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Abstract

This paper studies how to control large formations of autonomous agents in
the plane, assuming that each agent is able to sense relative positions of its
neighboring agents with respect to its own local coordinate system. We tackle
the problem by adopting two types of controllers. First, we use the classical
gradient-based controllers on three leader agents to meet their distance con-
straints. Second, we develop other type of controllers for follower agents: uti-
lizing the properties of rooted graphs, one is able to design linear controllers
incorporating relative positions between the follower agents and their neigh-
bors, to stabilize the overall large formations. The advantages of the proposed
method are fourfold: i) fewer constraints on neighboring relationship graphs; ii)
simplicity of linear controllers for follower agents; iii) global convergence of the
overall formations; iv) implementation in local coordinate systems, in no need
of a global coordinate system. Numerical simulations show the effectiveness of
the proposed method.

Keywords: Multi-agent system; Formation control; Graph theory;
Stabilization.

1. Introduction

Distributed coordination of teams of autonomous robots has received in-
creasing attention from the control society in the last decade [1, 2, 3, 4], due
to the rapid development of computation and communication techniques as
well as powerful embedded systems. One typical coordination task is formation
keeping, in which a team of mobile agents is required to move collaboratively
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so that the team manoeuvres as a whole with a prescribed formation shape
[5, 6, 7, 8, 9, 10]. Formation control of mobile agents, finds various applications
in engineering fields, such as sensor networks for data collections [11], unmanned
aerial vehicles for military missions [12], and satellite formations for deep space
exploration [13].

Various approaches have been proposed to achieve formation stabilization,
which can be generally categorized into position-, displacement-, and gradient-
based control. Gradient-based control is also as known as distance-based control
in some literature. A recent survey [14] of multi-agent formation control dis-
cussed the distinctions of the three categories in detail. Position-based control
requires that all the agents in a formation-task group are capable of sensing
their own positions with respect to a global coordinate system [15, 16, 17].
Displacement-based control requires that each mobile agent is equipped with a
compass such that all the agents share a common sense of direction [18, 19, 20,
21]. Gradient-based formation control, in comparison, only requires that each
mobile agent knows relative positions of its neighbors in its own local coordi-
nate [22, 23, 24, 25, 26, 27]. To achieve the desired shape by controlling the
distances between agents, the interaction graph needs to be rigid or persistent
[5, 8]. The convergence results of gradient-based formation control only hold
locally; in other words, a prescribed formation can be restored only when the
agents’ shape is close enough to the prescribed one. Global stability analysis
has been carried out merely for a class of triangular formations [27, 28, 29].
However, the method is difficult to be applied to large formations, since the
control laws involving Euclidean distances result in nonlinearity and multiple e-
quilibrium manifolds, which significantly complicates the analysis for formation
stabilization. There are some other approaches describe a formation by using
bearing measures [30, 31].

In this paper, we study formation-keeping tasks in the plane for multiple
autonomous agents in their local coordinates. We cope with the challenge by
making use of the benchmark case of triangular formations. Existing results
[27, 28, 29] about triangular formations have proven that under gradient-based
control, the convergence to the desired triangular formation is almost global
except for initially collinearly positioned formations. We are able to treat the
three agents in the original triangular formation as leaders and then construct
large formations by adding more agents. Using the properties of rooted graphs,
we design linear controllers incorporating relative positions between the newly-
added agents and their neighbors, to stabilize enlarged formations. Compared
with the position-based control and displacement-based control methods, our
proposed method is coordinate-free, i.e., mobile agents neither need a global
coordinate, nor need to share a common sense of direction. Although the con-
trollers are designed differently for the leader agents and for the follower agents,
each agent in formation only needs to acquire relative positions of its neigh-
bors in its own coordinate system. Compared with the gradient-based control
method [5, 8, 22, 23, 24, 25], the advantages of our proposed method are three-
fold: i) The convergence of the formation for the whole group of agents is almost
global except for the case when the positions of the three leaders are initially
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Figure 1: Prescribed formation shape. An edge from vertex i to j represents that j can
measure the relative position of i. (a) Cyclic triangle. (b) Acyclic triangle.

collinear. ii) The controllers for the later added agents are linear, which are
much simpler than the nonlinear gradient-based formation controllers. iii) our
method requires fewer constraints on the neighbor-relationship graph G, i.e.,
the graph is not required to be rigid.

