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Introduction

Light is known to elicit both image- and non–
image-forming (NIF) responses, such as entrainment 
of the biological clock to a 24-h cycle (Golombek and 
Rosenstein, 2010; Hughes et al., 2015; Pittendrigh and 
Daan, 1976), suppression of the nocturnal hormone 
melatonin (Cajochen et al., 2000; Gooley et al., 2011; 
Zeitzer et al., 2000), and acute alerting effects of light 
(e.g., Cajochen, 2007; Cajochen et al., 2000, 2005, 2011; 
Chellappa et al., 2013; Lavoie et al., 2003; Najjar et al., 
2014; Rüger et al., 2006; Smolders et al., 2012; Van Der 
Lely et al., 2015). This article aims to provide an over-
view of the current literature regarding daytime NIF 

effects of white light on alertness and serves as an 
introduction to 2 independently performed experi-
ments investigating the dose-dependent relationship 
between the intensity of white light and markers (and 
correlates of) alertness during daytime (Lok et  al., 
2018 [this issue]; Smolders et  al., 2018 [this issue]). 
Possible mechanisms involved in regulation of alert-
ness and measures quantifying alertness will also be 
discussed.

Alertness is a construct associated with high levels 
of environmental awareness (Figueiro et  al., 2009) 
and is defined as achieving and maintaining a state of 
high sensitivity to incoming stimuli (Posner, 2008). 
Sleepiness is often used to indicate the adverse state, 
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Abstract  Light is known to elicit non–image-forming responses, such as effects 
on alertness. This has been reported especially during light exposure at night. 
Nighttime results might not be translatable to the day. This article aims to pro-
vide an overview of (1) neural mechanisms regulating alertness, (2) ways of 
measuring and quantifying alertness, and (3) the current literature specifically 
regarding effects of different intensities of white light on various measures and 
correlates of alertness during the daytime. In general, the present literature 
provides inconclusive results on alerting effects of the intensity of white light 
during daytime, particularly for objective measures and correlates of alertness. 
However, the various research paradigms employed in earlier studies differed 
substantially, and most studies tested only a limited set of lighting conditions. 
Therefore, the alerting potential of exposure to more intense white light should 
be investigated in a systematic, dose-dependent manner with multiple corre-
lates of alertness and within one experimental paradigm over the course of day.
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although the definition differs slightly from the exact 
opposite of alertness. It has been defined as the per-
ceived experience of the propensity to fall asleep 
(Moller et al., 2006). Alertness and arousal are closely 
related but distinct concepts that are sometimes used 
interchangeably. Arousal refers to nonspecific activa-
tion related to changes in sleep and wakefulness 
(Oken et  al., 2006). It plays an important role in, 
among others, the regulation of alertness, which is a 
more specific form of activation and requires some 
cognitive processing (Oken et al., 2006).

There are important implications associated with 
maintaining alertness during daytime, since it is 
known to affect cognitive performance (Figueiro 
et al., 2016), perceptual skills (Curcio et al., 2001), rea-
soning abilities (Curcio et  al., 2001), judgment and 
decision-making capabilities (Van Dongen et  al., 
2004), psychological and physiological well-being 
(Cajochen et  al., 2003; Dijk et  al., 1992; Hull et  al., 
2003), caloric intake (Pardi et al., 2016), and pain per-
ception (Alexandre et al., 2017). However, contempo-
rary developments, such as the emergence of the 24-h 
society, pose unique physiological and psychological 
challenges on alertness. Identifying a tool to modu-
late alertness during waking hours is critical to adapt 
to the 24-h society and prevent or alleviate potential 
problems associated with decreasing alertness.

Circuitries

Light is directly related to vision, which relies on 
classical photoreceptors, rods, and cones, with pro-
jections to the visual cortex (see, for instance, 
Horvath et al., 1999). The discovery of a novel class 
of photoreceptors, called intrinsically photosensi-
tive retinal ganglion cells (ipRGCs; Provencio et al., 
1998, 2000), led to the detection that these photore-
ceptors were not necessarily involved in image 
forming but rather NIF aspects, such as entrainment 
(Berson et al., 2002; Hattar et al., 2002; Hankins et al., 
2008). Nowadays, it is generally accepted that 
ipRGCs are important for both image and NIF 
responses (Sonoda and Schmidt, 2016). It is well 
established that ipRGCs project light information to, 
among others, hypothalamic regions such as the 
suprachiasmatic nucleus (SCN; the master pace-
maker in the brain) via the retinohypothalamic tract 
(Gooley et al., 2003; Hattar et al., 2002). Studies using 
a monochromatic narrowband light of ~460 nm, spe-
cifically stimulating ipRGCs, have generally shown 
significant improvements in alertness (e.g., Lockley 
et al., 2006; Vandewalle et al., 2007), coinciding with 
increases in SCN and thalamic activity (Aston-Jones, 
2005; Vandewalle et al., 2006, 2007).

