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Abstract In this paper a comparative evaluation study on popular non-homogeneous
Poisson models for count data is performed. For the study the standard homoge-
neous Poisson model (HOM) and three non-homogeneous variants, namely a Poisson
changepoint model (CPS), a Poisson free mixture model (MIX), and a Poisson hidden
Markov model (HMM) are implemented in both conceptual frameworks: a frequen-
tist and a Bayesian framework. This yields eight models in total, and the goal of the
presented study is to shed some light onto their relative merits and shortcomings. The
first major objective is to cross-compare the performances of the four models (HOM,
CPS, MIX and HMM) independently for both modelling frameworks (Bayesian and
frequentist). Subsequently, a pairwise comparison between the four Bayesian and the
four frequentist models is performed to elucidate to which extent the results of the
two paradigms (‘Bayesian vs. frequentist’) differ. The evaluation study is performed
on various synthetic Poisson data sets as well as on real-world taxi pick-up counts,
extracted from the recently published New York City Taxi database.
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1 Introduction

The Poisson distribution is one of the most popular statistical standard tools for
analysing (homogeneous) count data, i.e. integer-valued samples. For modelling non-
homogeneous count data, e.g. time series where the number of counts depends on
time and hence systematically differs over time, various extensions of the standard
Poisson model have been proposed and applied in the literature. More appropri-
ate non-homogeneous Poisson models can be easily obtained by embedding the
standard Poisson model into other statistical frameworks, such as changepoint mod-
els (CPS), finite mixture models (MIX), or hidden Markov models (HMM). The
three aforementioned modelling approaches have become very popular statistical
tools throughout the years for the following three reasons: (i) First, each of the
three modelling approaches is of a generic nature so that it can be combined with
a huge variety of statistical distributions and models to extend their flexibilities.
(ii) Second, the statistical methodology behind those generic models is rather sim-
ple, described in lots of textbooks on Statistics and the model inference is feasible.
(iii) Third, the three approaches can be easily formulated and implemented in both
conceptual frameworks: the standard ‘frequentist’ framework and the Bayesian frame-
work.

Despite this popularity, the performances of the resulting non-homogeneousmodels
have never been systematically compared with each other in the statistical literature.
This paper tries to fill this gap and presents a comparative evaluation study on non-
homogeneous Poisson count data, for which those three well-known statistical models
(changepoint models, mixturemodels and hiddenMarkovmodels) are implemented in
both conceptual frameworks: the frequentist framework and the Bayesian framework.

More precisely, for the evaluation study the standard homogeneous Poisson model
(HOM) and three non-homogeneous variants thereof, namely a Poisson change-
point model (CPS), a Poisson free mixture model (MIX), and a Poisson hidden
Markov model (HMM) are implemented in a frequentist as well as in a Bayesian
framework. The goal of the presented study is to systematically cross-compare
the performances. Thereby the focus is not only on cross-comparing the generic
modelling approach for non-homogeneity (CPS, MIX and HMM), but also on
comparing the frequentist model instantiations with the Bayesian model instan-
tiations. The study is performed on various synthetic data sets as well as on
real-world taxi pick-up counts, extracted from the recently published New York
City Taxi (NYCT) database. In all presented applications it is assumed that the
Poisson parameter does not depend on any external covariates so that the changes
are time-effects only. That is, the non-stationarity is implemented intrinsically by
temporal changepoints, at which the Poisson process spontaneously changes its val-
ues.

Within this introductory text no literature references have been given, since detailed
descriptions of all those generic statistical concepts, mentioned so far, can be found in
many standard textbooks on Statistics, and therefore, in principle, will be familiar for
most of the readers. However, in Sect. 2, where the models are described and math-
ematically formulated, explicit literature references will be provided for all models
under comparison.
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Comparative evaluation of Poisson counting models 3

2 Methodology

2.1 Mathematical notations

Let D denote a n-by-T data matrix, whose columns refer to equidistant time points,
t ∈ {1, . . . , T }, and whose rows refer to independent counts, i ∈ {1, . . . , n}, which
were observed at the corresponding time points. The element di,t in the ith row and
tth column of D is the ith count, which was observed at the tth time point. Let D.,t :=
(d1,t , . . . , dn,t )

T denote the t th column of D, where “T” denotes vector transposition.
D.,t is then the vector of the n observed counts for time point t .

Assume that the time points 1, . . . , T are linked to K Poisson distributions with
parameters θ1, . . . , θK . The T time points can then be assigned to K components,
which represent the K Poisson distributions. More formally, let the allocation vector
V = (v1, . . . , vT )T define an allocation of the time points to components, where
component k represents a Poisson distribution with parameter θk . vt = k means that
time point t is allocated to the kth component and that the observations at t stem from
a Poisson distribution with parameter θk (t = 1, . . . , T and k = 1, . . . , K ). Note
that the n independent counts within each column are always allocated to the same
component, while the T columns (time points) are allocated to different components.
Define D[k] to be the sub-matrix, containing only the columns of D that are allocated
to component k.

The probability density function (pdf) of a Poisson distribution with parameter
θ > 0 is:

p(x |θ) = θ x · exp{−θ}
x ! (1)

for x ∈ N0. Assuming that all counts, allocated to k, are realisations of independently
and identically distributed (iid) Poisson variables with parameter θk , the joint pdf is
given by:

p(D[k]|θk) =
T∏

t=1

I{vt =k}(t) · p(D.,t |θk) (2)

where I{vt =k}(t) indicates whether time point t is allocated to component k, and

p(D.,t |θk) =
n∏

i=1

p(di,t |θk) = (θk)
{∑n

i=1 di,t } · exp{−n · θk}
d1,t ! · . . . · dn,t ! (3)

is the joint pdf of the counts in the t th column of D. Given the allocation vector
V, which allocates the data into K sub-matrices D[1], . . . ,D[K ], and independent
component-specific Poisson distributions with parameters θ1, . . . , θK , the joint pdf of
D is:

p(D|V, θ) =
K∏

k=1

p(D[k]|θk) (4)

where θ := (θ1, . . . , θK )T, and p(D[k]|θk) was defined in Eq. (2).
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4 M. Grzegorczyk, M. Shafiee Kamalabad

Now assume that the allocation vectorV is known and fixed, while the component-
specific Poisson parameters are unknown and have to be inferred from the data D.

Following the frequentist paradigm, the parameters can be estimated by the
Maximum Likelihood (ML) approach. The ML estimators which maximise the log-
likelihood

l(θ |V,D) := log{p(D|V, θ)} (5)

are given by θ̂ = (θ̂1, . . . , θ̂K )T, where θ̂k is the empirical mean of all counts in D[k].
Assuming that Tk time points are allocated to component k, the matrix D[k] contains
Tk · n counts and

θ̂k = 1

n · Tk

T∑

t=1

I{vt =k}(t)
n∑

i=1

di,t (6)

In a Bayesian setting the Poisson parameters in θ are assumed to be random variables
as well, and prior distributions are imposed on them. The standard conjugate prior for
a Poisson model with parameter θk > 0 is the Gamma distribution:

p(θk |a, b) = ba

�(a)
· (θk)

a−1 exp{−θk · b} (7)

where a is the shape and b is the rate parameter. Due to standard conjugacy argu-
ments, for each component k the posterior distribution is a Gamma distribution with
parameters ã = a + ξ [k] and b̃ = b + n · Tk

p(θk |D[k]) = (b + n · Tk)
a+ξ [k]

�(a + ξ [k])
· (θk)

a+ξ [k]−1 exp{−θk · (b + n · Tk)} (8)

where ξ [k] is the sum of all n · TK elements of the n-by-Tk (sub-)matrix D[k]. The
marginal likelihood can be computed in closed-form:

p(D[k]|a, b) =
∫ ∞

0
p(D[k]|θk)p(θk |a, b)dθk

= ba

�(a)
· 1
∏Tk

t=1

∏n
i=1(d

[k]
i,t )! · �(a + ξ [k])

(Tk · n + b)ξ
[k]+a

(9)

where d[k]
i,t is the element in the i th row and t th column of D[k].

Imposing independent Gamma priors on each component k ∈ {1 . . . , K } induced
by the allocation vector V, the marginal likelihood for the complete data matrix D is:

p(D|V) =
K∏

k=1

p(D[k]|a, b) (10)

where the dependence on the fixed hyperparameters a and b on the left hand side of
the last equation was suppressed.
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Comparative evaluation of Poisson counting models 5

So far it has been assumed that the allocation vectorV is known and fixed, although
V will be unknown for many real-world applications so that V also has to be inferred
from the data D. The next section is therefore on the allocation vector inference.

