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Abstract

In support of the growing interest in how to efficiently influence complex systems of interacting self-interested
agents, we present this review of fundamental concepts, emerging research, and open problems related to the
analysis and control of evolutionary matrix games, with particular emphasis on applications in social, economic,
and biological networks.
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1. Introduction

Whether humans in a community, ants in a colony, or neurons in a brain, simple decisions or actions by
interacting individuals can lead to complex and unpredictable outcomes in a population. The study of such systems
typically presents a choice between micro- and macro-scale analysis. While there exist intricate micro-models of
human decision processes, ant behaviors, and single neurons, assembling these high-dimensional components on a
large scale most often results in models that are impenetrable to analysis, and therefore unlikely to reveal any useful
properties of the collective dynamics. On the other hand, research on these systems at a broader scale, perhaps
subject to substantial simplification of the agent-level dynamics, can help to characterize critical properties such
as convergence, stability, controllability, robustness, and performance [1]. This helps to explain the recent and
remarkable trend towards network-based analysis across various disciplines in engineering and the biological and
social sciences, which has led to several important discoveries related to system dynamics on complex networks
[2, 3, 4, 5]. For control scientists and engineers, these results facilitate the study of timely and challenging issues
related to social, economic, and biological sciences from a control-theoretic perspective.

Evolutionary game theory has emerged as a vital toolset in the investigation of these topics. Originally pro-
posed as a framework to study behaviors such as ritualized fighting in animals [6], it has since been widely
adopted in various disciplines outside of biology. The primary innovation of evolutionary game theory is that
rather than assuming high levels of rationality in individual choices, perhaps a questionable assumption even for
humans, strategies and behaviors propagate through populations via dynamic processes. In the biological world,
this propagation is manifested through survival of the fittest and reproductive processes, which are widely mod-
eled using population dynamics [1, 7, 8]. Systems of first-order differential equations such as replicator dynamics
(RD) provide an elegant and powerful means to investigate collective behaviors, assuming infinite and well-mixed
populations. While these assumptions can lead to reasonable approximations for large, dense populations of or-
ganisms, in many other real-world networks, the structure and range of individual interactions plays a major role
in the dynamics [9]. Fortunately, it is still possible to study replicator-like dynamics in populations connected by
networks [10], and it turns out that certain models of imitation reduce exactly to RD in the limit of large networks
[11]. Other seemingly more rational decision models such as best-response dynamics [12, 13, 14, 15, 16] also fit
naturally into a network setting, as we will discuss in Section 2.

An extensive literature has emerged in the field of evolutionary games on networks, particularly regarding the
question of how cooperation can evolve and persist under various conditions and in various population structures
[17, 18, 19]. In this article, rather than survey these works, we will present only some fundamental results in
classical evolutionary game dynamics, before discussing some recent developments in the areas of equilibrium
convergence and control. Specifically, we set out to achieve three primary goals. First, we aim to introduce the
powerful analytical tools of evolutionary game theory to control scientists and engineers not already familiar with
the topic. Second, we provide a brief survey of some recent results in the analysis and control of evolutionary
matrix games. Third, we discuss some current challenges and open problems in the field for the consideration of
interested researchers.
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We emphasize that, although game theory and evolutionary game theory are receiving increasing attention
as design tools for implementing distributed optimization in industrial and technological systems [20, 21, 22],
including water distribution [23, 24], wireless communication [25], optical networks [26], and transportation [27],
we focus this survey specifically on the analysis and control of self-organized systems whose constituents are
not necessarily subject to design. This stands apart from some ongoing research which aims at engineering the
dynamics governing a population of programmable individuals, e.g., robots, in order to drive the state of the
system to a desired state. We refer the reader to surveys such as [21, 28] for detailed discussions on this separate
but complementary topic. In contrast, typical individuals we model in this paper such as humans, firms, animals,
and neurons are clearly not programmable in the same sense, and even if they were, attempting to do so would
likely raise ethical concerns. Rather, for the dynamics of these individuals, we take existing models proposed
by biologists, sociologists, and economists, and perform convergence and stability analysis, which deepens our
understanding of their collective behaviors. As the next step, by exploiting the limited freedom in modifying the
dynamics of the individuals, such as providing incentives, we investigate attempts to guide such populations to
desired states, beneficial to the overall group of individuals. The results, however, are not necessarily limited to
social or biological populations, and could potentially be applied to the design of multi-agent systems to perform
a group task in an uncertain, noisy situation that requires decision-making by the agents [29, 30].

2. Evolutionary matrix games on networks

In the context of game theory, a game is a simple model of an interaction between two or more players in
which individuals’ payoffs depend on the actions or strategies of each player. A matrix game is a 2-player game in
which each player selects from a finite set of strategies and the payoff depends only on the strategies selected by
the agents, such that all possible payoff outcomes of the game can be written in matrix form. See Appendix B for
the formal definition of a Nash equilibrium and some of its refinements and Appendix A for a brief introduction
to 2-player matrix games.

As an illustrative example, we consider one of the most famous games in all of game theory, the prisoner’s
dilemma (PD). In the original formulation, two suspects are arrested for a crime, and the police do not have enough
evidence to convict either suspect, so they question them separately [31]. Each suspect can either cooperate (C)
with the other by not answering any questions or defect (D) by testifying against the other suspect. The sentences
for the two suspects depend on both of their actions, as shown in the following payoff matrix, in which one suspect
chooses a row and their opponent chooses a column:

πPD =

( C D
C −2 −5
D 0 −4

)
.

Since this is a symmetric game, the payoff matrix is identical from the perspective of both players. If both suspects
cooperate, the judge is lenient due to a lack of evidence that either suspect committed the crime and gives both
suspects a 2-year sentence. However, if suspect 1 cooperates and suspect 2 defects, then the evidence points to
suspect 1 who must serve the full sentence of 5 years while suspect 2 serves no prison time, and vice versa. Finally,
if both suspects defect, the judge assumes one of them is guilty but without knowing which one, sentences them
both to 4 years in prison.

The dilemma arises from the fact that although mutual cooperation would result in the best combined outcome,
there is always a temptation for each suspect to defect to get a shorter sentence, resulting in a state of mutual
defection. In other words, defection is the best response to both cooperation and defection by the other suspect. A
state in which both players are playing best responses to each other is called a Nash equilibrium. See Appendix
C for a complete categorization of 2 × 2 symmetric matrix games, which are the primary focus in this article.
However, matrix games in general may have an arbitrary number of strategies, and we will also include some
results about this more general case.

Evolutionary game theory extends classical game theory, which deals mostly with static concepts, by relaxing
the assumption of perfect rationality and instead assuming that strategies propagate through a population through
some dynamic process. Of the many different dynamics proposed for evolutionary games, we focus this article
on two of the most widely studied models: imitation and best-response. In imitation dynamics, players adopt
the strategy of their most successful neighbors, whereas in best-response dynamics, players choose strategies
that will maximize their own respective payoffs. In summary, an evolutionary matrix game models the dynamic
interactions of a population of agents, each of which chooses from a finite set of actions, receiving payoffs that
depend on these actions. Based on the application and research goals, these dynamics are commonly expressed
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either as systems of first-order ordinary differential equations (ODEs), as in RD, described in Section 2.3, or as
discrete-time agent-based update rules on networks, defined in Section 2.1.

Analysis of evolutionary matrix games can help to understand and predict behavior of complex interconnected
systems to answer questions such as whether each individual will settle on a particular strategy or how many agents
will play each strategy on average, which we discuss further in Section 3. These questions motivate the search for
engineering solutions to the associated control problems. For example, suppose selfish individuals tend to drive
a particular network to undesired outcomes for the group, but the strategies of some agents in a network can be
controlled through payoff incentives or other means. How can such a network be driven to a desired equilibrium
state using a minimum amount of effort? How can the distribution of agent actions be changed and what are the
achievable distributions? These and other issues are discussed further in Section 4.

2.1. Networks, games, and payoffs
Consider an undirected network G = (V,E) in which the nodes V = {1, . . . , n} correspond to players, or

agents, in a population and each edge in the set E ⊆ V × V represents a 2-player game between neighboring
agents. Each agent i ∈ V chooses pure strategies from a finite set S = {1, 2, . . . ,m}, and the payoff matrices
associated with each edge {i, j} ∈ E are given by πi, j, π j,i ∈ Rm×m. Let x := [x1, . . . , xn]> denote the strategy state
of the network, where xi ∈ S is the strategy played by agent i. When agent i plays strategy xi against agent j
who plays strategy x j, agent i receives a payoff of πi, j

xi,x j and agent j receives a payoff of π j,i
x j,xi . We denote the total

payoff or utility to each agent i ∈ V, which is accumulated over games with all neighbors, by ui : S × Sn−1 → R,
defined as

ui(xi, x−i) =
∑
j∈Ni

π
i, j
xi,x j , (1)

where Ni := { j ∈ V | {i, j} ∈ E} is the neighbor set of agent i, and x−i denotes the strategies of all agents other
than i. We will often consider the case when the payoff matrix for each agent is the same for all neighbors, i.e.
πi,1 = πi,2 = · · · = πi,|Ni | for each i ∈ V, in which case we use the simplified notation πi as in Appendix A.

2.2. Discrete-time evolutionary dynamics
In a model of the decisions or behaviors of a group of individuals, games generally correspond to real interac-

tions occurring at specific times after which finite payoffs are collected. The dynamics therefore take place over a
sequence of discrete times k ∈ {0, 1, 2, . . .}. At each time step, all agents in the nonempty setAk ⊆ V update their
strategies according to the rule

xi(k + 1) = fi(x(k), u(k)),

where u(k) := [u1(x1(k), x−1(k)), . . . , un(xn(k), x−n(k))]> denotes the vector of all agents’ utilities at time k, and
the functions fi generally depend on local strategies x j(k) and/or payoffs u j(·, ·) for each agent j ∈ Ni ∪ {i} in the
neighborhood of agent i. It is generally assumed that all games occur and payoffs are collected at every time step,
regardless of which agents have updated. Updates can be synchronous, when every agent updates at each time
step, or asynchronous, when only one agent updates at a time. Cases in which multiple agents but not necessarily
all agents update at the same time will be referred to as partially synchronous. We define the activation sequence
of the agents as (Ak)∞k=0 where Ak ⊆ V denotes the set of agents active at time k. For synchronous updates,
Ak = V, and for asynchronous updates, Ak is a singleton at every time k. We refer to the network, associated
payoff matrices, and update rule as a network game, denoted by Γ := (G, π, f ), where f := [ f1, . . . , fn]> and
π ∈ (Rm×m)2|E| such that each πi, j is an entry in π.

2.2.1. Best-response update rule
In the best-response update rule, an agent who is active at time k updates at time k+1 to a strategy that achieves

the highest total payoff, i.e. is a best response, against the strategies of its neighbors at time k. Sometimes referred
to as myopic best-response, this rule tries to optimize payoff at the next time step based on only the state at the
current time. Perhaps surprisingly, social experiments have revealed that for some simple game types, humans use
myopic best responses as much as 96% of the time [32]. The best response update rule is given by:

xi(k + 1) ∈ Bi(k), (2)

where
Bi :=

{
X ∈ S

∣∣∣ ui(X, x−i) ≥ ui(Y, x−i) ∀Y ∈ S
}
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As in the above equation, we sometimes omit the time k as long as there is no ambiguity. In the case that multiple
strategies are best responses, i.e. |Bi(k)| > 1, agents may be biased towards a particular strategy or prefer to keep
their own strategy, provided that it belongs to the set of best responses.

