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ABSTRACT

The simulation of free-surface flow around moored or floating objects

faces a series of challenges concerning the flow modelling and the numer-

ical solution method. During the development of the ComFLOW simu-

lation method many of these challenges have been tackled, as there are

wave propagation, absorbing boundary conditions, turbulence modeling,

fluid-solid body interaction and numerical efficiency. Several of these

challenges will be discussed in the paper. To demonstrate the current ca-

pabilities of ComFLOW, a number of simulation results for engineering

applications from the offshore industry will be presented. Examples are

wave impact against a semi-submersible offshore platform, an oscillat-

ing buoy, and a free-fall life boat dropping into wavy water. For these

applications, MARIN has carried out several validation experiments.

KEY WORDS: Extreme waves; fluid-solid body interaction; CFD; lo-

cal grid refinement; experimental validation.

INTRODUCTION

Understanding the motion and behavior of the waves in nature has been

a very popular subject among researchers from various fields of science.

Nevertheless, even today when we have highly capable numerical

methods and computational power at our disposal, particular aspects

of numerical modeling of water wave propagation remain a formidable

challenge. During the development of the ComFLOW simulation

method (Kleefsman et al. 2005; Veldman et al. 2011) several of these

challenges have been tackled:

a) To restrict the computational domain, waves should be allowed to

freely enter or leave the domain. Thereto a new class of absorbing

boundary conditions has been developed which is able to deal with

the dispersive character of waves on deep water. I.e., their propa-

gation speed is not known beforehand, but deduced from the local

solution. We will discuss this issue below in more detail.

b) Accurate wave propagation requires much attention to the description

of the free surface. In particular its reconstruction and advection have

to be carefully designed. More info is to be found in the PhD thesis

of Düz (2015) and the forthcoming paper by Düz et al. (2016a).

c) The turbulence model not only has to deal with the coarse grids that

are common in engineering simulations, but should also recognize

wall-bounded turbulence from free-surface turbulence. This will be

tackled with a new class of adaptive, minimum-dissipation turbulence

LES models; see e.g. Van der Heiden et al. (2015).

d) The ‘traditional’ way of numerically coupling the flow dynamics with

the dynamics of a floating object becomes unstable (or requires se-

vere underrelaxation) when the added mass is larger than the mass

of the object. To deal with this two-way interaction, a more simul-

taneous type of numerical coupling is being developed. This paper

contains more details about this issue.

e) The efficiency of the simulations is enhanced by means of local grid

refinement and parallelisation.

Ad a). Typically, the phenomena of interest are local but embedded in a

vast spatial domain, like the interaction between free-surface waves and

man-made structures. For efficient computational modeling, this vast

spatial domain around the region of interest is truncated via artificial

boundaries, implying that a compact computational domain around the

structure and a residual infinite domain are introduced; see e.g. papers

on numerical wave tanks by Kim et al. (1999) and Koo and Kim (2004).

A fundamental question surfaces: What is the boundary condition to be

imposed on these artificial boundaries in such a way that the solution in

the compact domain coincides with the solution in the original domain?

Here we enter the realm of absorbing or non-reflecting boundary

conditions (ABC). Following the pioneering research by Engquist

and Majda (1977), a wide variety of ABCs has been developed:

nonlocal, semi-local or local operators, numerical dissipation zones

and Dirichlet-to-Neumann (DtN) conditions. These conditions not

only have to be considered from a theoretical modeling point of view
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(well-posedness, modeling accuracy), but also from a numerical point

of view (stability, numerical accuracy, efficiency). An impression of

the work done thus far can be obained from several review papers, like

Givoli (1991), Tsynkov (1998). Hagstrom (1999), Appelö (2003) and

Givoli (2004). For the work on ABCs done in the ComFLOW project

we refer to the PhD theses of Wellens (2012) and Düz (2015). Below

we will present our latest contributions to this issue which focus on the

treatment of dispersive waves, i.e. waves whose propagation speed is not

known beforehand but has to be deduced from the (local) solution.

