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Incentive-Based Control of Asynchronous
Best-Response Dynamics on Binary

Decision Networks
James Riehl , Pouria Ramazi , and Ming Cao

Abstract—Various populations of interacting decision-
making agents can be modeled by asynchronous best-
response dynamics or, equivalently, linear threshold
dynamics. Building upon recent convergence results in the
absence of control, we now consider how such a network
can be efficiently driven to a desired equilibrium state by
offering payoff incentives or rewards for using a particular
strategy, either uniformly or targeted to individuals. We
begin by showing that strategy changes are monotone
following an increase in payoffs in coordination games, and
that the resulting equilibrium is unique. Based on these
results, for the case when a uniform incentive is offered to
all agents, we show how to compute the optimal incentive
using a binary search algorithm. When different incentives
can be offered to each agent, we propose a new algorithm
to select which agents should be targeted based on max-
imizing a ratio between the cascading effect of a strategy
switch by each agent and the incentive required to cause
the agent to switch. Simulations show that this algorithm
computes near-optimal targeted incentives for a wide range
of networks and payoff distributions in coordination games
and can also be effective for anticoordination games.

Index Terms—Agent-based modeling, complex systems,
control, multiagent systems.

I. INTRODUCTION

FACED with the rapidly growing scale and complexity of
networked multiagent systems, in which agents often have

different and possibly competing objectives, researchers across
various disciplines are increasingly using tools from game the-
ory to study convergence, stability, control, performance, and
robustness of these systems in diverse contexts, e.g., poten-
tial games [1]–[5], stochastic games [6]–[8], matrix games [9],
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repeated games [10], [11], networked games [12], and oth-
ers [13]–[19]. For investigating dynamics and control in large
populations of interacting decision-making agents, evolutionary
game theory has proven to be a particularly powerful tool [20]–
[24]. The myopic best-response update rule, in which agents
choose the strategy that maximizes their total utility against
the current strategies of their neighbors, is one of the simple
yet intelligent mechanisms that evolutionary game theory pos-
tulates to understand the emergence of collective behaviors on
networks of interacting individuals and is thus perhaps the most
widely studied dynamical regime in this domain [25]. The best-
response rule can be thought of as a greedy optimization scheme,
and perhaps unsurprisingly, social experiments have revealed
that human decisions in certain game contexts are as much as
96% consistent with the prescriptions of this policy [26]. More-
over, for two-strategy matrix games, best-response updates are
equivalent to linear threshold dynamics, which are prevalent in
wide-ranging fields including sociology [27], economics [28],
and computational neuroscience [29].

To a large degree, such dynamics can be divided into two
categories: coordination games, in which individuals tend to
adopt the action used by most of their neighbors, such as in
the spread of social innovations and viral infections, and anti-
coordination games, in which individuals tend to adopt actions
different from those used by a majority of neighbors, such as
in traffic congestion and the division of labor [30]. We refer to
agents whose payoffs correspond to the above games as coor-
dinating and anticoordinating, respectively. In either context,
the agents may make their decisions simultaneously, resulting
in a synchronous update rule [31], or they may make decisions
on independent time lines, resulting in an asynchronous up-
date rule [32], which is particularly suitable when the rewards
and consequences of the decisions take place more frequently
than the decisions themselves. Several studies have investigated
convergence in best-response dynamics for coordination and
anticoordination games in homogeneous populations, that is,
when the utility functions of the individuals are the same, both
on well-mixed populations [33] and networks [34]–[36], and
some others have studied the more general heterogeneous case
[27], [31], [37], where each individual has a possibly unique
utility function. In particular, we have recently shown that every
network consisting of either all coordinating or all anticoordi-
nating agents who update asynchronously with best responses,
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in the absence of any control input, will eventually reach an
equilibrium state [38].

Equipped with a better understanding of how such networks
evolve, we are now interested in the possibility of promoting
more desirable global outcomes through the efficient use of
payoff incentives. This research is motivated by applications
such as marketing new technologies [39], stimulating socially
or environmentally beneficial behaviors [40], or any other ap-
plication that is well modeled by networks of coordinating of
anticoordinating agents and in which individual decisions are
subject to influence by rewards or incentives. Indeed, this is a fast
growing research area, in which several different approaches are
possible, depending on what is considered as the control input.
For example, under imitative dynamics, the goal in [41] is to
find the minimum number of agents such that when these agents
adopt a desired strategy, the rest of the agents in the network
will follow. The input in this work is thus the strategies of the
agents, but it leaves open the question of how to implement
such strategy control. In the context of best-response dynam-
ics, a natural mechanism for achieving strategy control is the
use of payoff incentives. For instance, in [42], the payoffs of
a stochastic snowdrift game are changed in order to shift the
equilibrium to a more cooperative one. This type of mechanism
is applicable to situations where a central regulating agency
has the power to uniformly change the payoffs of all agents to
encourage them to play a particular strategy. We refer to this
control problem as uniform reward control, where the goal is to
lead individuals’ to a desired strategy by offering the minimum
uniform incentive to play that strategy. On the other hand, if the
central agency can offer different rewards to each agent, a more
efficient control protocol may be possible. That is, by altering
the payoffs of just some individuals, the population can be led to
a desired equilibrium state [41], [43]. We refer to this problem
as targeted-reward control. In case the budget for offering such
rewards is limited, which may often be the case, a typical goal
would be to maximize the number of individuals playing the
desired strategy subject to the budget constraint, and we refer to
this problem as budgeted targeted-reward control.