Two-strategy best-response update. Since evolutionary game theory most often centers around two-strategy games,
we give more emphasis to this special case, which, in the context of best-response dynamics, turns out to be equiv-
alent to a threshold-based model. For this case, we have S = {A, B} and a standard 2 × 2 payoff matrix:


A B

A ai bi

B ci di

, ai, bi, ci, di ∈ R.

Let nA
i (k) and nB

i (k) denote the number of neighbors of agent i playing A and B at time k, respectively. Accumulated
over all neighbors, the total payoffs to agent i at time k amount to ainA

i (k) + binB
i (k) when xi(k) = A, or cinA

i (k) +

dinB
i (k) when xi(k) = B.
The two-strategy best-response update rule can then be simplified as follows:

xi(k + 1)=


A, if ainA

i (k) + binB
i (k) > cinA

i (k) + dinB
i (k)

B, if ainA
i (k) + binB

i (k) < cinA
i (k) + dinB

i (k)
zi, if ainA

i (k) + binB
i (k) = cinA

i (k) + dinB
i (k)

.

The case in which strategies A and B result in equal payoffs is often either included in the A or B case, or set to
xi(k) to indicate no change in strategy. For the purposes of generality, we allow for all three possibilities using the
notation zi, which may even vary across individual agents. However, to simplify the analysis, we assume that the
zi’s do not change over time.

Equivalence to linear threshold model. Let us now rewrite the above dynamics in terms of the number of neigh-
bors playing each strategy. Let degi denote the total number of neighbors of agent i. We can simplify the conditions
above by using the fact that nB

i = degi −nA
i and rearranging terms:

ainA
i + bi(degi −nA

i ) > cinA
i + di(degi −nA

i )

nA
i (ai − ci + di − bi) > degi(di − bi)

(δA
i + δB

i )nA
i > δB

i degi, (3)

where δA
i := ai − ci and δB

i := di − bi. The cases ‘<’ and ‘=’ can be handled similarly. First, consider the case

when δA
i + δB

i , 0, and let τi := δB
i

δA
i +δB

i
denote a threshold for agent i. Depending on the sign of δA

i + δB
i , we have

two categories of best-response update rules. If δA
i + δB

i > 0, the update rule is given by

xi(k + 1) =


A if nA

i (k) > τi degi

B if nA
i (k) < τi degi

zi if nA
i (k) = τi degi

. (4)

We call agents following such an update rule coordinating agents, because they seek to switch to strategy A if
a sufficient number of neighbors are using that strategy, and likewise for strategy B. On the other hand, we call
agents for which δA

i + δB
i < 0 anti-coordinating agents, because if a sufficient number of neighbors are playing A,

they will switch to B, and vice versa. The anti-coordination update rule is given by

xi(k + 1) =


A if nA

i (k) < τi degi

B if nA
i (k) > τi degi

zi if nA
i (k) = τi degi

. (5)

In the special case that δA
i + δB

i = 0, the result is a stubborn agent who either always plays A or always plays
B depending on the sign of δB

i and the value of zi, and this agent can be considered as either coordinating or
anti-coordinating with τi ∈ {0, 1}, possibly with a different value of zi.
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The dynamics in (4) and (5) are in the form of the standard linear threshold model, which is widely used to
study dynamics in social [33, 34], economic [35], neural [36], and various other types of networks. An equilibrium
state in the threshold model is a state in which the number of A-neighbors of each agent will not lead to a change
in strategy. For example, in a network of anti-coordinating agents in which zi = B for all i, this means that for
each agent i ∈ V, xi = A implies nA

i < τi degi and xi = B implies nA
i ≥ τi degi. Note that this notion of equilibrium

is equivalent to a pure strategy Nash equilibrium in the corresponding network game.

2.2.2. Imitation update rule
The imitation update rule, though perhaps less rational, is fundamental to the field of evolutionary game

theory, in part due to its close relation to RD, the celebrated model of evolutionary population dynamics [37].
Although originally posed as a behavioral model for animals and simple organisms, it is quite relevant to human
social behavior as well [38, 39]. It is also growing in popularity as a research topic in the control community
[40, 41, 42, 43]. Before analyzing the connection to RD, we first introduce imitation in a network setting.

The deterministic imitation update rule dictates that an agent i who is active at time k updates at time k + 1 to
the strategy of the agent earning the highest payoff at time k in the self-inclusive neighborhood Ni ∪ {i}. In case
several agents with different strategies earn the highest payoff, it is typically assumed that an updating agent who
is currently playing one of these strategies will maintain the same strategy. Otherwise, to preserve the determinism
of the dynamics, we assume there exists a priority such that agent i chooses the strategy with the smallest index,
namely

xi(k + 1) =

xi(k) xi(k) ∈ Mi(k)
minMi(k) xi(k) <Mi(k)

(6)

whereMi ⊆ S is the set of strategies resulting in the maximum payoff in the neighborhood of agent i:

Mi :=
{

x j ∈ S
∣∣∣ u j(x j, x− j) = max

r∈Ni∪{i}
ur(xr, x−r)

}
.

2.2.3. Proportional imitation update rule
It can also be useful to model agents whose decisions are characterized by some randomness. These agents

may not always update when it seems beneficial to do so or they might occasionally make mistakes. A particularly
noteworthy example of such dynamics is the proportional imitation rule, where each active individual chooses
a neighbor at random and then, if her payoff is less than her neighbor’s, imitates the neighbor’s strategy with a
probability proportional to the payoff difference [1, 11]. The proportional imitation rule is discussed in more detail
in Section 2.3.1.

2.3. Continuous time evolutionary dynamics

The highly nonlinear nature of the discrete imitation and best-response dynamics makes studying their asymp-
totic behaviors challenging, especially when the population has some irregular structure. This motivates approx-
imating the dynamics by making some simplifying assumptions on the population. The two most common and
perhaps convenient assumptions are that the population has a large-enough size and is well-mixed (every agent
interacts with every other agent). These two assumptions allow the evolution of the fraction of individuals playing
a specific strategy to be described by an ordinary differential equation or inclusion, resulting in the mean dynamic.

For each i ∈ S, let 0 ≤ xi ≤ 1 denote the population ratio of individuals playing strategy i. Although we use the
same notation x as in Section 2.2, it differs from the case of finite populations, where each element xi represents
the strategy of an individual in the network. Rather, for infinite populations, x :=

∑
i∈S xiei captures the population

state, where ei denotes the ith column of the m × m identity matrix. Since
∑

i∈S xi = 1, we have that x belongs to
the simplex ∆ defined by

∆ :=

z ∈ Rm
∣∣∣∣ ∑

i∈S

zi = 1, zi ≥ 0 ∀i ∈ S

 .
The mean dynamic describing the evolution of xi is

ẋi =
∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j, (7)

where ẋi is the time derivative of xi, and ρi j ≥ 0 is the conditional switch rate from strategy i to strategy j of
an arbitrary individual, based on the update rule. The mean dynamic provides a deterministic approximation for
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stochastic evolutions. See [1] and the references therein for the derivation of the mean dynamic and results on the
precision of the approximation, particularly as the population size and time approach infinity.

The mean dynamic of some stochastic versions of the imitation update rule (6), e.g., proportional imitation,
lead to the most well-known evolutionary dynamics, the continuous RD, which are defined by a set of differen-
tial equations. The mean dynamic of the best-response update rule (2) leads to the continuous Best-Response
Dynamics, a set of differential inclusions.

2.3.1. Derivation of the replicator dynamics
Assume the population is homogeneous in that individuals share a common payoff matrix π ∈ Rm×m, i.e.,

πi = π for all i ∈ V. Representing the fitness of agent i, the utility of agent i is considered to be the average of
her accumulated payoff here, and hence, is different from ui defined in (1). However, since agents share the same
payoff matrix, for every single one of them, we can use a common utility function u : ∆ × ∆ → R defined by
u(x, y) = x>πy, where we have omitted the notation for the time dependency of x and y for simplicity. Assuming
the population is well mixed, the average payoff of an individual playing strategy i ∈ S is u(ei, x), also known as
the fitness of the individual, and the average payoff of the population is u(x, x), also known as the average fitness.
The replicator equation (dynamic) [37] governing the evolution of the population portion xi, i ∈ S, is described by

ẋi = [u(ei, x) − u(x, x)]xi. (8)

From a biological perspective, RD describe an evolutionary process as follows: the reproduction rate of strategy-i
players, ẋi, is proportional to the difference between the fitness of those players and the average population fitness.
Put simply, the more fit strategy-i players are compared to the average, the more they reproduce.

To give an idea of the versatility and importance of RD, we present here three different approaches to derive
it. The first two are based on the mean dynamic corresponding to two different versions of the imitation update
rule, and the third is based on a biological interpretation of the payoffs.

First, RD can be derived from the pairwise proportional imitation update rule described in Section 2.2.3. In
terms of the utility function u(·, ·), we have

ρi j = x j[u(e j, x) − u(ei, x)]+

where for z ∈ R, [z]+ = z if z ≥ 0 and [z]+ = 0 otherwise [1]. From (7), we obtain the corresponding mean
dynamic as follows

ẋi =
∑
j∈S

x jxi[u(ei, x) − u(e j, x)]+ − xi

∑
j∈S

x j[u(e j, x) − u(ei, x)]+

= xi

∑
j∈S

x j[u(ei, x) − u(e j, x)]

= xi[u(ei, x)
∑
j∈S

x j −
∑
j∈S

x ju(e j, x)]

= xi[u(ei, x) − u(x, x)],

which is the replicator equation.
Second, RD can be derived from the imitation of success update rule: when an individual is active, she chooses

one of her neighbors at random; then with a probability that is linearly increasing in the neighbor’s payoff, she
imitates the neighbor’s strategy. Namely

ρi j = x j[u(e j, x) − M]

where M is some constant smaller than any feasible payoff so that the conditional switch rate is always positive
[1]. From (7), we obtain the corresponding mean dynamic as follows

ẋi =
∑
j∈S

x jxi[u(ei, x) − M] − xi

∑
j∈S

x j[u(e j, x) − M]

= xi

∑
j∈S

x j[u(ei, x) − u(e j, x)]

= xi[u(ei, x) − u(x, x)].

Last, RD can be derived directly from a biological perspective [7]. Let the utility of each individual represent
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the number of offspring she reproduces per time unit. Suppose that each offspring inherits the strategy of her
single parent. Then under the assumption of having continuous reproductions, the birthrate of individuals playing
strategy i equals u(ei, x) +α−β where α and β denote the individuals’ background fitness (regardless of the course
of the game) and death rate, respectively. This yields the population dynamics

ṅi = [u(ei, x) + α − β]ni

where ni is the number of individuals playing strategy i. Therefore, by using the identities xi = ni/n and n =
∑

i ni,
we obtain

ẋi =
ṅi

n
−

ṅ
n

xi

= [u(ei, x) + α − β]xi − [u(x, x) + α − β]xi

= [u(ei, x) − u(x, x)]xi.

