $z \in \mathbb{R}^{m}$ and consider the difference $v(\omega, z)-\hat{v}(\omega, z)$ as a function of ω. We will use that for $\omega \in z+\Lambda^{k}\left(d_{k}^{\prime}\right)$, this difference is B_{k}-periodic, and for $\omega \in z+\mathcal{N}$, it is bounded by R. In fact, using trivially adjusted versions of Theorems 4.6 and 4.13 in [15] we can show that there exist constants $D>0$ and $C_{k}^{\prime}>0, k=1, \ldots, K$, such that

$$
\begin{equation*}
\mathbb{P}\{\omega \in z+\mathcal{N}\} \leq D \sum_{i=1}^{m} \mathbb{E}_{\omega_{-i}}\left[|\Delta| f_{i}\left(\cdot \mid \omega_{-i}\right)\right], \tag{13}
\end{equation*}
$$

and for every $k=1, \ldots, K$,

$$
\begin{equation*}
\left|\int_{z+\Lambda^{k}\left(d_{k}^{\prime}\right)}\left(\psi^{k}(t-z)-\psi^{k}(t-\alpha)\right) f(t) d t\right| \leq C_{k}^{\prime} \sum_{i=1}^{m} \mathbb{E}_{\omega_{-i}}\left[|\Delta| f_{i}\left(\cdot \mid \omega_{-i}\right)\right] . \tag{14}
\end{equation*}
$$

Then,

$$
\begin{aligned}
|Q(z)-\hat{Q}(z)| & =\left|\int_{\mathbb{R}^{m}}(v(t, z)-\hat{v}(t, z)) f(t) d t\right| \\
& \leq\left|\int_{z+\mathcal{N}}(v(t, z)-\hat{v}(t, z)) f(t) d t\right|+\sum_{k=1}^{K}\left|\int_{z+\Lambda^{k}\left(d_{k}^{\prime}\right)}(v(t, z)-\hat{v}(t, z)) f(t) d t\right| \\
& \leq R \mathbb{P}\{\omega \in z+\mathcal{N}\}+\sum_{k=1}^{K}\left|\int_{z+\Lambda^{k}\left(d_{k}^{\prime}\right)}(v(t, z)-\hat{v}(t, z)) f(t) d t\right|
\end{aligned}
$$

Applying the bound in (13) to the first term and the bounds in (14) to the second term, we obtain

$$
\begin{aligned}
|Q(z)-\hat{Q}(z)| & \leq R D \sum_{i=1}^{m} \mathbb{E}_{\omega_{-i}}\left[|\Delta| f_{i}\left(\cdot \mid \omega_{-i}\right)\right]+\sum_{k=1}^{K} C_{k}^{\prime} \sum_{i=1}^{m} \mathbb{E}_{\omega_{-i}}\left[|\Delta| f_{i}\left(\cdot \mid \omega_{-i}\right)\right] \\
& =C \sum_{i=1}^{m} \mathbb{E}_{\omega_{-i}}\left[|\Delta| f_{i}\left(\cdot \mid \omega_{-i}\right)\right]
\end{aligned}
$$

where the constant C is defined as $C:=R D+\sum_{k=1}^{K} C_{k}^{\prime}$.

5. Examples of inexact cutting planes

In this section we consider examples of inexact cutting plane approximations that are asymptotically accurate. We derive inexact mixed-integer Gomory cuts in Section 5.1, and an inexact cutting plane approximation for a nurse scheduling problem in Section 5.2.

5.1. Inexact mixed-integer Gomory cuts

In this section we will derive inexact mixed-integer Gomory cuts that satisfy the first condition of Assumption 2. It can be shown, analogously to Theorem 2, that these inexact cuts are asymptotically accurate, or in fact yield an asymptotic lower bound.

Consider the second-stage value function

$$
v(\omega, z):=\min _{y_{B}, y_{N}}\left\{q_{B}^{\top} y_{B}+q_{N}^{\top} y_{N}: B y_{B}+N y_{N}=\omega-z, y_{B} \in Y_{N}, y_{N} \in Y_{N}\right\}, \quad \omega \in \Omega, z \in \mathbb{R}^{m}
$$

where similar as in Section 4.1, we let B denote a dual feasible basis matrix of the LP-relaxation of v. Multiplying the equality constraint in $v(\omega, z)$ by $e_{i}^{\top} B^{-1}$, where e_{i} is the i-th unit vector, we obtain

$$
\begin{equation*}
y_{B_{i}}+e_{i}^{\top} B^{-1} N y_{N}=e_{i}^{\top} B^{-1}(\omega-z) \tag{15}
\end{equation*}
$$

where $y_{B_{i}}$ denotes the i-th basic variable. Let $\bar{w}_{i j}$ denote the j-th component of the vector $e_{i}^{\top} B^{-1} N$, let $y_{N_{j}}$ denote the j-th non-basic variable, and let $r_{i}(\omega, z):=e_{i}^{\top} B^{-1}(\omega-z)-\left\lfloor e_{i}^{\top} B^{-1}(\omega-z)\right\rfloor$. If the i-th basic variable $y_{B_{i}}$ is restricted to be integer, then we can derive from (15) the exact mixed-integer Gomory cut

$$
\begin{equation*}
\sum_{j \in J_{1}} \min \left\{\frac{-\bar{w}_{i j}-\left\lfloor-\bar{w}_{i j}\right\rfloor}{r_{i}(\omega, z)}, \frac{\bar{w}_{i j}+\left\lceil-\bar{w}_{i j}\right\rceil}{1-r_{i}(\omega, z)}\right\} y_{N_{j}}+\sum_{j \in J_{2}} \max \left\{\frac{-\bar{w}_{i j}}{r_{i}(\omega, z)}, \frac{\bar{w}_{i j}}{1-r_{i}(\omega, z)}\right\} y_{N_{j}} \geq 1 \tag{16}
\end{equation*}
$$

where J_{1} denotes the index set of integer non-basic variables $y_{N_{j}}$ and J_{2} the index set of continuous non-basic variables $y_{N_{j}}$; see e.g. [2].