In this paper, we seek efficient incentive-based control al-
gorithms for finite networks of heterogeneous decision-making
individuals who asynchronously update their strategies to best
responses. First, we prove that after increasing the rewards of
a network of agents at equilibrium, who are all playing coordi-
nation games, the network converges to a unique equilibrium.
This allows us to precisely predict the result of offering incen-
tives to one or more agents under asynchronous best-response
dynamics, which is in general not trivial since agents updat-
ing in random order can lead to many different outcomes. We
use this property to provide efficient targeted-reward control
protocols for both unlimited and limited budgets. In the case
of uniform reward control, we use a binary search algorithm
to find the optimal necessary reward. For targeted-reward con-
trol, we propose the iterative potential-to-reward optimization
(IPRO) algorithm, which uses a threshold-based potential func-
tion and iteratively chooses the agent whose strategy switch
maximizes the ratio of the increase in potential to the reward re-
quired to achieve the switch. We evaluate the performance of our

protocol by running several simulations and compare the results
with those of some alternative approaches. Simulations on net-
works of coordinating agents show that the IPRO algorithm
performs the best of those tested and near-optimal for a broad
range of random networks and payoff distributions. For antico-
ordinating agents, uniform and targeted-reward control is trivial,
yet budgeted targeted-reward control remains challenging. In-
terestingly, our simulations suggest that if the potential decrease
is weighted differently with respect to the rewards depending
on the size of the available budget, the IPRO algorithm is also
effective in this case.

II. ASYNCHRONOUS BEST-RESPONSE DYNAMICS

In this section, we describe a standard model for asyn-
chronous best-response dynamics for 2 × 2 matrix games on
networks. Let G = (V, E) denote a network in which the nodes
V = {1, . . . , n} correspond to agents and the edges E ⊆ V × V
represent two-player games between neighboring agents. Each
agent i ∈ V chooses strategies from a binary set {A,B} and
receives a payoff upon completion of the game according to the
matrix:

A B

A
B

(
ai bi

ci di

)
, ai , bi , ci , di ∈ R.

The dynamics take place over a sequence of discrete times t =
0, 1, 2, . . . . Let x(t) := (x1(t), . . . , xn (t))� be the state of the
system, where xi(t) ∈ {A,B} is the strategy of agent i at time t,
and denote the current number of agent i’s neighbors playing A
and B at time t by nA

i (t) and nB
i (t). When there is no ambiguity,

we may sometimes omit the time t for compactness of notation.
The total payoffs to each agent i at time t are accumulated over
all neighbors and, therefore, equal to ain

A
i (t) + bin

B
i (t) when

xi(t) = A, or cin
A
i (t) + din

B
i (t) when xi(t) = B.

In asynchronous (myopic) best-response dynamics, at each
time t, one agent activates to revise its strategy at time t + 1
to that which achieves the highest total payoff, i.e., is the best
response, against the strategies of its neighbors at time t:

xi(t + 1) =

⎧⎪⎨
⎪⎩

A, if ain
A
i + bin

B
i > cin

A
i + din

B
i

B, if ain
A
i + bin

B
i < cin

A
i + din

B
i

zi, if ain
A
i + bin

B
i = cin

A
i + din

B
i

.

In the literature, the case in which strategies A and B result
in equal payoffs is often either included in the A or B case or
set to xi(t) to indicate no change in the strategy. For maximum
generality, we allow for all three of these possibilities in our
approach using the notation zi , and we do not even require all
agents to have the same zi . However, to simplify the analysis,
we assume that the zis do not change over time.

It is convenient to rewrite these dynamics in terms of the
number of neighbors playing each strategy. Let degi denote
the total number of neighbors of agent i. We can simplify the
conditions above by using the fact that nB

i = degi −nA
i and
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rearranging terms

ain
A
i + bi(degi −nA

i ) > cin
A
i + di(degi −nA

i )

nA
i (ai − ci + di − bi) > degi(di − bi)

δin
A
i > γi degi (1)

where δi := ai − ci + di − bi and γi := di − bi . The cases “<”
and “=” can be handled similarly. First, consider the case when
δi �= 0, and let τi := γi

δi
denote a threshold for agent i. Depend-

ing on the sign of δi , we have two possible types of best-response
update rules. If δi > 0, the update rule is given by

xi(t + 1) =

⎧⎪⎨
⎪⎩

A, if nA
i (t) > τi degi

B, if nA
i (t) < τi degi

zi , if nA
i (t) = τi degi

. (2)