Although RD in the form of (8) do not allow for mutations, it turns out that the stability of the dynamics is
implicitly related to notions such as evolutionary stability (ES) and neutral stability (NS), which are often stated
in the context of mutant invasions to a population. See Appendix E for an introduction to evolutionarily stable
strategies (states) (ESS) and neutrally stable strategies (states) (NSS).

Since u(·, ·) is continuously differentiable in Rm × Rm, the dynamical system (8) has a unique solution for any
x(0) ∈ ∆ [7, Theorem 7.1.1]. The solution indeed satisfies the constraints 0 ≤ xi(t) ≤ 1 for all i ∈ S and t ∈ R. It
can be verified that for any time t ∈ R, if x(t) ∈ ∆, it holds that

∑
i∈S ẋi(t) = 0. Hence,

∑
i∈S xi(t) = 1 is in force

for all t ∈ R, provided that x(0) ∈ ∆. Therefore, the simplex ∆ is invariant under (8), implying that the dynamical
system (8) is well defined on ∆.

The dynamics in (8) form an s-dimensional RD with s strategies; however, due to the constraint
∑

s∈S xi = 1,
they indeed form an (s − 1)-dimensional dynamical system. Therefore, two-dimensional RD result in a simple
flow on a line segment. See “Analyses of the replicator dynamics for 2x2 games” for some examples. Three-
dimensional RD exhibit more complex behaviors such as heteroclinic cycles, yet do not admit limit cycles [44].
Based on the number of equilibria in the interior of the simplex, a complete classification of the possible phase
portraits in three-dimensional RD is provided in [45] and [46]. The occurrence of strange attractors and chaos can
take place in four-dimensional RD. This is mainly known due to the equivalence of RD and the general Lotka-
Volterra Equations that are capable of such behaviors. See refappendix-LVE for details of this equivalence and
known behavior in low-dimensional Lotka-Volterra systems.

One key concept simplifying the analysis of RD, is a face of the simplex. Following convention, the boundary
of a set X, denoted by bd(X), is the set of points x such that every neighborhood of x includes at least one point
in X and one point out of X, and the interior of X, denoted by int(X), is the greatest open subset of X. A face
is defined as the convex hull of a non-empty subset H of the unit vectors ei, i ∈ S, and is denoted by ∆(H). A
two-dimensional face is also called an edge. When H is proper, ∆(H) is called a boundary face, and when it
includes only two members, ∆(H) is called an edge. It can be shown that each face of the simplex is invariant
under RD [7]. It follows that the analysis of RD on ∆ can be divided into two parts: (i) the boundary faces forming
bd(∆) and (ii) int(∆). Note that each boundary face that is of a dimension greater than one is itself made of some
smaller faces. We proceed with the following example, illustrating a three-dimensional RD.

Example 1 ([1, 7]). Consider the Rock-Paper-Scissors (RPS) game, which is a symmetric two-player game with
the strategies “Rock”, “Paper” and “Scissors”, where Rock smashes Scissors, Paper covers Rock and Scissors
cuts Paper. If we assign the payoff w > 0 to a win, and −l < 0 to a loss in a matching, and assume nothing is
earned when the same strategies are matched, we obtain the payoff matrix

π =


Rock Paper S cissors

Rock 0 −l w
Paper w 0 −l
S cissors −l w 0

.
The game is known to be good when w > l, standard when w = l, and bad when w < l [1]. It can be verified that
the unique Nash strategy of the game in all three types is x∗ =

[
1
3

1
3

1
3

]>
, which belongs to the interior of the

simplex. So if any type includes an NSS or ESS, it has to be x∗. Indeed, we have the following for each case:
Good RPS: ∆ES S = ∆NS S = ∆NE = {x∗}.
Standard RPS: ∆ES S = ∅, ∆NS S = ∆NE = {x∗}.
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Bad RPS: ∆ES S = ∆NS S = ∅, ∆NE = {x∗}.
Now we investigate the RD (8) under these three types of games. For all three, the equilibrium states of the

system are
e1, e2, e3, x∗

. We know that the solution trajectories evolves in the planar simplex ∆ whose boundary is made of three edges,
∆(e1, e2),∆(e2, e3) and ∆(e3, e1). Due to invariance of each edge under the RD, the behavior of the system on each
edge can be studied independently from the rest of the simplex. For instance, to study the dynamics on ∆(e1, e2),
we need to investigate the reduced two-dimensional RD with the 2 × 2 payoff matrix

π1,2 =

( Rock Paper
Rock 0 −l
Paper w 0

)
,

which corresponds to strategies 1 and 2, i.e., Rock and Paper. The resulting game is a PD, resulting in a simple
flow from e1 to e2. Other edges exhibit the same flow.

To describe the behavior of solution trajectories with initial conditions in the interior of the simplex, we use
the function v : int(∆) → R≥0, defined by v(x) = − log(x1x2x3) [47, 7]. Clearly, v is lower bounded by 0 and is
unbounded above. Using the identity x1 + x2 + x3 = 1, the time derivative of v can be calculated as

v̇(x) = −
ẋ1

x1
−

ẋ2

x2
−

ẋ3

x3

= −u(e1, x) + u(e2, x) + u(e3, x) + 3u(x, x)

= (l − w)(x1 + x2 + x3) −
3
2

(l − w)
(
(x1 + x2 + x3)2 − (x2

1 + x2
2 + x2

3)
)

= (l − w)
(
1 −

3
2

(1 − ‖x‖2)
)

=
1
2

(l − w)(3‖x‖2 − 1).

Since 1
3 ≤ ‖x‖

2 ≤ 1, it holds that 0 ≤ 1
2 (3‖x‖2 − 1) ≤ 1. So the sign of v̇(x) depends on the sign of l − w. Having

this in mind, we investigate each type of the game separately:
Good RPS: We have l − w < 0, implying that v̇(x) ≤ 0 for all x ∈ int(∆). Hence, v performs as a Lyapunov

function for the system. On the other hand, v̇(x) = 0 if and only if x = x∗. So x∗ is globally asymptotically stable
(in int(∆); see Figure 1(a)).

Standard RPS: We have l − w = 0, implying that v̇(x) = 0 for all x ∈ int(∆). Hence, x1x2x3 = c > 0, for
all x ∈ int(∆). So each interior trajectory x(t) is a closed orbit satisfying x1(t)x2(t)x3(t) = x1(0)x2(0)x3(0) for
all t, except for when x(t) starts from x(0) = x∗, when the closed orbit is reduced to the equilibrium state x∗ (see
Figure 1(b)). Therefore, x∗ is Lyapunov stable, but no trajectory converges to x∗.

Bad RPS: We have l − w > 0, implying that v̇(x) ≥ 0 for all x ∈ int(∆). Hence, if we reverse the direction of
the vector field in the RD, i.e., t → −t, then v will perform as a Lyapunov function. So x∗ is a source. On the other
hand, v(x) is non-decreasing and grows arbitrarily large as x → bd(∆). Moreover, by linearization of the system
about the vertices of the simplex, we find each of them a hyperbolic saddle. Therefore, it can be shown that every
trajectory x(t) starting from int(∆) − {x∗}, converges to the heteroclinic cycle on the boundary of the simplex (see
Figure 1(c)).

2.3.2. Best-response dynamics
Under the best response update rule (2), the mean dynamics governing the evolution of state xi can be shown

to result in the following differential inclusion, known as the best response dynamic [49, 50, 51]:

ẋ ∈ β(x) − x, β(x) := {y ∈ ∆ | u(y, x) ≥ u(z, x)∀z ∈ ∆} (9)

where β(x) denotes the set of mixed strategies that maximize the utility against x. In contrast to the finite-
population best-response dynamics (2), in which one agent updates to a best-response strategy at each time step,
here there is a continuous evolution toward best-response strategies. Solutions to the best response dynamics exist,
yet are not necessarily unique, which partly explains why the dynamics have received less attention compared to
RD. We do not include the continuous time best response dynamics in our analysis and refer the reader to [52, 1]
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(a) (b) (c)

Figure 1: Flow patterns of the Replicator Dynamics for the good, standard and bad Rock-Paper-Scissors (RPS) games. The plots indicate
the evolution of the solution trajectory x(t) for some initial conditions on the simplex ∆. Color temperatures are used to show motion speeds,
where red corresponds to the fastest and blue to the slowest motion. The circles denote equilibria. For all three types of games, the dynamics
admit three boundary equilibrium points, e1, e2 and e3, which are the vertices of the simplex, and a unique interior equilibrium x∗ in the middle
of the simplex. (a) good RPS: x∗ is globally asymptotically stable in the interior of the simplex. (b) standard RPS: x∗ is Lyapunov stable, and
all orbits in the interior of the simplex are closed orbits, encircling x∗. (c) bad RPS: x∗ is a source, and all orbits in the interior of the simplex
converge to the heteroclinic cycle formed by the boundary of the simplex. The figures are produced using the software Dynamo [48].

for more information. In the rest of the paper, by “best response dynamics”, rather than (9), we simply mean the
discrete dynamics caused by the best response update rule.

3. Equilibrium convergence and stability

3.1. Infinite well-mixed populations (continuous-time continuous-state dynamics)

General stability and convergence results for continuous dynamics such as the Poincaré-Bendixson theorem
can, of course, be used for RD whenever applicable [53, 43]. However, interestingly enough, convergence, and
particularly, stability notions such as Lyapunov stability for RD, are tightly linked to game theoretical notions
such as Nash equilibrium. The first are notions defined for vector fields and dynamical systems whereas the
second are defined in the absence of any dynamic. This enables us to make conclusions on the evolution of the
solution trajectories of RD through game-theoretic analyses of the corresponding payoff matrix. In what follows,
we review some well-known results that reveal these links. The reader may consult any of the books [54, 7, 1] for
more details.

3.1.1. Equilibrium states
By letting the right-hand side of (8) equal to zero, we get the condition u(ei, x) = u(x, x) or xi = 0 for all i ∈ S,

for x to be an equilibrium. This is closely related to the definition of a Nash strategy, as revealed by the following
proposition [7]. Let ∆o denote the set of equilibrium states of (8).

Proposition 1. The following holds

• ∆NE ∪ {e1, . . . , em} ⊆ ∆o;

• int(∆o) = ∆NE ∩ int(∆);

• int(∆o) is convex.

In addition to the trivial result that every vertex of the simplex is an equilibrium, the first statement implies
that every Nash strategy is also an equilibrium of RD. Namely, if a strategy is the best-response to itself, the
corresponding population state is an equilibrium of RD. The reverse, however, does not hold. Yet the second
statement clarifies that only a non-interior equilibrium state may not be a Nash strategy. That is, all interior
equilibria are a Nash strategy. The last statement postulates the convexity of the set of interior equilibria, implying
that it can be a singleton, straight line, plane, etc. in the simplex, but it cannot be two disjoint points, for example.
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3.1.2. Lyapunov stable states
The role of Nash strategies is not limited to equilibrium states. The following result states that every stable

state in (8) has to be a Nash strategy [55].