The rest of the paper is organized as follows. In Section 2, we review a class
of triangular formation models and the relevant results in the literature. Then
in Section 3, using the properties of rooted graphs, we treat the three agents in
the original triangular formation as leaders (i.e., roots) and propose a control
method incorporating relative positions between the later added agents and their
neighbors, to realize large formations. Furthermore, we prove global convergence
for the formations with newly added agents in this section. Numerical examples
are given in Section 4 to validate our theoretical analysis. Finally, we make
concluding remarks in Section 5.

2. Review on Controlling Triangular Formations

In this section, we review some results in [26, 27, 28] about the benchmark
case of triangular formations of autonomous agents.

We consider a formation in the plane consisting of three autonomous agents
labeled by 1, 2, and 3, shown in Fig. 1. For i ∈ {1, 2, 3}, we use [i] to denote
[1] = 2, [2] = 3, and [3] = 1. The desired distance between agents i and [i]
is di; here the dis are positive numbers and satisfy the triangle inequalities:
d1 + d2 > d3 , d2 + d3 > d1 , d1 + d3 > d2.

Cao et al. in [26, 27, 28] have studied how to control three autonomous
agents to achieve a prescribed triangular formation. If agent i for i ∈ {1, 2, 3}
measures the relative position of agent [i] in its own coordinate system, shown
in Fig. 1(a), the agents’ dynamics can be described by

ẋ1 = −k (x1 − x2)(||x1 − x2||2 − d21) ,

ẋ2 = −k (x2 − x3)(||x2 − x3||2 − d22) ,

ẋ3 = −k (x3 − x1)(||x3 − x1||2 − d23) ,

(1)

where k is a positive constant to regulate the convergence speed of the formation.
For the other case, if agent 2 measures the relative position of agent 1, and agent

3



3 measures those of agents 1 and 2 in their own coordinates, shown in Fig. 1(b),
the agents’ dynamics can be written as

ẋ1 = 0 ,

ẋ2 = k (x1 − x2)(||x1 − x2||2 − d21) ,

ẋ3 = −k (x3 − x1)(||x3 − x1||2 − d23)

+ k (x2 − x3)(||x2 − x3||2 − d22) .

(2)

In [27, 28], it has been proven that under such gradient-based control laws,
system (1) (or (2)) can be stabilized almost globally to an equilibrium corre-
sponding to the triangular formation with the desired shape. Let

ei , ||xi − x[i]|| − di , (3)

for i = 1, 2, 3. The desired formation set can be described by

E ∆
= {x : e1 = e2 = e3 = 0} .

Let N be the set of points corresponding to the three agent positions which are
collinear in the plane. We summarize their main results as follows:

Theorem 1. [26, 27, 28] Every trajectory of system (1) (or (2)) starting out-
side of N , converges exponentially to a finite limit in E.

In addition, every trajectory of system (1) (or (2)) starting in N will remain
collinear. In practice, collinear positions are easy to become non-collinear be-
cause of noise and imprecision in measurements. The equilibra inN are sensitive
to perturbations and thus unstable.

3. Main Results: Multiple Agent Formations

Now we consider the formation task in the plane for N > 3 agents. The
main idea to accomplish the task is: we choose the three agents of the initial
triangular formation to be three leaders for the whole formation and then the
other agents join the leaders as followers to realize a large formation. We choose
one target configuration that satisfies the prescribed formation shape to be

p = [p⊤1 , . . . , p
⊤
N ]⊤ , (4)

where pi ∈ IR2 represents the position of agent i in some reference coordinate
system.

In fact, we adopt two types of controllers for the whole group of agents.
First, we control agents 1, 2 and 3 to meet their distance constraints, which
have been introduced in Section 2. Second, we design a new type of controller
in (8) for the follower agents, which will be presented in this section.

Before going into the details of the controller design, we introduce some
useful graph notations [32]. A node v is k-reachable from a set R of nodes if
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Figure 2: (a) A graph is 3-rooted with roots in set R. (b) A graph is not 3-rooted, since
vertex 5 is not 3-reachable from set R.

there are k disjoint paths from k different nodes in R to node v, where every
disjoint path contains only one node in R. A directed graph is k-rooted, if
there exists a subset of k nodes called roots, from which every other node is
k-reachable. We take Fig. 2 as an example. Fig. 2(a) is 3-rooted with roots in
set R; Fig. 2(b) is not a 3-rooted graph, since node 5 is not 3-reachable from
set R.