We call agents following such an update rule coordinating
agents because they seek to switch to strategy A if a sufficient
number of neighbors are using that strategy, and likewise for
strategy B. On the other hand, we call agents for which δi < 0
anticoordinating agents because if a sufficient number of neigh-
bors are playing A, they will switch to B, and vice versa. The
anticoordination update rule is given by

xi(t + 1) =

⎧⎪⎨
⎪⎩

A, if nA
i (t) < τi degi

B, if nA
i (t) > τi degi

zi , if nA
i (t) = τi degi

. (3)

In the special case that δi = 0, the result is a stubborn agent who
either always plays A or always plays B depending on the sign of
γi and the value of zi , and this agent can be considered as either
coordinating or anticoordinating with τi ∈ {0, 1}, possibly with
a different value of zi .

Let Γ := (G, τ,±) denote a network game, which consists of
the network G, a vector of agent thresholds τ = (τ1 , . . . , τn )�,
and either + or − corresponding to the cases of coordinating
or anticoordinating agents, respectively. The dynamics in (2)
are in the form of the standard linear threshold model [27], and
(3) can be considered as an anticoordinating linear threshold
model. An equilibrium state in the threshold model is a state in
which the number of A-neighbors of each agent does not violate
the threshold that would cause them to change strategies. For
example, in a network of coordinating agents with zi = B for
all i, this means that for each agent i ∈ V , xi = A implies nA

i >
τi degi and xi = B implies nA

i ≤ τi degi . Note that this notion
of equilibrium is equivalent to a pure strategy Nash equilibrium
in the corresponding network game.

We emphasize that the dynamics (2) and (3) do not correspond
to an engineering design, but rather to a model of individuals’
behaviors as part of collective phenomena. Therefore, except
for the control input, which is limited to payoff increments,
individual agent dynamics cannot be controlled. Instead, these
payoff increments serve as incentives for the agents to change
strategies on their own accord, which may then have a cascading
effect as individual decisions depend on the actions of their
neighbors. Ultimately, the collective of agents is the system to
be controlled. Before presenting a specific approach to achieve

this, we first investigate the transitional behavior of the network
games after providing payoff incentives.

III. UNIQUE EQUILIBRIUM CONVERGENCE OF

COORDINATING NETWORK GAMES

Our approach for reward-based control of the dynamics (2)
depends on some important convergence and monotonicity
properties, for which we build upon our previous results in [38]
for the case when no control is applied. The following theorem
establishes convergence of asynchronous best-response dynam-
ics on networks of coordinating agents and requires only the
weak assumption that each agent activates infinitely many times
as time goes to infinity, stated formally as follows.

Assumption 1: For every agent i ∈ V and every time t ≥ 0,
there exists a future time ti > t such that agent i is active at
time ti .

The results of this paper apply to any activation sequence
satisfying the above assumption, where by activation sequence,
we mean a sequence of agents {i0 , i1 , . . . }, where it denotes
the agent who activates at time t.

Of course, it is not necessary that the sequence be known
in advance; in practice, agents are likely to activate in random
order.

Theorem 1 (See [38, Th. 2]): Every network of coordinat-
ing agents will reach an equilibrium state.

This theorem guarantees equilibrium convergence, leaving
open the question of whether the equilibrium is unique. As the
main theoretical result of this paper, we show that if the network
starts from any equilibrium state, and the thresholds of some of
the agents are decreased, the network reaches a new equilibrium
state, which is unique in the sense that it does not depend on the
sequence in which agents activate. Let Γ := (G, τ,+) denote a
network game of coordinating agents such that x(0) = x̄, where
x̄ is an equilibrium state, and let ε := (ε1 , . . . , εn )� denote a
vector of nonnegative real numbers εi ∈ R≥0 for each agent
i ∈ V .

Theorem 2: In the network game Γ′ := (G, τ ′,+) with
modified thresholds τ ′ := τ − ε and starting from an equilib-
rium state x(0) = x̄, there exists a time t∗ and unique equilib-
rium state x̄′ such that x(t) = x̄′ for all t ≥ t∗.

For the proof, we first show that under the condition of
Theorem 2, the number of agents playing A evolves mono-
tonically: when the network is at equilibrium, a decrease in one
or more thresholds can only result in agents switching from B
to A.

Proposition 1: In the network game Γ′ := (G, τ ′,+) with
modified thresholds τ ′ := τ − ε and starting from an equilib-
rium state x(0) = x̄, no agent will switch from A to B at any
time t ≥ 0.