Obviously, the exact mixed-integer Gomory cut in (16) is not affine in z, among others since $r_{i}(\omega, z)$ is not affine in z. However, if $z \in \beta \mathbb{Z}^{m}$, where $\beta:=|\operatorname{det}(B)| e$ with e the all-one vector,
then under the assumption that W is integer, we can show that $r_{i}(\omega, z)=r_{i}(\omega, 0)$, and thus the mixed-integer Gomory cut in (16) does not depend on z. This is true, since for such z, we have

$$
e_{i}^{\top} B^{-1} z=e_{i}^{\top}\left(\operatorname{det}(B)^{-1} \operatorname{adj}(B)\right) z \in \mathbb{Z}
$$

and thus

$$
r_{i}(\omega, z)=e_{i}^{\top} B^{-1}(\omega-z)-\left\lfloor e_{i}^{\top} B^{-1}(\omega-z)\right\rfloor=e_{i}^{\top} B^{-1} \omega-\left\lfloor e_{i}^{\top} B^{-1} \omega\right\rfloor=r_{i}(\omega, 0) .
$$

Similarly, if $z \in \alpha+\beta \mathbb{Z}^{m}$ with $\beta:=|\operatorname{det}(B)| e$, then $r_{i}(\omega, z)=r_{i}(\omega, \alpha)$. Thus, replacing $r_{i}(\omega, z)$ by $r_{i}(\omega, \alpha)$ in (16) yields an inexact mixed-integer Gomory cut that does not depend on z and is valid for all ω and for all z on a grid of points $\alpha+\beta \mathbb{Z}^{m}$. Hence, it satisfies the first condition of Assumption 2, and thus analoguously to Theorem 2 the inexact mixed-integer Gomory cut

$$
\sum_{j \in J_{1}} \min \left\{\frac{-\bar{w}_{i j}-\left\lfloor-\bar{w}_{i j}\right\rfloor}{r_{i}(\omega, \alpha)}, \frac{\bar{w}_{i j}+\left\lceil-\bar{w}_{i j}\right\rceil}{1-r_{i}(\omega, \alpha)}\right\} y_{N_{j}}+\sum_{j \in J_{2}} \max \left\{\frac{-\bar{w}_{i j}}{r_{i}(\omega, \alpha)}, \frac{\bar{w}_{i j}}{1-r_{i}(\omega, \alpha)}\right\} y_{N_{j}} \geq 1,
$$

is asymptotically valid for all $z \in \mathbb{R}^{m}$.

5.2. Nurse scheduling problem

In this section we will apply inexact cutting planes to a nurse scheduling problem, introduced by Kim and Mehrotra [9]. In this problem, a regular work schedule for the nurses is determined in the first stage, resulting in an available number z_{t} of nurses per time period $t=1, \ldots, T$. This regular work schedule is determined before the random demand ω_{t} for nurses per time period is known. Thus, it may turn out that we have a shortage or surplus of nurses in some of the time periods. In this case, it is possible to add or subtract nurse shifts, consisting of several consecutive time periods, after the demands ω_{t} are known. Moreover, we penalize any remaining nurse shortages and nurse surpluses using unit penalty costs per time period. The corresponding second-stage value function v is given by

$$
\begin{align*}
v(\omega, z)=\min _{y, u_{1}, u_{2}} & q^{\top} y+r_{1}^{\top} u_{1}+r_{2}^{\top} u_{2} \tag{17}\\
\text { s.t. } & W y-u_{1}+u_{2}=\omega-z \\
& y \in \mathbb{Z}_{+}^{n_{2}}, u_{1}, u_{2} \in \mathbb{R}^{T},
\end{align*}
$$

where $y \in \mathbb{Z}_{+}^{n_{2}}$ represents the possibility to add or subtract nurse shifts, and W is a $\{-1,0,1\}$ matrix, modelling which time periods are contained in which shift. Kim and Mehrotra [9] show that W is a totally unimodular matrix. Moreover, they show that if $z \in \mathbb{Z}^{T}$, then the cutting planes $W y-\hat{D}(\omega) u_{1} \leq\lfloor\omega\rfloor-z$, with $\hat{D}(\omega)$ a diagonal matrix with t-th diagonal component $\hat{D}_{t t}(\omega)$ equal to

$$
\hat{D}_{t t}(\omega)=\frac{1}{1-\omega_{t}+\left\lfloor\omega_{t}\right\rfloor}, \quad t=1, \ldots, T
$$

are valid for all $\omega \in \Omega$. In particular, combined with the constraints $W y-u_{1}+u_{2}=\omega-z$, they completely define the integer hull $\bar{Y}(\omega, z)$ of the feasible region $Y(\omega, z)$ of $v(\omega, z)$. That is, for every $\omega \in \Omega$ and $z \in \mathbb{Z}^{T}$,

$$
\bar{Y}(\omega, z)=\left\{\left(y, u_{1}, u_{2}\right) \in \mathbb{R}_{+}^{n_{2}+2 T}: W y-u_{1}+u_{2}=\omega-z, W y-\hat{D}(\omega) u_{1} \leq\lfloor\omega\rfloor-z\right\} .
$$

If we assume, contrary to [9], that z is not necessarily integral, then we may use the inexact cutting planes $W y-\hat{D}(\omega) u_{1} \leq\lfloor\omega\rfloor-z$ to derive the inexact cutting plane approximation

$$
\begin{aligned}
\hat{v}(\omega, z)=\min _{y, u_{1}, u_{2}} & q^{\top} y+r_{1}^{\top} u_{1}+r_{2}^{\top} u_{2} \\
\text { s.t. } & W y-u_{1}+u_{2}=\omega-z \\
& W y-\hat{D}(\omega) u_{1} \leq\lfloor\omega\rfloor-z \\
& y \in \mathbb{R}_{+}^{n_{2}}, u_{1}, u_{2} \in \mathbb{R}^{T}
\end{aligned}
$$

Observe that $\hat{v}(\omega, z)$ satisfies Assumption 2, so that by Theorem 2, the corresponding inexact cutting plane approximation \hat{Q} is asymptotically accurate. In Example 3 below, we numerically show the actual performance of this inexact cutting plane approximation for the one-dimensional second-stage value function of Example 1 in Section 2, which can be considered a special case of (17).

Example 3. Consider the second-stage value function $v(\omega, z)$ of Example 1,

$$
\begin{aligned}
v(\omega, z)=r(\omega-z)+\min _{y, u_{1}} & (q-r) y+2 r u_{1} \\
\text { s.t. } & y-u_{1} \leq \omega-z \\
& y \in \mathbb{Z}_{+}, u_{1} \in \mathbb{R}_{+},
\end{aligned}
$$

and its inexact cutting plane approximation defined in (7). Let ω be a normal random variable with mean μ and standard deviation σ. Then, as shown in Example 2, the total variation $|\Delta| f$ of the probability density function f of ω equals $|\Delta| f=\sigma^{-1} \sqrt{2 / \pi}$. Figure 3 shows $\|Q-\hat{Q}\|_{\infty}$, the maximum difference between the expected value function Q and its inexact cutting plane approximation \hat{Q}, as a function of the standard deviation σ for $q=1$ and $r=2$. We observe that this difference decreases if σ increases. This is in line with Theorem 2 , since the total variation $|\Delta| f$ of a normal probability density function f decreases if the standard deviation σ increases.