We use graph G to describe the neighbor relationship in the formation. In
our problem, graph G satisfies the following condition.

Assumption 1. Suppose that graph G is 3-rooted and vertices 1, 2, 3 are the
three roots of the graph.

Assumption 1 suggests that nodes 1, 2, 3 are not affected by any node from the
vertex set {4, . . . , N}. Fig. 2(a) shows a 3-rooted graph, in which an edge from
node i to j represents that j can acquire the relative position of i. Node i is
called an in-neighbor of node j.

We treat agents 1, 2, 3 that form the triangular formation as leaders and
the remaining agents in the group as followers. Let xl = [x⊤

1 , x
⊤
2 , x

⊤
3 ]

⊤ and
xf = [x⊤

4 , . . . , x
⊤
N ]⊤. Then, the dynamics of the whole N agent system satisfy:

ẋl = F (xl) , (5)

ẋf = G(xf , xl) . (6)

The equation (5) describes the dynamics of the three leaders (1) (or (2)).
From Theorem 1, the three agents converge to a triangular formation in E . The
three leader agents are required to be initially non-collinear, while the follower
agents can start at any initial positions. We treat the three leaders as anchors,
also as the three roots of graph G.

In the following, we first design controllers and control gains for the follower
agents in subsection 3.1, and then analyze global convergence of all the agents
as a whole in subsection 3.2.
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3.1. Design of Controllers

Let Ni denote the set of in-neighbors of vertex i. Since graph G is 3-rooted,
each agent i ∈ {4, . . . , N} has at least three in-neighbors.

Hence, pi for i = 4, . . . , N can be located through a linear combination of
its in-neighbors’ positions as

pi =
∑
j∈Ni

aij pj , (7)

where
∑

j∈Ni
aij = 1 and aij are real and may be positive or negative. Here,

we set aii = 0. We then design the control law in (6) as follows:

ẋi =
∑
j∈Ni

aij (xj − xi) , (8)

for i = 4, . . . , N . Note that xf = [p⊤4 , . . . , p
⊤
N ]⊤ is an equilibrium point of (8). In

the following, we design the control gains aijs. Agent i computes aij for j ∈ Ni

according to ∑
j∈Ni

aij (pj − pi) = 0 , (9)

for i = 4, . . . , N . Since each agent i ∈ {4, . . . , N} has at least 3 in-neighbors,
then |Ni| ≥ 3. For each i, we arbitrarily pick a set of solutions {aij , j ∈ Ni}
for (9) that satisfy

∑
j∈Ni

aij = 1. In turn, the chosen solution of aij for
i = 4, . . . , N, j ∈ Ni guarantees that (8) has an equilibrium point at xf =
[p⊤4 , . . . , p

⊤
N ]⊤ when x1 = p1, x2 = p2, x3 = p3.

Remark 1. Although we have used a reference coordinate system and assigned
a target configuration p, it is emphasized that we only use local information in
terms of relative positions of neighbors in control design, see (8). One can see
from (9) that, we have used an assigned target configuration to acquire relative
target positions (pj−pi), in order to determine the weights aijs for the controller
(8).

Let L be a generalized Laplacian matrix of graph G, satisfying

lij =


−aij , for j ̸= i, i = 4, · · · , N∑

j∈Ni

aij , for j = i, i = 4, · · · , N, (10)

and lij = 0 for i = 1, 2, 3 and j = 1, · · · , N . Matrix L can be rewritten

as L =

[
0 0
Lfl Lf

]
where Lf ∈ IR(N−3)×(N−3), Lfl ∈ IR(N−3)×3, and 0s are

matrices with all 0s of appropriate dimensions. So, (8) can be written in the
compact form

ẋf = −(Lfl ⊗ I2)xl − (Lf ⊗ I2)xf , (11)

with xl = [p⊤1 , p
⊤
2 , p

⊤
3 ]

⊤.
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Since agents 1, 2, 3 are not affected by the nodes from the node set {4, . . . , N}
and have been proven to converge a triangular formation, it is left to prove the
convergence of agents {4, . . . , N}. In the following, we introduce a modified
matrix of L to stabilize the dynamics of the follower agents.

