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Identifiability of Undirected Dynamical Networks:
A Graph-Theoretic Approach

Henk J. van Waarde , Pietro Tesi , and M. Kanat Camlibel , Member, IEEE

Abstract—This letter deals with identifiability of
undirected dynamical networks with single-integrator
node dynamics. We assume that the graph structure of
such networks is known, and aim to find graph-theoretic
conditions under which the state matrix of the network
can be uniquely identified. As our main contribution, we
present a graph coloring condition that ensures identifia-
bility of the network’s state matrix. Additionally, we show
how the framework can be used to assess identifiability
of dynamical networks with general, higher-order node
dynamics. As an interesting corollary of our results, we
find that excitation and measurement of all network nodes
is not required. In fact, for many network structures, iden-
tification is possible with only small fractions of measured
and excited nodes.

Index Terms—Network analysis and control, identifica-
tion, linear systems.

I. INTRODUCTION

NETWORKS of dynamical systems appear in multiple
contexts, including power networks, sensor networks,

and robotic networks (see [1, Sec. 1]). It is natural to
describe such networks by a graph, where nodes correspond
with dynamical subsystems, and edges represent interaction
between different systems. Often, the graph structure of
dynamical networks is not directly available. For instance, in
neuroscience, the interactions between brain areas are typi-
cally unknown [2]. Other examples of networks with unknown
interconnection structure include genetic networks [3] and
wireless sensor networks [4].
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Consequently, the problem of network reconstruction is
considered in the literature. Network reconstruction is quite
a broad concept, and there exist multiple variants of this
problem. For example, the goal in [5] and [6] is to reconstruct
the Boolean structure of the network (i.e., the locations
of the edges). Moreover, simultaneous identification of the
graph structure and the network weights has been considered
in [7]–[9]. Typically, the conditions under which the network
structure is uniquely identifiable are rather strong, and it is
often assumed that the states of all nodes in the network
can be measured [6]–[9]. In fact, it has been shown [10]
that measuring all network nodes is necessary for network
reconstruction of dynamical networks (described by a class
of state-space systems).

In this letter, we consider undirected dynamical networks
described by state-space systems. In contrast to the above dis-
cussed papers, we assume that the graph structure is known,
but the state matrix of the network is unavailable. Such a
situation arises, for example, in electrical or power networks
in which the locations of links are typically known, but link
weights require identification. Our goal is to find graph-
theoretic conditions under which the state matrix of the
network can be uniquely identified.

Graph-theoretic conditions have previously been used to
assess other system-theoretic properties such as structural con-
trollability [11], [12], fault detection [13], [14], and parameter-
independent stability [15]. Conditions based on the graph
structure are often desirable since they avoid potential numeri-
cal issues associated with more traditional linear algebra tests.
In addition, graph-theoretic conditions provide insight in the
types of networks having certain system-theoretic properties,
and can aid the selection of input/output nodes [16].

This letter that are most closely related to the work in this
letter are [17] and [18]. Nabavi and Chakrabortty [17] con-
sider weighted, undirected consensus networks with a single
input. They assume that the graph structure is known, and aim
to identify the weights in the network. A sensor placement
algorithm is presented, which selects a set of sensor nodes on
the basis of the graph structure. It is shown that this set of
sensor nodes is sufficient to guarantee weight identifiability.
Bazanella et al. [18] consider a network model where interac-
tions between nodes are modeled by proper transfer functions
(see also [19], [20]). Also in this letter, the graph structure
is assumed to be known, and the goal is to find conditions
under which the transfer functions can be identified. Under
the assumption that all nodes are externally excited, necessary
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and sufficient graph-theoretic conditions are presented under
which all transfer functions can be (generically) identified.

Note that the above papers make explicit assumptions on
the number of input or output nodes. Indeed, in [17] there is
a single input node, all nodes are input nodes in [18], and
all nodes are measured in [20]. In contrast to these papers,
this letter considers graph-theoretic conditions for identifia-
bility of dynamical networks where the sets of input and
output nodes can be any two (known) subsets of the ver-
tex set. Our main contribution consists of a graph coloring
condition for identifiability of dynamical networks with single-
integrator node dynamics. Specifically, we prove a relation
between identifiability and so-called zero forcing sets [21] (see
also [11], [12], [22]). As our second result, we show how our
framework can be used to assess identifiability of dynamical
networks with general, higher-order node dynamics.