Proposition 2. If x∗ ∈ ∆ is Lyapunov stable in (8), then x∗ ∈ ∆NE .

As an application of the Proposition, the equilibrium point x∗ in Example 1 is Lyapunov stable in the good
and standard RPS games, and indeed is neutrally stable in both cases. Intuitively, Proposition 2 implies that only
population states whose corresponding strategy vector performs best against itself can be stable under RD. This
necessary condition is not sufficient though; a simple example is RD for the 2 × 2 coordination game where the
mixed strategy is a Nash strategy but is unstable (see “Analyses of the replicator dynamics for 2x2 games”). The
following result provides a sufficient stability condition [7].

Proposition 3. Every x∗ ∈ ∆NS S is Lyapunov stable in (8).

Again back to Example 1, x∗ is neutrally stable in the good and standard RPS games, and is also Lyapunov
stable in both cases. According to Proposition 3, if strategy x∗ performs at least as well as any group of mutants
arising in a population of all x∗-players, provided that the mutant population is small enough, then under RD, the
solution trajectory remains in a small neighborhood of the population state x∗, if it starts sufficiently close to x∗.
The reverse, however, does not hold as discussed in Example 2.

3.1.3. Asymptotically stable states
Clearly, in view of Proposition 2, every asymptotically stable state has to be a Nash strategy, yet this strong

notion of stability further confines the Nash strategy to a perfect Nash strategy [55].

Proposition 4. If x∗ ∈ ∆ is asymptotically stable in (8), then x∗ ∈ ∆PNE .

So if every close-by trajectory to the population state x∗, not only remains close, but also converges to x∗, then
x∗ must be a Nash strategy that is robust against some ‘trembles’ in the player’s strategy. The necessary condition
in Proposition 4 is not sufficient though. For instance, x∗ in Example 1 is perfect since it belongs to the interior of
the simplex, yet it is unstable in the bad RPS game.

Now we proceed to the most well-known result for RD, providing a sufficient condition for asymptotic stability
by bridging this notion to that of evolutionary stability [37, 56].

Proposition 5. Every x∗ ∈ ∆ES S is asymptotically stable in (8).

Back to Example 1, x∗ is evolutionarily stable in the good RPS game and is also asymptotically stable. Note
that according to the proposition, strict Nash strategies which are Nash strategies that satisfy (B.1) with strict in-
equality, are also asymptotically stable since they are an ESS. Intuitively, this condition is not necessary for asymp-
totic stability: evolutionary stability requires x∗ to outperform any sufficiently small group of mutants against the
resulting population mixture, yet for asymptotic stability of x∗, it is possible to do worse than some mutant type
y ∈ ∆, provided that there is some other mutant z ∈ ∆ that outperforms y, but does worse against x∗. This is
illustrated in the following example.

Example 2. Consider a symmetric two-player game with the payoff matrix

π =

 0 6 −4
−3 0 5
−1 3 0

 .
The game is often referred to as Zeeman’s game, named after Zeeman [57, 1]. We study the game under the RD.
The equilibrium points and their local stability are as follows: five equilibrium points on bd(∆): e1: hyperbolic
stable, e2: hyperbolic unstable, e3: hyperbolic saddle, x23 =

[
0 5

8
3
8

]>
, located on the edge ∆(e2, e3): hyper-

bolic saddle, and x13 =
[

4
5 0 1

5

]>
, located on the edge ∆(e1, e3): hyperbolic saddle, and one equilibrium point

in int(∆): x∗ =
[

1
3

1
3

1
3

]>
: hyperbolic stable. So e1 and x∗ are asymptotically stable. Indeed, it can be shown

that for every initial condition in int(∆) except for those located on the stable manifold of x13 which connects e2

to x13, the solution trajectory converges to either e1 or x∗ (see Figure 2).
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Figure 2: Flow patterns of the Replicator Dynamics for Zeeman’s game. The plot indicates the evolution of the solution trajectory x(t) for
some initial conditions on the simplex ∆. Color temperatures are used to show motion speeds where red corresponds to the fastest and blue to
the slowest motion. The circles denote equilibria. The dynamics admit five boundary equilibrium points e1: hyperbolic stable, e2: hyperbolic
unstable, e3: hyperbolic saddle, x23, located on the edge ∆(e2, e3): hyperbolic saddle, and x13, located on the edge ∆(e1, e3): hyperbolic saddle,
and one interior equilibrium x∗: hyperbolic stable. Except for those initial conditions located on the stable manifold of x13 which connects e2

to x13, for every other initial condition in int(∆), the solution trajectory converges to either e1 or x∗. Independently from the dynamics, analysis
of the game reveals that ∆NE = {e1, x13, x∗} and ∆ES S = {e1}. So although x∗ is asymptotically stable, it is not an ESS. The figure is produced
using the software Dynamo [48].

The asymptotically stable state x∗, however, is not an evolutionary stable state. For example, if any portion
ε ∈ (0, 1) of mutants playing x13 appear in a population of all x∗-players, the incumbent x∗s do worse than the
mutants against the resulting population mixture:

u
(
x∗, (1 − ε)x∗ + εx13

)
) − u

(
x13, (1 − ε)x∗ + εx13

)
) =
−ε

5
< 0. ∀ε ∈ (0, 1).

This explains the deviation of x(t) from x∗ to x13 in the area between the two. However, the argument does not
imply the instability of x∗. The state x13 cannot resist any mutant of e3-players. This can be seen from both the
flow on the segment between x13 and e3 and the following calculation

u
(
x13, (1 − ε)x13 + εe3

)
− u

(
e3, (1 − ε)x13 + εe3

)
) =

16ε
5

> 0 ∀ε ∈ (0, 1).

On the other hand, x∗ outperforms any portion of e3-playing mutants:

u
(
x∗, (1 − ε)x∗ + εe3

)
) − u

(
e3, (1 − ε)x∗ + εe3

)
) =

ε

3
> 0 ∀ε ∈ (0, 1).

So there is indeed a cyclic-invasion relationship between x∗, x13 and e3, which is in line with the phase plot.
At the same time, the equilibrium e1 is both asymptotically and evolutionary stable. Apparently, it is the

only ESS of the game, i.e., ∆ES S = {e1}. It is worth mentioning that just by the local stability information provided
above, we expect e1 and x∗ to be Nash strategies since e1 and x∗ are Lyapunov stable (hence, in view of Proposition
2 they have to be Nash strategies). This is upheld by the fact that ∆NE = {e1, x13, x∗}.

3.1.4. Globally asymptotically stable states
All results presented so far hold only locally. Particularly, for evolutionarily stable states, their asymptotic

stability is not necessarily global. If x∗ ∈ ∆ES S is globally asymptotically stable, then it can be shown to be
the unique ESS of the game. We know that an interior ESS fulfills this condition, but is it necessarily globally
asymptotically stable? The following proposition provides a positive answer [54].

Proposition 6. If x∗ ∈ int(∆) ∪ ∆ES S , then limt→∞ x(t) = x∗ if x(0) ∈ int(∆).

Back to Example 1, the equilibrium state x∗ in the good RPS game is the unique ESS of the game, and is also
globally asymptotically stable in int(∆).
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3.1.5. Convergence results
As with most other dynamics, existing stability results on RD are insufficient to describe the global behavior

of the trajectories. Local stability analysis illustrates the flow only in the neighborhood of the equilibria, and
global ones, such as global stability, rarely take place in these dynamics. One fundamental question on the global
behavior of the dynamics is under what conditions every solution trajectory converges to an equilibrium point?
Symmetry of the payoff matrix turns out to guarantee this. The average fitness in doubly symmetric games, those
are symmetric games with a symmetric payoff matrix, is non-decreasing over time, i.e., u̇(x, x) ≥ 0 with equality
if and only if x is an equilibrium point. This can be considered as a version of the Fundamental Theorem of
Natural Selection [58] stated in a more general context at 1930, before the invention of RD: The rate of increase
in fitness of any organism at any time is equal to its genetic variance in fitness at that time. However, this does not
prove equilibrium convergence, and by using theorems such as LaSalle’s invariance principle, we can only show
convergence to the set of equilibrium states in RD. Yet it was later shown in [59] that symmetry of the payoff

matrix is indeed sufficient for equilibrium convergence.

Proposition 7. If the game is doubly symmetric, i.e., π = π>, then every trajectory converges to an equilibrium
point.

Often the payoff matrix is not symmetric, yet is symmetrizable by local shifts, that is the addition of a constant
to every entry of a column, captured by the transformation T : Rm×m → Rm×m defined as T (π) = π + 1c>

where 1 is the all-one and c is a constant vector, both in Rm×1. The RD are invariant under local shifts [7].
Therefore, Proposition 7 also holds for any game with a symmetrizable payoff matrix. For example, all symmetric
2 × 2 games admit equilibrium convergence under RD. Some games, however, are neither doubly symmetric nor
symmetrizable, yet exhibit equilibrium convergence, such as the good RPS game in Example 1.

Now given the convergence of RD for a particular payoff matrix, the next natural question is to what kind of
equilibrium point the trajectory may converge. Apparently if the trajectory starts from some interior point of the
simplex, the final stationary state has to be the best response to itself [60].

Proposition 8. If x(0) ∈ int(∆) and limt→∞ x(t) = x∗, then x∗ ∈ ∆NE .

Visiting back Example 2, based on the dynamics, we expect x13 ∈ ∆NE since at least one interior trajectory
converges to x13, which is the one on the stable manifold of x13. The role of a Nash strategy is not limited to
Proposition 8 though. If the interior of the simplex is empty of Nash strategies, or equivalently empty of any
equilibrium point (see Proposition 1), then every trajectory converges to the boundary of the simplex [61].

Proposition 9. If int(∆) ∩ ∆NE = ∅, then x(t)→ bd(∆) as t → ∞.

So it is impossible for the trajectories to meander forever in the interior of an empty-equilibrium simplex.

3.1.6. Folk Theorem
By summarizing some of the results we presented so far on the relation of Nash strategies and RD, we arrive

at the following theorem [62, 63].

Theorem 1 (Folk Theorem of Evolutionary Game Theory). The RD (8) satisfy the following statements:

1. A Lyapunov stable equilibrium is a Nash strategy;
2. If a solution trajectory starting from the interior of the simplex converges to a point, that point has to be a

Nash strategy;
3. A strict Nash strategy is locally asymptotically stable.

The results of the theorem are known to be a paradigm shift towards strategic reasoning: The Folk Theorem
means that biologists can predict the evolutionary outcome of their stable systems by examining behavior of the
underlying game [62]. However, the theorem does not hold for every other type of dynamics such as the monotone
selection dynamics [62, 7].
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3.2. Infinite structured populations (continuous-time continuous-state dynamics)
Before returning to the case of finite populations, we briefly discuss some results for infinite populations in

which the well-mixed assumption is relaxed. That is, individuals of a given type (strategy) may interact with
other types of individuals in different proportions. These interactions can be modeled by a graph in which the
nodes represent the available strategies and the connections are weighted according to the interaction probabilities
between each strategy pair. The corresponding mean dynamics can then be expressed while taking these interac-
tion probabilities into account [64]. Some important properties such as stability of Nash equilibria are preserved
under this modification for various dynamics, even when individuals playing particular strategies do not have full
information about the utilities associated with other strategies [65].