Proof: The proof is done via contradiction. Assume the
contrary and let t1 > 0 denote the first time that some agent
i switches from A to B. We know that the network was at
equilibrium at time zero, so it follows from (2) that nA

i (0) >
τi degi . Since no thresholds are increased and node degrees are
constant, the fact that agent i switched from A to B at time t1
means that the number of A-neighbors of agent i at time t1 − 1
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must have been less than that at time 0, i.e., nA
i (t1 − 1) <

nA
i (0). Therefore, at least one of the neighbors of agent i must

have switched from A to B at some time before t1 , which
contradicts how t1 is defined, completing the proof. �

Next, we show that after decreasing some of the thresholds
in a network at equilibrium, any agents who switch from B to
A under one activation sequence will do so under any activation
sequence, although possibly at different times. Consider two ac-
tivation sequences S1 := {i0 , i1 , . . .} and S2 := {j0 , j1 , . . .}.
Denote by x1

i (t) the strategy of agent i at time t under the
activation sequence S1 , and define x2

i (t) similarly for S2 . Let
t0 be the first time when agent j0 is active in S1 . Then, de-
fine ts as the first time after ts−1 that agent js is active in
S1 , for s ∈ {1, 2, . . .}. The existence of ts is guaranteed by
Assumption 1.

Lemma 1: In the network game Γ′ := (G, τ ′,+) with
modified thresholds τ ′ := τ − ε and starting from an equi-
librium state x(0) = x̄, given any two activation sequences
S1 = {i0 , i1 , . . .} and S2 = {j0 , j1 , . . .}, the following holds
for s ∈ {0, 1, . . .}:

x2
j s (s + 1) = A ⇒ x1

j s (ts + 1) = A. (4)

Intuitively, this lemma holds because S2 is a subsequence of
S1 and Proposition 1 means that no agent will switch to B as a
result of activations in S1 that are not part of this subsequence.
For a detailed proof by induction, see the Appendix.

We finally prove Theorem 2 by using Lemma 1 and
Proposition 1.

Proof of Theorem 2: From Theorem 1, we know that the
network will reach an equilibrium state under every activation
sequence satisfying Assumption 1. So, it remains to prove the
uniqueness of the equilibrium for all activation sequences, which
we do by contradiction. Assume that there exist two activation
sequences S1 = {i0 , i1 , . . .} and S2 = {j0 , j1 , . . .} that drive
the network to two distinct equilibrium states, implying the
existence of an agent q whose strategy is different at the two
equilibria, say B under the equilibrium of S1 and A under the
equilibrium of S2 . Hence, there exists some time τ after which
the strategy of agent q is A under S2 . So, since each agent is
active infinitely many times, there is some time s ≥ τ at which
agent q is active and plays strategy A at time s + 1 underS2 , i.e.,
x2

q (s + 1) = A. Then, in view of (4) in Lemma 1, x1
q (ts + 1) =

A, that is, the strategy of agent q becomes A at ts + 1. On the
other hand, according to Proposition 1, the strategy of agent q
will not change after ts + 1, i.e., x1

q (t) = A for all t ≥ ts + 1.
But, this is in contradiction with the assumption that the strategy
of agent q is B at the equilibrium state under S1 , completing
the proof. �

IV. CONTROL THROUGH PAYOFF INCENTIVES

In this section, we consider the use of payoff incentives to
drive a network of agents who update asynchronously with best
responses from any undesired equilibrium toward a desired equi-
librium, in which all or at least more agents play strategy A.
Since these networks are guaranteed to converge [38], it is rea-
sonable to assume that the network to be controlled has reached

a steady state, and therefore, the control problem becomes one
of driving the network from one equilibrium to another, more
desirable one.

A. Uniform Reward Control

Suppose a central regulating agency has the ability to pro-
vide a reward of r0 ≥ 0 to all agents who play strategy A. The
resulting payoff matrix is given by

A B

A
B

(
ai + r0 bi + r0

ci di

)
, ai , bi , ci , di ∈ R

for each agent i ∈ V . The control objective in this case is the
following.

Problem 1 (Uniform reward control): Given a network
game Γ = (G, τ,±) and initial strategies x(0), find the infimum
reward r∗0 such that for every r0 > r∗0 , xi(t) will reach A for
every agent i ∈ V .

First, we observe that the solution to Problem 1 for networks
of anticoordinating agents is simply to choose r∗0 such that the
thresholds of all agents are greater than or equal to one. For
networks of coordinating agents, we first investigate how the
agents’ thresholds are affected by the reward. Let Δτi := τ ′

i − τi

denote the change in agent i’s threshold.
Proposition 2: If a coordinating agent i receives a positive

reward for playing A, then the corresponding threshold will not
increase, i.e., Δτi ≤ 0.

Proof: First, we consider a nonstubborn coordinating agent,
i.e., δi > 0. The original threshold for such an agent is given by

τi =
γi

δi
=

di − bi

ai − ci + di − bi
.