The organization of this letter is as follows. First, in
Section II we introduce the notation and preliminaries used
throughout this letter. Subsequently, in Section III we state the
problem. Section IV contains our main results, and Section V
treats an extension to higher-order dynamics. Finally, our
conclusions are stated in Section VI.

II. PRELIMINARIES

We denote the sets of natural, real, and complex numbers
by N, R, and C, respectively. Moreover, the set of real m × n
matrices is denoted by R

m×n and the set of symmetric n × n
matrices is given by S

n. The transpose of a matrix A is denoted
by A�. A principal submatrix of A ∈ R

n×n is a square sub-
matrix of A obtained by removing rows and columns from A
with the same indices. We denote the Kronecker product of
two matrices A and B by A ⊗ B. The n × n identity matrix is
given by In. If the dimension of In is clear from the context,
we simply write I. For x1, x2, . . . , xn ∈ R

q, we use the nota-
tion col(x1, x2, . . . , xn) ∈ R

qn to denote the concatenation of
the vectors x1, x2, . . . , xn. Finally, the cardinality of a set S is
denoted by |S|.

A. Graph Theory

All graphs considered in this letter are simple, that is,
without self-loops and with at most one edge between any
pair of vertices. Let G = (V, E) be an undirected graph,
where V = {1, 2, . . . , n} is the set of vertices (or nodes), and
E ⊆ V × V denotes the set of edges. A node j ∈ V is said to
be a neighbour of i ∈ V if (i, j) ∈ E. An induced subgraph
GS = (VS, ES) of G is a graph with the properties that VS ⊆ V ,
ES ⊆ E and for each i, j ∈ VS we have (i, j) ∈ ES if and only if
(i, j) ∈ E. For any subset of nodes V ′ = {v1, v2, . . . , vr} ⊆ V
we define the n × r matrix P(V; V ′) as Pij := 1 if i = vj
and Pij := 0 otherwise, where Pij denotes the (i, j)-th entry
of P. We will now define two families of matrices associated
with the graph G. Firstly, we define the qualitative class Q(G)

as [21]

Q(G) := {X ∈ S
n | for i �= j, Xji �= 0 ⇐⇒ (i, j) ∈ E}.

The off-diagonal entries of matrices in Q(G) carry the graph
structure of G in the sense that Xji is nonzero if and only
if there exists an edge (i, j) in the graph G. Note that the

diagonal elements of matrices in Q(G) are free, and hence,
both Laplacian and adjacency matrices associated with G are
contained in Q(G) (see [11]). In this letter, we focus on a
subclass of Q(G), namely the class of matrices with non-
negative off-diagonal entries. This class is denoted by Qp(G),
and defined as

Qp(G) := {X ∈ Q(G) | for i �= j, Xji �= 0 =⇒ Xji > 0}.
Note that (weighted) adjacency and negated Laplacian matri-
ces are members of the class Qp(G).

Remark 1: In this letter, we focus on undirected loopless
graphs G, and on the associated class of matrices Qp(G). One
could also define a class of matrices Ql

p(Gl) for a graph Gl

with self-loops, where a diagonal entry of a matrix in Ql
p(Gl) is

nonzero if and only if there is a self-loop on the corresponding
node in Gl (see [21]). However, since diagonal entries of matri-
ces in Qp(G) are completely free, we obtain Ql

p(Gl) ⊆ Qp(G),
where G is the graph obtained from Gl by removing its self-
loops. As a consequence, all results in this letter are also valid
for graphs with self-loops.

B. Zero Forcing Sets

In this section we review the notion of zero forcing. Let
G = (V, E) be an undirected graph with vertices colored either
black or white. The color-change rule is defined in the follow-
ing way. If u ∈ V is a black vertex and exactly one neighbour
v ∈ V of u is white, then change the color of v to black [21].
When the color-change rule is applied to u to change the color
of v, we say u forces v, and write u → v. Given a coloring of
G, that is, given a set Z ⊆ V containing black vertices only,
and a set V \ Z consisting of only white vertices, the derived
set D(Z) is the set of black vertices obtained by applying the
color-change rule until no more changes are possible [21]. A
zero forcing set for G is a subset of vertices Z ⊆ V such that
if initially the vertices in Z are colored black and the remain-
ing vertices are colored white, then D(Z) = V . Finally, a zero
forcing set Z ⊆ V is called a minimum zero forcing set if for
any zero forcing set Y in G we have |Y| ≥ |Z|.