Ad d). Another dimension to the above problem is added when the

structures under study are not fixed in their position but free-floating or

attached to a mooring system. Think for instance of moored offshore

platforms (Johannessen et al. 2006), floating wind turbines (Bayati

et al. 2015; Tran and Kim, 2015) or free-fall life boats (Tregde and

Nestegard, 2013). Here the interaction between the incoming waves and

the dynamics of the structure comes into play. Physically, we speak

of one-way or two-way interaction. In the former case the structure

‘simply’ reacts to the oncoming flow field. But in the latter case the

interaction is such that the motion of the structure influences the flow

field around the structure. The latter case also poses most challenges to

the numerical coupling between flow and structure.

A numerical coupling approach can be aggregated (monolithic) or

segregated (partitioned, hierarchical). In the former case all discrete flow

equations are combined into one single set of equations which is then

solved simultaneously, i.e. as a whole. In the latter case two separate

discrete systems (modules) can be recognized equipped with recipes to

exchange information between the two separate modules. On the one

hand this enhances the flexibility of the approach, but on the other hand

it requires an iterative exchange of information between the modules

with its (positive or negative) consequences for numerical stability

and convergence. Below we describe our efforts to find a compromise

between the robust monolithic approach and the more flexible but

vulnerable partitioned approach. We will see that the ratio between the

mass of the structure and its added fluid mass plays an essential role.

The organization of the paper is as follows. After an introduction of the

flow equations, the absorbing boundary conditions are treated. There-

after we present the numerical coupling strategy between fluid and solid

structure. The paper presents a number of practical applications: an os-

cillating buoy, a falling life boat and a semi-submersible in waves; some

of them are validated by experiments carried out at MARIN.

Fig. 1 Drop test with free-fall lifeboat (from: www.verhoef.eu)

MATHEMATICAL FLOW MODEL

The incompressible, turbulent fluid flow is modelled by means of the

Navier–Stokes equations.

Mu = 0,
∂u

∂t
+ C(u)u + Gp −Du = f . (1)

Here M is the divergence operator describing conservation of mass.

Conservation of momentum is based on the convection operator

C(u)v ≡ ∇(u ⊗ v), the pressure gradient operator G = ∇, the diffusion

operatorD(u) ≡ ∇ · ν∇u and a forcing term f . The kinematic viscosity is

denoted by ν. Turbulence is modelled by means of large-eddy simulation

(LES) using a low-dissipation QR-model as described in Van der Heiden

et al. (2015) and Veldman et al. (2015).

The Navier–Stokes equations (1) are discretized on a staggered Arakawa

C-grid. The second-order finite-volume discretization of the continuity

equation at the ‘new’ time level ·(n+1) is given by

M0u
(n+1)

h
= −MΓu

(n+1)

h
, (2)

where M0 acts on the interior of the domain and MΓ acts on the

boundaries. In the discretized momentum equation, convection C(uh)

and diffusion D are discretized explicitly in time. The pressure gradient

is discretized at the new time level. In this paper, for simplicity reasons

the first-order forward Euler time integration will be used. In the actual

calculations, the second-order Adams–Bashforth method is applied.

Taking the diagonal matrix Ω to denote the matrix containing the size of

the control volumes, gives the discretized momentum equation as

Ω
u

(n+1)

h
− u

(n)

h

δt
= −C(u

(n)

h
) u

(n)

h
+ Du

(n)

h
−Gp

(n+1)

h
+ f . (3)

The discrete convection operator is skew-symmetric, such that con-

vection does not contribute to energy production or dissipation; see

Verstappen and Veldman (2003). In particular its discretization preserves

the energy of the flow and does not produce artificial viscosity. To make

the discretization fully energy-preserving, the discrete gradient operator

and the divergence operator are each other’s negative transpose, i.e.

G = −M0T , thus mimicking the analytic symmetry ∇ = −(∇·)T . In this

way, also the work done by the pressure vanishes discretely.