After adding the reward, the new threshold is

τ ′
i =

di − bi − r0

ai − ci + di − bi
= τi + Δτi

where the change in threshold is given by

Δτi =
−r0

δi
. (5)

Hence, δi > 0 implies Δτi ≤ 0. Next, we consider a stubborn
coordinating agent, that is, δi = 0 and τi = 0 if the agent is
biased to A, and τi = 1 if it is biased to B. Such an agent
remains stubborn after adding any reward r0 . In particular, if
the threshold of the agent is already 0, then the reward has no
effect since the agent will still be biased to A. The threshold
will also remain unchanged if it is originally 1, and the added
reward is not enough to bias the agent to A. Otherwise, the
reward changes the bias of the stubborn agent from B to A,
making the threshold change from 1 to 0. Therefore, the change
in threshold of a stubborn agent i is either 0 or −1, resulting in
Δτi ≤ 0, which completes the proof. �

To compute the value of r∗0 for networks of coordinating
agents, we take advantage of the following key properties of
the dynamics: (i) the number of agents who converge to A
is monotone in the value of r0 due to Propositions 1 and 2;
and (ii) due to the unique equilibrium property established in
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Theorem 2, the effect of a reward can be evaluated by simulating
the network game under any activation sequence. In other words,
property (ii) means that since all activation sequences will result
in the same equilibrium, we can choose a sequence consisting
of only agents whose thresholds are violated, which will have
a maximum length of n before reaching equilibrium. We begin
by generating a set R of candidate infimum rewards. Let ňA

i =
�τi degi� denote the minimum number of A-playing neighbors
of agent i required for agent i to either switch to or continue
playing A. Then, we propose

R :={
r ≥ γmax

∣∣∣ r =
δi(ňA

i − j)
degi

, i ∈ V, j ∈ {1, . . . , ňA
i }

}

where

γmax =

{
maxi∈B̄ γi, B̄ �= ∅
0, B̄ = ∅

and B̄ = {i | δi = 0, xi(0) = B} is the set of stubborn agents
biased to B. The set R is clearly finite and indeed includes the
optimal reward as shown in the following.

Proposition 3: For a network of coordinating agents,
r∗0 ∈ R.

Proof: According to Proposition 2, Δτi ≤ 0 for all i ∈ V .
So, in view of Theorem 2, after adding a reward r0 > r∗0 , the
network reaches a unique equilibrium where everyone plays
A, at some time tf . For stubborn agents, we know that if they
initially play A, they will keep doing so and, hence, do not
require a reward. However, if a stubborn agent is initially playing
B, then in view of (1), the necessary and sufficient condition
on the reward r0 to make a stubborn agent i play A is r0 > γi .
Hence, r∗0 ≥ γi , implying that r∗0 must be greater than γmax .
On the other hand, in view of the update rule (2), to have all
nonstubborn agents i play A, r∗0 must make the new thresholds
τ ′
i satisfy nA

i (tf ) ≥ τ ′
i degi . Hence

r∗0 = inf
{

r ≥ γmax

∣∣∣ nA
i (tf ) ≥ (τi − r

δi
) degi ∀i ∈ V

}

= inf
{

r ≥ γmax

∣∣∣ r ≥ δi (τi deg i −nA
i (tf ))

deg i
∀i ∈ V

}
.

By definition, ňA
i ≤ τidi + 1 for all i ∈ V . Hence

r∗0 = inf
{

r ≥ γmax

∣∣∣ r ≥ δi (ňA
i −(nA

i (tf )+1))
deg i

∀i ∈ V
}

= inf
{

r ≥ γmax

∣∣∣ r =
δi (ňA

i −(nA
i (tf )+1))

deg i
, i ∈ V

}
.

On the other hand, nA
i (t) ∈ {0, 1, . . . ,degi} for all t and i ∈ V ,

implying that

r∗0 ∈
{
r ≥ γmax

∣∣∣ r =
δi

(
ňA

i − j
)

degi

, i ∈ V, j ∈ {1, . . . ,degi}
}

=
{

r ≥ γmax

∣∣∣ r =
δi (ňA

i −j)
deg i

, i ∈ V, j ∈ {1, . . . , ňA
i }

}

= R
which completes the proof. �

Let vR denote the vector containing the elements of R
sorted from lowest to highest. Algorithm 1 uses the fact that
convergence of the network is monotone in the reward r0
and performs a binary search to find the minimum candi-
date reward that results in all agents reaching strategy A. Let
S0 := {1, . . . , n, 1, . . . , n, 1, . . . } denote an arbitrarily chosen
activation sequence, which satisfies Assumption 1, and let t∗

denote the index of the last entry of the first sequence of n con-
secutive activations that occur without any change in strategy
(i.e., when it is clear that an equilibrium state has been reached).
In what follows, 1 denotes the n-dimensional vector containing
all ones.

Proposition 4: Algorithm 1 computes the reward r∗0 that
solves Problem 1 and terminates in O(n log |E|) steps.