C. Dynamical Networks

Consider an undirected graph G = (V, E). Let VI ⊆ V be
the set of so-called input nodes, and let VO ⊆ V be the set
of output nodes, with cardinalities |VI | = m and |VO| = p,
respectively. Associated with G, VI , and VO, we consider the
dynamical system

ẋ(t) = Xx(t) + Mu(t) (1a)

y(t) = Nx(t), (1b)

where x ∈ R
n is the state, u ∈ R

m is the input, and y ∈ R
p is

the output. Furthermore, X ∈ Qp(G) and the matrices M and
N are indexed by VI and VO, respectively, in the sense that

M = P(V; VI), and N = P�(V; VO). (2)

We use the shorthand notation (X, M, N) to denote the
dynamical system (1). The transfer matrix of (1) is given by
T(s) := N(sI − X)−1M, where s ∈ C is a complex variable.

Remark 2: Note that in this letter, we focus on dynamical
networks (1), where the state matrix X is contained in
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Qp(G). This implies that X is symmetric and the off-diagonal
elements of X are non-negative. Dynamical networks of
this form appear, for example, in consensus problems [23],
and in the study of resistive-capacitive electrical networks
(see [24, Sec. V-B]). In addition, as we will see, the con-
straints on the matrix X are also attractive from identification
point of view in the sense that we can often identify X with
relatively small sets of input and output nodes. This is in con-
trast to the case of identifiability of matrices that do not satisfy
symmetry and/or sign constraints. This is explained in more
detail in Remark 4.

D. Network Identifiability

In this section, we define the notion of network identifia-
bility. It is well-known that the transfer matrix from u to y
of system (1) can be identified from measurements of u(t)
and y(t) if the input function u is sufficiently rich [25]. Then,
the question is whether we can uniquely reconstruct the state
matrix X from the transfer matrix T(s). Specifically, since we
assume that the matrix X is unknown, we are interested in con-
ditions under which X can be reconstructed from T(s) for all
matrices X ∈ Qp(G). This is known as global identifiability
(see [26]). To be precise, we have the following definition.

Definition 1: Consider an undirected graph G = (V, E)

with input nodes VI ⊆ V and output nodes VO ⊆ V . Define
M and N as in (2). We say (G; VI; VO) is identifiable if for
all matrices X, X̄ ∈ Qp(G) the following implication holds:

N(sI − X)−1M = N(sI − X̄)−1M =⇒ X = X̄. (3)

Note that identifiability of (G; VI; VO) is a property of the
graph and the input/output nodes only, and not of the particular
state matrix X ∈ Qp(G).

Observation 1: The implication (3) that appears in
Definition 1 can be equivalently stated as

NXkM = NX̄kM for all k ∈ N =⇒ X = X̄.

The matrices NXkM for k ∈ N are often referred to as the
Markov parameters of (X, M, N).

In addition to identifiability of (G; VI; VO), we are interested
in a more general property, namely identifiability of an induced
subgraph of G. This is defined as follows.

Definition 2: Consider an undirected graph G = (V, E)

with input nodes VI ⊆ V and output nodes VO ⊆ V , and
let GS be an induced subgraph of G. Define M and N as
in (2). We say (GS; VI; VO) is identifiable if for all matrices
X, X̄ ∈ Qp(G) the following implication holds:

N(sI − X)−1M = N(sI − X̄)−1M =⇒ XS = X̄S,

where XS, X̄S ∈ Qp(GS) are the principal submatrices of
X and X̄ corresponding to the nodes in GS.

Note that identifiability of (G; VI; VO) is a special case
of identifiability of (GS; VI; VO), where the subgraph GS is
simply equal to G.

III. PROBLEM STATEMENT

Let G = (V, E) be an undirected graph with input nodes
VI ⊆ V and output nodes VO ⊆ V , and consider the associ-
ated dynamical system (1). Throughout this letter, we assume

G, VI , and VO to be known. We want to investigate which
principal submatrices of X can be identified from input/output
data (for all X ∈ Qp(G)). In other words, we want to find out
for which induced subgraphs GS of G, the triple (GS; VI; VO)

is identifiable. In particular, we are interested in conditions
under which (G; VI; VO) is identifiable.