The solution of the discrete Navier–Stokes equations is split into two

steps. Firstly, an auxiliary variable ũh is defined through

Ω
ũh − u

(n)

h

δt
= −C(u

(n)

h
) u

(n)

h
+ Du

(n)

h
+ f . (4)

Secondly, imposing discrete mass conservation (2) on the new time level

results in a discrete Poisson equation for the pressure:

δt M0Ω−1G p
(n+1)

h
= M0ũh + MΓu

(n+1)

h
. (5)

The liquid region and the free liquid surface are described by an im-

proved VOF-method; see Hirt and Nichols (1981) and Kleefsman et al.

(2005).

ABSORBING BOUNDARY CONDITIONS

The derivation of a suitable ABC starts with a potential flow model for

wave propagation. For waves of the form φ ∼ eik(x−ct)cosh(kz), at the free

surface the dynamic and kinematic boundary conditions can be combined

into a wave equation (shown for the two-dimensional case)

∂2φ

∂t2
− c2 ∂

2φ

∂x2
= 0, where c2 ≡

g

k
tanh(kh) (6)

is the dispersion relation relating the wave number k and the phase speed

c. Left-running waves, like reflections at a right-hand side boundary, are

suppressed by demanding

∂

∂t
φ + c

∂

∂x
φ = 0. (7)
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This Smmerfeld (1949) condition has been proposed as a non-reflecting

boundary condition by Engquist and Majda (1977). Higher-order

versions can be formed by using powers of the left-hand side operator

(Givoli, 2004).

Switching to the three-dimensional case, Higdon (1986, 1987) showed

that it is possible to allow the wave under an angle of incidence α with

the outflow boundary. In the higher-order conditions even more angles

can be chosen: αp, p = 1, . . . , P, where P is the order of the boundary

condition. Higdon’s condition reads:

P
∏

p=1

(

cosαp

∂

∂t
+ c
∂

∂x

)

φ = 0. (8)

To assess the benefit of using Eq. (8) as opposed to Eq. (7), we study the

amount of spurious reflection as a function of the angle of incidence θ.

For this purpose, at the artificial boundary the solution can be expressed

as the sum of the outgoing and reflected waves

φ(x, y, t) = ei(kx x+kyy−ωt) + R ei(−kx x+kyy−ωt), (9)

where the first term represents the wave with amplitude equal to unity im-

pinging on the boundary, and the second term represents the spuriously

reflected wave with amplitude R. To evaluate R, we substitute Eq. (9)

into the general Higdon boundary conditions Eq. (8), and arrive at the

following relation

|RH | =

P
∏

p=1

∣

∣

∣

∣

∣

∣

cosαp − cos θ

cosαp + cos θ

∣

∣

∣

∣

∣

∣

, (10)

where θ is the ‘real’ angle of incidence measured in the clockwise or

counter-clockwise direction from the positive x-direction, |θ| < π/2. It

follows that Higdon’s boundary condition (8) is non-reflecting as soon

as θ equals one of the ±αp’s, whereas (7) is non-reflecting for θ = 0 only.

A comparison of the theoretical reflection coefficients for the various

ABC variants is shown in Fig. 2.

Fig. 2 Reflection coefficient of four absorbing boundary condi-

tions versus the angle of incidence θ. E&M-1 and E&M-

2 stand for the 1st- and 2nd-order Engquist-Majda ABC.

The 1st- and 2nd-order Higdon ABC are denoted H-1 (with

α1 = 30◦) and H-2 (with α1 = 0◦, α2 = 45◦), respectively.

In a Navier–Stokes context, the potential has to be related to the velocity

(via the potential) and pressure (via the dynamic free-surface condition).

Thus, it becomes a boundary condition featuring velocity and pressure,

to be combined with the pressure Poisson equation (Düz, 2015).

Dispersive ABC

Because of the dispersion each individual wave component has its own

phase speed c, hence a boundary condition like (8) cannot annihilate all

these components. Is it possible to develop a boundary condition which

Fig. 3 Padé approximation of the dispersion relation. For the co-

efficients in (11), a0 = 1.04, a1 = 0.106 and b1 = 0.289 are

used.

allows a controlled amount of reflection for all these components?