2.2 Allocation vector inference

The standard frequentist Poisson or Bayesian Poisson–Gamma model assumes that
the data are homogeneous so that all time points t = 1, . . . , T always belong to the
same component; i.e. K = 1 and V = (1, . . . , 1)T. These models are referred to as
the homogeneous (HOM) models. The HOM model is not adequate if the number
of counts varies over time, and non-homogeneous Poisson models, which infer the
underlying allocation, have to be used instead. Prominent approaches to model non-
homogeneity include: multiple changepoint processes (CPS), finite mixture models
(MIX), and hidden Markov models (HMM). CPS impose a set of changepoints which
divide the time series 1, . . . , T into disjunct segments. Although this is a very natural
choice for temporal data, the disadvantage is that the allocation space is restricted,
as data points in different segments cannot be allocated to the same component; i.e.
a component once left cannot be revisited. E.g. for T = 6 the true allocation V =
(1, 1, 2, 2, 2, 1)T cannot be modelled and the best CPS model approximation might
be: VC P S = (1, 1, 2, 2, 2, 3)T. The MIX model, on the other hand, is more flexible,
as it allows for a free allocation of the time points so thatV is part of the configuration
space. But MIX does not take the temporal ordering of the data points into account. It
treats the T time points as interchangeable units. This implies in the example above
that all allocation vectors, which allocate T1 = 3 time points to component k = 1
and T2 = 3 time points to component k = 2, are always equally supported a priori;
including unlikely allocations, such as: V� = (1, 2, 1, 2, 1, 2)T.

A compromise between CPS andMIX is the hiddenMarkov model (HMM). HMM
allows for an unrestricted allocation vector configuration space, but unlikeMIX it does
not ignore the order of the time points. A homogeneous first-order HMM imposes a
(homogeneous) Markovian dependency among the components v1, . . . , vT of V so
that the value of vt depends on the value of the preceding time point vt−1, and the
homogeneous state-transition probabilities can be such that neighbouring points are
likely to be allocated to the same component, while components once left can be
revisited. The aforementioned Poisson models, can be implemented in a frequentist
as well as in a Bayesian framework, yielding 8 non-homogeneous Poisson models in
total, see Table 1 for an overview.

2.3 The frequentist framework

The learning algorithms for the non-homogeneous frequentist models learn the best-
fittingmodel for each number of components K , and the goodness of fit increases in K .
Restricting K to be in between 1 and KM AX , for each approach (CPS,MIX andHMM)
the best fitting model with K components, symbolically MK , can be learnt from the
data D. The Bayesian Information criterion (BIC), proposed by Schwarz (1978), is a
well-known model selection criterion and balances between the goodness of fit and
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Comparative evaluation of Poisson counting models 7

model sparsity. According to the BIC, among a set of models {M1, . . . ,MKM AX }, the
one with the lowest BIC value is considered the most appropriate one with the best
trade-off (fit vs. sparsity). Given the n-by-T data set matrix D, and modelsMK with
K components and qMK parameters (K = 1, . . . , KM AX ), the BIC ofMK is defined
as

B I C(MK ) = −2 · log{p(D|MK )} + qMK · log(n · T ) (11)

where n · T is the number of data points in D, and for K = 1 each of the three
non-homogeneous model becomes the homogeneous modelM1 (see Sect. 2.3.1).

2.3.1 The homogeneous frequentist Poisson model (FREQ–HOM)

The homogeneous model M1 assumes that the counts stay constant over time, i.e.
that there is only one single component, K = 1, and that the allocation vectors assign
all data points to this component, i.e. V = 1 = (1, . . . , 1)T. Hence, D[1] = D and
according to Eq. (6), the maximum likelihood (ML) estimator of the single (qM1 = 1)
Poisson parameter θ := θ1 is the empirical mean of all T · n data points in D.

2.3.2 The frequentist changepoint Poisson model (FREQ–CPS)

A changepoint model uses a changepoint set of K − 1 changepoints, C =
{c1, . . . , cK−1}, where 1 < c1 < · · · < cK−1 < T , to divide the time points 1, . . . , T
into K disjunct segments. Time point t is assigned to component k if ck−1 < t ≤ ck ,
where c0 = 0 and cK = T are pseudo changepoints. This means for the t th element,
vt , of the allocation vector,VC , implied by C : vt = k if ck−1 < t ≤ ck . A changepoint
set C with K − 1 changepoints implies a segmentation D[1], . . . ,D[K ] of the data
matrix D, and the ML estimators θ̂k for the segment-specific Poisson parameters θk

can be computed with Eq. (6). The model fit can be quantified by plugging the ML
estimators θ̂ into the log-likelihood in Eq. (5):

l(θ̂C |VC ,D) := log{p(D|VC , θ̂C )} (12)

whereVC is the allocation vector implied byC , and θ̂C is the vector ofML estimators.
The best fitting set of K − 1 changepoints, C K , i.e. the set maximising Eq. (12), can
be found recursively by the segment neighbourhood search algorithm. This algorithm,
proposed by Auger and Lawrence (1989), employs dynamic programming to find
the best fitting changepoint set with K − 1 changepoints for each K (2 ≤ K ≤
KM AX ). The algorithm is outlined in Sect. 1 of the supplementary material. The best
changepoint modelMK̂ minimises the BIC in Eq. (11), and the output of the algorithm

is the corresponding allocation vector V̂C P S and the segment-specific ML-estimators
θ̂C P S := θ̂

C K̂ .

2.3.3 The frequentist finite mixture Poisson model (FREQ–MIX)

In a frequentist finite mixture model with K components the time points 1, . . . , T are
treated as interchangeable units from amixture of K independent Poisson distributions
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8 M. Grzegorczyk, M. Shafiee Kamalabad

with parameters θ1, . . . , θK and mixture weights π1, . . . , πK , where πk ≥ 0 for all k,
and

∑K
k=1 πk = 1. The columns D.,t of the data matrix D are then considered as a

sample from this Poisson mixture distribution with pdf:

p(D.,t |θ ,π) =
K∑

k=1

πk · p(D.,t |θk) (13)

where θ = (θ1, . . . , θK )T is the vector of Poisson parameters, π = (π1, . . . , πK )T

is the vector of mixture weights, and p(D.,t |θk) can be computed with Eq. (3). The
maximisation of Eq. (13) in the parameters (θ,π) is analytically not feasible so that the
ML estimates have to be determined numerically. For mixture distributions this can be
done with the Expectation Maximisation (EM) algorithm (Dempster et al. 1977). The
mathematical details of the EM algorithm are provided in Sect. 2 of the supplementary
material. The best mixture model MK̂ minimises the BIC in Eq. (11), where qK =
K+(K−1) is the number of Poisson and (free)mixtureweight parameters.1 The output
of theEM-algorithm is thebest number of components K̂M I X , the correspondingT -by-
K̂M I X allocation probability matrix �̂M I X , whose elements �t,k are the probabilities
that time point t belongs to component k, and the vector of ML estimators θ̂ M I X .

2.3.4 The frequentist Hidden Markov Poisson model (FREQ–HMM)

The key assumption of a hidden Markov model (HMM) with K components (‘states’)
is that the (unobserved) elements v1, . . . , vT of the allocation vector V follow a
(homogeneous) first-order Markovian dependency. That is, {vt }t=1,...,T is considered
a homogeneous Markov chain of order τ = 1 with the state space S = {1, . . . , K },
the initial distribution 	 = (π1, . . . , πK ), where πk ≥ 0 is the probability that v1
is equal to k, and the K -by-K transition (probability) matrix A, whose elements
ai, j ≥ 0 are the transition probabilities for a transition from state i to state j :
ai, j = P(vt+1 = j |vt = i) for all t ∈ {1, . . . , T − 1}.2 Assume that there are K
state-dependent Poisson distributions so that each state k ∈ {1, . . . , K } corresponds
to a Poisson distribution with parameter θk . The data matrix D is then interpreted as a
sequence of its T columns,D.,1, . . . ,D.,T , and vt = k means that columnD.,t is a vec-
tor of n realisations of the kth Poisson distribution with parameter θk . Mathematically,
this means:

p(D.,t |vt = k) = p(D.,t |θk) (14)

where p(D.,t |θk) was defined in Eq. (3). The Hidden Markov model is now fully
specified and has the unknown parameters 	, A and θ = (θ1, . . . , θK )T. For given
parameters (	,A, θ), the distribution of the unknown (‘hidden’) state sequence
v1, . . . , vT can be inferred recursively with the foward and backward algorithm.
And by combining the forward and backward algorithms with the EM algorithm,

1 The K mixture weights fulfil:
∑K

k=1 πk = 1.
2 It holds:

∑K
k=1 πk = 1, and

∑K
j=1 ai, j = 1 for all i .
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Comparative evaluation of Poisson counting models 9

the best HMM model MK̂ , which minimises the BIC in Eq. (11), can be numeri-
cally determined. The details of the inference procedure are provided in Sect. 3 of the
supplementary material. For a HMM model with K components the total number of
parameters is qK = K+ (K− 1) + (K2 −K), i.e. the sum of the Poisson parameters,
the free initial probability parameters and the free transition probability parameters.3

The output of the EM algorithm, as described in Sect. 3 of the supplementary paper,
is the best number of components K̂ H M M , the corresponding T -by-K̂ H M M allocation
probability matrix �̂H M M , whose elements �t,k are the probabilities that time point
t belongs to component k, and the ML-estimators θ̂ H M M .

2.4 The Bayesian framework

The Bayesian models employ a Poisson-Gamma model, for which the marginal like-
lihood p(D|V) can be computed with Eq. (10). While the homogeneous model,
described in Sect. 2.4.1, keeps K = 1 fixed, the three non-homogeneous models have
to infer K and the unknown allocation vector V. In a Bayesian framework this means
that prior distributions have to be imposed on V and K . The three non-homogeneous
models, described below, assume that the joint prior distribution can be factorized,
p(V, K ) = p(V|K ) · p(K ), and impose on K a truncated Poisson distribution with
parameterλ and the truncation 1 ≤ K ≤ KM AX so that p(K ) ∝ λK ·exp{−λ}·(K !)−1.