Lemma 1. [32] For a generalized Laplacian L of a graph G with vertex set V,
if G is k-rooted with the root set R = {r1, · · · , rk}, then all the principal minors
of LV\R are distinct from zero, where LV\R is the sub-matrix of L with the rows
and columns corresponding to nodes in R crossed out.

Lemma 2. [31, 33] Let A be an n×n real matrix with all of its leading principal
minors being nonzero. Then there is an n× n diagonal matrix D such that all
the eigenvalues of DA have positive real parts.

Remark 2. The method to construct the matrix D has been provided by Al-
gorithm 3.1 in [31] or by the proof of Theorem 1 in [33]. The construction
of D is summarized as follows. Let A(i) be A’s leading principal submatrix of
order i. For i = 1, 2, . . . , n, repeat the following procedure: find di to assign
the eigenvalues of diag(d1, . . . , di)A

(i) in the right half plane. Then, it returns
diag(d1, . . . , dn) as one candidate for D.

Theorem 2. Suppose that Assumption 1 holds. There exists a diagonal matrix

D =

[
03×3

Df

]
where Df ∈ IR(N−3)×(N−3) is a diagonal matrix, such that

the matrix DL, i.e.,

D

[
03×3 0
Lfl Lf

]
has three zero eigenvalues and N − 3 eigenvalues in the right half plane.

Proof : Since G is 3-rooted, then by Lemma 1, it follows that for the Laplacian

matrix L =

[
0 0
Lfl Lf

]
, all principal minors of Lf are nonzero. Thus, from

Lemma 2, there exists a diagonal matrix Df = diag(d4, · · · , dN ) such that all
the eigenvalues of DfLf are in the right half plane.
Let D = diag(0, Df ) in which 0 ∈ IR3×3. Then

DL =

[
0 0
0 Df

] [
0 0

LfL Lf

]
=

[
0 0

DfLfL DfLf

]
, (12)

where matrices 0s have appropriate dimensions. So the eigenvalues of DL con-
sist of three zero eigenvalues and the eigenvalues of DfLf . �

Matrix DL can be used to replace the original L and stabilize the linear
system [

ẋl

ẋf

]
= −

(
D

[
0 0
Lfl Lf

]
⊗ I2

)
·
[
xl

xf

]
. (13)

We consider DL to be another Laplacian associated with G because D is a
diagonal matrix just scaling each row of L.
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System (13) can be rewritten as ẋl = 0 and

ẋf = −(DfLfl ⊗ I2)xl − (DfLf ⊗ I2)xf . (14)

Using Theorem 2, controller (11) is modified to (14). The modification is im-
portant to the controller design, which is aimed to stabilize the dynamics of
follower agents. The control law (14) can be explicitly written as

ẋi =
∑
j∈Ni

di aij (xj − xi) for i = 4, . . . , N. (15)

Remark 3. The controller for each follower agent is implemented in its own
local coordinate. The properties of 3-rooted graphs guarantee that each follower
agent can access the relative positions of its at least three in-neighbors. Thus,
using (15), each follower agent converges to its desired position in the plane with
respect to its in-neighbors’ relative positions in its local coordinate system.

Remark 4. The control law (15) is not a consensus-type controller (e.g., the
ones in [15, 16, 18, 20, 21, 34, 35]), even though they share similarity in the
format. We illustrate the major differences between the classical consensus-
type controller and our controller (15) in two aspects: interaction graph and
coordinate system. For the consensus-type control law, the interaction graph is
required to be connected or to contain a spanning tree, and does not have any
requirement for edge weights; all agents are required to share a global coordinate
system or at least to share a common sense of direction. For our proposed control
law, the interaction graph is required to be 3-rooted, and its weights aijs have
to be assigned according to a prescribed formation shape; there is no need of a
common coordinate system or sense of direction, and each agent implements its
controller in its own local coordinate. The differences between the consensus-type
and the proposed control laws are summarized in Table 1.

Table 1: Differences between the consensus-type and the proposed control laws.