Multiple hypotheses have been generated to spec-
ulate on light-induced alertness regulation, since 
alertness is known to be under the control of hypo-
thalamic-associated regions (Aston-Jones, 2005). 
First, research has established that light exposure 
affects SCN activity (Gooley et al., 2003; Hattar et al., 
2002, 2006; see also Golombek and Rosenstein, 2010; 
Fisk et al., 2018). In fact, light is the most important 
time cue for the master pacemaker located in the SCN 
(Duffy and Wright, 2005; Vetter et al., 2011). It is cru-
cial for aligning the internal clock, which has a rhythm 
of about 24 h, to environmental demands (Czeisler 
et  al., 1980). As alertness is implicated to be under 
regulation of the SCN, it also follows (under entrained 
conditions) 24-h rhythmicity. Among day-active per-
sons, relatively low levels of alertness have been 
reported during the night (when melatonin levels are 
high), whereas relatively high levels of alertness exist 
during the subjective day (when melatonin is virtu-
ally absent; Åkerstedt et  al., 2017; Dijk et  al., 1992; 
Hull et al., 2003).

In addition to SCN activation by light, various 
hypothalamic regions involved in the regulation of 
alertness are directly controlled through projections 
from the ipRGCs and/or indirectly controlled by 
light due to projections from the SCN (Aston-Jones, 
2005; Gooley et  al., 2003; Hattar et  al., 2002, 2006; 
Perrin et al., 2004; Vandewalle et al., 2006, 2007, 2009). 
Examples of these hypothalamic areas are the ventral 
lateral preoptic area (VLPO) and locus coeruleus 
(LC). The VLPO is known for its distinct function in 
sleep regulation and arousal (Fort et al., 2009; Gvilia, 
2006; Sherin et  al., 1996), both of which influence 
one’s level of alertness. When neurotransmitter sys-
tems of the VLPO are active, ascending arousal sys-
tems are inhibited, resulting in promotion of sleep 
(Lu et al., 2002; Moore et al., 2012). If these inhibitory 
neurotransmitter systems are inactive, alertness is 
promoted (Lu et al., 2002; Moore et al., 2012). In rats, 
direct projections via ipRGCs and indirect projections 
from the SCN to the VLPO have been determined (Lu 
et al., 2000; Moore et al., 2012), indicating that light 
can play an important role in the regulation of modu-
lations in this brain area (Chou et  al., 2002; Gooley 
et al., 2003). Similar circuitries have also been impli-
cated in humans (Gooley et  al., 2003; Perrin et  al., 
2004; Hattar et al., 2006).

Another hypothalamic-associated area involved in 
the regulation of alertness is the LC, which is a dense 
cluster of norepinephrine neurons and a source of 
efferent projections to multiple central nervous sys-
tem regions (Aston-Jones, 2005). When the LC is 
excited by injecting excitatory agents in it, there is an 
increased level of arousal (Aston-Jones, 2005). This 
coincides with increased electroencephalographic 
activity in the frontal neocortex and theta waves in 
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the hippocampus, suggesting an increase in alertness 
(Foote and Berridge, 1991). The neuropeptide orexin 
has been shown to be one of these agents that can 
excite LC neurons strongly and therefore promote 
arousal and wakefulness (Hagan et al., 1999). In addi-
tion to direct excitatory effects on the LC, orexins 
have been shown to affect the SCN firing rate in the 
rat (Brown et al., 2008; Klisch et al., 2009). In both rats 
and primates, indirect projections have been identi-
fied from the SCN to the LC via the dorsomedial 
hypothalamic nucleus (Aston-Jones, 2005; Winsky-
Sommerer, 2004). Direct effects of light have also been 
determined in humans, in which light induces modu-
lations in brain activity in an area compatible with LC 
neurons (Vandewalle et al., 2009).