6. Discussion

We consider a new solution method for solving two-stage mixed-integer stochastic programs (MISPs). Instead of applying exact cuts to the second-stage feasible regions that are always valid,

Figure 3 The maximum difference between Q and its inexact cutting plane approximation \hat{Q} of Example 3, with $q=1$ and $r=2$, as a function of the standard deviation σ of a normal random variable ω.
we propose to use inexact cutting planes that are affine in the first-stage decision variables. The advantage is that the approximating problem, that uses these inexact cuts, is convex, and can thus be solved efficiently using techniques from convex optimization.

For simple integer recourse models, we show that we can obtain the α-approximations of Klein Haneveld et al. [10] using inexact cutting planes. A direct consequence of this result is that we obtain an error bound on the quality of the solution obtained using inexact cutting planes. This bound is small if the total variation of the probability density function of the random variable in the model is small. For general MISPs we show that under mild assumptions inexact cutting plane approximations are asymptotically accurate. For general MISPs we also derive inexact mixedinteger Gomory cuts, and we derive asymptotically accurate inexact cutting planes for a nurse scheduling problem. Numerical experiments show that the error of using the inexact cutting planes indeed converges to zero if the total variations of the random variables in the model go to zero.

A direction for future research is to derive problem-specific inexact cutting planes for specific applications of two-stage MISPs. Moreover, tighter error bounds may be derived for these problemspecific inexact cutting plane approximations using the special structure of the problems, similar as for simple integer recourse models. Another future research direction is to combine exact and inexact cutting planes to obtain more accurate approximations at the expense of increasing the computational effort of solving the approximation.

Appendix

Proof of Lemma 2. Since C is convex, every $z \in C$ can be written as a convex combination of its extreme points:

$$
z=\sum_{j=1}^{J} \mu_{j} z^{j},
$$

with $\sum_{j=1}^{J} \mu_{j}=1$, and $\mu_{j} \geq 0, j=1, \ldots, J$. Since v is convex, this implies that for all $z \in C$

$$
\begin{equation*}
v(z)=v\left(\sum_{j=1}^{J} \mu_{j} z^{j}\right) \leq \sum_{j=1}^{J} \mu_{j} v\left(z^{j}\right)=\sum_{j=1}^{J} \mu_{j}\left(a^{\top} z^{j}+b\right)=a^{\top} z+b . \tag{18}
\end{equation*}
$$

To prove that also $v(z) \geq a^{\top} z+b$ for all $z \in C$, assume for contradiction that there exists $\bar{z} \in C$ such that $v(\bar{z})<a^{\top} \bar{z}+b$. Since C is convex and z^{0} is an interior point of C there exists $\epsilon>0$ such that $\hat{z}:=z^{0}+\epsilon\left(z^{0}-\bar{z}\right) \in C$. This point \hat{z} is defined in such a way that z^{0} can be written as a convex combination of \bar{z} and \hat{z} :

$$
z^{0}=\frac{1}{1+\epsilon} \hat{z}+\frac{\epsilon}{1+\epsilon} \bar{z} .
$$

Since v is convex, this implies that

$$
\begin{equation*}
v\left(z^{0}\right) \leq \frac{1}{1+\epsilon} v(\hat{z})+\frac{\epsilon}{1+\epsilon} v(\bar{z})<\frac{1}{1+\epsilon}\left(a^{\top} \hat{z}+b\right)+\frac{\epsilon}{1+\epsilon}\left(a^{\top} \bar{z}+b\right)=a^{\top} z^{0}+b \tag{19}
\end{equation*}
$$

where we use that $v(\bar{z})<a^{\top} \bar{z}+b$ by assumption and $v(\hat{z}) \leq a^{\top} \hat{z}+b$ by (18). Since (19) contradicts the assumption that $v\left(z^{0}\right)=a^{\top} z^{0}+b$, we conclude that $v(z)=a^{\top} z+b$ for all $z \in C$.

Proof of Proposition 1. Since $\hat{v}(\omega, z)=v(\omega, z)$ for all $\omega \in \Omega$ and $z \in \alpha+\beta \mathbb{Z}^{m}$, it follows from Theorem 3 that for every $k=1, \ldots, K$, there exists d_{k} such that for all $\omega \in \Omega$ and $z \in \alpha+\beta \mathbb{Z}^{m}$ with $\omega-z \in \Lambda^{k}\left(d_{k}\right)$,

$$
\hat{v}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-z) .
$$

Fix $\omega \in \Omega$. Then, $\psi^{k}(\omega-z)$ is B_{k}-periodic in z and thus $\psi^{k}(\omega-z)=\psi^{k}\left(\omega-z-\operatorname{det}\left(B_{k}\right) l\right)$ for every $l \in \mathbb{Z}^{m}$ by Lemma 4.8 in [15]. Define $\delta^{k}:=\operatorname{det}\left(B_{k}\right) \beta \in \mathbb{Z}^{m}$ and let $l \in \mathbb{Z}^{m}$ be given, and consider the hyperrectangle $C^{l}\left(\alpha, \delta^{k}\right)$. Let $z^{j}, j=1, \ldots, J$, denote its extreme points and let $z^{0}:=$ $\left(\alpha_{1}+\delta_{1}^{k} l_{1}, \ldots, \alpha_{m}+\delta_{m}^{k} l_{m}\right)$ be an interior point. If $C^{l}\left(\alpha, \delta^{k}\right) \subset \omega-\Lambda^{k}\left(d_{k}\right)$, then we can apply Lemma 2 with $a:=-q_{B_{k}}^{\top} B_{k}^{-1}, b:=q_{B_{k}}^{\top} B_{k}^{-1} \omega+\psi^{k}(\omega-\alpha)$, and $C:=C^{l}\left(\alpha, \delta^{k}\right)$ to conclude that $\hat{v}(\omega, z)=$ $q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)$ for all $z \in C^{l}\left(\alpha, \delta^{k}\right)$. Since the diameter of $C^{l}\left(\alpha, \delta^{k}\right)$ is $2\left\|\delta^{k}\right\|$, we conclude that the result holds for all $\omega-z \in \Lambda^{k}\left(d_{k}+2\left\|\delta^{k}\right\|\right)$. Indeed, $\omega-z$ will be in $\omega-C^{l}\left(\alpha, \delta^{k}\right)$ for some $l \in \mathbb{Z}^{m}$. The claim now follows by defining $d_{k}^{\prime}:=d_{k}+2\left\|\delta^{k}\right\|$.

Proof of Lemma 3. Fix $\omega \in \Omega$. Then, by Proposition 1 it follows that for every $k=1, \ldots, K$,

$$
\hat{v}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha), \quad z \in \omega-\Lambda^{k}\left(d_{k}^{\prime}\right) .
$$

Since $\hat{v}(\omega, z)$ is convex in z, and affine on $\omega-\Lambda^{k}\left(d_{k}^{\prime}\right)$, we can derive a subgradient inequality for each $k=1, \ldots, K$:

$$
\hat{v}(\omega, z) \geq q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha), \quad z \in \mathbb{R}^{m} .
$$

Combining these inequalities over all $k=1, \ldots, K$, yields the desired result.