Subsequently, the prior onV is specified conditional on K . The marginal likelihood
p(D|V) and the two prior distributions p(K ) and p(V|K ) together fully specify the
Bayesian model, and Markov Chain Monte Carlo (MCMC) simulations are used to
generate samples (V(1), K (1)), . . . , (V(R), K (R)) from the posterior distribution:

p(V, K |D) ∝ p(D|V) · p(V|K )p(K ) (15)

The Bayesian models, described below, differ only by the conditional prior p(V|K ).

2.4.1 The homogeneous Bayesian Poisson–Gamma model (BAYES–HOM)

The homogeneous Bayesian model assumes that the counts do not vary over time, so
that K = 1 and V = (1, . . . , 1)T =: 1 and D[1] = D. According to Eqs. (9–10), the
marginal likelihood of the BAYES–HOM model is then given by

p(D[1]|V = 1) =
∫ ∞

0
p(D|θ)p(θ |a, b)dθ

= ba

�(a)
· 1
∏T

t=1
∏n

i=1(di,t )!
· �(a + ξ)

(T · n + b)ξ+a

where di,t is the element in the i th row and t th column of D, and ξ is the sum of all
n · T elements of D.

3 Note that:
∑K

k=1 πk = 1, and
∑K

l=1 ak,l = 1 for k = 1, . . . , K .
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10 M. Grzegorczyk, M. Shafiee Kamalabad

2.4.2 The Bayesian changepoint Poisson–Gamma model (BAYES–CPS)

There are various possibilities to implement a Bayesian changepoint model, and here
the classical one from Green (1995) is used. The prior on K is a truncated Poisson
distribution, and each K is identifiedwith K −1 changepoints c1, . . . , cK−1 on the dis-
crete set {1, . . . , T − 1}, where vt = k if ck−1 < t ≤ ck , and c0 := 1 and cK := T are
pseudo changepoints. Conditional on K , the changepoints are assumed to be distrib-
uted like the even-numbered order statistics of L := 2(K −1)+1 points uniformly and
independently distributed on {1, . . . , T − 1}. This implies that changepoints cannot
be located at neighbouring time points and induces the prior distribution:

P(V|K ) = 1(
T − 1

2(K − 1) + 1

)
K−1∏

k=0

(ck+1 − ck − 1) (16)

The BAYES–CPS model is now fully specified and K and V can be sampled from
the posterior distribution p(V, K |D), defined in Eq. (15), with a Metropolis-Hastings
MCMC sampling scheme, based on changepoint birth, death and re-allocation moves
(Green 1995).

Given the current state at the r th MCMC iteration: (V(r), K (r)), where V(r) can be
identified with the changepoint set: C (r) = {c1, . . . , cK (r)−1}, one of the three move
types is randomly selected (e.g. each with probability 1/3) and performed. The three
move types (i–iii) can be briefly described as follows:

(i) In the changepoint reallocation move one changepoint c j from the current
changepoint set C (r) is randomly selected, and the replacement changepoint is
randomlydrawn from the set

{
c j−1 + 2, . . . , c j+1 − 2

}
. ThenewsetC� gives the

new candidate allocation vectorV�; the number of components stays unchanged:
K � = K (r).

(ii) The changepoint birth move randomly draws the location of one single new
changepoint from the set of all valid new changepoint locations:

B† :=
{

c ∈ {1, . . . , T − 1} : |c − c j | > 1∀ j ∈
{
1, . . . , K (r) − 1

}}
(17)

Adding the new changepoint to C (r) yields K � = K (r) + 1, and the new set C�,
which yields the new allocation vector V�.

(iii) The changepoint death move is complementary to the birth move. It randomly
selects one of the changepoints from C (r) and proposes to delete it. This gives
the new changepoint set C� which yields the new candidate allocation vector
V�, and K � = K (r) − 1.
For all three moves the Metropolis-Hastings acceptance probability for the new
candidate state (V�, K �) is given by A = min{1, R}, with

R = p(D|V�)

p(D|V(r))
· p(V�|K �)p(K �)

p(V(r)|K (r))p(K (r))
· Q (18)
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where Q is the Hastings ratio, which can be computed straightforwardly for
each of the three move types (see, e.g., Green (1995)). If the move is accepted,
set V(r+1) = V� and K (r+1) = K �, or otherwise leave the state unchanged:
V(r+1) = V(r) and K (r+1) = K (r).

2.4.3 The Bayesian finite mixture Poisson–Gamma model (BAYES–MIX)

Here, the Bayesian finite mixture model instantiation and the Metropolis Hastings
MCMC sampling scheme proposed by Nobile and Fearnside (2007) is employed.
The prior on K is a truncated Poisson distribution, and conditional on K , a categorical
distribution (with K categories) and probability parametersp = (p1, . . . , pK )T is used
as prior for the allocation variables v1, . . . , vT ∈ {1, . . . , K }. That is, ∑K

k=1 pk = 1
and p(vt = k) = pk . The probability of the allocation vector V = (v1, . . . , vT )T is
then given by:

p(V|p) =
K∏

k=1

(pk)
nk (19)

where nk = |{t ∈ {1, . . . , T } : vt = k}| is the number of time points that are allocated
to component k by V. Imposing a conjugate Dirichlet distribution with parameters
α = (α1, . . . , αK )T on p and marginalizing over p, yields the closed-form solution:

p(V|K ) =
∫

p(V|p)p(p|α)dp = �(
∑K

k=1 αk)

�(
∑K

k=1(nk + αk))

K∏

k=1

�(nk + αk)

�(αk)
(20)

The BAYES–MIXmodel is now fully specified, and the posterior distribution is invari-
ant to permutations of the components’ labels if: αk = α. A Metropolis-Hastings
MCMC sampling scheme, proposed by Nobile and Fearnside (2007) and referred to
as the “allocation sampler”, can be used to generate a sample from the posterior dis-
tribution in Eq. (15). The allocation sampler consists of a simple Gibbs move and five
more involved Metropolis-Hastings moves. Given the current state at the r th iteration:
(V(r), K (r)) the Gibbs move keeps the number of components fixed, K (r+1) = K (r),
and just re-samples the value of one single allocation variable v

(r)
t from its full con-

ditional distribution. This yields a new allocation vector V(r+1) with a re-sampled t th
component v(r+1)

t . As this Gibbs move has two disadvantages, Nobile and Fearnside
(2007) propose to use five additional Metropolis Hastings MCMC moves. (i) As the
Gibbs move yields only very small steps in the allocation vector configuration space,
Nobile and Fearnside (2007) propose three additional Metropolis Hastings MCMC
moves, referred to as the M1, M2 and M3 move, which also keep K (r) fixed but allow
for re-allocations of larger sub-sets of the allocation variables v

(r)
1 , . . . , v

(r)
T . (ii) As

neither the Gibbs move nor the M1-M3moves can change the number of components,
Nobile and Fearnside (2007) also propose a pair of moves, referred to as the Ejection-
and Absorption move, which generate a new or delete an existing component, so that
K (r+1) = K (r) + 1 or K (r+1) = K (r) − 1, respectively. The technical details of the
moves can be found in Nobile and Fearnside (2007).
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12 M. Grzegorczyk, M. Shafiee Kamalabad

2.4.4 The Bayesian hidden Markov Poisson–Gamma model (BAYES–HMM)

The focus is on aBayesian hiddenMarkovmodel instantiation,whichwas recently pro-
posed in Grzegorczyk (2016) in the context of non-homogeneous dynamic Bayesian
network models. The prior on K follows a truncated Poisson distribution, and for each
K a HMM model with K states is used to model the allocation vector V. To this end,
V is identified with the temporally ordered sequence of its components: v1, . . . , vT ,
and it is assumed that the latter sequence describes a homogeneous first order Markov
chain with a uniform initial distribution and a K -by-K transition matrix A.

Let al,k be the element in the lth row and kth column of the transition matrix
A. al,k is then the probability for a transition from component l to component k,
and

∑K
k=1 al,k = 1. For a homogeneous Markov chain this means: al,k = P(vt =

k|vt−1 = l,A, K ) for all t , and hence:

p(V|A, K ) = p(v1, . . . , vT |A, K ) = p(v1|K )

T∏

t=2

p(vt |vt−1,A, K )

= 1

K

K∏

k=1

K∏

l=1

(
al,k

)nl,k (21)

where nl,k = |{t ∈ {2, . . . , T } : vt = k ∧ vt−1 = l}| is the number of transitions from
l to k in the sequence v1, . . . , vT .

Each rowAl,. of the transitionmatrixAdefines the probability vector of a categorical
random variable (with K categories), and on each vectorAl,. an independent Dirichlet
prior with parameter vector αl = (αl,1, . . . , αl,K )T can be imposed:

p(Al,.|αl) =
∏K

k=1 �(αl,k)

�(
∑K

k=1 αl,k)

K∏

k=1

(
al,k

)αl,k−1 (22)

Marginalizing over the transition matrix A in Eq. (21), i.e. marginalizing over the
row vectors A1,., . . . ,AK ,., where each row vector Al,. has an independent Dirichlet
prior, defined in Eq. (22), gives the marginal distribution:

p(V|K ) =
∫

A1,.

. . .