Both the LC and dorsal raphe (DR) have been 
shown to play an important role in wakefulness pro-
motion (Lee et  al., 2005; Mieda and Yanagisawa, 
2002). High levels of alertness can be achieved when 
wakefulness is promoted through the phase relation-
ship between the endogenous circadian timing sys-
tem and the sleep-wake cycle (Borbely, 1982; Daan 
et al., 1984). The caudal raphe nuclei are innervated 
by projections from the LC (Hermann et al., 1997) and 
are thought to affect sympathetic function via seroto-
nergic output (Allen and Cechetto, 1994; Jacobs et al., 
2002). Sympathetic nervous system activity is associ-
ated with high alertness, whereas increases in para-
sympathetic nervous activity are associated with 
decreases in alertness (Pressman and Fry, 1989), indi-
cating a role for the serotonergic (5-hydroxytrypta-
mine) system in regulating alertness. Moreover, 
serotonergic neurons located in the DR fire exten-
sively during wakefulness, while decreased firing 
rates occur in periods of sleep (McGinty and Harper, 
1976; Trulson and Jacobs, 1979). Firing rates may 
therefore be associated with wakefulness and alert-
ness promotion.

The SCN, VLPO, LC, and DR pathways described 
above, as well as other neural pathways (see, e.g., 
Gooley et  al., 2003; Hattar et  al., 2006; Vandewalle 
et  al., 2009), might be involved in NIF responses 
caused by light and, in particular, effects of light on 
alertness.

Quantification of Alertness

Alertness can be quantified with self-report, task 
performance, and physiological measures (Curcio 
et al., 2001). A subjective measure of alertness is often 
the most readily accessible information (Zhou et al., 
2012). Subjective measures usually are recorded with 
self-rating scales, such as the visual analogue scale (a 
100-mm-long line on which subjects evaluate their 

own state by marking a point along the line; Aitken, 
1969) and Likert-type scales, such as the Karolinska 
Sleepiness Scale (KSS; a 9-point anchored scale, on 
which participants indicate the description level that 
best reflects their experienced state; Åkerstedt and 
Gillberg, 1990).

There are multiple performance tasks reflecting 
alertness, which can be divided into sustained atten-
tion versus executive performance tasks. A com-
monly used performance measure of alertness in 
lighting research is the Psychomotor Vigilance Task 
(PVT; in which stimuli are presented continuously 
and participants respond to each stimulus). This task 
is defined as a sustained attention task, since it mea-
sures the ability to perform over longer periods of 
time (Drummond et al., 2005). In addition, multiple 
cognitive performance tasks have been employed to 
assess the effects of light on executive functioning. 
These tasks require alertness but also rely on other 
(higher-order) cognitive functions, such as working 
memory, inhibition of responses, and/or arithmetic 
ability. For instance, the Sustained Attention to 
Response Task (SART; in the standard version of the 
task, participants are asked to push a button every 
time a number appears on the screen, except for the 
number 3), N-back task (in which a sequence of stim-
uli is presented, and the task consists of indicating 
when the current stimulus matches the one from n 
steps earlier in the sequence), and addition tasks are 
employed in other studies. Reaction time tasks in 
which subjects have to distinguish targets from non-
targets, such as the SART, but also the Wilkinson 
Auditory Vigilance Task and Go-NoGo task, measure 
sustained attention as well as the ability to inhibit 
responses (Bokura et al., 2001).