Proof of Lemma 4. Fix $\omega \in \Omega$. By Proposition 1, there exist distances $d_{k}^{\prime} \geq 0$ such that for every $k=1, \ldots, K$,

$$
\hat{v}(\omega, z)=q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha), \quad z \in \omega-\Lambda^{k}\left(d_{k}^{\prime}\right) .
$$

Thus, on the linearity regions $\omega-\Lambda^{k}\left(d_{k}^{\prime}\right), \hat{v}(\omega, z)$ equals its lower bound from Lemma 3 . Therefore, we only have to show (11) for $z \in \omega-\mathcal{N}$. To this end, let $z \in \omega-\mathcal{N}$ be given. Since \mathcal{N} can be covered by finitely many hyperslices, there exist $a_{j} \in \mathbb{R}^{m} \backslash\{0\}$ and $\delta_{j}>0, j \in \mathcal{J}$, such that

$$
\mathcal{N} \subset \bigcup_{j \in \mathcal{J}} H_{j}
$$

where $H_{j}:=H\left(a_{j}, \delta_{j}\right), j \in \mathcal{J}$. We will construct points z_{1} and z_{2} in the linearity regions of $\hat{v}(\omega, \cdot)$, so that z is a convex combination of z_{1} and z_{2}. Then, we can use that $\hat{v}(\omega, z)$ is convex in z to derive an upper bound on $\hat{v}(\omega, z)$ in terms of $\hat{v}\left(\omega, z_{1}\right)$ and $\hat{v}\left(\omega, z_{2}\right)$. Since z_{1} and z_{2} are in the linearity regions, these values are known.

To construct such z_{1} and z_{2}, let $d \in \mathbb{R}^{m} \backslash\{0\}$ be a direction of unit length not parellel to any of the hyperslices H_{j}, and thus not orthogonal to any of the normal vectors $a_{j}, j \in \mathcal{J}$. Then, $a_{j}^{\top} d \neq 0$, $j \in \mathcal{J}$, and $\|d\|=1$. We consider the line through z with direction d and define the halflines L_{1} and L_{2} as

$$
L_{1}:=\left\{z+\mu d: \mu \in \mathbb{R}_{+}\right\} \quad \text { and } \quad L_{2}:=\left\{z-\mu d: \mu \in \mathbb{R}_{+}\right\} .
$$

Since the direction d is not parallel to any of the hyperslices, we have $L_{1} \not \subset \bigcup_{j \in \mathcal{J}} H_{j}$ and $L_{2} \not \subset$ $\bigcup_{j \in \mathcal{J}} H_{j}$, and thus $L_{i} \cap\left(\omega-\bigcup_{k=1}^{K} \Lambda^{k}\left(d_{k}^{\prime}\right)\right) \neq \emptyset, i=1,2$. This means that it is possible to select $z^{1}, z^{2} \in \omega-\bigcup_{k=1}^{K} \Lambda^{k}\left(d_{k}^{\prime}\right)$ on L_{1} and L_{2}, respectively, with minimal distance to z :

$$
z^{i}:=\underset{z^{\prime}}{\arg \min }\left\{\left\|z-z^{\prime}\right\|: z^{\prime} \in L_{i} \cap\left(\omega-\bigcup_{k=1}^{K} \Lambda^{k}\left(d_{k}^{\prime}\right)\right)\right\}, \quad i=1,2 .
$$

Since z is on the line segment between z^{1} to z^{2}, we can write z as a convex combination $z=$ $\mu z^{1}+(1-\mu) z^{2}$ of z^{1} and z^{2} with $\mu \in[0,1]$. We will use the convexity of $\hat{v}(\omega, \cdot)$ to derive an upper bound on $\hat{v}(\omega, z)$. Here, we will assume without loss of generality that $z^{1} \in \omega-\Lambda^{k_{1}}\left(d_{k_{1}}^{\prime}\right)$ and $z^{2} \in \omega-\Lambda^{k_{2}}\left(d_{k_{2}}^{\prime}\right)$ with $k_{1}, k_{2} \in\{1, \ldots, K\}$. We obtain

$$
\begin{aligned}
\hat{v}(\omega, z) & \leq \mu \hat{v}\left(\omega, z^{1}\right)+(1-\mu) \hat{v}\left(\omega, z^{2}\right) \\
& =\mu\left(q_{B_{k_{1}}}^{\top} B_{k_{1}}^{-1}\left(\omega-z^{1}\right)+\psi^{k_{1}}(\omega-\alpha)\right)+(1-\mu)\left(q_{B_{k_{2}}}^{\top} B_{k_{2}}^{-1}\left(\omega-z^{2}\right)+\psi^{k_{2}}(\omega-\alpha)\right) .
\end{aligned}
$$

To obtain the bound in (11) on the difference between $\hat{v}(\omega, z)$ and its lower bound, we subtract this lower bound from both the left- and right-hand side of the inequality above. Defining $k^{*}:=$
$\arg \max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)\right\}$, the difference between $\hat{v}(\omega, z)$ and its lower bound can then be bounded by

$$
\begin{aligned}
& \mu\left(q_{B_{k_{1}}}^{\top} B_{k_{1}}^{-1}\left(\omega-z^{1}\right)+\psi^{k_{1}}(\omega-\alpha)-q_{B_{k^{*}}}^{\top} B_{k^{*}}^{-1}(\omega-z)-\psi^{k^{*}}(\omega-\alpha)\right) \\
+ & (1-\mu)\left(q_{B_{k_{2}}}^{\top} B_{k_{2}}^{-1}\left(\omega-z^{2}\right)+\psi^{k_{2}}(\omega-\alpha)-q_{B_{k^{*}}}^{\top} B_{k^{*}}^{-1}(\omega-z)-\psi^{k^{*}}(\omega-\alpha)\right) .
\end{aligned}
$$

Since k_{1} and k_{2} are not necessarily the maximizing index for $\max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\right.$ $\alpha)\}$, we may replace k^{*} by k_{1} and k_{2}, respectively, to obtain after straightforward simplifications,

$$
\hat{v}(\omega, z)-\max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)\right\} \leq \mu q_{B_{k_{1}}}^{\top} B_{k_{1}}^{-1}\left(z^{1}-z\right)+(1-\mu) q_{B_{k_{2}}}^{\top} B_{k_{2}}^{-1}\left(z^{2}-z\right) .
$$