Proof: Since r∗0 ∈ R due to Proposition 3, the minimum
r0 ∈ R which results in all agents switching to A is r∗0 . Accord-
ing to Theorem 2, if a given r0 results in all agents switching
to A for one activation sequence, then it does for every activa-
tion sequence. Therefore, we can test any given r0 by activating
only those agents whose thresholds are violated. Since agents
can only switch from B to A after a decrease in thresholds,
such a simulation requires no more than n activations. Due to
Propositions 1 and 2, the number of agents switching to A is
monotone in r0 , which means we can perform a binary search
on the ordered list vR. Since the maximum number of elements
in the set R is equal to the sum of the degrees of all nodes in
the network, which is equal to 2|E|, a binary search on vR will
result in O(log |E|) iterations of the loop in Algorithm 1. The
algorithm performs one simulation per iteration and therefore
requires O(n log |E|) operations in total. �

B. Targeted-Reward Control

If one has the ability to offer a different reward to each agent, it
may be possible to achieve a desired outcome at a lower cost than
with uniform rewards in networks of coordinating agents. This
is because a small number of agents switching strategies can
start a cascading effect in the network. Also, in a network with
irregular topology and where the agents have different payoffs,
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some agents will generally require a smaller reward than others
in order to adopt the desired strategy. Let r := (r1 , . . . , rn )T

denote the vector of rewards offered to each agent, where ri is
the reward to agent i. We now have the following payoff matrix
for each agent i ∈ V:

A B

A
B

(
ai + ri bi + ri

ci di

)
, ai , bi , ci , di ∈ R, ri ∈ R≥0 .

The targeted control objective is the following.
Problem 2 (Targeted-reward control): Given a network

game Γ = (G, τ,±) and initial strategies x(0), find the targeted-
reward vector r∗ that minimizes

∑
i∈V r∗i such that if ri > r∗i

for each i, then xi(t) will converge to A for every agent i ∈ V .
The solution to Problem 2 for networks of anticoordinating

agents is simply to set the threshold of every agent greater
than or equal to one. Now, consider a network of coordinating
agents, which is at equilibrium at some time te . Let ři denote the
infimum reward required for an agent playing B in this network
to switch to A, which must satisfy the following according to
(1):

δin
A
i (te) = (γi − ři) degi

⇒ ři = γi − δin
A
i (te)

degi

. (6)

The corresponding new threshold is τ ′
i = τi + Δτi , where

Δτi =

⎧⎪⎨
⎪⎩

−ř i

δi
, if δi �= 0

0, if δi = 0 ∧ γi ≤ 0

−1, if δi = 0 ∧ γi > 0

.

In order to identify which agents should be offered incentives,
we propose a potential function, which is a modification of the
one used in [38], to prove convergence. Define the function
Φ(x(t)) =

∑n
i=1 Φi(xi(t)), where

Φi(x(t)) =

{
nA

i (t) − ňA
i (t), if xi(t) = A

nA
i (t) − ňA

i (t) − 1, if xi(t) = B
. (7)

This function has a unique maximum, which occurs when all
agents play A, and increases whenever an agent switches from
B to A.

To evaluate the resulting change in the potential function
Φ(x), we again use Theorem 2, which means that the network
will reach a unique equilibrium, and simulations are thus fast to
compute using an activation sequence of length at most n. De-
note this unique equilibrium by x̄. The total change is then given
by ΔΦ(x̄) := Φ(x̄) − Φ(x(0)). Let ei denote the ith column of
the n × n identity matrix.

Algorithm 2 computes a set of agents and rewards such that
when these rewards are offered to the corresponding agents, the
network will eventually reach a state in which all agents play
strategy A, if there is no budget limit, and if there is a budget
limit, it computes a set of rewards that satisfies this limit. It is a
generic algorithm in the sense that the set of agents is computed
iteratively, and the rule for selecting an agent at each iteration

is the final piece that completes the algorithm. Since ři is an
infimum reward, we add an arbitrarily small amount ε to any
nonzero reward ri to ensure that the targeted agent will switch
to A.

The rule we propose for choosing an agent in line 4 of Al-
gorithm 2 is to select the uncontrolled B-playing agent that
maximizes the ratio ΔΦ(x̄)α

řβ
i

, where the exponents α ≥ 0 and

β ≥ 0 are degrees of freedom for the control designer, which
we will explore further in Section V.

Remark 1: In the worst case, the computational complexity
of Algorithm 2 will be O(nm), where m is the number of
edges in the network, because simulating the network game
takes O(m) computation steps, and the maximum number of
iterations of the algorithm is O(n), which occurs when rewards
are offered to every agent in the network.

C. Budgeted Targeted-Reward Control

It is quite likely that any agency that wishes to influence a net-
work of agents through the use of rewards has a limited budget
with which to do so. This leads to the following problem, which
is perhaps of even greater practical importance than Problem 2.

Problem 3 (Budgeted targeted-reward control): Given
a network game Γ = (G, τ,±), initial strategy state x(0), and
budget constraint

∑
i∈V ri < ρ, find the reward vector r that

maximizes the number of agents in the network who reach A.
Algorithm 2 is designed to approximate the solution to this

problem as well, by incorporating the budget constraint in the
definition of the set B of candidate nodes to target for each
iteration. The only difference is that the algorithm will now
terminate if no more agents can be incentivized to switch to A
without violating the budget constraint ρ.