∫

AK ,.

p(V|A, K )

{
K∏

l=1

p(Al,.|αl)

}
dA1,. . . . dAK ,. (23)

Inserting Eq. (21) into Eq. (23) yields:

P(V|K ) = 1

K

K∏

l=1

(∫

Al,.

P(Al,.|αl)

K∏

k=1

(
al,k

)nl,k dAl,.

)
(24)

The inner integrals in Eq. (23) correspond to Multinomial-Dirichlet distributions,
which can be computed in closed form:
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P(V|K ) = 1

K

K∏

l=1

�(
∑K

k=1 αl,k)

�(
∑K

k=1 nl,k + αl,k)

K∏

k=1

�(nl,k + αl,k)

�(αl,k)
(25)

The BAYES–HMM model is now fully specified, and with αl,k = α in Eq. (22) the
marginal distribution P(V|K ) in Eq. (25) is invariant to permutations of the states’
labels.

In principle, the allocation sampler from Nobile and Fearnside (2007) from
Sect. 2.4.3 can also be used to generate a sample from the posterior distribution in
Eq. (15). However, the allocation sampler moves have been developed for finite mix-
ture models, where data points are treated as interchangeable units without any order.
Hence, the allocation sampler moves are sub-optimal when a Markovian dependency
structure among temporal data points is given. In Grzegorczyk (2016) it has been
shown that the performance of the allocation sampler can be significantly improved
in terms of convergence and mixing by including two new pairs of complementary
Metropolis-Hastings moves. These two pairs of moves, referred to as the ‘inclusion
and exclusion moves’ and the ‘birth and death moves’ in Grzegorczyk (2016), exploit
the temporal structure of the data points. A detailed description of these moves can be
found in Grzegorczyk (2016).

3 Validation

Table 1 gives an overview to the models from Sect. 2, and Table 2 shows the outputs
of those models. The outputs range from a scalar ML estimate (FREQ–HOM) to an
MCMC sample of allocation vectors (e.g. BAYES–HMM). For each model the output
inferred from D can be used to estimate the probability of a new validation data set D.
Assume that in addition to the n-by-T data matrix D from Sect. 2.1, another ñ-by-T
data matrix D̃ is given and that the time points 1, . . . , T in D and D̃ can be mapped
onto each other.

Each non-homogeneousBayesianmodelwith K components and allocation vector
V inferred fromD can then be used to subdivide the newdatamatrix D̃ into submatrices
D̃[1], . . . , D̃[K ], and the predictive probability for the kth sub-matrix D̃[k] is:

p(D̃[k]|D[k]) =
∫ ∞

0
p(D̃[k]|θk)p(θk |D[k])dθk

= b̃ã

�(ã)
· 1
∏Tk

t=1

∏ñ
i=1(d̃

[k]
i,t )! · �(ã + ξ̃ [k])

(Tk · ñ + b̃)ξ̃
[k]+ã

(26)

where Tk is the number of columns allocated to k, ã = a + ξ [k] and b̃ = b + n · Tk are
the posterior parameters, defined above Eq. (8), ξ̃ [k] is the sum of all ñ · Tk elements
of the ñ-by-Tk sub-matrix D̃[k], and d̃[k]

i,t is the element in the i th row and t th column

of D̃[k].
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The (logarithmic) predictive probability of D̃ conditional on K and V is then given
by:

log{p(D̃|D,V, K )} =
K∑

k=1

log{p(D̃[k]|D[k])} (27)

For the homogeneous Bayesian model with K = 1, D[1] = D, and D̃[1] = D̃, the
predictive probability of D̃ can be computed analytically. For each non-homogeneous
Bayesian model M an MCMC simulation generates a sample {V(r), K (r)}r=1,...,R

from the posterior distribution p(K ,V|D) in Eq. (15), and the predictive probability
of model M can be approximated by:

log{p(D̃|D,M)} ≈ 1

R

R∑

r=1

log{p(D̃|D,V(r), K (r))} (28)

For the frequentist models it can be proceeded similarly: After data matrix D has
been used to learn a model and its ML-estimates, the probability of the new data
matrix D̃, given the model and the ML estimates learnt from D, is a measure which
corresponds to a Bayesian predictive probability. The homogeneous model and the
changepoint model both output concrete values for K̂ and V̂, and:

log{p(D̃|K̂ , V̂, θ̂)} =
K̂∑

k=1

log{p(D̃[k,V̂]|θ̂k)} (29)

where K̂ , V̂, and θ̂ are those values inferred from the training data D, D̃[k,V̂] is the kth

submatrix of the validation data D̃ implied by V̂, and p(D̃[k,V̂]|θ̂k) can be computed
with Eq. (2).4 FREQ–MIX and FREQ–HMM both infer the number of components K̂
and the Poisson parameters θ̂ but no concrete allocation vector. They infer a K̂ -by-T
matrix �̂, whose elements �̂k,t are the probabilities that time point t is allocated to
component k, symbolically �̂k,t = p̂(vt = k|D). The probability of the new data set
D̃ is then given by:

log{p(D̃|K̂ , �̂, θ̂)}
T∑

t=1

log{
K̂∑

k=1

�̂k,t · p(D̃.,t |θ̂k)} (30)

4 Data

4.1 Synthetic data

Synthetic count data matrices are generated as follows: letV� = (v�
1, . . . , v

�
T )T be the

true allocation vector, which allocates each time point t ∈ {1, . . . , T } to a component

4 For the homogeneous model it holds: K̂ = 1 and D̃[1,V̂] = D̃.
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16 M. Grzegorczyk, M. Shafiee Kamalabad

k ∈ {1, . . . , K �}, where v�
t = k means that t is allocated to k. Given V�, n-by-T data

set matrices D� can be obtained by sampling each matrix element d�
i,t independently

from a Poisson distribution with parameter θv�
t
(i = 1, . . . , n and t = 1, . . . , T ).

The focus of the study is on different allocation vectors V� with different
component-specific Poisson parameters θ1, . . . , θK � . Let P� = (p1, . . . , pT ) denote a
row vector whose element pt is the Poisson parameter for time point t . That is, pt = λ

means that V� allocates time point t to a component with Poisson parameter θv�
t

= λ.
The row vector P� will be referred to as the vector of Poisson parameters.

Let sm denote a row vector of length m, whose elements are all equal to s ∈ N,
sm = (s, . . . , s). The situation, where an allocation vectorV� allocates T = 4 ·m time
points to K � = 4 equidistant coherent segments of lengthm, with the four component-
specific Poisson parameters θ1 = 1, θ2 = 5, θ3 = 3, and θ4 = 8, can then be defined
compactly:

P� = (1, . . . , 1︸ ︷︷ ︸
m−times

, 5, . . . , 5︸ ︷︷ ︸
m−times

, 3, . . . , 3︸ ︷︷ ︸
m−times

, 8, . . . , 8︸ ︷︷ ︸
m−times

) =: (1m, 5m, 3m, 8m)

For the situation where the allocation vector follows a free mixture model, e.g., by
allocating T = 2 · m time points to K � = 2 components with Poisson parameters
θ1 = 1 and θ2 = 5, let P� = MIX(1m, 5m) denote that P� is a row vector whose
elements are a random permutation of the elements of the vector (1m, 5m).

With regard to the real-world Taxi data, described in Sect. 4.2, each data matrix D
is built with T = 96 columns (time points) and n ∈ {1, 2, 4, 8, 16} rows (independent
samples per time point). An overview to the allocation schemes (vectors of Poisson
parameters), employed in the comparative evaluation study, is given in Table 4 of the
supplementary material. For each of the four allocation scenarios (HOM, CPS, MIX,
and HMM) two different vectors of Poisson parameters are considered. Data matrices
are built with a varying no. of rows n ∈ {1, 2, 4, 8, 16} and T = 96 columns. For each
of the resulting 4 · 2 · 5 = 40 combinations, 25 independent data matrix instantiations
are generated, i.e. 1000 data matrices in total. Subsequently, for each of those 1000
data matrix instantiations a ñ-by-T validation data matrix with ñ = 30 and T = 96 is
sampled the same way (using the same vector of Poisson parameters).5

4.2 The New York City Taxi (NYCT) data from 2013

Through a ‘Freedom of Information Law’ request from the ‘New York City Taxi and
Limousine Commission’ a dataset, covering information of about 700 million taxi
trips in New York City (USA) from the calendar years 2010–2013, was published and
stored by the University of Illinois (Donovan andWork 2015). In the NYCT database,
for each trip various details are provided; e.g. (i) the number of transported passengers,
(ii) the pick-up and drop-off dates and daytimes, (iii) the GPS coordinates, where the
passenger(s) were picked up and dropped off.6 In this paper the focus is on the pick-up

5 Note that T and ñ have been set in accordance with the NYCT data, described in Sect. 4.2.
6 The NYCT data can be downloaded from: http://dx.doi.org/10.13012/J8PN93H8
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Fig. 1 NewYork City Taxi pick-up time series. To shed some light onto the variability of the daily profiles,
the upper panel shows the time series of the first four Mondays in 2013. The lower panel shows the seven
weekday averages in 2013. Three weekdays with slightly deviating profiles have been highlighted: Sunday
(bold black), Saturday (grey), and Friday (dotted black)

dates and daytimes of about 170 million taxi rides in the most recent year 2013, so that
only a fractional amount of the data is used. Each pick-up is interpreted as a ‘taxi call’,
so that it can be analysed how the number of taxi calls varies over the daytime. The data
preparation can be summarised as follows: For each of about 170 million taxi rides
from 2013 the pick-up date and daytime are extracted and down-sampled by a factor
of 1000 (by randomly selecting 0.1% of the extracted samples), before all entries
corresponding to US holidays are withdrawn.7 Subsequently, there remain 169,596
date-and-time entries, which subdivide onto the 7 weekdays as indicated in Table 5 of
the supplementary material. Discretising the daytimes into T = 96 equidistant time
intervals,8 each covering 15min of the 24-h day, and binning the pick-up times of
each individual day into the T = 96 time intervals, gives a 355-by-96 data matrix D,
whose elements di,t are the number of taxi pick-ups (or taxi calls) on the i th day in
time interval t . Since the seven weekdays might show different patterns, the data set
matrix D is subdivided into seven nw-by-T sub-matrices Dw (w = 1, . . . , 7), where
w indicates the weekday, and nw ∈ {46, 50, 51, 52} varies with the weekdays (see
Table 5 of the supplementary material). Figure 1 shows the number of Taxi calls for
the first four Mondays in 2013 and the weekday averages.