We will bound the right-hand side in terms of the distance $\left\|z^{1}-z^{2}\right\|$ between z^{1} and z^{2}. Here, we use $\lambda_{i}^{*}:=\max _{k=1, \ldots, K}\left|q_{B_{k}}^{\top}\left(B_{k}\right)^{-1} e_{i}\right|$, for $i=1, \ldots, m$, where e_{i} is the i-th unit vector. We have

$$
\begin{align*}
\hat{v}(\omega, z)-\max _{k=1, \ldots, K}\left\{q_{B_{k}}^{\top} B_{k}^{-1}(\omega-z)+\psi^{k}(\omega-\alpha)\right\} & \leq \mu \sum_{i=1}^{m} \lambda_{i}^{*}\left|z_{i}^{1}-z_{i}\right|+(1-\mu) \sum_{i=1}^{m} \lambda_{i}^{*}\left|z_{i}^{2}-z_{i}\right| \\
& \leq \mu \sum_{i=1}^{m} \lambda_{i}^{*}\left\|z^{1}-z\right\|+(1-\mu) \sum_{i=1}^{m} \lambda_{i}^{*}\left\|z^{2}-z\right\| \\
& \leq\left\|z^{1}-z^{2}\right\| \sum_{i=1}^{m} \lambda_{i}^{*}, \tag{20}
\end{align*}
$$

where the last inequality holds since z is on the line segment between z_{1} to z_{2}, and thus $\left\|z^{1}-z\right\| \leq$ $\left\|z^{1}-z^{2}\right\|$ and $\left\|z^{2}-z\right\| \leq\left\|z^{1}-z^{2}\right\|$.

It remains to derive an upper bound on $\left\|z^{1}-z^{2}\right\|$. To do so, observe that $\omega-z$ is on the line segment $\omega-L$ between $\omega-z^{1}$ and $\omega-z^{2}$. Moreover, in the worst-case this line segment is completely contained in the union of the hyperslices $H_{j}, j \in \mathcal{J}$. Hence,

$$
\left\|z^{1}-z^{2}\right\|=\left\|\left(\omega-z^{1}\right)-\left(\omega-z^{2}\right)\right\| \leq\left\|(\omega-L) \cap\left(\bigcup_{j \in \mathcal{J}} H_{j}\right)\right\|=\left\|\bigcup_{j \in \mathcal{J}}\left((\omega-L) \cap H_{j}\right)\right\| \leq \sum_{j \in \mathcal{J}}\left\|(\omega-L) \cap H_{j}\right\|,
$$

where $\|L\|$ denotes the total length of the line segments in L. To find $\left\|(\omega-L) \cap H_{j}\right\|$, observe that $\hat{z} \in L$ satisfies $\hat{z}=z-\hat{\mu} d$ for some $\hat{\mu} \in \mathbb{R}$. Moreover, $\omega-\hat{z} \in H_{j}:=H\left(a_{j}, \delta_{j}\right)$ if $0 \leq a_{j}^{\top}(\omega-z+\hat{\mu} d) \leq \delta_{j}$, or equivalently if

$$
\begin{cases}\frac{-a_{j}^{\top}(\omega-z)}{a_{j}^{\top} d}=: \underline{\mu} \leq \hat{\mu} \leq \bar{\mu}:=\frac{\delta_{j}-a_{j}^{\top}(\omega-z)}{a_{j}^{\top} d}, & \text { if } a_{j}^{\top} d>0 \\ \frac{\delta_{j}-a_{j}^{\top}(\omega-z)}{a_{j}^{\top} d}=: \underline{\mu} \leq \hat{\mu} \leq \bar{\mu}:=\frac{-a_{j}^{\top}(\omega-z)}{a_{j}^{\top} d}, & \text { if } a_{j}^{\top} d<0\end{cases}
$$

Then, $\left\|(\omega-L) \cap H_{j}\right\|=(\bar{\mu}-\underline{\mu})\|d\|=\frac{\delta_{j}}{\left|a_{j}^{j} d\right|}$, where we use that $\|d\|=1$. Thus, by defining

$$
R^{\prime}:=\left(\sum_{i=1}^{m} \lambda_{i}^{*}\right)\left(\sum_{j \in \mathcal{J}} \frac{\delta_{j}}{\left|a_{j}^{\top} d\right|}\right),
$$

the claim follows from combining $\left\|z^{1}-z^{2}\right\| \leq \sum_{j \in \mathcal{J}} \frac{\delta_{j}}{\left|a_{j} d\right|}$ and (20).

Proof of Proposition 2. Consider the LP-relaxation $v_{L P}(\omega, z)$ of $v(\omega, z)$ as defined in (12). Then, by, e.g., [3] and [6], there exists $R^{\prime \prime}$ such that $\left\|v-v_{L P}\right\|_{\infty} \leq R^{\prime \prime}$. Moreover, by combining Lemma 3 and 4, we conclude that $\left\|v_{L P}-\hat{v}\right\|_{\infty} \leq R^{\prime}+\max _{k=1, \ldots, K} \sup _{s \in \mathbb{R}^{m}}\left|\psi^{k}(s)\right|$. If we define $R:=R^{\prime \prime}+R^{\prime}+\max _{k=1, \ldots, K} \sup _{s \in \mathbb{R}^{m}}\left|\psi^{k}(s)\right|$, then

$$
\|v-\hat{v}\| \leq\left\|v-v_{L P}\right\|+\left\|v_{L P}-\hat{v}\right\| \leq R^{\prime \prime}+R^{\prime}+\max _{k=1, \ldots, K} \sup _{s \in \mathbb{R}^{m}}\left|\psi^{k}(s)\right|=: R,
$$

where the first inequality follows from the triangle inequality.

Acknowledgments

The research of Ward Romeijnders has been supported by grant 451-17-034 4043 from The Netherlands Organisation for Scientific Research (NWO). We are grateful to Suvrajeet Sen for many beneficial discussions and for his feedback on the first version of this manuscript.