Consensus-type control law Proposed control law

Interaction graph Connectedness or existence of a spanning tree 3-rooted graph with edge-weights to be assigned

Coordinate system A global coordinate system or a common sense of direction Local coordinate systems

Remark 5. Recent papers [34, 35, 36] study formation control of multi-agent
systems with linear dynamics and switching interaction topologies. Paper [35]
considers multiple leaders in the formation tracking task. The controllers in
these papers are consensus-type, and they require a common direction aligned
in local coordinate systems. The major novelty of our work lies in that we
solve the formation problem without a common coordinate system. Hence, the
methodology adopted in these papers is quite different from ours.
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3.2. Convergence Analysis

In the above subsection, we have designed matrix D and weights for L in
controller (14) that are applied to follower agents. In this subsection, we prove
the stability of the agents in the formation task.

We first analyze the equilibrium of the whole system. Suppose that xl(t)
converges to certain constant p̄l at the steady state. From (14), xf -system
has a unique equilibrium point satisfying (DfLf ⊗ I2)xf = −(DfLfl ⊗ I2)p̄l,
since DfLf is negative definite. This implies that the final positions of the
follower agents depend on the final positions of leader agents. Let p̄f denote
the equilibrium point (i.e., the final position vector) of xf . Suppose that the
positions of all the agents converge to p̄ = [p̄⊤l , p̄

⊤
f ]

⊤ in a chosen global reference
coordinate system. p̄ is unnecessarily equal to p, while our formation task
requires that p̄ preserves the formation shape of p. To facilitate the description
of the preservation of formation shape, we introduce a rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
,

and a translation vector τ ∈ IR2. Then, the preservation of formation shape
can be understood as follows: there exist a rotation matrix R and a translation
vector τ ∈ IR2 such that p̄i = Rpi + τ holds for all i = 1, . . . , N . It means that
p̄ can be obtained from p by a certain coordinate transformation including a
rotation and a translation.

The following proposition holds for the pair of final positions p̄l, p̄f of the
leaders and followers:

Theorem 3. Let p̄l = [p̄⊤1 , p̄
⊤
2 , p̄

⊤
3 ]

⊤, p̄f = [p̄⊤4 , . . . , p̄
⊤
N ]⊤, where p̄i = Rpi + τ

holds for all i = 1, . . . , N . It holds that

(DfLfl ⊗ I2) p̄l + (DfLf ⊗ I2) p̄f = 0 . (16)

Proof : Note that p̄i = Rpi + τ holds for all i = 1, . . . , N . Then, one has∑
j∈Ni

aij(p̄j − p̄i) =
∑
j∈Ni

aij(Rpj + τ −Rpi − τ)

=R
∑
j∈Ni

aij(pj − pi) .

According to (9),
∑

j∈Ni
aij(pj − pi) = 0 for i = 4, . . . , N . Hence, one has∑

j∈Ni

aij(p̄j − p̄i) = 0, for i = 4, · · · , N. (17)

Noticing the definition of L in (10), equation (17) can be rewritten in the com-
pact form:

(Lfl ⊗ I2) p̄l + (Lf ⊗ I2) p̄f = 0 .

9



Therefore, (16) is achieved by multiplying Df on the both sides of the above
equation. �

Weights aijs at the right-hand side of controller (14) are constructed by
using a prescribed configuration p. Theorem 3 illustrates that the position pair
[p̄⊤l , p̄

⊤
f ]

⊤ of the followers and leaders is an equilibrium of (14). p̄ preserves the
shape of p.

The design of controller (14) and its control gains as well as Theorems 2 &
3 are necessary preparations for the proof of the whole system’s convergence.
Then, we study the convergence of all the agents in the theorem below:

Theorem 4. Under Assumption 1 and matrices D and L designed in the sub-

section 3.1, the system of

[
xl

xf

]
with the dynamics described by (5) and (14),

i.e.,

ẋl = F (xl)

ẋf = −(DfLfl ⊗ I2)xl − (DfLf ⊗ I2)xf

is asymptotically stable. To be specific, xl converges to a point in the equilibrium
set {(x1, x2, x3) : e1 = e2 = e3 = 0} as long as agents 1, 2, 3 are not initially
collinearly positioned; xf converges to a state which satisfies the formation shape
constraints as pf has.