In addition to such behavioral measures, other 
ways of assessing alertness objectively are through 
measuring an individual’s physiological state. One 
example of a physiological assessment of alertness is 
electroencephalography (EEG), which reflects central 
nervous activity. The presence of theta, alpha, and 
beta rhythms can provide information about the psy-
chophysiological state of alertness (Santamaria and 
Chiappa, 1987). Autonomic activity measures have 
also been used as physiological indicators of alertness. 
Autonomic nervous system (ANS) activity is hypoth-
esized to vary in intensity along a continuum from 
vigorous activity, intense emotion, and high alertness 
to calmness and sleep (Lowenstein et al., 1963). The 
ANS can be divided into the parasympathetic and 
sympathetic nervous system, in which sympathetic 
nervous system activity is associated with high alert-
ness, whereas increases in parasympathetic nervous 
activity are associated with decreases in alertness 
(Pressman and Fry, 1989). Excitatory impulses from 
the cerebral cortex traveling via the reticular 
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activating system and hypothalamus can influence 
sympathetic as well as parasympathetic activity levels 
(Pressman and Fry, 1989). This may, for instance, lead 
to pupil fluctuations (measured with pupillography), 
in which a dilated pupil is associated with higher lev-
els of alertness (Johnson et al., 2008; Ma et al., 2014; 
Yoss et al., 1970). When alertness decreases, parasym-
pathetic activity is relatively high, which is reflected 
by a decrease in pupil size and large, slow pupillary 
oscillations (Johnson et al., 2008; Ma et al., 2014; Yoss 
et  al., 1970) and increases in blink frequency, blink 
duration, and eyelid movements (measured with elec-
trooculography; Berntson et  al., 1997; Caffier et  al., 
2003). Other parameters of autonomic nervous activa-
tion processes are heart rate and heart rate variability, 
with higher variability with more pronounced sym-
pathetic activation compared to parasympathetic acti-
vation (Acharya et  al., 2006; Heneghan et  al., 2014). 
Sympathetic dominance likely co-occurs with 
increased attention and sensitivity to incoming stim-
uli (e.g., Chua et al., 2012; Hansen et al., 2003; Luque-
Casado et al., 2016). Yet it is important to note that the 
reliability of, for instance, the low-frequency/high-
frequency ratio as a measure for sympathetic domi-
nance has been challenged because of, among others, 
the role of respiratory parameters and the complex, 
nonlinear interaction between parasympathetic and 
sympathetic branches (see, e.g., Berntson et al., 1997; 
Billman, 2013). Body temperature fluctuations have 
also been suggested to correlate with subjective alert-
ness and task performance (Monk et al., 1983; Wright 
et al., 2002). Thermosensitive neurons in the anterior 
hypothalamus and other brain areas have been pro-
posed to be involved in the relationship between 
alertness and body temperature (Wright et al., 2002). 
Changes in activity level of these neurons presumably 
result in correlated changes in sleep propensity and 
skin vasodilatation and therefore skin temperature 
(Raymann and Van Someren, 2007). In fact, a causal 
relationship between skin temperature and arousal-
regulating mechanisms was found (Ivanov and Aston-
Jones, 2000). Manipulation of skin temperature can 
lead to changes in alertness and sleep (Raymann, 
2005; Raymann et  al., 2008; Raymann and Van 
Someren, 2007). Higher core body temperature is 
associated with higher self-rated alertness and better 
performance on PVT (Wright et al., 2002).

Each of the described measures or correlates of 
alertness have advantages as well as disadvantages. 
Subjective measures of alertness can give insight into 
an individual’s experienced level of alertness but 
only to a certain degree. Conflicts arise because of 
recall bias and placebo effects, which have to be taken 
into consideration when using these measures 
(Cajochen, 2007). Nevertheless, some of the subjec-
tive measures used to study alertness, such as the 

KSS, have been validated with other objective corre-
lates of alertness (Kaida et al., 2006; Zhou et al., 2012). 
Correlations between subjective alertness and perfor-
mance measures have been shown (see, for instance, 
Åkerstedt and Gillberg, 1990; Dorrian et  al., 2003; 
Wright et  al., 2002). However, subjective alertness 
might not reflect performance and vice versa, as 
reduced alertness does not always reflect the magni-
tude of performance impairment (Zhou et al., 2012). 
There is some evidence suggesting that subjective 
alertness and neurobehavioral performance may 
respond to the same intervention to different extents 
(Posner and Rafal, 1987; Rosekind et  al., 1995). For 
instance, in response to accumulating sleep debt, 
neurobehavioral performance monotonically declines 
on both PVT performance and the digit symbol sub-
stitution task, while subjective sleepiness approaches 
a (temporary) plateau after an initial increase (Van 
Dongen et al., 2003). Some studies indicate that cor-
relates between subjective alertness and physiologi-
cal measures of alertness are stronger compared with 
performance tasks (Putilov et al., 2012). In the current 
literature on lighting research, a multimeasure 
approach is often used to assess the effect of a (light) 
intervention on alertness.

Effects of White Light During the 
Night

The acute NIF effects of light on various measures 
or correlates of alertness have been established espe-
cially during the biological night, when alertness lev-
els are generally relatively low and endogenous 
levels of melatonin are relatively high. Both poly-
chromatic white and monochromatic light (of espe-
cially ~460 nm) have been shown to be able to 
improve nighttime alertness on various indicators 
(e.g., Badia et al., 1991; Cajochen et al., 2003; Lockley 
et  al., 2006; Rüger et  al., 2006; Sahin and Figueiro, 
2013; Van Der Lely et al., 2015; Cajochen et al., 2000, 
2005, 2011; Chang et al., 2012; Chellappa et al., 2012; 
Figueiro et al., 2016; Lavoie et al., 2003). In this intro-
ductory review, we focus on studies investigating the 
effects of the intensity of white light on alertness. 
Studies investigating modulations in the intensity of 
monochromatic and narrowband light are not 
included in the overview, since we are generally 
exposed to polychromatic white light in everyday 
life. Moreover, it is questionable whether the reported 
effects of monochromatic or narrowband light can be 
directly translated to the effect of specific wave-
lengths in the spectrum of polychromatic light 
because of the potential opposing actions of different 
photoreceptor classes (Spitschan et al., 2014; Woelders 