V. SIMULATIONS

In this section, we compare the performance of the proposed
algorithm to some alternative approaches. Short descriptions of
each algorithm are provided in the following. Each of these
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Fig. 1. Comparison of uniform and targeted-reward control on geo-
metric random networks for a range of sizes. For each size tested,
500 random networks were generated using a connection radius R =√

(1 + degexp )/πn, corresponding to a mean node degree of approx-
imately degexp = 10. Thresholds τi for each agent are uniformly ran-
domly distributed on the interval [0, 2

3 ], and the corresponding payoffs
are ai = 1−τ i

τ i
, bi = ci = 0, and di = 1.

methods is applied iteratively, targeting agents until either the
control objective is achieved or the budget limit is reached:

1) iterative random (rand): target random agents in the net-
work;

2) iterative degree-based (deg): target agents with maxi-
mum (minimum) degree for networks of coordinating
(anti-coordinating) agents;

3) iterative potential optimization (IPO): target agents re-
sulting in the maximum increase of the potential function
(α = 1, β = 0);

4) iterative reward optimization (IRO): target agents requir-
ing minimum reward (α = 0, β = 1);

5) IPRO: target agents maximizing the potential-change-to-
reward ratio (α > 0, β > 0).

For each set of simulations, we generate geometric random
networks by randomly distributing n agents in the unit square
and connecting all pairs of agents who lie within a distance
R of each other. We focus on the case when all agents are
coordinating to align with our theoretical results, but we also
include one simulation study on a network of anticoordinating
agents to show that the proposed algorithm can be applied to
more general cases. In all simulations of the IPRO algorithm,
we used α = 1 and β = 4.

A. Uniform Versus Targeted-Reward Control

First, we investigate the difference between uniform and
targeted-reward control to estimate the expected cost savings
when individual agents can be targeted for rewards rather than
offering a uniform reward to all agents. Fig. 1 shows not only
that targeted-reward control offers a large cost savings over uni-
form rewards, but also that the savings increase with the network
size.

B. Targeted-Reward Control: Network Size

Next, we compare the performance of the proposed control
algorithms to some alternative approaches for various sizes of
networks of coordinating agents, using the same network and
threshold setup as the previous section. Fig. 2 shows that the

Fig. 2. Algorithm performance comparison for different sizes of net-
works. The connection radius, threshold distribution, and payoffs are
generated exactly as in the simulations for Fig. 1.

Fig. 3. Algorithm performance comparison on sparsely to densely con-
nected 12-node networks. One hundred networks are tested for each
connection range, and the threshold distribution and payoffs are gener-
ated exactly as in the simulations for Fig. 1.

IPRO algorithm performs consistently better than the other pro-
posed approaches across all network sizes, although the IRO
method requires only slightly larger rewards on average than
IPRO.

C. Targeted-Reward Control: Network Connectivity

We now investigate how the connectivity of a network af-
fects the reward needed to achieve consensus in strategy A.
We consider geometric random networks of only 12 agents,
which is small enough that we can compare against the true op-
timal solution computed using an exhaustive search algorithm.
Fig. 3 shows that there appears to be a transition region in the
required reward between sparsely and densely connected net-
works, and we see that the IPRO algorithm yields near-optimal
results across the entire range, while the IRO algorithm also
performs quite well for dense networks.

D. Targeted-Reward Control: Threshold Level

In this section, we investigate the performance of various
algorithms as the thresholds of agents increase and thus become
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Fig. 4. Algorithm performance comparison for various mean thresh-
olds of coordinating agents. Five hundred 12-node networks are tested
for each mean threshold value τ0 , and the connection radius R is drawn
uniformly at random from the interval [0.3, 1]. Agent thresholds are uni-
formly distributed on the interval τ0 ± 0.1.

Fig. 5. Algorithm performance comparison for different threshold vari-
ances w. Five hundred 12-node networks are tested for each value of
w and the thresholds are uniformly randomly distributed in the interval
1
3 ± w

2 .

more costly to control. We again consider geometric random
networks of only 12 agents and thresholds of no greater than
0.5 in order to compare against the optimal solution. Fig. 4
shows that the IPRO algorithm maintains the best performance
across this range of threshold values, while the distance from
optimality increases slightly as the mean threshold increases.

E. Targeted-Reward Control: Threshold Variance

In the next set of simulations, we change the threshold vari-
ance to understand the effect of increasing heterogeneity on the
performance of the algorithms. Fig. 5 shows that the IPRO al-
gorithm again performs the best of the alternative algorithms.
Moreover, as the threshold variance increases, its performance
approaches that of the optimal solution.

F. Budgeted Targeted-Reward Control

Finally, we consider the case when there is a limited budget
from which to offer rewards. Figs. 6 and 7 show the results

Fig. 6. Algorithm performance comparison for budgeted targeted-
reward control on networks of coordinating agents for a range of re-
ward budgets. Five hundred networks were tested with 50 nodes each
and a connection range R = 0.2. Thresholds are uniformly randomly
distributed on the interval 0.5 ± 0.1.