Note that it is not straightforward to check the condition for
identifiability in Definitions 1 and 2. Indeed, these definitions
requires the computation and comparison of an infinite num-
ber of transfer matrices (for all X, X̄ ∈ Qp(G)). Instead, in
this letter we want to establish a condition for identifiability
of (GS; VI; VO) in terms of zero forcing sets. Such a graph-
based condition has the potential of being more efficient to
check than the condition of Definition 2. In addition, graph-
theoretic conditions have the advantage of avoiding possible
numerical errors in the linear algebra computations appearing
in Definition 2. Explicitly, the considered problem in this letter
is as follows.

Problem 1: Consider an undirected graph G = (V, E) with
input nodes VI ⊆ V and ouput nodes VO ⊆ V , and let GS be
an induced subgraph of G. Provide graph-theoretic conditions
under which (GS; VI; VO) is identifiable.

IV. MAIN RESULTS

In this section, we state our main results. First, we establish
a lemma which will be used to prove our main contribu-
tions (Theorems 1 and 2). The following lemma considers the
case that VI = VO, and asserts that identifiability of a triple
(GS; U; U) is invariant under the color-change rule.

Lemma 1: Let GS be an induced subgraph of the undirected
graph G = (V, E), and let U ⊆ V . Suppose that u → v, where
u ∈ U and v ∈ V \ U. Then (GS; U; U) is identifiable if and
only if (GS; U ∪ {v}; U ∪ {v}) is identifiable.

Proof: The ‘only if’ part of the statement follows directly
from the fact that identifiability is preserved under the addi-
tion of input and output nodes. Therefore, in what follows, we
focus on proving the ‘if’ part. Suppose that (GS; U ∪ {v}; U ∪
{v}) is identifiable. Let M̄ := P(V; U ∪ {v}) denote the asso-
ciated input matrix, and let N̄ := M̄� be the output matrix.
In addition, let M := P(V; U) and N := M�. The idea of this
proof is as follows. For any X ∈ Qp(G), we will show that
the Markov parameters N̄XkM̄ for k ∈ N can be obtained from
the Markov parameters

NXkM for k ∈ N. (4)

Then, we will show that this implies that (GS; U; U) is
identifiable. In particular, due to the overlap in the Markov
parameters of (N̄, X, M̄) and (N, X, M), we only need to
show that (Xk)vw = (Xk)wv and (Xk)vv can be obtained
from (4) for all k ∈ N and all w ∈ U. We start by show-
ing that Xuv can be obtained from (4). To this end, we define
Vu := {u} ∪ {j ∈ V | (u, j) ∈ E} and compute

(X2)uu =
∑

z∈Vu

XuzXzu

= X2
uv +

∑

z∈Vu\{v}
XuzXzu.
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By hypothesis, u → v and hence Vu \ {v} ⊆ U. This implies
that X2

uv = (X2)uu − ∑
z∈Vu\{v} XuzXzu can be obtained from

the Markov parameters (4). As X ∈ Qp(G), we have Xuv > 0
and therefore also Xuv can be obtained from (4).

Next, we prove that (Xk)vw can be obtained from (4) for
any k ∈ N and any w ∈ U. To this end, we write

(Xk+1)uw = Xuv(X
k)vw +

∑

z∈Vu\{v}
Xuz(X

k)zw.

Since Vu \ {v} ⊆ U, and Xuv can be obtained from (4), this
shows that we can find (Xk)vw from the Markov parameters (4)
using the formula

(Xk)vw = 1

Xuv

⎛

⎝(Xk+1)uw −
∑

z∈Vu\{v}
Xuz(X

k)zw

⎞

⎠.

Finally, we have to show that (Xk)vv can be obtained from (4)
for any k ∈ N. To do so, we compute

(Xk+2)uu =
∑

i,j∈Vu

Xui(X
k)ijXju

= X2
uv(X

k)vv +
∑

i,j∈Vu{i,j}�={v}

Xui(X
k)ijXju.