Lok et al. / LIGHT EFFECTS ON ALERTNESS: A LITERATURE OVERVIEW   593

et  al., 2018). While interactions between different 
photoreceptors may also occur under monochromatic 
light exposure, potential inhibitory responses might 
be more pronounced under exposure to white light 
because of relatively strong activation of more—if not 
all—classes of photoreceptors. Studies investigating 
monochromatic or narrowband light have particu-
larly tested wavelengths at or near the peak sensitiv-
ity of one class of photoreceptors (e.g., Lockley et al., 
2006; Sahin and Figueiro, 2013), resulting in a rela-
tively strong activation of one class of photoreceptors 
compared with the other photoreceptor classes. For 
an overview of the potential alertness-enhancing 
effects of the spectral composition of white light, see 
Smolders and de Kort (2017) and Souman et al. (2018). 

Nocturnal light exposure has been indicated to 
influence alertness in a dose-dependent manner. In 
fact, a dose-response relationship between light 
intensity and different measures of alertness during 
the night has been determined in the study by 
Cajochen and colleagues (2000). Results revealed 
increased levels of alertness with increases in illumi-
nance level according to a logistic function. The maxi-
mum response was obtained at about 1000 lx at eye 
level, and the half-maximum of the alerting effects of 
light were achieved with illuminances between 90 
and 180 lux. The same study also showed that the 
half-maximum melatonin suppression occurred 
between 50 and 130 lux and revealed strong correla-
tions between melatonin suppression and alerting 
effects of light (Cajochen et  al., 2000). Several other 
studies also revealed effects of light on melatonin 
suppression coinciding with increases in alertness, 
suggesting that light-induced melatonin suppression 
might elicit effects on nocturnal alertness (e.g., 
Chellappa et  al., 2011; Lowden et  al., 2004). 
Attenuating SCN-dependent mechanisms responsi-
ble for promoting and maintaining cortical and 
behavioral arousal have been implicated (Dijk and 
Czeisler, 1995; Lavie, 1997). It is, however, important 
to note that while significant alerting effects have 
been reported at night, studies also reported null 
effects (Souman et al., 2018).

Effects of the Intensity of White Light 
on Alertness During Daytime

Because there are systematic changes over the 
course of the 24-h day in both melatonin and alertness 
levels, with relatively higher alertness and lower mel-
atonin concentrations during daytime compared with 
nighttime (Cajochen et al., 2003; Gronfier et al., 2007; 
Lavoie, 1997; Wright et al., 2002; Wyatt et al., 1999), it 
is questionable whether nighttime results are directly 
translatable to daytime situations. Nevertheless, some 

studies have shown acute effects of light on alertness, 
which are likely not only driven via melatonin sup-
pression (Figueiro et  al., 2016, 2009; Plitnick et  al., 
2010; Van de Werken et al., 2013). Moreover, several 
studies have revealed acute alerting effects of bright 
white light during daytime (Badia et  al., 1991; 
Borragán et  al., 2017; Daurat et  al., 1993; Huiberts 
et al., 2015, 2016, 2017; Iskra-Golec and Smith, 2008; 
Kaida et  al., 2006; Leichtfried et  al., 2015; Maierova 
et al., 2016; Phipps-Nelson et al., 2003; Rüger et al., 
2006; Smolders and de Kort, 2014; Smolders et  al., 
2012; Vandewalle et  al., 2006). Although effects of 
light on alertness during the day have been studied, 
results seem to be less conclusive compared with 
results reported at night. However, as there are 
important implications associated with improved 
daytime alertness, it is important to determine to 
what extent a generally easy accessible tool, such as 
light, could improve daytime alertness. Therefore, an 
overview of the literature studying the effects of 
polychromatic white light intensities on alertness 
during daytime has been made.

In total, 19 studies investigating diurnal NIF effects 
of the intensity of white light on alertness were 
included (Åkerstedt et  al., 2003; Badia et  al., 1991; 
Borragán et  al., 2017; Daurat et  al., 1993; Huiberts 
et al., 2015, 2016, 2017; Iskra-Golec and Smith, 2008; 
Kaida et  al., 2006; te Kulve et  al., 2017; Leichtfried 
et al., 2015; Maierova et al., 2016; Münch et al., 2017; 
Phipps-Nelson et al., 2003; Rüger et al., 2016; Sahin 
et  al., 2014; Smolders and de Kort, 2014; Smolders 
et al., 2012; Vandewalle et al., 2006). Experiments (1) 
had to be performed during daytime and (2) had to 
investigate effects of different intensities of polychro-
matic white light on alertness (i.e., articles involving 
a comparison between a control condition and an 
experimental one, or between multiple levels of 
intensity during daytime). There were no other selec-
tion criteria (such as experimental design or subject 
inclusion criteria) to ensure a broad selection of 
studies.