References

[1] S. Ahmed, M. Tawarmalani, and N.V. Sahinidis. A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming, 100:355-377, 2004.
[2] E. Balas and R.G. Jeroslow. Strengthening cuts for mixed integer programs. European Journal of Operational Research, 4:224-234, 1980.
[3] C.E. Blair and R.G. Jeroslow. The value function of a mixed integer program: II. Discrete Mathematics, 25:7-19, 1979.
[4] M. Bodur, S. Dash, O. Günlük, and J. Luedtke. Strengthened benders cuts for stochastic integer programs with continuous recourse. INFORMS Journal on Computing, 29:77-91, 2017.
[5] C.C. Carøe and R. Schultz. Dual decomposition in stochastic integer programming. Operations Research Letters, 24:37-45, 1999.
[6] W. Cook, A.M.H. Gerards, A. Schrijver, and É. Tardos. Sensitivity theorems in integer linear programming. Mathematical Programming, 34:251-264, 1986.
[7] D. Gade, S. Küçükyavuz, and S. Sen. Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs. Mathematical Programming, 144:39-64, 2014.
[8] Y. Guan, S. Ahmed, and G.L. Nemhauser. Cutting planes for multistage stochastic integer programs. Operations Research, 57:287-298, 2009.
[9] K. Kim and S. Mehrotra. A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management. Operations Research, 63:1431-1451, 2015.
[10] W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk. Simple integer recourse models: convexity and convex approximations. Mathematical Programming, 108:435-473, 2006.
[11] G. Laporte and F.V. Louveaux. The integer L-shaped method for stochastic integer programs with complete recourse. Operations Research Letters, 13:133-142, 1993.
[12] F.V. Louveaux and M.H. van der Vlerk. Stochastic programming with simple integer recourse. Mathematical Programming, 61:301-325, 1993.
[13] L. Ntaimo. Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse. Operations Research, 58:229-243, 2010.
[14] A.H.G. Rinnooy Kan and L. Stougie. Stochastic integer programming. In Yu. Ermoliev and R.JB Wets, editors, Numerical Techniques for Stochastic Optimization, volume 10 of Springer Series in Computational Mathematics, pages 201-213. Springer, 1988.
[15] W. Romeijnders, R. Schultz, M.H. van der Vlerk, and W.K. Klein Haneveld. A convex approximation for two-stage mixed-integer recourse models with a uniform error bound. SIAM Journal on Optimization, 26:426-447, 2016.
[16] W. Romeijnders, M.H. van der Vlerk, and W.K. Klein Haneveld. Convex approximations of totally unimodular integer recourse models: A uniform error bound. SIAM Journal on Optimization, 25:130158, 2015.
[17] W. Romeijnders, M.H. van der Vlerk, and W.K. Klein Haneveld. Total variation bounds on the expectation of periodic functions with applications to recourse approximations. Mathematical Programming, 157:3-46, 2016.
[18] S. Sen and J.L. Higle. The C^{3} theorem and a D^{2} algorithm for large scale stochastic mixed-integer programming: Set convexification. Mathematical Programming, 104:1-20, 2005.
[19] N. van der Laan, W. Romeijnders, and M.H. van der Vlerk. Higher-order total variation bounds for expectations of periodic functions and simple integer recourse approximations. Computational Management Science, 2018. https://doi.org/10.1007/s10287-018-0315-z.
[20] M.H. van der Vlerk. Stochastic progamming with integer recourse. Thesis Rijksuniversiteit Groningen, Theses on Systems, Organisations, and Management, Labyrint Publications, Capelle a/d IJssel, 1995.
[21] M.H. van der Vlerk. Convex approximations for complete integer recourse models. Mathematical Programming, 99:297-310, 2004.
[22] D.W. Walkup and R.J.-B. Wets. Lifting projections of convex polyhedra. Pacific Journal of Mathematics, 28:465-475, 1969.
[23] M. Zhang and S. Küçükyavuz. Finitely convergent decomposition algorithms for two-stage stochastic pure integer programs. SIAM Journal on Optimization, 24:1933-1951, 2014.

List of research reports

13001-EEF: Kuper, G.H. and M. Mulder, Cross-border infrastructure constraints, regulatory measures and economic integration of the Dutch - German gas market

13002-EEF: Klein Goldewijk, G.M. and J.P.A.M. Jacobs, The relation between stature and long bone length in the Roman Empire

13003-EEF: Mulder, M. and L. Schoonbeek, Decomposing changes in competition in the Dutch electricity market through the Residual Supply Index

13004-EEF: Kuper, G.H. and M. Mulder, Cross-border constraints, institutional changes and integration of the Dutch - German gas market

13005-EEF: Wiese, R., Do political or economic factors drive healthcare financing privatisations? Empirical evidence from OECD countries

13006-EEF: Elhorst, J.P., P. Heijnen, A. Samarina and J.P.A.M. Jacobs, State transfers at different moments in time: A spatial probit approach

13007-EEF: Mierau, J.O., The activity and lethality of militant groups: Ideology, capacity, and environment

13008-EEF: Dijkstra, P.T., M.A. Haan and M. Mulder, The effect of industry structure and yardstick design on strategic behavior with yardstick competition: an experimental study

13009-GEM: Hoorn, A.A.J. van, Values of financial services professionals and the global financial crisis as a crisis of ethics

13010-EEF: Boonman, T.M., Sovereign defaults, business cycles and economic growth in Latin America, 1870-2012

13011-EEF: He, X., J.P.A.M Jacobs, G.H. Kuper and J.E. Ligthart, On the impact of the global financial crisis on the euro area

13012-GEM: Hoorn, A.A.J. van, Generational shifts in managerial values and the coming of a global business culture

13013-EEF: Samarina, A. and J.E. Sturm, Factors leading to inflation targeting - The impact of adoption

13014-EEF: Allers, M.A. and E. Merkus, Soft budget constraint but no moral hazard? The Dutch local government bailout puzzle

13015-GEM: Hoorn, A.A.J. van, Trust and management: Explaining cross-national differences in work autonomy

13016-EEF: Boonman, T.M., J.P.A.M. Jacobs and G.H. Kuper, Sovereign debt crises in Latin America: A market pressure approach

13017-GEM: Oosterhaven, J., M.C. Bouwmeester and M. Nozaki, The impact of production and infrastructure shocks: A non-linear input-output programming approach, tested on an hypothetical economy

13018-EEF: Cavapozzi, D., W. Han and R. Miniaci, Alternative weighting structures for multidimensional poverty assessment

14001-OPERA: Germs, R. and N.D. van Foreest, Optimal control of production-inventory systems with constant and compound poisson demand

14002-EEF: Bao, T. and J. Duffy, Adaptive vs. eductive learning: Theory and evidence
14003-OPERA: Syntetos, A.A. and R.H. Teunter, On the calculation of safety stocks
14004-EEF: Bouwmeester, M.C., J. Oosterhaven and J.M. Rueda-Cantuche, Measuring the EU value added embodied in EU foreign exports by consolidating 27 national supply and use tables for 2000-2007

14005-OPERA: Prak, D.R.J., R.H. Teunter and J. Riezebos, Periodic review and continuous ordering

14006-EEF: Reijnders, L.S.M., The college gender gap reversal: Insights from a life-cycle perspective

14007-EEF: Reijnders, L.S.M., Child care subsidies with endogenous education and fertility

14008-EEF: Otter, P.W., J.P.A.M. Jacobs and A.H.J. den Reijer, A criterion for the number of factors in a data-rich environment

14009-EEF: Mierau, J.O. and E. Suari Andreu, Fiscal rules and government size in the European Union

14010-EEF: Dijkstra, P.T., M.A. Haan and M. Mulder, Industry structure and collusion with uniform yardstick competition: theory and experiments

14011-EEF: Huizingh, E. and M. Mulder, Effectiveness of regulatory interventions on firm behavior: a randomized field experiment with e-commerce firms

14012-GEM: Bressand, A., Proving the old spell wrong: New African hydrocarbon producers and the 'resource curse'

14013-EEF: Dijkstra P.T., Price leadership and unequal market sharing: Collusion in experimental markets

14014-EEF: Angelini, V., M. Bertoni, and L. Corazzini, Unpacking the determinants of life satisfaction: A survey experiment

14015-EEF: Heijdra, B.J., J.O. Mierau, and T. Trimborn, Stimulating annuity markets
14016-GEM: Bezemer, D., M. Grydaki, and L. Zhang, Is financial development bad for growth?