Fig. 7. Algorithm performance comparison for budgeted targeted-
reward control on networks of anticoordination agents on 50-node net-
works (R = 0.2). Thresholds are uniformly randomly distributed on the
interval 0.5 ± 0.1.

for the cases of coordination and anticoordination, respectively.
In the coordination case, we see that IPRO achieves greater
convergence to A at lower costs when compared to the other
approaches. Interestingly, the IPO algorithm also performs quite
well for low-budget cases. However, there remains significant
suboptimality of all approaches in the low to middle range of
reward budgets.

Since budgeted targeted-reward control is the only problem
that has a nontrivial solution for anticoordinating agents, we also
compared the algorithms for an anticoordinating case. Here, we
observe that while IRO works best for small reward budgets, IPO
performs best for larger reward budgets. This suggests setting
the exponent α small for low budgets and large for high budgets
while doing exactly the opposite for the exponent β.

VI. CONCLUDING REMARKS

We have considered three problems related to the control
of asynchronous best-response dynamics on networks through
payoff incentives. Our proposed solutions are based on the
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following key theoretical results: 1) after offering rewards to
some of the agents in a coordinating network which is at equi-
librium, strategy switches occur only in one direction; and 2) the
network reaches a unique equilibrium state. When a central en-
tity can offer a uniform reward to all agents, the minimum value
of this reward can be computed using a binary search algo-
rithm whose efficiency is made possible by these monotonicity
and uniqueness results. If rewards can be targeted to individual
agents, the desired convergence can be achieved at much lower
cost; however, the problem becomes more complex to solve. To
approximate the solution in this case, we proposed the IPRO
algorithm, which iteratively selects the agent who, upon switch-
ing strategies, maximizes the ratio between the resulting change
in potential and the cost of achieving such a switch, until desired
convergence is achieved. A slight modification of this algorithm
applies to the case when the budget from which to offer rewards
is limited. In a simulation study on geometric random networks
under various conditions, the algorithm performed significantly
better than other algorithms based on threshold or degree and, in
many cases, came very close to the true optimal solution. Com-
pelling directions for future work include making refinements to
the IPRO algorithm, including prescriptions for the exponents
α and β under various conditions, and bounding the worst-case
approximation error for various network structures and game
dynamics.

APPENDIX

PROOF OF LEMMA 1

Proof: The proof is via induction on s. First, the statement
is shown for s = 0. Suppose x2

j 0 (1) = A. If x2
j 0 (0) = A, i.e.,

agent j0’s strategy was already A in the beginning, then in view
of Proposition 1, this agent will not switch to B regardless of the
activation sequence. Hence, x1

j 0 (t) = A for all t ≥ 0, implying
that (4) is in force. Next, assume that x2

j 0 (0) = B. Then, agent
j0 has switched strategies at t = 1 under S2 . Hence, in view of
(2), we have

nA2
j 0 (0) ≥ τ ′

j 0 degj 0 (8)

where τ ′
i denotes the (possibly new) threshold of agent i after

decreasing some thresholds at time 0 and nA2
i (t) denotes the

number of A-playing neighbors of agent i at time t under the
activation sequence S2 . Similarly, define nA1

i (t). Clearly

nA1
j 0 (0) = nA2

j 0 (0). (9)

Due to Proposition 1, we also have nA1
j 0 (t0) ≥ nA1

j 0 (0). Hence,

it follows from (9) that nA1
j 0 (t0) ≥ nA2

j 0 (0). Therefore, accord-

ing to (8), nA1
j 0 (t0) ≥ τ ′

j 0 degj 0 , implying that x1
j 0 (t0 + 1) = A,

which proves (4) for s = 0. Now, assume that (4) holds for
s = 0, 1, . . . , r − 1. Similar to the case of s = 0, the induction
statement can be proven for s = r: Suppose x2

j r (r + 1) = A.
If x2

j r (r) = A, then according to Proposition 1, agent jr will
not switch to B regardless of the activation sequence. Hence,
x1

j r (t) = A for all t ≥ r, implying that (4) is in force for s = r.
So, assume that x2

j r (r) = B. Then, agent jr switches strategies

at t = r + 1 under S2 . Hence, in view of (2), we have

nA2
j r (r) ≥ τ ′

j r degj r . (10)

Since (4) holds for all s = 0, 1, . . . , r − 1, and because of Propo-
sition 1, we obtain

nA1
j r (tr−1 + 1) ≥ nA2

j r (r). (11)

On the other hand, in view of Proposition 1, since tr ≥ tr−1 + 1,
we have nA1

j r (tr ) ≥ nA1
j r (tr−1 + 1). So because of (11), we get

nA1
j r (tr ) ≥ nA2

j r (r). Therefore, according to (10), nA1
j r (tr ) ≥

τ ′
j r degj r , implying that x1

j r (tr + 1) = A, which proves (4) for
s = r, completing the proof. �
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[14] M. S. Stanković, K. H. Johansson, and D. M. Stipanović, “Distributed
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