Proof : We prove the theorem in the following two steps. First, we have
shown that ẋl = F (xl) is stable. From Theorem 1, the three agents described
by (1) (or (2)) globally converge to the equilibrium point set

{xl : ∥x1 − x2∥ = d1, ∥x2 − x3∥ = d2, ∥x3 − x1∥ = d3} ,

as long as these agents are not initially collinearly positioned. Let the three
agents’ stable positions to be x1 = p̄1, x2 = p̄2, x3 = p̄3. Positions p̄1, p̄2, p̄3 and
p1, p2, p3 determine a rotation matrix R and a translation vector τ such that
p̄i = Rpi + τ holds for i = 1, 2, 3.
Second, we prove that xi globally converges to Rpi+τ (i.e., p̄i) for i = 4, . . . , N .
From Theorem 3, one can see that xf = [p̄⊤4 , . . . , p̄

⊤
N ]⊤ is an equilibrium point

of system (14) when xl = [p̄⊤1 , p̄
⊤
2 , p̄

⊤
3 ]

⊤. Next, we prove xf = [p̄⊤4 , . . . , p̄
⊤
N ]⊤ is

globally stable. To facilitate the analysis, the equilibrium point of the whole
system is shifted to the origin by a change of variables. Let yl = xl − p̄l and
yf = xf − p̄f . From (14), one has

ẏf = ẋf = −(DfLfl ⊗ I2)xl − (DfLf ⊗ I2) (xf − p̄f )

− (DfLf ⊗ I2) p̄f .
(18)

From Theorem 3, (DfLfl ⊗ I2) p̄l +(DfLf ⊗ I2) p̄f = 0. Substituting (DfLfl ⊗
I2) p̄l for −(DfLf ⊗ I2) p̄f in (18), one obtains that

ẏf = −(DfLfl ⊗ I2) yl − (DfLf ⊗ I2) yf . (19)

10



Construct the Lyapunov function V (t) = 1
2y

⊤
f yf . The derivative of V along the

trajectories of system (19) is given by

V̇ (t) =y⊤f ẏf

=− y⊤f (DfLf ⊗ I2) yf − y⊤f (DfLfl ⊗ I2) yl .

Note that yl converges to 0. For δ > 0 and sufficiently large t, yl is small
enough such that if ∥yf∥ ≥ δ, then V̇ ≤ − 1

2 y
⊤
f (DfLf ⊗ I2) yf . This implies

that ∥yf∥ < δ for large enough t. Therefore, limt→∞ ∥yf∥ = 0, which means
that xf converges to p̄f . This completes the proof. �

Theorem 5. The unforced system of (19) (i.e., the system when taking yl = 0)
is globally exponentially stable. The convergence speed of yf (t) is estimated by

∥yf (t)∥ ≤ ∥yf (0)∥ e−λ0t , (20)

where
λ0 = min1≤i≤N−3[Re(λi (DfLf ))] . (21)

Proof : Note that yl = xl − pl = 0 when xl = [p⊤1 , p
⊤
2 , p

⊤
3 ]

⊤. Then, (19) can
be written as

ẏf = −(DfLf ⊗ I2) yf . (22)

From the proof of Theorem 2, all the eigenvalues of DfLf are in the right
half plane. Therefore, the yf -system (19) has a globally exponentially stable
equilibrium point at the origin yf = 0 when yl = 0. It means that, the xf -
system (14) has a globally exponentially stable equilibrium point at xf = pf
when xl = pl. From (22), the convergence speed of yf is estimated by ∥yf (t)∥ ≤
∥yf (0)∥ e−λ0 t, where constant λ0 has been defined in (21). This completes the
proof. �

From Theorem 5, one has ∥xf (t)− p̄f∥ ≤ ∥xf (0)− p̄f∥ e−λ0 t , which implies
that xf (t) exponentially converges to its equilibrium after the stabilization of
the three leader agents.