In the study theweekdays are analysed separately, as they are likely to showdifferent
patterns. For eachweekday n ∈ {1, 2, 4, 8, 16} rows (days) are randomly selected from
Dw, before ñ = 30 of the remaining nw − n rows are randomly selected to build a
validation data matrix. Repeating this procedure 5-times independently yields 150
data matrix pairs Dw,n,u and D̃w,ñ,u , where w ∈ {1, . . . , 7} indicates the weekday,
n ∈ {1, 2, 4, 8, 16} and ñ = 30 indicate the number of rows of Dw,n,u and D̃w,ñ,u ,

7 The following US holidays in 2013 are excluded: Jan 1 (New Year’s Day), Jan 21 (Martin Luther King),
Feb 18 (Presidents’ Day), May 27 (Memorial Day), Jul 4 (Independence Day), Sep 2 (Labor Day), Oct 14
(Columbus Day), Nov 11 (Veterans Day), Nov 28 (Thanksgiving Day) and Dec 25 (Christmas Day).
8 The time information is provided in seconds in the format: hh-mm-ss, ranging from 00-00-00 (midnight)
to 23-59-59 (last second of the day).
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and u ∈ {1, . . . , 5} indicates the replicate. Each Dw,n,u is a n-by-96 matrix and each
D̃w,n,u is a 30-by-96 matrix.9

5 Simulation details

For all models the maximal number of components is set to KM AX = 10. In the
Gamma priors, see Eq. (7), both hyperparameters a and b are set to 1 so as to
obtain rather uninformative priors. In terms of equivalent sample sizes this setting
corresponds to one (b = 1) additional pseudo observation with one single taxi call
(a = 1) for each component. The hyperparameter of the truncated Poisson prior
on the number of components of the non-homogeneous Bayesian models is set to
λ = 1, meaning that a priori only one single component is expected (K = 1). Fur-
thermore, all hyperparameters of the Dirichlet priors of the BAYES–MIX and the
BAYES–HMM model are set to 1. That is, it was set α = 1 above Eq. (20) and
αl = 1 (l = 1, . . . , K ) in Eq. (22). In terms of equivalent samples sizes this can
be interpreted as one pseudo count per mixture component (BAYES–MIX) or transi-
tion (BAYES–HMM), respectively. The two homogeneous models (FREQ–HOM and
BAYES–HOM) as well as the frequentist changepoint model (FREQ–CPS) always
output deterministic solutions. The EM-algorithm, which is used for inferring the
FREQ–MIX and the FREQ–HMM model, can get stuck in local optima. Therefore,
the EM algorithm is run 10 times independently for each data set with different ran-
domly sampled initialisations of the Poisson parameters. ε = 0.001 is used for the
stop-criterion (see Tables 1, 2 in the supplementary paper). For each K the output
with the highest maximal likelihood value was selected, while the other EM algorithm
outputs were withdrawn.10 (The maximal likelihood value was typically reached sev-
eral times, suggesting that running the EM algorithm 10 times is sufficient for the
analysed data.) The non-homogeneous Bayesian models are inferred with MCMC
simulations, and a pre-study was performed to determine the required number of
MCMC iterations. This pre-study was based on eight data sets with n = 16, one
from each of the 8 allocation scenarios shown in Table 4 of the supplementary mate-
rial. On each of these data sets 5 independent MCMC simulations with different
allocation vector initialisations were performed. Trace-plot diagnostics of the quan-
tity: log(Likelihood)+log(Prior), which is proportional to the log posterior probability,
as well as scatter plots of the pairwise co-allocation probabilities, p̂(vt1 = vt2 |D)

for t1, t2 ∈ {1, . . . , T }, indicated that the following MCMC simulation setting is
sufficient: The burn-in phase is set to 25,000 MCMC iterations, before R = 250
equidistant samples are taken from the subsequent 25,000 MCMC iterations (sam-
pling phase).

9 Note that the same number of validation samples (ñ = 30) is sampled for each n to ensure that the
predictive probabilities p(D̃w,ñ,u |Dw,n,u) are comparable for different n.
10 Note that the mixture weights and the transition probabilities were always initialised uniformly, i.e.
πk = 1/K (FREQ–MIX) and ai, j = 1/K (FREQ–HMM).
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6 Comparative evaluation study

First, the synthetic data from Sect. 4.1 are analysed with the eight models listed
in Tables 1, 2. The first finding is that the homogeneous models (FREQ–HOM
and BAYES–HOM) yield substantially lower predictive probabilities than the non-
homogeneous models for the non-homogeneous data. This is not unexpected, as the
homogeneous models can per se not deal with non-homogeneity (e.g. changepoint-
segmented data). For clarity of the plots, the results of the homogeneous models are
therefore left out whenever their inclusion would have led to substantially different
scales.

Figures 2, 3 and 4 show histograms of the average log predictive probability differ-
ences with separate histograms for the Bayesian and the frequentist models. Here, the
four models (HOM, CPS, MIX and HMM) are compared independently within the
Bayesian and within the frequentist framework without comparing the two paradigms
(Bayesian vs. frequentist). In each histogram the models being most consistent with
the data (i.e. being most consistent with the data generation process), are used as ‘ref-
erence’ models.11 In a complementary study the four Bayesian models and the four
frequentist models are compared in a pairwise manner. In Figs. 5 and 6 for each of
the four models (HOM, CPS, MIX and HMM) the average log predictive probability
differences (‘Bayesian results minus frequentist results’) are plotted against the aver-
age log predictive probability of the Bayesian and the frequentist results. The curves
(‘differences vs. means’) are known as ‘Tukey mean-difference’ or ‘Bland-Altman’
plots, see Cleveland (1994) or Bland and Altman (1995).

6.1 Global trends, Figs. 2–6

Before studying the individual results in more detail, two global trends become obvi-
ous. Figures 2, 3 and 4 show that the predictive probability differences between the
non-homogeneous models get consistently lower as the number of samples n per
time point t increases. The only exception appears for the mixture data [panels (b)
in Figs. 2, 3], as the changepoint models (BAYES–CPS and FREQ–CPS) can per
se not deal with mixture allocations, even when the sample size n is large. That is,
for sufficiently informative data each non-homogeneous model can approximate all
kinds of non-homogeneity, unless there is a clear mismatch between the dependency
structure in the data and the inference model, as observed for the CPS models on
mixture data. The second global finding from Figs. 5 and 6 is that the pairwise differ-
ences between the Bayesian and the frequentist models consistently converge towards
zero as the number of samples n increases. That is, asymptotically for all four mod-
els the Bayesian variant and the frequentist variant perform equally well for all data
scenarios.

11 For example the changepoint models (FREQ–CPS and BAYES–CPS) are used as references for the two
changepoint-segmented data scenarios: P� = (1m , 2m , 3m , 4m ) and P� = (1m , 2m , 3m , 4m , 5m , 6m ).
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Fig. 2 Cross-method comparison on synthetic data—part 1/3. a–c Histograms of the average log predic-
tive probability differences for three non-homogeneous allocation scenarios with error bars representing
standard deviations. In each (a–c) the upper row refers to the Bayesian models while the bottom row refers
to the frequentist models. In each panel the differences between the reference (=most consistent with the
data) model and the other two non-homogeneous models are shown. The homogeneous models led to
substantially lower predictive probabilities and the results are therefore not shown. From left to right the
sample size n increases and the scale of the y-axis changes. a Changepoint data P� = (1m , 2m , 3m , 4m ).
LeftCPS–MIX, rightCPS–HMM. bMixture dataP� = M I X (1m , 5m ). LeftMIX–CPS, rightMIX–HMM.
c Hidden Markov data P� = (1m , 5m , 1m , 5m ). Left HMM–CPS, right HMM–MIX
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Fig. 3 Cross-method comparison on synthetic data—part 2/3. a–cHistograms of the average log predictive
probability differences for three more non-homogeneous allocation scenarios. See caption of Fig. 2 for
further details. a Changepoint data P� = (1m , 2m , 3m , 4m , 5m , 6m ). Left CPS–MIX, right CPS–HMM.
b Mixture data P� = M I X (1m , 2m , 4m , 8m ). Left MIX–CPS, right MIX–HMM. c Hidden Markov data
P� = (1m , 5m , 1m , 5m , 1m , 5m ). Left HMM–CPS, right HMM–MIX
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Fig. 4 Cross-method comparison on synthetic data—part 3/3. a, b histograms of the average log predictive
probability differences for the two homogeneous data scenarios. In both panels the upper (lower) row refers
to the Bayesian (frequentist) models and the sample size n increases from left to right. In each panel the
differences between the homogeneous (HOM) model and the three non-homogeneous models (CPS, MIX
and HMM) are shown. Note that the FREQ–HMM model results never differed from the FREQ–HOM
results and that the scales of the y-axis differ. a Homogeneous data P� = (1m ). Left HOM–CPS, centre
HOM–MIX, right (HOM–HMM). b Homogeneous data P� = (5m ). Left HOM–CPS, centre HOM–MIX,
right HOM–HMM