3.3. Finite structured populations (discrete-time discrete-state dynamics)
We now turn back to the general case of discrete-time dynamics on finite networks, for which both the notion

of convergence and the tools needed for its analysis differ substantially from the continuous case. In continuous
dynamics, convergence of a solution trajectory x(t) to an equilibrium point x∗ implies that the distance from the
trajectory to the equilibrium, i.e., ‖x(t) − x∗‖, becomes arbitrary small, yet never necessarily zero, as time goes to
infinity. On the other hand, discrete population dynamics take place over a discrete time sequence k = 0, 1, 2, . . .
and the state of system is a discrete vector x ∈ Sn. Therefore, notions such as ‘arbitrary small yet nonzero’
are undefinable for the distance from the trajectory to an equilibrium, because ‖x(k) − x∗‖ takes discrete values
0, 1, 2, . . .. Instead, we have the notion of ‘reaching’ an equilibrium state, that is, when x(k) exactly equals x∗.
This highlights a key difference from convergence in continuous dynamics, which is that the state x(k) becomes
fixed at x∗ at some finite time T and does not change afterwards, whereas convergence in continuous dynamics
typically never leads to the state reaching an equilibrium in finite time. Despite the differences, ‘convergence’ is
often used for both continuous and discrete dynamics, a convention that we also adopt in this paper. However, it
should be clear to the reader that the study of equilibrium convergence for discrete population dynamics can be
interpreted as the investigation of whether solution trajectories reach equilibrium states.

As discussed in Section 3.1, continuous best-response and especially imitation dynamics can exhibit non-
convergence and chaotic asymptotic behaviors, even under the simplifying assumptions of infinite and well-mixed
populations. No less complex outcomes are therefore to be expected for finite structured populations governed
by the discrete forms of these dynamics. Indeed, populations of just two (resp. three) agents can lead to non-
convergence in discrete best-response (resp. imitation) dynamics. Hence, it becomes a challenging problem to
identify conditions under which a network can be expected to converge to an equilibrium under imitation and
best-response update rules, which we investigate in this section.

Inspired by the convergence results for the continuous population-dynamics discussed in earlier sections, one
may try to find Lyapunov (energy) functions, which are strictly positive and decreasing at each time step, to prove
equilibrium convergence in the discrete case. Although sometimes possible, one should note that finding energy-
like functions, which decrease at some time instances but remain constant at others, may be easier to construct
and often the only choice. For example, in the discrete population-dynamics, a common phenomenon is an active
agent at time k not switching strategies, which keeps the state x(k + 1) the same as its value at the previous time
instance x(k). Thus, the value of any candidate energy function remains the same at time k + 1, excluding it from
being an strictly decreasing energy function, yet leaving room for being an energy-like function.

The number of agents updating at the same time, namely, the level of synchrony of the dynamics, turns out
to greatly influence the asymptotic behavior of the population. For example, synchronous versions of the update
rules (2) and (6) are deterministic: there is exactly one possible state x2 to which the solution trajectory can transit
from a given state x1, where x1 and x2 can be the same. Hence, the dynamics admit a unique ω-limit set in the
form of a cycle of length at least 1, which is an equilibrium, and at most |S|n the number of possible states. The
challenge then becomes determining the length of the limit cycle. For partial and asynchronous updates; however,
the transition to the next state from a given state is usually not unique and depends on the active agent, resulting
in non-deterministic dynamics, capable of exhibiting chaotic fluctuations as well as perpetual cycles.

In order to guarantee convergence in the discrete case, we must assume that the activation sequence is persis-
tent, that is, every agent i ∈ V becomes active infinitely many times as time goes to infinity. Formally, given an
agent i ∈ V and any time k ∈ {0, 1, . . .}, there is some finite future time k′ > k at which agent i is active. One can
easily check that without this assumption equilibrium convergence may never happen.

3.3.1. Imitation
The best-response strategy in a 2-player matrix game is the one corresponding to the maximum entry in the

column of the payoff matrix defined by the opponent’s strategy. It is therefore intuitive that convergence relies
on the ordering of payoff values within each column (which determines whether the agents are coordinating or
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anti-coordinating [13]). On the other hand, under the imitation rule, the payoffs of the opponent play a greater
role. Consequently, under imitation, the ordering of payoff values within each row appears to be the key.

We call an agent i ∈ V an opponent-coordinating agent if each diagonal entry of her payoff matrix πi is greater
than all off-diagonal elements in the same row, that is

πi
p,p > π

i
p,q ∀p, q ∈ {1, . . . ,m}, p , q. (10)

The following theorem establishes convergence when updates are fully asynchronous [66, 43].

Theorem 2. Every network of opponent-coordinating agents reaches an equilibrium under the asynchronous im-
itation update rule.

However, in order to guarantee convergence under synchronous and partially synchronous updates, the agents
must satisfy a stronger condition than being opponent-coordinating. In other words, their payoff matrices must
satisfy

πi
p,p + (degi −1)πi

p,pmin
> degi π

i
p,pmax

(11)

where degi denotes the degree of agent i, pmin denotes the column of the minimum off-diagonal entry of the pth
row in πi and pmax denotes the column of the maximum off-diagonal entry of the pth row in πi.

Then we can assert the following result, regardless of how many agents update simultaneously [66].

Theorem 3. Every network of strongly-opponent-coordinating agents reaches an equilibrium under the imitation
update rule.

For the special case of m = 2, an opponent-coordinating agent turns out to be also strongly opponent-
coordinating, implying that Theorem 2 holds even for partially synchronous dynamics.

3.3.2. Best-response
While there is no guarantee that a network of agents using best response updates (2) will reach an equilibrium

state in general, we present here three conditions on 2 × 2 payoff matrices for which convergence is assured
when updates are persistent and asynchronous: (i) when all agents are coordinating, (ii) when all agents are anti-
coordinating, and (iii) when all games are symmetric. We refer the reader to Appendix G for proofs of the
following results using potential functions.

When all agents in the network are coordinating (see Section 2.2.1), we have the following theorem [13].

Theorem 4. Every network of coordinating agents who update asynchronously and persistently will reach an
equilibrium state.

The following corollary follows directly from Theorem 4.

Corollary 1. Every network of coordinating agents admits a pure strategy Nash equilibrium.

The case of all anti-coordinating agents is perhaps a more surprising result, but convergence is indeed guaran-
teed here as well [13].

Theorem 5. Every network of anti-coordinating agents who update asynchronously and persistently will reach
an equilibrium state.

The following corollary follows directly from Theorem 5.

Corollary 2. Every network of anti-coordinating agents admits a pure strategy Nash equilibrium.

Although we have mostly considered cases when the payoff matrix πi of an agent applies to all neighbors, the
general case allows for a different payoff matrix πi, j for each neighbor j. It turns out that such a network will reach
equilibrium provided that all pairwise games are symmetric.

Theorem 6. Every network of agents in which all games are symmetric, i.e. πi, j = π j,i for all {i, j} ∈ E, who
update asynchronously and persistently will reach an equilibrium state.

The following corollary follows directly from Theorem 6.

Corollary 3. Every network of agents in which all games are symmetric admits a pure strategy Nash equilibrium.
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Although these three conditions are sufficient to guarantee convergence in asynchronous networks of agents
who update with best-responses, if these conditions do not hold, it is quite easy to construct examples in which
the agents will never reach an equilibrium state. One such example is a network in which updates are fully
synchronous may never reach an equilibrium state. Suppose that, in a network consisting of only two agents, both
agents are anti-coordinating, update synchronously, and start from the strategy state (A, A). The dynamics are
therefore deterministic, and the following state of the agents will evolve as follows:

(A, A)→ (B, B)→ (A, A),

resulting in a cycle of length 2. Now suppose that both agents are coordinating and they start from (A, B). This
will lead to the following deterministic sequence: (A, B)→ (B, A)→ (A, B), again resulting in a cycle of length 2.

The above examples prove that equilibrium convergence is no longer guaranteed if the agents update in full
synchrony.

Finally, we consider the case of partial synchrony, in which multiple agents, but not always all, update at each
time step. These results require the following assumption, since we need some notion of real time to study this
case.

Assumption 1. The inter-activation times for each agent are drawn from mutually independent probability dis-
tributions with support on R≥0.

Based on this, the following theorem establishes convergence in a probabilistic sense [13].

Theorem 7. Every network of all coordinating or all anti-coordinating agents who update with partially syn-
chronous dynamics that satisfy Assumption 1 almost surely reaches an equilibrium state in finite time.

4. Control strategies

Even when populations of interacting agents converge to an equilibrium, it may be an undesirable one from
the perspective of a global cost function or some measure of collective welfare. In these cases, and when a central
agency has the ability to influence the actions or perturb the dynamics of some of the agents, it is of great interest to
understand how such influence can be efficiently used to improve global outcomes in the network. In this section,
we investigate and compare several different approaches for doing this.

4.1. Infinite well-mixed populations

When the system of interest is defined on a sufficiently large and densely connected population, it may be
useful to devise control strategies based on mean dynamics such as RD. Suppose the goal is to drive the system
modeled by RD to a particular population state x∗ ∈ ∆. One of the first things to consider is what the control input
should be. Although there are multiple possible approaches, perhaps the most natural and least invasive control
input is to alter the payoff functions for the available strategies. This can mean offering incentives by adding to the
utility of desired strategies, or enforcing penalties by subtracting from the utility of undesired strategies. When
viewed from the perspective of a regulating agency or government, these two options are sometimes considered
as subsidies and taxes [67]. This type of control input vi(t) can be incorporated into RD as follows:

ẋi = [u(ei, x) + vi − u(x, x)]xi.

Let D := {i ∈ S : x∗i > 0} denote the set of desired strategies. It was proposed in [68] that a regulator, having a
fixed amount αn of available funds, could offer subsidies to agents using each desired strategy i ∈ D in the amount
of vi = α

x∗i
xi

, and vi = 0 for each i < D. The closed-loop dynamics for i ∈ D then become

ẋi =

[(
u(ei, x) + α

x∗i
xi

)
− (u(x, x) + α)

]
xi = [u(ei, x) − u(x, x)]xi + α(x∗i − xi). (12)

Notice that when adding α x∗i
xi

to the utility of each pure strategy ei, the average utility becomes

∑
i∈S

xi

(
u(ei, x) + α

x∗i
xi

)
=

∑
i∈S

xiu(ei, x) +
∑
i∈S

αx∗i = u(x, x) + α,
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since both x, x∗ ∈ ∆. Also extended to the case of heterogeneous populations (multi-population games) [69], this
formulation has the property that equilibrium points of (12) are also equilibrium points of the original RD (8) for
any α > 0. This allows for stabilization of existing equilibrium points of a system, but not for stabilization of
arbitrary setpoints x∗, which remains an open research problem.