Hereto, we introduce the following rational Padé expression which ap-

proximates the dispersion relation from (6) as

ca =
√

gh
a0 + a1(kh)2

1 + b1(kh)2
, (11)

where a proper choice of coefficients a0 , a1 and b1 leads to a close ap-

proximation for the targeted range of kh values. In Fig. 3 the difference

between the two curves gives an indication for the amount of reflection

caused by the rational approximation. A further improvement is intro-

duced into the design of the boundary condition, by exploiting the ex-

ponential behavior of the wave potential in the z-direction. The wave

number k is computed locally from the potential itself, via

k2φ =
∂2

∂z2
φ. (12)

This relation can be substituted into (11) and combined with (8) to reach

the final form of the 1st-order absorbing boundary condition ABC-1:

cosα

(

1 + b1h2 ∂
2

∂z2

)

∂φ

∂t
+

√

gh

(

a0 + a1h2 ∂
2

∂z2

)

∂φ

∂x
= 0. (13)

A stability analysis of this boundary condition can be found in the PhD

thesis of Wellens (2012).

Dispersive Directional ABC

A further modification of the dispersive ABC will be discussed to ac-

count for both dispersive and directional effects of the waves. As the

2nd-order Higdon ABC has superior performance over the 1st-order one

in terms of directional effects, we will incorporate the improvements that

we made in the previous section by adding dispersive effects. As this

ABC consists of the product of two operators, and considering the re-

lations (11) and (12), we realize that only one of the operators can in-

clude the approximation for the dispersion relation. Otherwise, the prod-

uct of two approximations would yield a fourth-order derivative in the

z-direction which will cause difficulties when discretized at the bound-

aries. Therefore, we substitute the relations (11) and (12) in one of the

operators. The resulting expression for the 2nd-order ABC-2 becomes
(

cosα1

∂

∂t
+ c
∂

∂x

) [

cosα2

(

1 + b1h2 ∂
2

∂z2

)

∂φ

∂t
+

√

gh

(

a0 + a1h2 ∂
2

∂z2

)

∂φ

∂x

]

=0. (14)

An in-depth analysis of the implementation and effectiveness of these

boundary conditions in practical situations can be found in the PhD thesis

of Düz (2015) and the forthcoming publication Düz et al. (2016b).
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Example

As an example of the use of the new type of absorbing boundary

conditions we show some simulations of an oscillating sphere, with

prescribed motion, producing a circular concentric wave pattern. The

sphere with a radius of 4m is initially located 4m above the free surface

and is allowed to make only vertical motion along the z-direction.

Sinusoidal motion of the sphere is prescribed by zs(t) = 2 + 2 cos(2.4t).

After the impact of the sphere on the water surface initially at rest, a

series of circular concentric waves is produced radiating outward from

the center in all directions. To absorb these waves ABC-1 and ABC-2

are used at the outflow boundaries and their performance is compared.

A reference solution is obtained by repeating the simulation in a large

domain: see Fig. 4 for the setup of the two domains. The length and

the width of ΩS is the same, LxΩS
= LyΩS

= 50m, and its depth is

LzΩS
= 10m. ΩL has the same depth but different length and width,

LxΩL
= LyΩL

= 400m. The size of ΩL is arranged in such a way that

radiating circular waves do not reach the outflow boundaries of ΩL

throughout the simulation.

solid oscillating sphere

p#2

p#6
p#5

−25

0

y (m)

−200 25−25 200

y (m)

Ω L Ω
S

−25 0 25

p#1 p#3

p#4
25

200

−200

−25

25

Fig. 4 Setup for the test with the oscillating solid sphere showing

the domain sizes (left) and the positions of the wave probes

(right). The solution in ΩL is considered as the reference

solution for the solution in ΩS .

Two uniform grid resolutions of 0.25m and 0.5m are considered.