Remark 6. The application of gradient-based control to the leader agents is
necessary. Based on the three leader agents, we are able to design linear con-
trollers incorporating relative positions between the newly-added agents and their
neighbors, to globally stabilize the enlarged formation. The control of the leader
agents is coordinate-free. Thus, the control of the enlarged formation based on
the leader agents is also coordinate-free. A recent paper [37] also studied global
stabilization of enlarged formations under agents’ local coordinates. However, it
uses a different approach – Laman graphs, and explores a class of rigid graphs
for which triangulated formations are almost globally stable.
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Remark 7. Like gradient-based control method, the proposed method is also
implemented in agents’ local coordinates. Besides, the proposed method shows
significant advantages, compared with the gradient-based control method in [5,
8, 22, 23, 24, 25]: i) fewer constraints are put on the graph G, i.e., the graph
is unnecessary to be rigid; ii) the controllers for the follower agents are linear,
which is much simpler than the nonlinear gradient-based formation controllers
applied in the distance-based control; iii) the convergence of the multi-agent
system is almost global, while only local convergence is guaranteed. Admittedly,
our controller design may increase the cost on solving control gains for aijs and
dis.

4. Numerical Simulations

4.1. Example of 6 agents
We give a numerical simulation to validate Theorem 4. We consider 6 agents

in the formation task. The graph shown in Fig. 2(a) is a 3-rooted graph with
6 vertices, which describes the desired formation. The prescribed distances be-
tween the three leaders (agents) are d1 = d2 = 2

√
2 and d3 = 4. Using controller

(1) for the three leaders, agents 1, 2 and 3 starting from any non-collinearly ini-
tial positions converge to the desired triangular formation. In the simulation,
we set k in (1) to be 0.2. According to the desired shape in Fig. 2(a), we assign
the target configuration p = [p⊤1 , . . . , p

⊤
6 ]

⊤ = [2, 0, 4, 2, 6, 0, 2,−2, 4,−2, 6,−2]⊤

for all the agents in some reference coordinate system, shown in Fig. 3. The
target configuration is only used to determine aijs in the following: according
to (9) and

∑
j∈Ni

aij = 1, one has

a41(p1 − p4) + a43(p3 − p4) + a45(p5 − p4) = 0 ,

a51(p1 − p5) + a54(p4 − p5) + a56(p6 − p5) = 0 ,

a62(p2 − p6) + a63(p3 − p6) + a65(p5 − p6) = 0 ,

(23)

and

a41 + a43 + a45 = 1 ,

a51 + a54 + a56 = 1 ,

a62 + a63 + a65 = 1 .

(24)

By solving the above equations (23) and (24), we obtain aijs:a41 a43 a45
a51 a54 a56
a62 a63 a65

 =

 1
2 − 1

2 1
0 1

2
1
2

− 1
2 1 1

2

 .

Thus,

A = [aij ] =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
2 0 −1

2 0 1 0
0 0 0 1

2 0 1
2

0 − 1
2 1 0 1

2 0

 .
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Figure 3: Target configuration p of six agents in some reference coordinate system.

From (10), we obtain the generalized Laplacian L and Lf :

L =

[
0 0
Lfl Lf

]
=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
− 1

2 0 1
2 1 −1 0

0 0 0 − 1
2 1 − 1

2
0 1

2 −1 0 −1
2 1

 ,

Lf =

 1 −1 0
− 1

2 1 − 1
2

0 −1
2 1

 .

The eigenvalues of L are 0, 0, 0, 0.134, 1, and 1.866, which indicate that L
has three zero eigenvalues and three positive eigenvalues. Hence, we can set D
in Theorem 2 to be the 6-dimensional identity matrix. Applying the controllers
in (1) and (14), we run the simulation in Matlab. The initial positions of all the
agents are randomly chosen. Fig. 4 shows the evolution of 6-agent formation,
in which the final positions of the agents are (-0.59, 9.77), (2.13, 8.98), (1.34,
6.26), (-2.34, 8.80), (-1.38, 7.05), (-0.41, 5.30). From Fig. 4, one can see that all
the agents converge to the prescribed formation shape satisfying p̄i = Rpi + τ
for all i = 1, . . . , 6, where

R =

[
0.4825 0.8775
−0.8775 0.4825

]
, τ =

[
−1.555
11.525

]
.

Fig. 5(a) shows the evolutions of the errors ei defined in (3) for i = 1, 2, 3;
Fig. 5(b) shows the evolutions of the errors ∥xi − Fina pi∥ for i = 4, 5, 6. From
Fig. 5, one can see that agents 1, 2, 3 are stabilized in a very short time, and
that agents 4, 5, 6 exponentially converge to the prescribed formation after the
stabilization of the three leader agents. It validates the conclusions in Theorem
4.