Similar to this approach, but using logit choice dynamics (a stochastic or noisy version of the best-response
update rule), [70] proposed pricing schemes to encourage efficient choices on roadway networks. This line of
research has been extended to more general economic contexts in [71]. In a continuous-time network setting, [72]
characterized the number of control nodes required to stabilize desired equilibrium states of a best-response-like
epidemic model on path and star networks.

Although beyond the scope of this article, the shifting of equilibrium points has been considered in the context
of stochastically stable equilibria of evolutionary snowdrift games [73]. Also in a systems and control setting,
RD has been invoked to study task assignment among team members [74], virus spread control [75], extremum-
seeking controllers [76] and direct reciprocity [77].

4.2. Finite structured populations
Some concepts related to the control of populations on networks may differ from those related to control of

conventional dynamical systems, including the replicator dynamics. For example, there are multiple ways to affect
the dynamics in a way that can be considered a control input, including:

• direct strategy control – in some cases, it may be possible to fix the strategies of some of the agents in the
network, with the hope that there will be a cascading effect that produces a desired global outcome;

• incentive-based control – perhaps a more practical input is to give additional payoff as a reward or subtract
payoff as a penalty for using particular strategies.

Though not an exhaustive list, since most of the existing literature falls within one of these categories, we will
focus our attention on these. The control objective may also take different forms. For example, there may be a
desired end state in some cases, but in other cases, this might not be a realistic goal. Rather, the goal could be to
guide the population as close as possible toward a desired state.

Since very few mechanisms have been proposed for feedback control of population dynamics, we focus pri-
marily on open-loop methods. A practical and compelling use of feedback in these kinds of systems remains an
interesting outstanding problem.

4.2.1. Unique convergence for a class of coordinating agents
Dynamics that are known to converge in the absence of control serve as a natural starting point for the design

of control policies that try to steer a network towards a desired equilibrium. A potential obstacle in the design
of such policies is that, due to the random sequence of updates under asynchronous dynamics, convergence does
not generally result in a unique equilibrium. This makes it much more difficult to predict the outcome of a
control action in an open-loop setting. However, there is a very useful property of networks consisting only of
coordinating agents, which is that, if some strategies are fixed to A, or if incentives are provided for playing A, not
only is convergence guaranteed, but the network will converge to a unique equilibrium.

Before introducing this result, we need the following definitions.

Definition 1. We say that agent i is coordinating in X if whenever the agent would update to strategy X ∈ S, it
would also do so if some neighbors currently not playing X were instead playing X, that is, if for all x, x′ ∈ Sn,

if x′j =

x j if j < Ni or x j = X
x j or X otherwise

,

then fi(x, ui) = X =⇒ fi(x′, ui) = X,

where ui : S × Sn−1 → R is the utility function for agent i.
For the next two definitions, we consider a situation in which some payoff incentives are offered to the agents

in a network which is at equilibrium. Let (G, π,R) denote a network game in which an equilibrium x∗ exists, and
let π̃ denote a modification of the payoff matrix π such that for all Y,Z ∈ S

π̃i
Y,Z =

πi
Y,Z + ri if Y = X
πi

Y,Z otherwise
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for all i ∈ V, where each ri ∈ R≥0.

Definition 2. We say that a network game is monotone in X if whenever some non-negative value is added to
the row corresponding to strategy X in the payoff matrices of some agents, when the network is currently at an
equilibrium state, no agent will switch from X to some other strategy. That is, if x(k) = x∗, then under the network
game (G, π̃,R),

xi(k) = X =⇒ xi(k + t) = X, for all i ∈ V and t ≥ k.

Definition 3. We say that a network game is uniquely convergent in X if whenever some non-negative value is
added to the row corresponding to strategy X in the payoff matrices of some agents, the network converges to
a unique equilibrium state. Namely, when starting from x∗, the network game (G, π̃,R) converges to a unique
equilibrium x̃ regardless of the sequence in which the agents update their strategies.

We are now ready to state an important convergence result for networks of coordinating agents [78].

Theorem 8. Every network that is coordinating in strategy X is both monotone and uniquely convergent in X.

We can relate this result to best-response and imitation dynamics with the following corollaries [78].

Corollary 4. Every network consisting of all coordinating agents under two-strategy best-response dynamics is
coordinating in X for all X ∈ S.

Proof. According to the best-response rule (2), a coordinating agent will switch to a strategy X if a sufficient
number of neighbors are currently playing X. It is therefore trivially true that if more agents in the network are
playing X, the agent will still update to X.

The following corollary provides a similar result for opponent-coordinating agents under imitation dynamics [78].

Corollary 5. Every network consisting of all opponent-coordinating agents under imitation dynamics is coordi-
nating in X for all X ∈ S.

4.2.2. Direct strategy control
Suppose that by some means it is possible to fix the strategies of a subset L ⊆ V of the agents in a network:

xi(k + 1) =

x∗i , i ∈ L
fi(·), otherwise

, (13)

where x∗i denotes the strategy to fix for each control agent i ∈ L. In this case, it may be useful to know the
minimum number of control agents necessary to drive the population to a desired equilibrium state.

Problem 1. Given a network game (G, π̃, f ) and initial state x(0), find the smallest set of control agents L∗ ⊆ V
and corresponding reference state x∗ such that the network will converge to the desired equilibrium state.

This problem is computationally complex to solve in general. However, some special network topologies admit
exact analytical solutions for certain cases. For example, the results shown in Table 1 hold for two-strategy games
on completely connected networks of homogeneous imitating agents when x(0) = B and x∗ = A [42], which
depend on the values of δB = d − b and δA = a − c.

Similar results exist for star and ring networks under the same assumptions[42]. For tree networks, it is
possible to bound and approximate the solution to this case of Problem 1 using an algorithm that traverses the tree
structure from leaves to root [79]. A modification of this algorithm based on minimum spanning trees can also be
used to approximate the solution on arbitrary networks for both deterministic and stochastic imitation dynamics
[80, 42]. It has also been shown in a simulation study that controlling agents with higher degree results in a
higher frequency of cooperation than randomly controlling agents in a prisoner’s dilemma game under imitative
dynamics on scale-free networks [41].

An alternative framework was presented in [81] for the direct-strategy control of synchronous networked
evolutionary games using large-scale logical dynamic networks to model transitions between all possible strategy
states for various update rules. Equivalent conditions for reachability and stability are given in this work for a
particular set of control nodes. Using this general framework, a method was proposed in [82] for how to guide a
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Table 1: Minimum number of direct control agents for to guide a network of completely connected agents who are playing strategy A to all
play strategy B.

δA + δB > 0 |L∗| =

min
(⌊

1 + δB

δA+δB

⌋
, n

)
, if δB ≥ 0

1, if δB < 0

δA + δB = 0 |L∗| =

n, if δB ≥ 0
1, if δB < 0

δA + δB < 0 |L∗| =


n, if δA ≥ 0 or

δB

δA+δB < n and (δA + δB) mod δB = 0
1, otherwise

network using best-response updates to an optimal state by adding a new player whose strategy can be controlled
directly. Similarly in [83], the deterministic network dynamics were controlled by actively assigning the strategies
of a group of agents. However, since the underlying logical matrices have dimension mn, this line of analysis can
be intractable for large networks.

4.2.3. Incentive-based control
One potentially effective policy-based control mechanism is to offer incentives to agents for playing a particular

strategy. Similar to the approach in Section 4.1, but in a discrete time setting, this is equivalent to adding some
positive value to the row in a payoff matrix corresponding to the desired strategy X:

π̃i
X,Y := πi

X,Y + r for all Y ∈ S.

Although this approach is most intuitive for use with best-response dynamics, it can be applied to networks of
imitating agents as well. In the latter case, adding to the payoffs of an agent does not act as an “incentive” in that
it does not directly affect the decision of that agent. Rather, neighbors of the agent notice that agents who play
the rewarded strategy earn more total payoff and are therefore more likely to imitate them. We consider two cases
under this framework: (i) uniform rewards, when the same reward is offered to all agents in the network, and (ii)
targeted rewards, when different rewards can be offered to different agents.

Uniform incentive-based control. In this case, the same incentive r0 is offered to every agent in the network:

π̃i
X,Y := πi

X,Y + r0 for all i ∈ V and Y ∈ S.

Problem 2. Given initial equilibrium state x∗, find the minimum value of r0 such that the network will converge
to the equilibrium in which all agents play X.

It turns out that this problem can be solved exactly and efficiently provided that a network is both monotone
and uniquely convergent in the desired strategy, which holds for both best response and imitation dynamics. In
both cases, the solution involves computing a set of all candidate rewards and then performing a binary search
over this finite set.

For networks of coordinating agents using best-response updates, the candidate set is given by:

RI :=
{

r ≥ γmax

∣∣∣∣ r =
δi(ňA

i − j)
degi

, i ∈ V, j ∈ {1, . . . , ňA
i }

}
.

where

γmax =

max
i∈B̄

δB
i B̄ , ∅

0 B̄ = ∅
, δi := δA

i + δB
i ,

and B̄ = {i | δi = 0, xi(0) = B} denotes a set of stubborn agents whose unaltered threshold is such that no number
of A-playing neighbors would cause them to switch from B to A [78].

For networks of opponent-coordinating agents using imitation dynamics, since no agent will switch from A to
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B, the possible payoffs of an agent i when playing A (resp. B) at any time step are contained in the sets

ΠA
i :=

{
ai(nA

i + ωi) + bi(degi −nA
i − ωi) : ωi ∈ Ωi

}
ΠB

i :=
{
ci(nA

i + ωi) + di(degi −nA
i − ωi) : ωi ∈ Ωi

}
,

where Ωi = {0, 1, . . . , degi −nA
i }.

Now consider an agent s who initially plays B and has a neighbor j whose strategy was either initially A or
became A at some other time. In order for agent j to cause agent s to switch to A, the payoff of agent j must be
greater than that of each B-playing agent (denoted by i) in the neighborhood of agent s. Therefore, the reward

given to agent j must be greater than
uB

i −uA
j

deg j
for some uB

i ∈ ΠB
i and uA

j ∈ ΠA
j . This leads to the following set of all

candidate infimum rewards [84].

RB :=
{uB

i − uA
j

deg j

∣∣∣∣uB
i ∈ ΠB

i , u
A
j ∈ ΠA

j , j ∈ Ns, i ∈ Ns ∪ {s}, xi(0) = B, s ∈ V, xs(0) = B
}
∪ {0}.

For both imitation and best-response, we then sort the elements of RI or RB in increasing order and denote this
vector by vR. Algorithm 1 then performs a binary search over vR to find the infimum reward such that all agents
in the network will eventually play A. Denote by 1 the n-dimensional vector containing all ones. In what follows,
we also denote by x̄ the unique equilibrium resulting from a particular set of incentives being offered to a network
of A-coordinating agents starting from x.

i− := 1
i+ := |R|
while i+ − i− > 1 do

r∗0 := vRj , where j := d i−+i+
2 e

Γ̂ := (G, π̂, f )
Simulate Γ̂ from x(0) until equilibrium x̄
if x̄i = A for all i ∈ V then

i+ := j
else

i− := j
end

end
Algorithm 1: Binary search over candidate rewards to find the value of r∗0 that solves Problem 2 for imitative
networks of opponent-coordinating agents (R := RI) and best-response networks of coordinating agents (R :=
RB)

Exact solutions for cases other than coordination remain an open area for investigation, which is likely to be
challenging since the guarantee of unique convergence no longer holds.