Simulations are performed for 30s. The solution on the larger reference

grid has been obtained with a grid size 0.25m. A large number of probes

are placed in the domain to compare the free surface elevation records at

various locations; see Fig. 4. Because of the prescribed motion of the

sphere the generated circular wave is regular, and both the ABC-1 and

ABC-2 are tuned to absorb this regular wave. However, since the wave

is circular, it impinges on the outflow boundaries at different angles

at different positions. To account for this directional effect, the angle

coefficients in both boundary conditions are set to 45◦.

Figure 5 shows the free surface elevation history from the first three

probes on two grid resolutions. The results in the other three probes are

comparable and can be found in Düz (2015). As the circular concentric

wave travels out from the center, the amplitude of the wave decreases.

This is due to the fact that the energy of the wave is spread over a

larger area as the wave radiates from the center, which suggests that

each particle of the wave gets less energy. This causes a decrease in

the wave amplitude. The probes show a significant difference between

the performance of the ABC-1 and ABC-2, and clearly demonstrate the

superiority of the ABC-2 over ABC-1. The influence of grid refinement

is much less, but does show the tendency of approaching the reference

solution (but be aware that the latter has its own discretization error).

Figure 6 illustrates snapshots of the simulations at t ≈ 25s when ABC-

1 and ABC-2 are used on the fine grid. With ABC-1 different amounts

of reflection at different locations result in a graphically-interesting but

highly disturbed free surface. With ABC-2, however, the free surface is

considerably less disturbed.

Fig. 5 Free surface elevations as a function of time at various lo-

cations for ABC-1 versus ABC-2 at two grid sizes. From

top to bottom results are shown at p#1, p#2 and p#3.

(a) ABC-1 (b) ABC-2

Fig. 6 Snapshots of the simulations of an oscillating sphere at

t ≈ 25s (fine grid with resolution of 0.25m). The colors

correspond with the vertical velocity at the free surface.

FLUID-SOLID BODY COUPLING

The next step is to allow the moving object to be freely floating or

moored, when the fluid dynamics and the dynamics of the structure inter-

act with each other. This physical two-way coupling has to be mirrorred

in the numerical coupling algorithm between the flow solver and the

solid-body solver. Such a fluid-solid body system consists of three com-

ponents. An example for each of them is given for a highly-simplified

situation which we will later use to analyse the numerical stability of

various coupling approaches. The three components are:

1. An equation describing the dynamics of the solid structure:

msb ẍsb = f f→s + fext−s, (15)

where msb is the solid mass, xsb its position, f f→s the force ex-

certed by the fluid on the solid, whereas fext−s is an external force

(e.g. from mooring lines or due to gravity).
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2. An equation describing the dynamics of the fluid:

mad ẍfl = fs→ f + fext−f , (16)

where xfl describes the motion of the boundary of the fluid do-

main, whereas the resistance fs→ f of the fluid to the acceleration

ẍfl defines the added mass mad. Again, fext−f is an external force

field (e.g. due to gravity).

3. Equations relating the solid-body problem to the fluid flow prob-

lem, in particular an exchange of the position of the solid body

and of the mutual force fields:

position xsb = xfl; force fs→ f = − f f→s. (17)

Numerical Coupling

The coupling of these components can be done in an aggregated / mono-

lithic or segregated / partioned way. A monolithic coupling removes

the numerical solution procedure from each individual component, and

recombines them into one single global solver. This is numerically ad-

vantageous, since information from all components is available simulta-

neously. However, software architecture has to allow this, and it may be

hard to profit from the specialized individual solution procedures. In the

model problem, (17) can be used to eliminate the unknown forces from

(15) and (16), after which we obtain one ‘single’ monolithical equation

(msb + mad)ẍ = fext−s + fext−f . (18)

Alternatively, a partioned coupling retains the existing model infras-

tructure, and adds a layer of communication between the components,

cf. (17). This layer acts as a boundary condition to each component,

carrying over information between the components. As such, the layer

imposes a direction on the flow of information over the connections, al-

tering the numerical properties of the system. Built on top of the com-

munication layer, the global solver only solves for the boundary/interface

conditions. For the above model problem this would look like

solid msb ẍ = f + fext−s, fluid mad ẍ = − f + fext−f (19)

where the subscripts can be omitted because of (17).