Parameters of alertness were divided into the fol-
lowing categories: subjective indicators (self-reported 
alertness, as assessed with the KSS or visual analog 
scale); performance indicators, divided into sustained 
attention (performance on PVT) or executive control 
(e.g., performance on SART, N-back, Go-NoGo); and 
physiological indicators, which were split into central 
nervous activity (EEG) and autonomic nervous activ-
ity (skin temperature, core body temperature, heart 
rate, and heart rate variability). Effects of light on 
parameters of alertness are represented by “+” when 
a positive, significant effect of higher light intensity 
on the parameter was established, “–” when a nega-
tive effect of light was determined, “+/–” when 
mixed outcomes within the category were reported, 
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and “ns” when nonsignificant effects of light intensi-
ties on alertness were established. Moreover, poten-
tial moderators, such as timing or duration of light 
exposure or prior conditions, are indicated by super-
script letters in Table 1.

From all included studies, there were 3 studies 
that showed positive effects of higher intensities of 
light during daytime on all parameters and corre-
lates of alertness used in that study (Huiberts et al., 
2015; Münch et al., 2017, Phipps-Nelson et al., 2003). 
Thirteen other studies reported positive effects on 
some, but not all, parameters of alertness employed 
in the study (Åkerstedt et  al., 2003; Huiberts et  al., 
2016, 2017; Iskra-Golec and Smith, 2008; Kaida et al., 
2006; te Kulve et  al., 2017; Leichtfried et  al., 2015; 
Maierova et al., 2016; Sahin et al., 2014; Smolders and 
de Kort, 2014; Smolders et  al., 2012; Vandewalle 
et  al., 2006). Three studies reported no significant 
effects of bright light during the daytime on any of 
the measures included in the study (Badia et  al., 
1991; Borragán et al., 2017; Daurat et al., 1993).

In total, there were 18 studies using self-reported 
sleepiness, of which 14 reported significant effects 
and 4 nonsignificant effects of bright light exposure. 
Significant effects were reported to be moderated by 
time of day, duration of exposure, prior light expo-
sure, and affective state. Performance measures were 
used in 17 of the included studies, of which 10 inves-
tigated the effects of light on alerting attention and 12 
on executive control tasks. Five of the 10 studies using 
alerting attention tasks reported significant improve-
ments in sustained attention under bright light, mod-
erated by factors such as time of day, prior light 
exposure, and duration of exposure. The remaining 5 
studies reported no significant effects. Outcomes on 
executive control tasks revealed mixed results, with 
positive (3 studies), nonsignificant (4 studies), mixed 
(1 study), and negative effects (4 studies). Results on 
performance measures for executive control were 
moderated by time of day, duration of light exposure, 
task difficulty, type of task or activity, chronotype, 
and/or prior affective state. Physiological parameters 
were used in 11 of the included studies, 4 investigat-
ing central nervous activity, 4 autonomic nervous 
activity, and 3 both central and autonomic nervous 
activity. Positive (4 studies), negative (1 study) or 
nonsignificant (2 studies) effects were reported on 
central nervous activity, moderated by time of day, 
marker, type of task or activity, duration of light 
exposure, and cortical area. Mixed results were found 
on parameters of autonomic nervous activity, with 2 
studies reporting positive effects, 4 showing nonsig-
nificant effects, and 1 reporting mixed effects. Results 
on autonomic nervous activity were moderated by 
time of day, duration of exposure, marker, and type of 
task or activity.

There are many differences between studies (such 
as experimental designs, light conditions, when and 
how alertness was assessed, and subject inclusion cri-
teria) that have not been taken into account when 
including an article for this analysis. These factors 
might (positively or negatively) affect the outcome of 
a study. Possibly due to these differences in research 
paradigms, the overview of literature created seems 
to suggest that daytime effects of polychromatic 
white light on alertness are inconclusive in multiple 
studies using diverse experimental designs and light-
ing conditions. Nevertheless, the most consistent 
effect of daytime exposure to more intense light has 
been determined in subjective alertness, which shows 
a positive outcome in about three-fourths of the 
included studies (Åkerstedt et  al., 2003; Huiberts 
et al., 2016, 2017; Iskra-Golec and Smith, 2008; Kaida 
et  al., 2006; te Kulve et  al., 2017; Leichtfried et  al., 
2015; Maierova et al., 2016; Phipps-Nelson et al., 2003; 
Rüger et al., 2006; Sahin et al., 2014; Smolders and de 
Kort, 2014; Smolders et  al., 2012; Vandewalle et  al., 
2006).