4.2. Example of 9 agents

We give another numerical example to validate Theorem 4. Fig. 6 shows
the prescribed formation, in which agents 1,2, and 3 are the three roots of the
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Figure 4: Evolution of 6-agent formation converging to the desired shape shown in Fig. 2(a).
The red, green, blue, black, magenta and cyan colors stand for agents 1, 2, 3, 4, 5 and 6,
respectively. The Init pi and Fina pi represent the initial position and final position of agent
i, respectively.

graph. The prescribed distances between the three roots are d1 = d2 = 8 and
d3 = 8

√
2. The constant k in (2) is set to be 0.2. Using controller (2) for the

three leaders, agents 1, 2 and 3 starting from any non-collinearly initial positions
converge to the desired triangular formation. We assign the target configuration
in some reference coordinate system as

p = [ 0, 0, 0,−8, 8, 0, 0,−16, 8,

− 8, 16, 0, 8,−16, 16,−8, 16,−16 ]⊤ ,

corresponding to the prescribed formation shown in Fig. 6. By (9) and
∑

j∈Ni
aij =

1, we calculate aijs and obtain one of several solutions as follows:

A =
[
aij

]
=



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 1 0 0
1
3 0 0 0 0 0 1

3
1
3 0

0 0 1 0 −1 0 0 1 0
0 0 0 1

2 0 0 0 0 1
2

0 0 0 0 0 1
2 0 0 1

2
0 0 0 0 −1 0 1 1 0


.
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Figure 5: (a) Evolutions of the errors ei defined in (3) for i = 1, 2, 3; (b) Evolutions of the
errors erri = ∥xi − Fina pi∥ for i = 4, 5, 6.
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Figure 6: A 3-rooted graph with nine vertices. Vertices 1,2,3 are the three roots of the graph.

From (10), we obtain the generalized Laplacian L:

L =

[
0 0
Lfl Lf

]

=



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −1 0 1 1 0 −1 0 0
−1

3 0 0 0 1 0 −1
3 −1

3 0
0 0 −1 0 1 1 0 −1 0
0 0 0 −1

2 0 0 1 0 − 1
2

0 0 0 0 0 − 1
2 0 1 − 1

2
0 0 0 0 1 0 −1 −1 1


.

One can check that L has three zero eigenvalues and six positive eigenvalues.
So we take D in Theorem 2 as the 9 by 9 identity matrix. We use the controllers
in (13) and run the simulation in Matlab. Fig. 8 shows the evolution of 9-agent
formation converging to the prescribed shape in Fig. 6. One can observe in Fig.
8 that the final positions of the agents are (−6, 4), (−6,−4), (2, 4), (−6,−12),
(2,−4), (10, 4), (2,−12), (10,−4), (10,−12). Fig. 9(a) shows the evolutions of
the errors ei defined in (3) for i = 1, 2, 3; Fig. 9(b) shows the errors ∥xi−Fina pi∥
for i = 4, 5, 6, 7, 8, 9. From Fig. 9, one can see that agents 1, 2, 3 are stabilized
in a very short time, and that agents 4, 5, 6, 7, 8, 9 exponentially converge to the
prescribed formation after the stabilization of the three root agents. It validates
the conclusions in Theorem 4.

5. Conclusions

In this work, we have studied formation-keeping tasks in the plane for mul-
tiple autonomous agents in their local coordinates. We have treated the three
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Figure 7: Target configuration p of 9 agents in some reference coordinate system.
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Figure 8: Evolution of 9-agent formation converging to the desired shape shown in Fig. 6.
The Init p and Fina p represent the initial position and final position, respectively.
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Figure 9: (a) Evolutions of the errors ei defined in (3) for i = 1, 2, 3; (b) Evolutions of the
errors erri = ∥xi − Fina pi∥ for i = 4, 5, 6, 7, 8, 9.
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agents in the original triangular formation as leaders and then constructed large
formations using properties of rooted graphs. We have proved the stabilization
of large formations by designing simple and linear controllers incorporating rel-
ative positions between the follower agents and their neighbors. Furthermore,
we have proved the global exponential convergence for the stabilization of the
follower agents. Since the proposed controllers take simpler forms than most
of the existing gradient-based nonlinear controllers, we expect our controllers
are easier to be implemented in real robots. So we are currently testing the
performance of our controllers using a robotic testbed.
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