In case of time-dependent problems, the additional flexibility in the

time-discretization of these boundary conditions allows them to be

arranged for an explicit or implicit coupling procedure. An explicit

procedure extrapolates the boundary conditions from the past, such that

the global solver is no more than a single evaluation of each of the

components. The extrapolation necessarily introduces a time lag which

alters and often destabilizes the system. An implicit procedure on the

other hand interpolates the boundary conditions from repeated evaluation

of all components, converging to a fixed point. Upon convergence, the

time lag effect is avoided, at the cost of extra computational work.

Because of its flexibility, the segregated, partitioned approach will be

adopted in this work. Then we will have to define in which oder infor-

mation is exchanged between the two subsystems. An intuitive way is to

prescribe the force exerted by the fluid to the object and in return pass

the new body location to the fluid. This way of information exchange is

called a weak coupling method. For the model problem it looks like:

solid msb ẍ(old) = f (old)+ fext−s, fluid f (new) = −mad ẍ(old)+ fext−f . (20)

Its convergence is governed by the iterative process

f (new) = −
mad

msb

f (old). (21)

This process clearly diverges when mad/msb > 1, i.e. when the added

mass mad is larger than the solid body mass msb. It can be stabilized,

but at the cost of severe underrelaxation and correspondingly large

computational effort.

In a time-dependent problem, during each time step a similar iterative

procedure has to be followed. In FSI terminology, this is called subiter-

ation. When the added mass is large, typically dozens of subiterations

(subcycles) per time step have to be carried out. In each of them a pres-

sure Poisson equation has to be solved, making the calculations expen-

sive.

Quasi-Simultaneous Coupling

The monolithical approach (18) involves no subiterations, so we would

like to get as close as possible to that approach. That can be achieved

when a simple approximation of the (usually complicated) solid-body

dynamics is available. In an aerodynamical context this approximation

is called interaction law (Veldman, 1981). Nowadays, in modern

domain-decomposition terminology, it would be called an approximate

Dirichlet-to-Neumaann operator. It should be so simple that it can easily

be included in the fluid-flow solver and solved simultaneously with

the flow equations; yet, it has to contain sufficient information of the

‘real’ model. Thus this approach has been called quasi-simultaneous

(Veldman 1981, 2001, 2009); see Fig.7.

Fig. 7 The quasi-simultanous coupling method

The interaction law basically anticipates how the solid body reacts to

changes in the forces exerted by the fluid. Thus it is formulated as an

approximate (local) quasi-linearization to the solid body model (20a):

mqs(ẍ(new) − ẍ(old)) = f (new) − f (old) with msb ẍ(old) = f (old), (22)

where mqs approximates the Jacobian of the solid body dynamics;

in our simplified case it approximates msb. Note that in general the

latter represents the full physics of the solid body dynamics, including

mooring lines etc.; mqs can be much simpler. The interaction law (22) is

combined with the fluid flow model (20b) at the new iteration level.

Re-arranged, the quasi-simultaneous method reads

solid body msb ẍ(old) = f (old) + fext−s (23)

fluid

{

mqs ẍ∗ − f (new = mqs ẍ(old) − f (old)

mad ẍ∗ + f (new) = − fext−f
(24)

where the superscript ·∗ denotes that this quantity is not being used in the

further iterations. The equations in the fluid (24) are solved simultane-

ously, using (23) to eliminate ẍ(old), to yield

(

1

mad

+
1

mqs

)

f (new) =

(

1

mqs

−
1

msb

)

f (old) −
fext−s

msb

−
fext−f

mad

. (25)

For mqs = ∞ the weak coupling method (21) is recovered, with its ampli-

fication factor −mad/msb. The optimum would be to select mqs = msb, as
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then the monolithic method (18) is recovered which does not need to iter-

ate at all. But any choice close to msb will do, as the quasi-simultaneous

method converges (without underrelaxation) if and only if

1

mqs

>
1

2

(

1

msb

−
1

mad

)

. (26)

When mad > msb, i.e. when the weak coupling diverges, a maximum

exists on the allowable mqs, but in all cases 0 < mqs < 2msb is safe.