Targeted incentive-based control. Now suppose that the policy makers have the ability to offer different incentives
to different agents in the network:

π̃i
X,Y = πi

X,Y + ri for all i ∈ V and Y ∈ S.

Problem 3. Given initial equilibrium state x∗, find r := (r1, . . . , rn)T with minimum sum such that the network
will converge to the equilibrium in which all agents play X.

Problem 4. Given initial equilibrium state x∗ and budget constraint ρ, find r := (r1, . . . , rn)T such that
∑n

i=1 ri ≤ ρ
that maximizes the number of agents who converge to X.

Solutions to these problems are more difficult to compute for general networks since the outcome of offering
rewards strongly depends on which agents are offered rewards. A useful quantity to know is how much reward is
required to cause some agent in the network to switch to the desired strategy. We will denote this quantity by r̃i,
which takes different values depending on the update rule. For networks of opponent-coordinating agents under
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imitation dynamics, the infimum reward such that at least one B-playing neighbor will switch to A is

ři = max
j∈NB

i

max
k∈NB

j

uk(B, x̄) − ūi(A, x̄), (14)

when the state of the network is x̄, where NB
i := { j ∈ Ni ∪ {i} : x̄ j = B} denotes the self-inclusive set of neighbors

of agent i who are playing B [84].
For networks of coordinating agents using best-response updates, the minimum incentive that will cause an

agent to switch from B to A depends on the agent payoff matrices and degree in the network. In particular, the
following condition must be satisfied for some agent i:

δinA
i (te) = (γi − ři) degi ⇒ ři = γi −

δinA
i (te)

degi
.

Problems 3 and 4 now reduce to determining which agents to offer rewards to and in what order. Some po-
tentially effective heuristics include targeting those agents who cause the most subsequent switches to the desired
strategy or those who require the smallest rewards. The following algorithm can be used to iteratively implement
any such heuristic.

Initialize x̄i = xi(0) and ri = 0 for each i ∈ V
while ∃i ∈ V : x̄i , A and

∑
i∈V

ri < ρ do

AB := {i ∈ V : x̄i = A ∧ [∃ j ∈ Ni : x̄ j = B]} ∧ ři ≤ ρ −
∑

i∈V ri}

Choose an agent j ∈ AB

Let r j := r j + ř j + ε

Γ̂ := (G, π̂, f )
Simulate Γ̂ from x̄ until new equilibrium x̄′

x̄ := x̄′
end

Algorithm 2: Generic iterative algorithm for computing a reward vector to approximate the maximum number
of agents who will play strategy A. Since r j represents an infimum, an arbitrarily small additional payoff ε is
added to ensure that the reward causes an agent to switch.

Here we propose a weighted ratio of the two factors mentioned above, which, when implemented in Algorithm
2, we call Iterative Potential-to-Reward Optimization (IPRO). Consider the following simple potential function

Φ(x) =

n∑
i=1

nA
i (x), (15)

where nA
i (x) denotes the number of neighbors of agent i who play strategy A in the state x. The ratio we wish to

iteratively maximize is the following:

j∗ = arg max
j∈AB

∆Φ(x̄)α

řβj
, (16)

where ∆Φ(x̄) := Φ(x̄′)−Φ(x̄), and α, β ≥ 0 are free design parameters. Although generally suboptimal, simulations
have shown that the IPRO algorithm outperforms several other agent-targeting heuristics and performs quite close
to optimal for a range of conditions on the network topology and payoff matrices, both for imitation [84] and
best-response dynamics [78]. The approach also seems to be effective for networks containing anti-coordinating
agents [78], although care should be taken because there is no guarantee of unique convergence in that case.

5. Open Problems

We summarize here some outstanding research problems discussed in this survey as well as some additional
ones, categorized by dynamical regime.

5.1. Infinite well-mixed populations
For infinite well-mixed populations, completing the gap between game-theoretical concepts such as evolution-

ary stability and dynamical concepts such as asymptotic stability is in particularly high demand. With regard to
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control, although progress has been made toward stabilizing existing equilibrium points in the replicator dynamics
[68], stabilization of arbitrary setpoints of the replicator and other dynamics through payoff augmentation remains
a challenging open research problem.

5.2. Finite structured populations

In this survey, we have presented convergence results for networks consisting of all coordinating or all anti-
coordinating agents under best-response dynamics and all opponent-coordinating agents under imitation dynam-
ics. These results assume that updates are asynchronous and deterministic and they provide only sufficient condi-
tions. There are very likely to be cases when networks that do not satisfy these conditions will nevertheless reach
an equilibrium, such as mixtures of coordinating and anti-coordinating agents or mixtures of imitative and best-
response agents, but the conditions for convergence under such conditions remain to be discovered. Moreover,
issues of convergence time and uniqueness of equilibria also remain open. Useful notions of stability, which are
prevalent in the continuous-time case of infinite populations, remain elusive in the context of discrete-time finite
populations.

As a second primary focus, we discussed some approaches for guiding networks of agents who are “coordi-
nating in X” toward agreement in a desired strategy X. It would be very appealing to broaden the conditions under
which optimal solutions could be obtained for Problems 3 and 4, a great challenge due to the complexity involved.
Moreover, these results assume agents update asynchronously and deterministically, the network topology is fixed
(or at least changes slowly compared to agent updates), and the agents have access to all relevant strategy and pay-
off information about themselves and their immediate neighbors. Relaxations of these assumptions lead to a wide
array of interesting open problems. Controllability and practical notions of feedback control of such networks are
other intriguing topics for future study.

6. Concluding Remarks

Evolutionary game theory provides both a compelling framework for studying the dynamics of interacting
agents across various scientific domains and a rich set of mathematical problems. For the control engineer, this
presents numerous opportunities to apply classical tools or to design new ones towards a greater understanding of
the convergence, stability, and control of such complex systems. Significant progress in this field could ultimately
help to solve some of society’s most pressing problems, including the control of viral epidemics, preservation
of the environment, stabilization of financial markets, and treatment of brain disorders. We hope that curious
researchers have gained insight and perhaps even found inspiration in this article, to apply these tools, tackle open
problems, and generally further our collective knowledge in this interesting field of study.
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Appendix A. 2-player matrix games

A 2-player matrix game comprises two players, usually referred to as player 1 and player 2, two sets of pure
strategies S1 = {1, . . . ,m1} and S2 = {1, . . . ,m2} from which players 1 and 2 choose strategies, and two payoff

matrices π1, π2 ∈ Rm1×m2 according to which players 1 and 2 earn payoffs, respectively. More specifically, when
player 1 plays strategy i ∈ S1 and player 2 plays strategy j ∈ S2, the payoff of the first and second players will be
π1

i j and π2
ji, respectively. In this paper, we focus on matrix games that provide the same set of strategies for both

players, i.e., S = {1, 2, . . . ,m}. The game is symmetric if π1 = π2.
The players may be uncertain on their choices of strategies. For example, a player may choose strategy 1 with

probability 0.9 and strategy 2 with probability 0.1. This results in the so called mixed strategy which is defined as
a vector x belonging to the simplex ∆ defined by

∆ :=

x ∈ Rm
∣∣∣∣ ∑

i∈S

xi = 1, xi ≥ 0 ∀i ∈ S

 .
Namely, if a player plays the mixed strategy x, she will play each pure strategy i ∈ S with probability xi ∈ [0, 1],
where

∑
i∈S xi = 1. So if players 1 and 2 play the strategies x, y ∈ ∆, they will receive the payoffs u1(x, y) = x>π1y

and u2(y, x) = y>π2x, respectively, where ui : ∆ × ∆→ R, i ∈ {1, 2} are the utility functions of players 1 and 2. To
be precise, one should distinguish the case when x equals a unit vector ei, i ∈ S, which is the ith column of the
m × m identity matrix, since then x refers to the pure strategy i. For this reason, the unit vector ei is called a pure
strategy vector, which, with a minor abuse of notation, may also be referred to as the pure strategy i.
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Appendix B. Nash equilibrium

Players’ strategies are said to be at a Nash equilibrium if no player would earn a higher payoff by changing
their strategy. Particularly, for 2-player games, we have the following definition.

Definition 4. Consider a 2-player game with payoff matrices π1, π2 ∈ R2×2 and utility functions u1 and u2. A pair
of strategies (x, y), where x, y ∈ ∆, is a Nash equilibrium if

u1(x, y) ≥ u1(z, y) ∀z ∈ ∆,

u2(y, x) ≥ u2(z, x) ∀z ∈ ∆.

A strict Nash equilibrium is a Nash equilibrium that satisfies both of the above conditions with strict inequality.
For symmetric games, we further have the definition of a symmetric Nash equilibrium where the same strategy is
played by both players. We call this same strategy, which is in Nash equilibrium with itself, a Nash strategy and
formally define it as follows.

Definition 5. Consider a 2-player symmetric game with payoff matrix π and utility function u = u1 = u2, where
u(x, y) = x>πy for x, y ∈ ∆. A strategy x ∈ ∆ is a Nash strategy if

u(x, x) ≥ u(z, x) ∀z ∈ ∆. (B.1)

The set of all Nash strategies of the game is denoted by ∆NE .

A strict Nash strategy is a Nash strategy that satisfies (B.1) with strict inequality.
Another refined definition of a Nash equilibrium is a perfect Nash equilibrium which is a Nash equilibrium

that is robust against some ‘trembles’ in the players’ strategies. Particularly, for symmetric games, we have the
following definition [7]. Consider a symmetric game G and an error vector µ ∈ ∆ where µi < 1 for i ∈ S. Define
the perturbed game G(µ) as the game G but when each pure strategy i ∈ S is played “by mistake” with probability
µi by both players; namely, the strategies of both players belong to ∆(µ) = {z ∈ ∆ | zi ≥ µi ∀i ∈ S}. Denote by
∆NE(µ) the set of Nash strategies of the perturbed game G(µ).

Definition 6. A strategy x ∈ ∆NE is a perfect Nash strategy if for some sequence {G(µt)}µt→0 of perturbed games,
µt ∈ ∆, there exist Nash strategies xt ∈ ∆NE(µ) such that xt → x. The set of all perfect Nash strategies of the game
is denoted by ∆PNE .

It can be shown that every Nash strategy x belonging to the interior of the simplex ∆ is perfect.

Appendix C. Categorization of 2 × 2 matrix games

Symmetric matrix games in which both players have two strategies, typically referred to as cooperation (C)
and defection (D), are widely studied in the context of evolutionary dynamics. These matrix games can be divided
into the following four main categories based on the relationship between the payoffs in the matrix

π =

(C D
C R S
D T P

)
, R, S ,T, P ∈ R.