14017-EEF: De Cao, E. and C. Lutz, Sensitive survey questions: measuring attitudes regarding female circumcision through a list experiment

14018-EEF: De Cao, E., The height production function from birth to maturity
14019-EEF: Allers, M.A. and J.B. Geertsema, The effects of local government amalgamation on public spending and service levels. Evidence from 15 years of municipal boundary reform

14020-EEF: Kuper, G.H. and J.H. Veurink, Central bank independence and political pressure in the Greenspan era

14021-GEM: Samarina, A. and D. Bezemer, Do Capital Flows Change Domestic Credit Allocation?

14022-EEF: Soetevent, A.R. and L. Zhou, Loss Modification Incentives for Insurers Under ExpectedUtility and Loss Aversion
14023-EEF: Allers, M.A. and W. Vermeulen, Fiscal Equalization, Capitalization and the Flypaper Effect.

14024-GEM: Hoorn, A.A.J . van, Trust, Workplace Organization, and Comparative Economic Development.

14025-GEM: Bezemer, D., and L. Zhang, From Boom to Bust in de Credit Cycle: The Role of Mortgage Credit.

14026-GEM: Zhang, L., and D. Bezemer, How the Credit Cycle Affects Growth: The Role of Bank Balance Sheets.

14027-EEF: Bružikas, T., and A.R. Soetevent, Detailed Data and Changes in Market Structure: The Move to Unmanned Gasoline Service Stations.

14028-EEF: Bouwmeester, M.C., and B. Scholtens, Cross-border Spillovers from European Gas Infrastructure Investments.

14029-EEF: Lestano, and G.H. Kuper, Correlation Dynamics in East Asian Financial Markets.

14030-GEM: Bezemer, D.J., and M. Grydaki, Nonfinancial Sectors Debt and the U.S. Great Moderation.

14031-EEF: Hermes, N., and R. Lensink, Financial Liberalization and Capital Flight: Evidence from the African Continent.

14032-OPERA: Blok, C. de, A. Seepma, I. Roukema, D.P. van Donk, B. Keulen, and R. Otte, Digitalisering in Strafrechtketens: Ervaringen in Denemarken, Engeland, Oostenrijk en Estland vanuit een Supply Chain Perspectief.

14033-OPERA: Olde Keizer, M.C.A., and R.H. Teunter, Opportunistic condition-based maintenance and aperiodic inspections for a two-unit series system.

14034-EEF: Kuper, G.H., G. Sierksma, and F.C.R. Spieksma, Using Tennis Rankings to Predict Performance in Upcoming Tournaments

15001-EEF: Bao, T., X. Tian, X. Yu, Dictator Game with Indivisibility of Money
15002-GEM: Chen, Q., E. Dietzenbacher, and B. Los, The Effects of Ageing and Urbanization on China's Future Population and Labor Force

15003-EEF: Allers, M., B. van Ommeren, and B. Geertsema, Does intermunicipal cooperation create inefficiency? A comparison of interest rates paid by intermunicipal organizations, amalgamated municipalities and not recently amalgamated municipalities

15004-EEF: Dijkstra, P.T., M.A. Haan, and M. Mulder, Design of Yardstick Competition and Consumer Prices: Experimental Evidence

15005-EEF: Dijkstra, P.T., Price Leadership and Unequal Market Sharing: Collusion in Experimental Markets

15006-EEF: Anufriev, M., T. Bao, A. Sutin, and J. Tuinstra, Fee Structure, Return Chasing and Mutual Fund Choice: An Experiment

15007-EEF: Lamers, M., Depositor Discipline and Bank Failures in Local Markets During the Financial Crisis

15008-EEF: Oosterhaven, J., On de Doubtful Usability of the Inoperability IO Model
15009-GEM: Zhang, L. and D. Bezemer, A Global House of Debt Effect? Mortgages and Post-Crisis Recessions in Fifty Economies

15010-I\&O: Hooghiemstra, R., N. Hermes, L. Oxelheim, and T. Randøy, The Impact of Board Internationalization on Earnings Management

15011-EEF: Haan, M.A., and W.H. Siekman, Winning Back the Unfaithful while Exploiting the Loyal: Retention Offers and Heterogeneous Switching Costs

15012-EEF: Haan, M.A., J.L. Moraga-González, and V. Petrikaite, Price and Match-Value Advertising with Directed Consumer Search

15013-EEF: Wiese, R., and S. Eriksen, Do Healthcare Financing Privatisations Curb Total Healthcare Expenditures? Evidence from OECD Countries

15014-EEF: Siekman, W.H., Directed Consumer Search
15015-GEM: Hoorn, A.A.J. van, Organizational Culture in the Financial Sector: Evidence from a Cross-Industry Analysis of Employee Personal Values and Career Success

15016-EEF: Te Bao, and C. Hommes, When Speculators Meet Constructors: Positive and Negative Feedback in Experimental Housing Markets

15017-EEF: Te Bao, and Xiaohua Yu, Memory and Discounting: Theory and Evidence
15018-EEF: Suari-Andreu, E., The Effect of House Price Changes on Household Saving Behaviour: A Theoretical and Empirical Study of the Dutch Case

15019-EEF: Bijlsma, M., J. Boone, and G. Zwart, Community Rating in Health Insurance: Trade-off between Coverage and Selection

15020-EEF: Mulder, M., and B. Scholtens, A Plant-level Analysis of the Spill-over Effects of the German Energiewende

15021-GEM: Samarina, A., L. Zhang, and D. Bezemer, Mortgages and Credit Cycle Divergence in Eurozone Economies

16001-GEM: Hoorn, A. van, How Are Migrant Employees Manages? An Integrated Analysis

16002-EEF: Soetevent, A.R., Te Bao, A.L. Schippers, A Commercial Gift for Charity
16003-GEM: Bouwmeerster, M.C., and J. Oosterhaven, Economic Impacts of Natural Gas Flow Disruptions

16004-MARK: Holtrop, N., J.E. Wieringa, M.J. Gijsenberg, and P. Stern, Competitive Reactions to Personal Selling: The Difference between Strategic and Tactical Actions

16005-EEF: Plantinga, A. and B. Scholtens, The Financial Impact of Divestment from Fossil Fuels

16006-GEM: Hoorn, A. van, Trust and Signals in Workplace Organization: Evidence from J ob Autonomy Differentials between Immigrant Groups