The above exposition has been kept sketchy to bring out its essentials

better. In applications with fluid flow, the mad symbolizes the solution

of the Navier–Stokes equations, and details of the quasi-simultaneous

coupling become much more technical. A verbal description: In each

fluid point at the body surface, the interaction law, relating the pressure

p acting on the solid body to the displacement of the body (governed by

u), is used as a boundary condition to the flow equations. In particular, it

is applied to the pressure Poisson equation (5). In this way, the fluid flow

is immediately anticipating of the reaction of the solid body.

Example

As an example, we present simulations of a life boat falling into a break-

ing, extreme wave. A snapshot of the simulations is shown in Fig. 8. The

dynamics of the life boat is modelled with a 6-DOF mechanical model.

Fig. 8 A snapshot of the life boat falling into a large wave. Also

the locally-refined grid regions are shown.

The fluid flow is modelled with the Navier–Stokes equations and solved

on a grid consisting of about 0.7 million active (i.e. within the fluid) grid

points, with local grid refinement around the life boat (Fig. 8); see Van

der Plas et al. (2015). For physical accuracy this grid is rather coarse,

but the focus in these simulations is on the numerical behaviour of the

coupling process. Thus both the weak coupling procedure (21) as well

as the quasi-simultaneous procedure (24) have been applied. In the latter

case, the interaction law is based on the under-water part of the life boat

(as the Poisson equation is only solved under water).

The most important result concerns the amount of work that is needed

per time step to achieve the coupling between solid-body dynamics and

fluid flow. The weak method often requires dozens of subcycles, in each

of which a Poisson equation has to be solved. This number is dependent

on the amount of fluid that is moved aside by the moving body, repre-

sented by the added mass mad. Fortunately, the later subiterations have a

good initial guess so they are not as expensive as the earlier ones. Thus

the amount of work is better represented by the total number of SOR-

iterations (Botta and Ellenbroek, 1985) needed for all Poisson solves

within one time step; this amount of work is shown in Fig. 9. The relation

with the added mass becomes visible when plotting the time history of

the estimated added mass in Fig. 9. Comparison with Fig. 9 shows a clear

correlation between the number of iterations and the mass ratio mad/msb.

In contrast, the quasi-simultaneous method requires 1 or 2 subiterations,

resulting in much less work per time step (Fig. 9). We remark that the

‘gap’ in the added-mass estimation (around t = 4 sec) occurs because the

latter becomes numerically highly inaccurate (loss of figures).

Fig. 9 Left: The number of SOR iterations per time step for the

underrelaxed weak coupling method (blue) and the antici-

pating quasi-simultaneous method (green). Right: The es-

timated added mass for the falling lifeboat as a function of

time (the gap around t = 4 is due to loss of figures). Note

the resemblance between both graphs.

WAVE IMPACT

In a final example we present simulations and experiments for run-up

against a (fixed) semi-submersible offshore platform. Model experi-

ments have been carried out at MARIN to provide validation material;

the setup of the experiments is sketched in Fig. 10. They are carried

out on a scale of 1 : 50. A simplified semi-submersible is located

in the center of the flow domain. On full scale it measures 114.5 m

×17.5 m ×28.0 m with a draft of 16.0 m. The waves in the experiment

are generated by a flap-type wave generator. The basin width is 4 m,

i.e. 200 m on full scale, with solid side walls. The incoming wave has a

full scale wave height of 14.7 m and a wave period of 11.0 s. The wave

elevation and pressure are measured at several positions, indicated in

Fig. 10.

Fig. 10 Wave run-up against a semi-submersible: snapshot of ex-

periment (top) and position of sensors (bottom).

To reduce computational costs, the boundaries of the flow domain

are brought closer to the structure than in the experiment. Its inflow

boundary is located at 240 m from the center of the semi-submersible.