Discussion and Conclusion

Light-induced effects on alertness have been stud-
ied extensively, especially during the night. However, 
humans have evolved as a diurnal species, and their 
physiological and psychological level of alertness is 
primarily lower in the late evening or at night com-
pared with daytime hours (Cajochen et al., 2003; Dijk 
et al., 1992; Hull et al., 2003). Hormone levels, possi-
bly affecting alertness, differ between night and day. 
Taking these factors into account, it might very well 
be that nighttime results of light on alertness are dif-
ferent from those during daytime. In fact, results 
found during the day are quite inconclusive, with 
mixed outcomes on various measures reported, par-
ticularly for the objective measures. As stated before, 
effects of light on subjective alertness seem to be the 
most conclusive based on the findings reported in the 
studies included in the overview. Moreover, perfor-
mance on sustained attention and central nervous 
activation showed a more robust pattern than mea-
sures of performance on executive functioning tasks 
and autonomic nervous system activation. This might 
therefore also lead to the conclusion that alertness-
enhancing effects of light are mostly reflected in sub-
jective alertness, whereas effects on performance and 
physiology are less consistent. A recent literature 
review investigating alerting effects of light during 
both day- and nighttime also revealed that results are 
quite inconclusive, even during nighttime, especially 
in performance output measures (Souman et  al., 
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Table 1. O verview of studies investigating effects of light intensity on (correlates of) alertness.

Subjective 
Indicators

Performance 
Indicators

Physiological 
Indicators

Authors, 
Publication Year Light Manipulation Onset Light Exposure n

Self-
Reported 
Alertness

Alerting 
Attention

Executive 
Control

Central 
Nervous 
Activity

Autonomic 
Nervous 
Activity

Åkerstedt et al., 
2003

2000 lx vs. 5 lx for 30 min 0800 h 20 (within) +a –  

Badia et al., 1991 5000 lx vs. 50 lx for 90 
min

1300 h or 1430 h 8 (within) ns ns ns

Borragán et al., 
2017

2000 lx vs. <200 lx for 
20 min

+–9 h after sleep offset 
(between 1500 h and 1700 h)

20 (within) nsa nsa  

Daurat et al., 
1993

>2000 lx vs. 150 lx at eye 
level for 24 h

0900 h 8 (within) ns ns ns ns

Huiberts et al., 
2015

1000 lx vs. 200 lx at eye 
level for 60 min

Morning: 0930 h and 1115 h; 
afternoon: 1345 h, 1415 h, 
and 1615 h

64 (within) + +b,c  

Huiberts et al., 
2016

1700 lx vs. 600 lx vs. 150 
lx at eye level for 55 
min

Morning (+–0935 h)
or afternoon (+–1520 h)

39 (within) ns ns +e +b,d,e

Huiberts et al., 
2017

1700 lx vs. 150 lx at eye 
level for 52 min

Morning (+–0935 h)
or afternoon (+–1520 h)

33 (within) +b +b –b,f  

Iskra-Golec and 
Smith, 2008

(Intermittent) 4000 lx and 
300 lx vs. 300 lx at eye 
level for 15 min

Bright light pulses at 1100, 
1200, 1300, 1400, 1500, and 
1600 h

20 (within) +b,g ns  

Kaida et al., 2006 Bright light (mean 3260 ± 
1812 lx) vs. <100 lx for 
30 minh

1240 h 16 (within) + ns +e  

te Kulve et al., 
2017

1200 lx vs. 5 lx for 90 min 0830 h 19 (within) + ns +–

Leichtfried et al., 
2015

5000 lx vs. 400 lx at eye 
level for 30 min

0740 h 35 (within) + –  

Maierova et al., 
2016

1000 lx vs. <5 lx for 16 hh 1 h after habitual sleep offset 23 (within) + ns +e,i  

Münch et al., 
2017

750 lx vs. 40 lx at the eye 
for 3 h

0800 h 18 (within) +c,j +j  

Phipps-Nelson 
et al., 2003

1000 lx vs. <5 lx at eye 
level for 5 h

Noon 16 (between) + +  

Rüger et al., 2006 5000 lx vs. <10 lx at eye 
level for 4 h

Noon 12 (within) + ns

Sahin et al., 2014 360 lx vs. <5 lx for 110 
min

0700, 1100, and 1500 h 16 (within) ns –e +b  

Smolders et al., 
2012; 2015

1000 lx vs. 200 lx at eye 
level for 52 min

Morning (0930 or 1130 h); 
afternoon (1330 or 1530 h)