Note that (Xk+2)uu appears as an entry of one of the Markov
parameters (4). Furthermore, we have already established that
Xuv can be obtained from (4). If i = v, then Xui = Xuv, and we
obtain Xui from (4). Otherwise, i ∈ Vu \ {v}, and Xui already
appears as an entry of one of the Markov parameters (4). We
can repeat the exact same argument for Xju, to show that it
can be obtained from (4). Finally, consider the term (Xk)ij for
i and j not both equal to v. If i, j ∈ Vu \ {v}, then i, j ∈ U
and (Xk)ij appears directly as an entry of a Markov parameter
in (4). Next, if i = v, then j ∈ U and we have already proven
that (Xk)vj can be obtained from (4). By symmetry, this also
holds for the entry (Xk)iv, where i ∈ U. This shows that (Xk)vv
can be found using the Markov parameters (4) via the formula

(Xk)vv = 1

X2
uv

⎛

⎜⎜⎝(Xk+2)uu −
∑

i,j∈Vu{i,j}�={v}

Xui(X
k)ijXju

⎞

⎟⎟⎠.

Now, by hypothesis, for any X, X̄ ∈ Qp(G) the following
implication holds:

N̄XkM̄ = N̄X̄kM̄ for all k ∈ N =⇒ XS = X̄S, (5)

where XS and X̄S are the principal submatrices of respec-
tively X and X̄ corresponding to the nodes in GS. Suppose
that NXkM = NX̄kM for all k ∈ N. By the above formulae
for (Xk)vv and (Xk)vw (and for (X̄k)vv, (X̄k)vw), we conclude
that N̄XkM̄ = N̄X̄kM̄ for all k ∈ N, and consequently XS = X̄S
by (5). Therefore, (GS; U; U) is identifiable.

Based on the previous lemma, we state the following the-
orem, which is one of the main results of this letter. Loosely
speaking, it states that we can identify the principal submatrix
of X corresponding to the derived set (see Section II-B) of
VI ∩ VO.

Theorem 1: Let GS = (VS, ES) be an induced subgraph of
the undirected graph G = (V, E), and let VI, VO ⊆ V . Define
W := VI ∩ VO and let D(W) be the derived set of W in G. If
VS ⊆ D(W) then (GS; VI; VO) is identifiable.

Proof: Let GW denote the induced subgraph of G with vertex
set D(W). Note that (GW; D(W); D(W)) is trivially identifi-
able. By consecutive application of Lemma 1, we find that
(GW; W; W) is identifiable. By hypothesis, GS is a subgraph
of GW and hence (GS; W; W) is identifiable. Finally, note
that W ⊆ VI and W ⊆ VO. Since identifiability is invariant
under the addition of input/output nodes, we conclude that
(GS; VI; VO) is identifiable.

As a particular case of Theorem 1, we find that (G; VI; VO)

is identifiable if D(W) = V , that is, if W is a zero forcing set
in the graph G. This is the topic of the following theorem.

Theorem 2: Let G = (V, E) be an undirected graph and
let VI, VO ⊆ V . If VI ∩ VO is a zero forcing set in G then
(G; VI; VO) is identifiable.

Remark 3: For a graph G = (V, E), checking whether a
given subset is a zero forcing set in G can be done in time
complexity O(n2), where n = |V| (see [22]). Consequently,
checking the condition of Theorem 2 is still feasible for large-
scale graphs. Although the focus of this letter is on the analysis
of identifiability, we remark that Theorem 2 can also be used
in the design of sets VI and VO that ensure identifiability of
(G; VI; VO). Specifically, input and output sets with small car-
dinality are obtained by choosing VI = VO as a minimum zero
forcing set in G. Minimum zero forcing sets are known for
several types of graphs including path, cycle, and complete
graphs, and for the class of tree graphs (see [11, Sec. IV-B]).
It was shown that finding a minimum zero forcing set in
general graphs is NP-hard [27]. However, there also exist
heuristic algorithms for finding (minimum) zero forcing sets.
For instance, it can be shown that for any graph G, it is possi-
ble to find a zero forcing set of cardinality n−diam(G), where
diam(G) denotes the diameter of G.