6.2 Specific trends, Figs. 2–4

6.2.1 Homogeneous data, Fig. 4

The differences in the log predictive probabilities are relatively low, except for the
frequentist changepoint model (FREQ–CPS). That is, for homogeneous data only
FREQ–CPS overfits the data for low sample sizes n, while the other non-homogenous
models are never inferior to the homogeneous reference models. A further analysis
(results not shown) reveals that FREQ–CPS yields low predictive probabilities, as
it tends to impose too many changepoints. For low sample sizes n, single columns
(or coherent sequences of columns) can—by chance—have exceptional large values.
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Fig. 5 Tukey mean-difference plots to compare the performances of the frequentist and the Bayesian
models on synthetic data—part 1/2. The two panels show the average log predictive probability differences
for the homogeneous data (a) and for the changepoint segmented data (b). In the four plots for each of the
four models (HOM, CPS,MIX and HMM) the log predictive probability differences (Bayesian–frequentist)
have been plotted against the average log predictive probabilities (of Bayesian and frequentist). The five
symbols on each line correspond to the values obtained for the five sample sizes n ∈ {1, 2, 4, 8, 16}. a
Homogeneous data. Left P� = (1m ), right P� = (5m ). b Changepoint data. Left P� = (1m , 2m , 3m , 4m ),
right P� = (1m , 2m , 3m , 4m , 5m , 6m )

Unlike the relatively robust Bayesian variant (BAYES–CPS), the frequentist change-
point model (FREQ–CPS) separates (or ‘cuts out’) those columns by setting two
surrounding changepoints. The Bayesian changepoint variant appears to have a more
effective penalty against over-fitting and does not allow for changepoints at neigh-
bouring positions so that single columns cannot be ‘cut out’.

6.2.2 Changepoint-segmented data, panels (a) in Figs. 2 and 3

For all sample sizes n the Bayesian changepoint model (BAYES–CPS) performs sig-
nificantly better than the Bayesian mixture model (BAYES–MIX) and the Bayesian
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Fig. 6 Tukey mean-difference plots to compare the performances of the frequentist and the Bayesian
models on synthetic data—part 2/2. The two panels show the average log predictive probability differ-
ences plotted against the average log predictive probabilities for the mixture data (a) and for the hidden
Markov model data (b); for further details see caption of Fig. 5. aMixture data. Left P� = MIX(1m , 5m ),
right P� = MIX(1m , 2m , 4m , 8m ). b Hidden Markov data. Left P� = (1m , 5m , 1m , 5m ), right P� =
(1m , 5m , 1m , 5m , 1m , 5m ).

hidden Markov model (BAYES–HMM). The differences to the reference model
(BAYES–CPS) show that BAYES–MIX performs consistently worse than BAYES–
HMM. The reason becomes obvious from Fig. 8 in Sect. 7: BAYES–HMM approxi-
mates the underlying allocation better than BAYES–MIX, as BAYES–HMM—unlike
BAYES–MIX—does not ignore the temporal order of the data points. For the frequen-
tist models, the trend on changepoint-segmented data is slightly different: For small
n ≤ 2 there is no difference in the performance of the non-homogeneous models.
Only for n ≥ 4 the changepoint model (FREQ–CPS) performs better than its com-
petitors. Thereby the mixture model (FREQ–MIX) performs better than the hidden
Markov model (FREQ–HMM) for n ≥ 4. Figure 9 in Sect. 7 suggests that this can be
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explained as follows: FREQ–MIX possesses fewer parameters than FREQ–HMM(see
Table 1) so that its BIC-penalty is lower (see Fig. 9). Consequently, FREQ–MIX can
approximate the underlying segmentation better than FREQ–HMM. For low n ≤ 2
there is no difference between FREQ–CPS and the other models, as the frequentist
changepoint model (FREQ–CPS) tends to overfit the data, as discussed above (see
homogeneous data) and demonstrated in Sect. 7 (see Fig. 10).

6.2.3 Free-mixture data, panels (b) in Figs. 2 and 3

The Bayesian and the frequentist models show very similar trends. The changepoint
models (CPS) are substantially outperformed by the free mixture reference models
(MIX),while the hiddenMarkovmodels (HMM)are competitive to themixturemodels
(MIX). Only for small n ≤ 2 FREQ–HMM appears to be slightly inferior to FREQ–
MIX. Figure 9 in Sect. 7 suggests that this is due to the higher BIC-penalty of the
FREQ–HMMmodel. However, for the scenarioMIX(1m, 5m) and n = 1 the increased
BIC-penalty turns out to be advantageous for FREQ–HMM. Unlike FREQ–HMM,
FREQ–MIX tends to overfit the data with n = 1 by re-allocating outliers (columns
with large values) to additional components.

6.2.4 Hidden-Markov data, panels (c) in Figs. 2 and 3

Among the Bayesian models, the mixture model (BAYES–MIX) is clearly outper-
formed by the hidden Markov model (BAYES–HMM) for low sample sizes n ≤ 4.
For larger sample sizes n ≥ 8 the differences decrease. The Bayesian changepoint
model (BAYES–CPS) is competitive to BAYES–HMM, as it approximates the under-
lying dependency structure by additional changepoints; see Fig. 8 in Sect. 7.12 For the
frequentist models a complementary trend can be observed: The changepoint model
(FREQ–CPS) is consistently inferior to the reference model (FREQ–HMM), while
the mixture model (FREQ–MIX) is competitive for all n. Again FREQ–CPS tends to
overfit the data (by cutting out columns with large realisations by surrounding change-
points), see Fig. 8 in Sect. 7. The disadvantage of FREQ–MIX, to ignore the temporal
order of the data points, appears to be compensated by its relatively low BIC-penalty
(see Fig. 9 in Sect. 7).

6.3 Bayesian versus frequentist

The Tukey-mean-difference plots of the pairwise predictive probability differences
between the four Bayesian and the four frequentist models in Figs. 5 and 6 show that
both paradigms yield nearly identical results for large sample sizes (n ≥ 8), while
significant differences can be observed for small sample sizes n. Most remarkably
are the following two trends: (i) Except for the mixture data [panel (a) in Fig. 6],

12 Note that the selected Poisson means (θ = 1 and θ = 5) yield components with very dissimilar values.
This makes it easy for the changepoint model to distinguish them and to approximate the non-stationarity
by setting an increased number of changepoints, e.g. 3 changepoints for (1m , 5m , 1m , 5m ).
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for low sample sizes n the Bayesian changepoint model (BAYES–CPS) is superior
to the frequentist changepoint model (FREQ–CPS). (ii) Except for the homogeneous
data [panel (a) in Fig. 5], the frequentist hidden Markov model (FREQ–HMM) and
especially the frequentist mixture model (FREQ–MIX) are superior to their Bayesian
counterparts (BAYES–HMM and BAYES–MIX). The reason for the superiority of the
Bayesian changepoint model (BAYES–CPS) is that the frequentist variant (FREQ–
CPS) has a clear tendency towards over-fitting for uninformative data (for low n); see
Figs. 8 and 10 in Sect. 7 for more details. Unlike the Bayesian changepoint-model
instantiation, FREQ–CPS infers only one single allocation vector (changepoint set)
without any model-averaging. The low number of parameters of FREQ–CPS (see
Table 1) yields a relatively low BIC-penalty. Single columns of the data matrix, which
by chance have larger values than the other columns, can be ‘cut out’ so that the FREQ–
CPS model is very susceptible to over-fitting. On the other hand, the superiority of the
frequentist mixture (FREQ–MIX) and the frequentist hidden Markov model (FREQ–
HMM) over its Bayesian counterparts can be explained by the Multinomial-Dirichlet
prior on the allocation vector. Both Bayesian models (BAYES–MIX and BAYES–
HMM)employMultinomial-Dirichlet priors for the allocation vectors,which can yield
very strong prior penalties for non-homogeneous allocation vectors. As shown in Fig. 9
in Sect. 7, BAYES–MIX is strongly penalized for all forms of non-homogeneity and
BAYES–HMM is strongly penalized for mixture allocation vectors. This bottleneck
of the Multinomial-Dirichlet prior for allocation vectors has already been analysed
and discussed in Grzegorczyk et al. (2010) and renders the Bayesian model variants
inappropriate for small samples sizes n, i.e. for uninformative data, where the effect
of the likelihood is small compared to the effect of the Multinomial-Dirichlet prior.