To facilitate this decreased distance between the wave maker and

the semi-submersible in the simulations, the incoming waves have

been analyzed by wave calibration tests (without semi-submersible in
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the flow) to establish a representative incoming computational wave

(Iwanowski et al. 2009). The generated incoming wave is modeled as

a 5th-order Stokes wave. Note that the shape of the experimental wave

differs from a theoretical Stokes wave: the wave crests can be made to

correspond nicely, but a difference in the troughs is left. This has to be

taken into account when comparing the simulations with the model tests.

Fig. 11 The grid with local refinements around the free surface and

around the semi-submersible. Each box contains a refined

grid level (no grid lines are shown).

The ComFLOW simulations used a one-phase flow model (as shown

above) with a modern minimum-dissipation turbulence LES model (Van

der Heiden et al. 2015). Central spatial discretization with Adams-

Bashforth time stepping is used throughout. The numerical simulations

will be shown for two different, stretched grids: 180 × 40 × 60 = 430k

and 360 × 80 × 120 = 3.5M grid cells. The grid sizes near the

semi-submersible are about 80 cm and 40 cm, respectively, in all three

directions. An absorbing boundary condition is applied at the outflow

boundary and the simulations are carried out for several wave periods

(5-10 periods, depending upon the size of the computational grid). Also

results for a locally-refined grid are shown, with cells of around 10 m

away from the structure and four refinement levels, down to 50 cm near

the object, making a total of 0.5M cells (Fig. 11). Hence this grid is the

coarsest in the far field, yet almost the finest in the near field.

Fig. 12 The wave height development at the first column (WH09)

for several grids compared with experimental data.

In the presentation of results we will focus on the region in front of

the first column, i.e. monitor points WH09, P11 and P15; see Fig. 10.

Firstly, in Fig. 12 the wave run-up against the column is shown for

the first two wave periods in the simulation. The results from the

locally-refined simulation are pretty similar to those of the finest grid,

although the amount of grid points is about 7× less. It is emphasized

that this example is mostly momentum driven; only in the run-up phase

viscous effects are playing a role.

The pressure development near the bottom (P11) and the top (P15) of

the first column of the semi-submersible is shown in Fig. 13. Near the

Fig. 13 The pressure at the first column (top P15; bottom P11) for

several grids compared with experimental data.

top of the first column, at transducer P15, the peak pressure values in

the simulations are relatively low. This can be attributed to the limited

number of grid cells along the column causing the run-up process to be

badly resolved. A finer grid spacing will likely improve the results in

P15 to the quality in P11 at the bottom of the column. More detailed

simulations can be found in Wemmenhove (2008, 2015), Van der Plas et

al. (2015) and the forthcoming PhD thesis of Van der Plas (2016).

CONCLUSIONS

An overview has been presented of some recent developments in the

ComFLOW method designed to simulate and study extreme waves and

their impact on falling, floating and moored structures. First a new type

of absorbing boundary condition has been presented, which adapts itself

to the (local) wave number and phase speed of dispersive waves. An ex-

ample with an oscillating buoy shows that the computational boundaries

can be put close to the wave-generating object. A second example shows

a life boat falling into an extreme wave. Here, the interaction between

the life boat dynamics and the fluid dynamics of the wave poses serious

numerical challenges for their numerical coupling. It is demonstrated

that a quasi-simultaneous coupling strategy can efficiently handle these

challenges. Finally, large turbulent waves have been ‘attacking’ a fixed

semi-submersible, both in simulations as in experiments. In all three

examples, local grid refinement has been used to decrease the computa-

tional effort without influencing the simulation results too much.
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Düz B, Borsboom MJA, Wellens PR, Veldman AEP and Huijsmans

RHM (2016b). An absorbing boundary condition for free-surface

water waves. In preparation.

Düz B, Huijsmans RHM, Veldman AEP, Borsboom M and Wellens P

(2013). An absorbing boundary condition for regular and irregular

wave simulations. In: L Eça, E Oñate, J Garçia-Espinosa, T Kvams-
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