Remark 4: It is interesting to remark that Theorem 2
implies that for many networks it is sufficient to excite
and measure only a fraction of nodes (see, for instance,
Example 1). This is in contrast with the case of identifiabil-
ity of dynamical networks with unknown graph structure, for
which it was shown that all nodes need to be measured [10].
Apart from the fact that we assume that the graph G is known,
the rather mild conditions of Theorem 2 are also due to the
fact that we consider undirected graphs with state matrices
that satisfy sign constraints. In fact, in the case of directed
graphs it can be shown that the condition VI ∪ VO = V is
necessary for identifiability, i.e., each node of the graph needs
to be an input or output node (or both). To see this, let Gd be
a directed graph, and define Qp(Gd) analogous to the defini-
tion for undirected graphs (Section II-A), with the distinction
that X ∈ Qp(Gd) is not necessarily symmetric. Assume that
VI∪VO �= V . We partition X ∈ Qp(Gd), and pick a nonsingular
S ∈ R

n×n as

X =
[

X11 X12
X21 X22

]
, S =

[
I 0
0 εI

]
,

where the row block
[
X21 X22

]
corresponds to the nodes in

V \ (VI ∪VO). The partition of S is compatible with the one of
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Fig. 1. Tree graph G with input and output set VI = VO = {4, 7, 9, 10,

17, 19, 22, 34, 38, 40, 41, 42, 44, 47, 49, 50, 52, 57, 60, 64, 65, 67}.

X, and ε is a positive real number, not equal to 1. If X12 and
X21 are not both zero matrices, then X̄ := S−1XS is contained
in Qp(Gd) and X̄ �= X, but (X, M, N) and (X̄, M, N) have the
same Markov parameters. That is, (G; VI; VO) is not identifi-
able. If both X12 and X21 are zero, then the Markov parameters
of (X, M, N) are independent of X22, hence, (G; VI; VO) is
also not identifiable. Therefore, for directed graphs the condi-
tion VI ∪ VO = V is necessary for identifiability. The above
discussion also implies that VI ∪ VO = V is necessary for
identifiability of undirected graphs for which X ∈ Q(G) (i.e.,
for which X does not necessarily satisfy the sign constraints).
Indeed, this can be shown by the same arguments as above,
using ε = −1. We conclude that the conditions for identifi-
ability become much more restrictive once we remove either
the assumption on sign constraints or the assumption that the
graph is undirected.

Example 1: In this example, we illustrate Theorem 2.
Consider the tree graph G = (V, E) of Figure 1.

The input set VI and output set VO have been designed
in such a way that VI = VO is a minimum zero forcing set
in G. In fact, the nodes of VI have been chosen as initial
nodes of paths in a so-called minimal path cover of G [11],
and therefore, VI is a minimum zero forcing set in G by
[11, Proposition IV.12]. This implies that also VI ∩ VO is a
zero forcing set, and therefore, by Theorem 2 we conclude
that (G; VI; VO) is identifiable.

Example 2: It is important to note that the condition in
Theorem 2 is not necessary for identifiability. This is shown in
the following example. Consider a graph G = (V, E), where
V = {1, 2, 3}, and E = {(1, 2), (2, 1), (2, 3), (3, 2)}, and let
VI = {2} and VO = V . A straightforward calculation shows
that any matrix X ∈ Qp(G) can be identified from the Markov
parameters NXM and NX2M. This shows that (G; VI; VO) is

identifiable. However, note that VI ∩ VO = {2} is not a zero
forcing set in G.

V. IDENTIFIABILITY FOR HIGHER-ORDER DYNAMICS

The purpose of this section is to generalize the results
of Section IV to the case of higher-order node dynamics.
Specifically, suppose that node i ∈ V has the associated
dynamics

ẋi(t) =
{

Axi(t) + Bui(t) + Ezi(t) if i ∈ VI
Axi(t) + Ezi(t) otherwise

,

where xi ∈ R
q is the state of node i, ui ∈ R

r is the input
(only applied to nodes in VI), and zi ∈ R

s describes the cou-
pling between the nodes. The real matrices A, B, and E are
of appropriate dimensions. In addition to the above dynamics,
we associate with each node i ∈ VO the output equation

yi(t) = Cxi(t),

where yi ∈ R
t, and C ∈ R

t×q. The coupling variable zi is
chosen as

zi(t) =
n∑

j=1

XijKxj(t),

where K ∈ R
s×q, Xii ∈ R, Xij = Xji, and for i �= j,

Xij ≥ 0 and Xij > 0 if and only if (i, j) ∈ E. We
define x := col(x1, x2, . . . , xn), u := col(ui1 , ui2 , . . . , uim), and
y := col(yj1 , yj2 , . . . , yjp), where ik ∈ VI and jl ∈ VO for all
k = 1, 2, . . . , m and l = 1, 2, . . . , p. Then, the dynamics of
the entire network is described by the system

ẋ(t) = (I ⊗ A + X ⊗ EK)x(t) + (M ⊗ B)u(t) (6a)

y(t) = (N ⊗ C)x(t), (6b)

where the (i, j)-th entry of the matrix X ∈ Qp(G) is equal to
Xij, and the matrices M and N are defined in (2). Dynamics of
the form (6) arise, for example, when synchronizing networks
of linear oscillators [28]. In what follows, we use the notation
Xe := I ⊗ A + X ⊗ EK, Me := M ⊗ B, and Ne := N ⊗ C.