6.4 The New York City Taxi (NYCT) data

The results for the NYCT data are shown in Fig. 7. The top plots shows the average
log predictive probabilities for the Bayesian models (left) and the frequentist models
(right) for different sample sizes n. The lower panel provides Tukey mean-difference
plots to visualise the pairwise differences between the Bayesian and the frequen-
tist models. The upper plots show that the homogeneous models (FREQ–HOM and
BAYES–HOM) perform show the worst performance on the NYCT data. This is not
unexpected, as Fig. 1 shows that the Taxi pick-up data are clearly non-stationary.
Among the Bayesian models, the changepoint-model (BAYES–CPS) performs best
for all sample sizes n, and asymptotically (i.e. as n increases) the non-homogeneous
Bayesian models perform equally well. Among the frequentist models the mixture
model (FREQ–MIX) shows the best performance. For n = 1 FREQ–MIX and FREQ–
HMM perform approximately equally well, while FREQ–CPS performs significantly
worse. For n = 2 the FREQ–MIX model performs better than both competitors. And
for larger n (n ≥ 4) FREQ–MIX and FREQ–CPS perform equally well, while FREQ–
HMMperforms slightly worse. The Tukeymean-difference plot in the bottom of Fig. 7
shows that the Bayesian and frequentist models asymptotically perform equally well.
For the lower samples sizes n the trends are consistent with the earlier observations for
the synthetic data. The Bayesian changepoint model (BAYES–CPS) is superior to its
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Fig. 7 Results for the New York City Taxi data. In the upper plots the average log predictive probabilities
(averaged across 35 data sets; i.e. 5 randomly sampled data instantiations per weekday) of the Bayesian
models (upper left) and the frequentist models (upper right) have been plotted against the number of samples
n per time point t . In the lower plot for each of the three non-homogeneous models (CPS, MIX and HMM)
the average log predictive probability differences (BAYES–FREQ) have been plotted against the average
log predictive probability of FREQ and BAYES. The five symbols on each line correspond to the values
obtained for the sample sizes n ∈ {1, 2, 4, 8, 16}. In the lower plot the Bayesian (frequentist) model is
superior when the curve/symbol is above (below) the reference line

frequentist counterpart (FREQ–CPS), while the opposite trend can be observed for the
mixture and the hidden Markov model. The p values of two-sided one-sample t tests
for the predictive probability differences between the best Bayesian model (BAYES–
CPS) and the best frequentist model (FREQ–CPS) are computed to determine whether
the performances differ significantly for any n. Given the relatively small t test sample
size of nd = 7 weekdays,13 the five p values (for n = 1, 2, 4, 8, 16) are higher than
the standard level α = 0.05, indicating that the best Bayesian and the best frequentist
model are performing approximately equally well on the NYCT data.14

13 That is one (average) predictive probability difference per weekday; the differences for the 5 data
replicates per weekday are averaged, as they are very similar to each other.
14 p values: p = 0.30 (n = 1), 0.53 (n = 2), p = 0.96 (n = 4), p = 0.45 (n = 8), and p = 0.72 (n = 16).
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(a) (b)

Fig. 8 Heatmap representations of the inferred connectivity structures for the non-homogeneous mod-
els. a Refers to the Bayesian models, b to the frequentist models. Both panels are arranged as 3-by-4
matrices with rows corresponding to the true allocation vectors: CPS: (1m , 2m , 3m , 4m ) (top), HMM:
(1m , 5m , 1m , 5m , 1m , 5m ) (centre), and MIX: MIX(1m , 5m ) (bottom). The first columns show the true
connectivity structures, and rows 2–4 correspond to the three non-homogeneous models: CPS, HMM, and
MIX. The heatmaps give the inferred probabilities p(vs = vt |D) of two points s and t belonging to the
same component. The probabilities are represented by a grey shading, where white corresponds to 1, and
black corresponds to 0. The axes refer to the T = 96 time points. All connectivity probabilities p(vs = vt )

are averaged over 25 data instantiations with n = 1 observation per time point. The time points of the MIX
data in the last rows have been ordered w.r.t. the two mixture components. a Heatmaps of Bayesian model
variants. b Heatmaps of frequentist model variants
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Fig. 9 Comparison of penalty terms for the non-homogeneous models. The plot is arranged as a 2-by-3
matrix, and the rows refer to the frequentist (top) and the Bayesian (bottom) models. The columns refer to
three different allocation scenarios (CPS data, HMMdata, andMIX data) and for each scenario two variants
(V1 and V2) are distinguished. The segmentation schemes correspond to those used in the comparative
evaluation study in Sect. 6, see Table 2 in the supplementary material for an overview. The bars give the
penalties (BIC or prior probability) of the three models (CPS, MIX and HMM) for the true underlying
allocation. As the CPS models cannot infer the true allocation of mixture data, the bars are not shown. For
the CPS models it is assumed that they approximate HMM data by additional changepoints, e.g. (HMM,
V1): (1m , 5m , 1m , 5m ) is approximated by setting 3 changepoints

7 Further model diagnostics

This section provides additional diagnostic plots for the synthetic data, analysed in
Sect. 6. The goal is to shed more light onto the relative merits and shortcomings of the
models under comparison and to derive some conclusions of general validity. Since
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Fig. 10 Comparing the best scoring models with the ‘true’ models. a Diagnostics for the changepoint
models (CPS–FREQ and CPS–BAYES) on changepoint-segmented data: (1m , 2m , 3m , 4m ) (circles) and
(1m , 2m , 3m , 4m , 5m , 6m ) (diamonds). b Diagnostics for the mixture models (MIX–FREQ and MIX–
BAYES) on mixture data: MIX(1m , 5m ) (circles) and MIX(1m , 2m , 4m , 8m ) (diamonds). In both panels
there are 4 scatter plots, in which features of the ‘best’ models (BAYES: highest posterior, FREQ: best
BIC) are plotted against the corresponding features of the ‘true’ models, using the true allocations. Symbols
that refer to Bayesian models are white-colored, the frequentist symbols are grey-colored. Upper left scores
versus scores (BAYES: log(likelihood+prior), FREQ: BIC value); upper right log-likelihood versus log-
likelihood; lower left penalty versus penalty (BAYES: log(prior), FREQ: BIC-penalty); and lower right
predictive probability versus predictive probability. See supplementary material for a similar plot for time
series with n = 16 data points per time point. a Changepoint models (FREQ and BAYES) on changepoint
data with n = 1. b Mixture models (FREQ and BAYES) on mixture data with n = 1

the predictive probabilities differed most significantly for sparse data, the focus of this
section is on time series with only n = 1 observation per time point. The first analysis
investigates to which extent the non-homogeneous models are capable of inferring the
true underlying allocation vectors. To this end, for three of the allocation scenarios,
namely (1m, 2m, 3m, 4m), (1m, 5m, 1m, 5m, 1m, 5m), and MIX(1m, 5m), the average
probabilities, p(vs = vt |D), that two time points s and t are allocated to the same
component, are computed. The two panels of Fig. 8 show heatmap representations
of those connectivity probabilities for the Bayesian and for the frequentist model
variants. The heatmaps show the following trends: (1st rows, CPS data): The MIX
models fail to infer the true allocation; the time points are not sufficiently separated
and the heatmaps appear unstructured. The HMM models perform better and their
heatmaps show that the first time points and the last time points both build connected
segments; only the centre changepoint is improperly inferred. The heatmaps of the
CPS models are very similar to the true heatmap. Although the centre changepoint
is a little bit diffuse, it can be seen that the data consist of 3–4 connected segments.
(2nd rows, HMM data): The HMM models reconstruct the true allocation almost
perfectly, while the CPS models segment the data into too many segments (K = 6).
This is the reason why changepoint-based models are inappropriate for HMM data.
As discussed earlier, CPS models cannot re-visit components once left so that HMM
allocations are not in their allocation vector configuration spaces. CPS-models have to
approximate HMM allocations by setting additional changepoints; this is the reason
for their suboptimal performances on HMM data. The mixture models, in principle,
infer the right trends. But it can be seen from the heatmaps that the separations between
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the components are weaker than those of the HMM models. (3rd rows, MIX data):
The CPS models fail to infer the segmentation of the mixture data. The HMM and
the MIX models perform approximately equally well and correctly divide the time
points into K = 2 components, though the inferred separations appear to be slightly
too weak. (BAYESIAN vs. FREQ): The heatmaps of the Bayesian and the frequentist
model variants are very similar, except for the heatmaps of the changepoint-models on
mixture data (see bottom rows, 2nd columns in Fig. 8). While CPS–BAYES does not
separate the time points, the frequentist counterpart (CPS–FREQ) shows the opposite
behaviour: CPS–FREQ separates the time points into (too) many short segments.

Overall, the findings are in agreement with the results from Sect. 6: The heatmaps
in Fig. 8 confirm that the HMM models can properly infer HMM data and mixture
data while their performances on changepoint-segmented data are suboptimal (the
changepoints are not properly inferred). The CPS models and the MIX models com-
pletely fail for certain allocation scenarios: The CPS model cannot deal with mixture
data and can only approximate the segmentation of HMM data by setting too many
changepoints. The mixture models, which do not exploit the temporal order of the
data points, are inappropriate for changepoint-segmented data. Another finding is the
difference between the two changepoint models: CPS–BAYES and CPS–FREQ. For
mixture data CPS–BAYES infers ‘undercomplex’ allocations with too few change-
points (mostly K = 1), while CPS–FREQ infers ‘overcomplex’ allocations with too
many changepoints (even the maximum of K = 10 changepoints is reached). The
latter finding suggests that the frequentist changepoint model has a tendency towards
overfitting the data by setting too many changepoints.