32 (within) + +b,c +–c +b,k +c

Smolders and de 
Kort, 2014

1000 lx vs. 200 lx at eye 
level for 30 min

Morning (+–0935 h, 1055 h, or 
0020 h); afternoon (+–1340 h, 
1520 h, or 1640 h)

28 (within) +l +c –l ns

Vandewalle 
et al., 2006

>7000 lx vs. <0.01 lx at 
eye level for 21 min

Afternoon (+–5 h after 
habitual wake-up time)

12m (within) + ns +a  

a.Assessed after light manipulation onset.
b.Moderated by time of day.
c.Moderated by duration of exposure.
d.Moderated by marker.
e.Moderated by type of task or activity.
f.Moderated by task difficulty.
g.Assessed after and during manipulation onset.
h.Natural bright light or combination of natural and electric light.
i.Moderated by chronotype
j.Moderated by prior light exposure.
k.Moderated by cortical area.
l.Moderated by prior affective state.
m.Statistical analyses based on selection of participants.

2018). In fact, effects of light on subjective alertness 
may not always translate into statistically significant 
improvements in performance measures (e.g., 
Vandewalle et al., 2006; see also Fisk et al., 2018).

It is important to note that the performance mea-
sures for executive control and physiological mea-
sures for autonomic nervous activation employed in 
the studies were also heterogeneous. For instance, 
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performance measures of executive control used in 
the studies included tasks probing inhibitory capac-
ity and working memory, which also requires—in 
addition to alertness—other higher-order functions. 
It could also be that parameters other than subjec-
tive alertness are more vulnerable to differences in 
experimental design, in terms of timing and dura-
tion of the lighting manipulation, light history, and 
subject inclusion. On the other hand, a possible 
explanation for more consistent effects of light on 
subjective measures of alertness may be that recall 
bias and placebo effects (expectancy of outcomes 
and socially desirable behavior) influenced partici-
pants’ subjective ratings. This is particularly rele-
vant given the fact that participants are generally 
not blind to a light manipulation. Since the 19 stud-
ies that have been included in this overview are 
inhomogeneous in terms of experimental design 
and intensity levels employed, this might contribute 
to overall inconclusive effects. For instance, differ-
ences in the spectral composition of white light may 
contribute to mixed results (e.g., facilitation or inhi-
bition of alertness) due to potential activation of 
multiple neural pathways involved in NIF, as well 
as the image-forming processes, as a result of expo-
sure to different (combinations) of wavelengths 
(Pilorz et al., 2016; Spitschan et al., 2014; Woelders 
et  al., 2018). It is also important to mention that, 
despite reported inconsistent effects among mea-
sures within a specific study paradigm, publication 
bias toward studies including positive results could 
be expected. Sufficient or insufficient power could 
contribute to coincidental positive, null, or negative 
findings. The heterogeneity in research paradigms 
and substantial variation in power due to large dif-
ferences in the number of participants and the num-
ber of measurements within participants make it 
difficult to compare the various studies and draw 
firm conclusions about the alerting potential of day-
time exposure to bright light. In fact, this diversity 
calls for research investigating multiple intensity 
levels within one research paradigm with a rela-
tively large sample size to determine the dose-
dependent relationship between light intensity and 
alertness during daytime.

To date, the dose-response curve for alertness in 
response to light established at night has not been 
replicated yet (Cajochen et al., 2000). To our knowl-
edge, there is, however, one study that fits a dose-
response curve through existing subjective sleepiness 
data of both night- and daytime studies (Hommes 
and Giménez, 2015). Results of this study confirmed 
a dose-dependent relationship between subjective 
alertness and light intensity. Whether a similar pat-
tern can be established for daytime effects only is still 
unknown. Most laboratory studies performed during 

daytime have investigated the effects of light inten-
sity by comparing 2 or 3 light conditions. To deter-
mine whether light can indeed improve alertness 
during the course of the day in a comparable, dose-
dependent manner as during the night, designing a 
systematic approach investigating the effects of a 
large range of light intensities on measures and cor-
relates of alertness within one paradigm over the 
course of the day is one of the next steps in generating 
a dose-response curve for alertness. This has been 
done independently by both the Chronobiology Unit 
of the University of Groningen and the Human-
Technology Interaction group at the Eindhoven 
University of Technology. Both research groups could 
not determine a clear dose-response relationship 
between light intensity and alertness. These research 
articles of Lok et al. and Smolders et al. can be found 
in this issue.
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