We assume that the matrices A, B, C, E and K are known,
and we are interested in conditions under which we can iden-
tify an induced subgraph GS of G. To make this precise, we
say (GS; VI; VO) is identifiable with respect to (6) if for all
X, X̄ ∈ Qp(G) the following implication holds:

Ne(sI − Xe)
−1Me = Ne(sI − X̄e)

−1Me =⇒ XS = X̄S,

where Xe := I ⊗ A + X ⊗ EK, X̄e := I ⊗ A + X̄ ⊗ EK, and
the matrices XS, X̄S ∈ Qp(G) are the principal submatrices
of X and X̄ corresponding to the nodes of GS. The following
theorem states conditions for identifiability of (GS; VI; VO) for
the case of general network dynamics.

Theorem 3: Let GS = (VS, ES) be an induced subgraph of
the undirected graph G = (V, E), and let VI, VO ⊆ V . Define
W := VI ∩VO and let D(W) be the derived set of W in G. Then
(GS; VI; VO) is identifiable with respect to (6) if VS ⊆ D(W)

and C(EK)kB �= 0 for all k ∈ N.
Proof: Consider two matrices X, X̄ ∈ Qp(G) and define

Xe := I ⊗ A + X ⊗ EK and X̄e := I ⊗ A + X̄ ⊗ EK.
Moreover, let Me := M ⊗ B, and Ne := N ⊗ C. Suppose
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that NeXk
eMe = NeX̄k

eMe for all k ∈ N. We want to prove by
induction that NXkM = NX̄kM for all k ∈ N. For k = 1, the
equation NeXeMe = NeX̄eMe implies

(N ⊗ C)(I ⊗ A + X ⊗ EK − I ⊗ A − X̄ ⊗ EK)(M ⊗ B) = 0,

and hence N(X − X̄)M ⊗CEKB = 0. By assumption, CEKB �=
0, and therefore NXM = NX̄M. Next, suppose that NXiM =
NX̄iM for all i = 1, . . . , k. The aim is to prove that NXk+1M =
NX̄k+1M. Note that we obtain

NeXk+1
e Me = NXk+1M ⊗ C(EK)k+1B +

k∑

i=0

NXiM ⊗ Ri,

where Ri is a matrix that depends on A, B, C, E and K only.
Completely analogously, an expression for NeX̄k+1

e Me can be
derived. By the induction hypothesis, NXiM = NX̄iM for i =
1, . . . , k, and therefore NeXk+1

e Me = NeX̄k+1
e Me implies

(NXk+1M − NX̄k+1M) ⊗ C(EK)k+1B = 0.

Since C(EK)k+1B �= 0, we find NXk+1M = NX̄k+1M.
Therefore, NXkM = NX̄kM for all k ∈ N. However, since
VS ⊆ D(W) we find X = X̄ by Theorem 1. Hence (GS; VI; VO)

is identifiable with respect to (6).

VI. CONCLUSION

In this letter we have considered the problem of identifia-
bility of undirected dynamical networks. Specifically, we have
assumed that the graph structure of the network is known,
and we were interested in graph-theoretic conditions under
which (a submatrix of) the network’s state matrix can be iden-
tified. To this end, we have used a graph coloring rule called
zero forcing. We have shown that a principal submatrix of the
state matrix can be identified if the intersection of input and
output nodes can color all nodes corresponding to the rows
and columns of the submatrix. In particular, the entire state
matrix can be identified if the intersection of input and out-
put nodes constitutes a so-called zero forcing set in the graph.
Checking whether a given set of nodes is a zero forcing set
can be done in O(n2), where n is the number of nodes in the
network [22]. We emphasize that the results we have presented
here only treat the identifiability of dynamical networks, and
we have not discussed any network reconstruction algorithms,
like in [5]–[8]. However, if the conditions of Theorem 2 are
satisfied, then the state matrix of the network can be identified
using any suitable method from system identification [25].
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