A comparison of the penalty terms for the true allocations is given in Fig. 9. The
top row of Fig. 9 shows the BIC-penalties of the frequentist models, the bottom row
shows the Bayesian (log) prior probability penalties. (CPS data andHMMdata) The
penalties of the frequentist and the Bayesian models are comparable except for the
MIX model. For both types of data the penalties of the Bayesian mixture model are
substantially higher than the penalties of its frequentist counterpart. (MIX data) The
CPS model cannot infer the true mixture allocations. The Bayesian HMM model and
the Bayesian MIX model are penalized significantly stronger than their frequentist
counterparts. (MIX–BAYES vs. HMM–BAYES) The bottom row of Fig. 9 shows
that the penalties of HMM–BAYES andMIX–BAYES are nearly identical for mixture
data, while MIX–BAYES has substantially higher penalties for CPS data and MIX
data. That is, the Bayesian mixture model (MIX–BAYES) is ‘over-penalized’ for non-
mixture data.

The last diagnostic compares the performances of the Bayesian and the frequentist
models with respect to over-fitting issues. To this end, certain ‘features’ of the ‘best’
inferred models (FREQ-models minimising the BIC score; BAYES-models with the
highest posterior score) are compared with the corresponding ‘features’ of the true
models, i.e. models which are based on the true allocation vectors. The ‘features’ are:
(i) the scores, (ii) the (marginal) likelihood values, (iii) the prior penalty terms, and
(iv) the predictive probabilities for new data. Figure 10 gives scatter plots in which
the features of the best inferred models are plotted against the features of the true
models. The scatter plots can be interpreted as follows: Symbols are above (below) the
diagonal when the feature of the best inferred model is higher (lower) than the feature

123



Comparative evaluation of Poisson counting models 31

of the true model. (Figure 10a, changepoint-divided data): The best inferred models
yield higher scores and higher likelihoods than the true models. That is, both models
variants (BAYES and FREQ) fit the data better than the true models. But the scatter
plot of the penalty terms show that the Bayesian CPSmodel consistently infers ‘under-
penalized’ models (i.e. models with too few changepoints) while the frequentist CPS
model also infers ‘over-penalized’ models (i.e. models with too many changepoints).
The scatter plot of the predictive probabilities shows the implication. The inferred
models are inferior to the true models (all symbols are below the diagonal), but the
predictive probabilities of the ‘under-complex’ CPS–BAYES model are better than
those of the ‘over-complex’ CPS–FREQ model. Thereby the most ‘over-complex’
CPS–FREQ models yield the lowest predictive probabilities. This clearly shows that
the frequentist changepoint model is more susceptible to over-fitting than its Bayesian
counterpart. (Figure 10b, mixture data): The upper panels show that MIX–FREQ
again consistently overfits the data, while the MIX–BAYES model sometimes yields
lower likelihoods than the true model (see diamond symbols in the upper right panel).
The scatter plot of the penalty term shows that MIX–BAYES infers ‘undercomplex’
models (with too few mixture components) for scenario (V2, mixture with K = 4
components) and sometimes for scenario (V1, mixture with K = 2 components). This
suggests that MIX–BAYES overpenalizes the complexity of the allocation vectors, so
that ‘undercomplex’ models are inferred. This explains why MIX–FREQ is superior
to the over-penalized (and thus ‘undercomplex’) MIX–BAYESmodel (see scatter plot
of the predictive probabilities). Figure 1 in the supplementary material shows the same
diagnostics for time series with n = 16 data points per time point. The results show
that those issues of under- and over-penalisation diminish/disappear as the data get
more informative.

Summary

The additional diagnostics, shown in Figs. 8, 9 and 10, confirm four of the empirical
findings from Sect. 6.

1. In Sect. 6 the CPS-models showed suboptimal performances for HMM and MIX
data. Figure 8 shows that CPSmodels are inferior toHMMmodels for both types of
data because the true allocations are not part of their allocation vector configuration
spaces. Only for changepoint segmented data, where the HMM models do not
properly infer the true allocation, theCPSmodels are superior to theHMMmodels.

2. In Sect. 6 the MIX-models showed suboptimal performances for CPS and HMM
data. Figure 8 shows that the MIX models cannot properly infer CPS and HMM
allocations, while the HMMmodels show moderate performances for all types of
data.

3. In Sect. 6 the Bayesian mixture model (MIX–BAYES) was found to be inferior
to its frequentist counterpart (MIX–FREQ). As seen from Figs. 9 and 10, the
Bayesian mixture variant is over-penalised. This renders the frequentist HMM
model preferable to the Bayesian mixture model.

4. In Sect. 6 itwas also found that theBayesianCPSmodel is superior to its frequentist
counterpart (CPS–FREQ). As seen from Fig. 10a, the frequentist changepoint
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model tends to overfit the data. This renders the Bayesian changepoint model
preferable to the frequentist CPS model.

8 Conclusions

In this paper the results of a comparative evaluation study on eight (non-)homogeneous
models for (Poisson) count data were presented. The study was performed on various
synthetic data sets and on taxi pick-up counts, extracted from the recently published
NewYork City Taxi (NYCT) database, described in Sect. 4. For the study the standard
homogeneous Poisson model (HOM) and three non-homogeneous Poisson models,
namely a changepoint model (CPS), a free mixture model (MIX) and a hiddenMarkov
model (HMM), were implemented following the frequentist paradigm (FREQ) and
the Bayesian paradigm (BAYES); see Tables 1 and 2 in Sect. 2 for an overview. The
empirical findings from Sects. 6 and 7 suggest the following conclusions:

Asymptotically, i.e. for sufficiently informative data (here: quantified in terms of
the sample size n per time point t), there is no difference between the paradigms.
The Bayesian and the frequentist models perform equally well. For less informative
data (here: for small n) there are significant differences, as described in more detail
below. While the homogeneous model variants (FREQ–HOM and BAYES–HOM)
cannot deal with non-homogeneity, the non-homogeneous models, except for the fre-
quentist changepoint model (FREQ–CPS), do not overfit homogeneous data. Thus, it
can be recommended applying non-homogeneous approaches, even if the data might
be homogeneous. Moreover, if the data is informative enough, in both frameworks
(Bayesian and frequentist) all three non-homogeneous models can approximate all
kinds of non-homogeneity, unless there is a clear mismatch between the model and
the underlying data. E.g. in Sects. 6 and 7 it was found that the changepoint models
(FREQ–CPS and BAYES–CPS) perform badly for mixture data. The hidden Markov
models (FREQ–HMM and BAYES–HMM) appear to be superior to the mixture mod-
els (FREQ–MIX and BAYES–MIX), since they are competitive on free-mixture data,
and superior on hidden Markov and changepoint-segmented data.15 In a pairwise
comparison of the four Bayesian and the four frequentist models it was found for
less informative data (here: small n) that the Bayesian changepoint model (BAYES–
CPS) is superior to its frequentist counterpart (FREQ–CPS), while the opposite trend
could be observed for the mixture model and the hidden Markov model. The superi-
ority of the Bayesian changepoint model (BAYES–CPS) over the frequentist variant
(FREQ–CPS) is due to the fact the the frequentist model variant is very susceptible
to over-fitting (see Fig. 10a in Sect. 7). The inferiority of the Bayesian free mixture
model (BAYES–MIX) and the Bayesian hidden Markov (BAYES–HMM) model to
their frequentist counterparts is caused by the allocation vector priors. Both Bayesian
models employ the Multinomial-Dirichlet prior, which is known to impose a very
strong penalty on non-homogeneous allocations (see Fig. 9 in Sect. 7), rendering the
Bayesian variants inappropriate for less informative data sets (here: for small samples

15 Though still worse than the changepoint models (FREQ–CPS and BAYES–CPS), which can be seen as
reference models for changepoint-segmented data.
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sizes n) than the two frequentist variants FREQ–MIX and FREQ–HMM (see, e.g.,
Fig. 10b).

For the real-world New York City Taxi (NYCT) data very similar trends could be
observed. For sufficiently informative data (here: for large n) all non-homogeneous
models led to approximately identical results, and for uninformative data (here: for
small n) it was found that the Bayesian changepoint model (BAYES–CPS) performs
better than its frequentist counterpart, while the frequentist mixture model (FREQ–
MIX) performs better than its Bayesian counterpart (see Fig. 7). It was also found that
the performances of the best Bayesian model (BAYES–CPS) and the best frequentist
model (FREQ–MIX) do not differ significantly for any n. Finally, it should be noted
that potential ‘overdispersion’ problems (i.e. potential violations of the Poisson model
assumption) were not taken into account within the presented study. Unlike for the
synthetic data, where all data points were actually sampled from Poisson distribu-
tions so that over-dispersion problems could not arise, overdispersion could have been
present for the real-world NYCT data application. Therefore, the (undispersed) mod-
els, considered here, might have been suboptimal for the NYCT data and better results
could perhaps have been obtained by taking the potential over-dispersion properly
into account; e.g. by replacing the Poisson distribution by the more flexible negative
binomial distribution or by applying more advanced Poisson model approaches.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
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