16007-EEF: Willems, B. and G. Zwart, Regulatory Holidays and Optimal Network Expansion

16008-GEF: Hoorn, A. van, Reliability and Validity of the Happiness Approach to Measuring Preferences

16009-EEF: Hinloopen, J., and A.R. Soetevent, (Non-)Insurance Markets, Loss Size Manipulation and Competition: Experimental Evidence

16010-EEF: Bekker, P.A., A Generalized Dynamic Arbitrage Free Yield Model
16011-EEF: Mierau, J.A., and M. Mink, A Descriptive Model of Banking and Aggregate Demand

16012-EEF: Mulder, M. and B. Willems, Competition in Retail Electricity Markets: An Assessment of Ten Year Dutch Experience

16013-GEM: Rozite, K., D.J. Bezemer, and J.P.A.M. Jacobs, Towards a Financial Cycle for the US, 1873-2014

16014-EEF: Neuteleers, S., M. Mulder, and F. Hindriks, Assessing Fairness of Dynamic Grid Tariffs

16015-EEF: Soetevent, A.R., and T. Bružikas, Risk and Loss Aversion, Price Uncertainty and the Implications for Consumer Search

16016-HRM\&OB: Meer, P.H. van der, and R. Wielers, Happiness, Unemployment and Self-esteem

16017-EEF: Mulder, M., and M. Pangan, Influence of Environmental Policy and Market Forces on Coal-fired Power Plants: Evidence on the Dutch Market over 2006-2014

16018-EEF: Zeng,Y., and M. Mulder, Exploring Interaction Effects of Climate Policies: A Model Analysis of the Power Market

16019-EEF: Ma, Yiqun, Demand Response Potential of Electricity End-users Facing Real Time Pricing

16020-GEM: Bezemer, D., and A. Samarina, Debt Shift, Financial Development and Income Inequality in Europe

16021-EEF: Elkhuizen, L, N. Hermes, and J. Jacobs, Financial Development, Financial Liberalization and Social Capital

16022-GEM: Gerritse, M., Does Trade Cause Institutional Change? Evidence from Countries South of the Suez Canal

16023-EEF: Rook, M., and M. Mulder, Implicit Premiums in Renewable-Energy Support Schemes

17001-EEF: Trinks, A., B. Scholtens, M. Mulder, and L. Dam, Divesting Fossil Fuels: The Implications for Investment Portfolios

17002-EEF: Angelini, V., and J.O. Mierau, Late-life Health Effects of Teenage Motherhood
17003-EEF: J ong-A-Pin, R., M. Laméris, and H. Garretsen, Political Preferences of (Un)happy Voters: Evidence Based on New Ideological Measures

17004-EEF: Jiang, X., N. Hermes, and A. Meesters, Financial Liberalization, the Institutional Environment and Bank Efficiency

17005-EEF: Kwaak, C. van der, Financial Fragility and Unconventional Central Bank Lending Operations

17006-EEF: Postelnicu, L. and N. Hermes, The Economic Value of Social Capital
17007-EEF: Ommeren, B.J.F. van, M.A. Allers, and M.H. Vellekoop, Choosing the Optimal Moment to Arrange a Loan

17008-EEF: Bekker, P.A., and K.E. Bouwman, A Unified Approach to Dynamic MeanVariance Analysis in Discrete and Continuous Time

17009-EEF: Bekker, P.A., Interpretable Parsimonious Arbitrage-free Modeling of the Yield Curve

17010-GEM: Schasfoort, J., A. Godin, D. Bezemer, A. Caiani, and S. Kinsella, Monetary Policy Transmission in a Macroeconomic Agent-Based Model

17011-I\&O: Bogt, H. ter, Accountability, Transparency and Control of Outsourced Public Sector Activities

17012-GEM: Bezemer, D., A. Samarina, and L. Zhang, The Shift in Bank Credit Allocation: New Data and New Findings

17013-EEF: Boer, W.I.J. de, R.H. Koning, and J.O. Mierau, Ex-ante and Ex-post
Willingness-to-pay for Hosting a Major Cycling Event
17014-OPERA: Laan, N. van der, W. Romeijnders, and M.H. van der Vlerk, Higher-order Total Variation Bounds for Expectations of Periodic Functions and Simple Integer Recourse Approximations

17015-GEM: Oosterhaven, J., Key Sector Analysis: A Note on the Other Side of the Coin
17016-EEF: Romensen, G.J., A.R. Soetevent: Tailored Feedback and Worker Green Behavior: Field Evidence from Bus Drivers

17017-EEF: Trinks, A., G. Ibikunle, M. Mulder, and B. Scholtens, Greenhouse Gas
Emissions Intensity and the Cost of Capital
17018-GEM: Qian, X. and A. Steiner, The Reinforcement Effect of International Reserves for Financial Stability

17019-GEM/EEF: Klasing, M.J. and P. Milionis, The International Epidemiological Transition and the Education Gender Gap

2018001-EEF: Keller, J.T., G.H. Kuper, and M. Mulder, Mergers of Gas Markets Areas and Competition amongst Transmission System Operators: Evidence on Booking Behaviour in the German Markets

2018002-EEF: Soetevent, A.R. and S. Adikyan, The Impact of Short-Term Goals on LongTerm Objectives: Evidence from Running Data

2018003-MARK: Gijsenberg, M.J. and P.C. Verhoef, Moving Forward: The Role of Marketing in Fostering Public Transport Usage

2018004-MARK: Gijsenberg, M.J. and V.R. Nijs, Advertising Timing: In-Phase or Out-ofPhase with Competitors?

2018005-EEF: Hulshof, D., C. Jepma, and M. Mulder, Performance of Markets for European Renewable Energy Certificates

2018006-EEF: Fosgaard, T.R., and A.R. Soetevent, Promises Undone: How Committed Pledges Impact Donations to Charity

2018007-EEF: Durán, N. and J.P. Elhorst, A Spatio-temporal-similarity and Common Factor Approach of Individual Housing Prices: The Impact of Many Small Earthquakes in the North of Netherlands

2018008-EEF: Hermes, N., and M. Hudon, Determinants of the Performance of Microfinance Institutions: A Systematic Review

2018009-EEF: Katz, M., and C. van der Kwaak, The Macroeconomic Effectiveness of Bank Bail-ins

2018010-OPERA: Prak, D., R.H. Teunter, M.Z. Babai, A.A. Syntetos, and J.E. Boylan, Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data

2018011-EEF: Brock, B. de, Converting a Non-trivial Use Case into an SSD: An Exercise 2018012-EEF: Harvey, L.A., J.O. Mierau, and J. Rockey, Inequality in an Equal Society

2018013-OPERA: Romeijnders, W., and N. van der Laan, Inexact cutting planes for twostage mixed-integer stochastic programs

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