Prisoner’s Dilemma. In the prisoner’s dilemma game, described in Section 2, the payoffs must satisfy T > R and
P > S . The state in which both players defect is a unique Nash equilibrium. In addition, it is usually required
that R > P to ensure that mutual cooperation is preferable to mutual defection. Otherwise, it is simply a game in
which defection is the dominant strategy.

Anti-coordination, Snowdrift, Hawk-Dove, or Chicken. . In an anti-coordination game, players benefit when they
play the same strategy as their opponents. In this case, the payoffs should satisfy T > R and S > P, and there
exist two pure strategy Nash Equilibria, which correspond to one player cooperating and the other defecting.
Other versions of the game, such as snowdrift, are often considered less generic in the literature by enforcing the
additional requirement of R > S .
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Coordination, Stag-Hunt, or Battle of The Sexes. . In a coordination game, players benefit when their opponent
plays the same strategy as themselves. In this case, the payoffs should satisfy R > T and P > S , and their exist
two Nash Equilibria corresponding to mutual cooperation and mutual defection. Games such as stag-hunt, which
are specific cases of the coordination game, also require the condition T > P to be in force.

Harmony. . The harmony game is similar to the prisoner’s dilemma game, except that cooperation always yields
the higher payoff. That is, the payoffs should satisfy R > T and S > P, and the only Nash Equilibrium corresponds
to mutual cooperation.

Remark: Versions of these games in which one or more inequalities is substituted by equality have varying
interpretations. For example, if R = T , then cooperation remains a pure Nash equilibrium strategy, but other
properties such as evolutionary stability depend on the ordering of the other payoffs (see Appendix E).

Appendix D. Analyses of the replicator dynamics for 2 × 2 games

Under the payoff matrix

π =

(
R S
T P

)
,

the RD for x1 is
ẋ1 = [Rx1 + S x2 − Rx2

1 − (S + T )x1x2 − Px2
2]x1,

which by using the identity x1 + x2 = 1, becomes

ẋ1 =
[(

(P − S ) + (R − T )
)
x1 − (P − S )

]
x1(1 − x1).

The dynamics of x2 is the opposite of x1, i.e., ẋ2 = −ẋ1. Now we proceed to each type of game individually.
Prisoner’s dilemma game: (P−S ) > 0 > (R−T ). Hence,

(
(P−S )+ (R−T )

)
x1 < (P−S ). So limt→∞ x1(t) = 0,

implying that

lim
t→∞

x(t) =

e1 x(0) = e1

e2 x(0) ∈ ∆ − {e1}
.

Therefore, almost always the dynamics converge to the state of full defectors.
Coordination game: (P − S ), (R − T ) > 0. Hence,

(
(P − S ) + (R − T )

)
x1 > (P − S ) for x1 > x∗1, and(

(P − S ) + (R − T )
)
x1 < (P − S ) for x1 < x∗1 where

[
x∗1 x∗2

]
=

[
P−S

P−S +R−T
R−T

P−S +R−T

]>
is the interior equilibrium

point of the dynamics. So

lim
t→∞

x(t) =


e1 x(0) ∈

{
x ∈ ∆ | x1 ∈ (x∗1, 1]

}
x∗ x(0) = x∗

e2 x(0) ∈ {x ∈ ∆ | x1 ∈ [0, x∗1)}
.

Therefore, almost always the dynamics converge to the states of either full cooperators or full defectors, implying
that the individuals will become coordinated in the long run.

Anti-coordination game: (P − S ), (R − T ) < 0. Hence,
(
(P − S ) + (R − T )

)
x1 > (P − S ) for x1 < x∗1, and(

(P − S ) + (R − T )
)
x1 < (P − S ) for x1 > x∗. So

lim
t→∞

x(t) =


e1 x(0) = e1

x∗ ∆ − {e1, e2}

e2 x(0) = e2

.

Therefore, almost always the dynamics converge to the unique interior equilibrium that is a mixture of cooperation
and defection, a polymorphic population.

Appendix E. Evolutionary stability and neutral stability

One fundamental notion in evolutionary game theory dealing with invasion of mutants in large populations
is evolutionary stability. Consider a population of individuals who are repeatedly and randomly drawn to play
with each other a symmetric 2-player game with the utility function u which defines their fitnesses. Suppose
that initially all individuals play the same strategy x ∈ ∆, but after a while, suddenly a group of mutants playing
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some other strategy y ∈ ∆ arises in the population. Under what conditions can the incumbent x-players resist the
invasion of the y-playing mutants?

To answer this question, denote the ratio of mutants in the whole population by ε ∈ (0, 1). Then the strategy
of the average population is (1 − ε)x + εy. Hence, the fitness of the x-players is u(x, (1 − ε)x + εy) and that of
the mutants is u(y, (1 − ε)x + εy). Assuming that the evolutionary forces select the fittest players, we acquire the
following condition for the incumbent x-players to take over the population:

u
(
x, (1 − ε)x + εy

)
> u

(
y, (1 − ε)x + εy

)
. (E.1)

Now if for any mutant strategy y ∈ ∆, the x-players can invade the mutant population, provided that their share
is sufficiently small, then x is called an evolutionarily stable strategy. More technically, we have the following
definition.

Definition 7. A strategy x ∈ ∆ is an evolutionarily stable strategy (ESS) if for every other strategy y ∈ ∆ − {x},
there exists some ε̄y ∈ (0, 1) such that inequality (E.1) holds for all ε ∈ (0, ε̄y).

Note that by definition, the mutants are not confined to be associated with a pure strategy; mutation to mixed-
strategy players is also allowed. Although Definition (7) does not seem to be related to the notion of Nash
equilibrium, the following result, while providing an easier test for evolutionary stability, strongly links the two by
showing that every ESS is a Nash strategy [7]. See Appendix B for definitions a Nash strategy and its refinements.

Proposition 10. A strategy x ∈ ∆ is evolutionarily stable if and only if the following conditions hold

u(x, x) ≥ u(y, x) ∀y ∈ ∆, (E.2)
u(x, x) = u(y, x) ⇒ u(x, y) > u(y, y) ∀y ∈ ∆ − {x}. (E.3)

This is indeed how evolutionary stability was originally defined [E1, E2], and still sometimes is (Definition
7 was later introduced in [E3], and the version that we used is stated in [7]). According to (E.2), if x is an ESS,
no other strategy may perform better against x. In case some strategy y performs equally well, then (E.3) asserts
that x must outperform y against y. The first condition is that of a Nash equilibrium, making ESS a refinement
of a Nash strategy. Interestingly, when John Maynard Smith came up with this concept, he was not aware of the
concept of Nash equilibrium in game theory [85].

It is worth mentioning that the notion of ESS is defined independently from the replicator or any other pop-
ulation dynamics, and implies invasion against mutants. However, as being discussed in the main text, ESS is
sufficient for asymptotic stability under the RD and a range of other dynamics, motivating the vast literature
dedicated to ESS.

The set of evolutionarily stable strategies is denoted by ∆ES S . As mentioned above, the condition (E.2) implies
∆ES S ⊆ ∆NE . Moreover, ∆ES S is known to be finite, and in particular, if an ESS belongs to the interior of the
simplex, then it is the unique ESS of the game, i.e., ∆ES S is a singleton [7].

In general every vector x ∈ ∆ can represent both a strategy vector whose entries indicate the probability of
playing a specific pure strategy, and a population state whose entries indicate the share of individuals playing
a specific pure strategy. For the former case, the evolutionarily stable strategy x may also be referred to as an
evolutionarily stable state.

In addition to those in Proposition 10, every ESS has two other unique properties. The first is having a uniform
invasion barrier, i.e., there exists some ε̄ ∈ (0, 1) such that inequality (E.1) holds for all y ∈ ∆−{x} and all ε ∈ (0, ε̄)
[E4, E5]:

Proposition 11. A strategy x ∈ ∆ is an ESS if and only if x has a uniform invasion barrier.

In other words, for the incumbent strategy x to be an ESS, there must be some population share, for which
every invasion of mutants that occupies a smaller share than this is resisted by x. Namely, ε̄y can be the same for all
mutant strategies y. The second unique property is being locally superior, that is to earn more against all nearby
mutants than what they earn against themselves [E5, 7]. Mathematically, a strategy x ∈ ∆ is locally superior if it
has a neighborhoodU ⊆ ∆ such that u(x, y) > u(y, y) for all y ∈ U − {x}.

Proposition 12. A strategy x ∈ ∆ is an ESS if and only if x is locally superior.

This local superiority becomes global when the ESS belongs to the interior of the simplex and is, hence,
unique. The notion of evolutionary stability requires a strong assumption on the incumbent strategy, that is to
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earn more than any group of mutants, provided that their population share is sufficiently small. If this is relaxed
to earning no less than the mutants, we obtain a weaker notion of evolutionary stability, neutrally stability [E6],
defined as follows.

Definition 8. A strategy x ∈ ∆ is a neutrally stable strategy (NSS) if for every other strategy y ∈ ∆ − {x}, there
exists some ε̄y ∈ (0, 1) such that the inequality

u
(
x, (1 − ε)x + εy

)
≥ u

(
y, (1 − ε)x + εy

)
(E.4)

holds for all ε ∈ (0, ε̄y).

Similar to the case with ESSs, the following proposition nicely bridges neutrally stable and Nash strategies.

Proposition 13. A strategy x ∈ ∆ is neutrally stable if and only if the following conditions hold:

u(x, x) ≥ u(y, x) ∀y ∈ ∆, (E.5)
u(x, x) = y(y, x) ⇒ u(x, y) ≥ u(y, y) ∀y ∈ ∆ − {x}. (E.6)

The set of NSS is denoted by ∆NS S . Based on what has been discussed so far,

∆ES S ⊆ ∆NS S ⊆ ∆NE .

Now we investigate these notions in 2 × 2 symmetric games.
Prisoner’s dilemma game: We know ∆NE = {e2}, so ∆ES S ⊆ {e2}. On the other hand, e2 is a strict Nash

equilibrium. Hence, ∆ES S = {e2}. Therefore, in view of ∆NE = {e2}, it also holds that ∆NS S = {e2}. So defection is
the only neutrally stable strategy, which is also evolutionarily stable.

Coordination game: We know ∆NE = {e1, x∗, e2}. Satisfying (E.2) with strict inequality, e1, e2 ∈ ∆ES S . Hence,
e1 and e2 also belong to ∆NS S . However, x∗ incurs equality in (E.5), and does not satisfy (E.6) for y = e1 as an
example. So x∗ < ∆NS S . Hence, ∆NS S = ∆ES S = {e1, e2}. So both cooperation and defection are evolutionarily
stable.

Anti-Coordination game: We know ∆NE = {x∗}. It can be shown that x∗ satisfies (E.3). Hence, ∆NS S = ∆ES S =

{x∗}. So only a mixture of cooperation and defection is evolutionarily stable.

References
[E1] J. M. Smith and G. R. Price. ”The logic of animal conflict.” Nature, vol. 246, pp. 15-18, 1973.
[E2] J. M. Smith. ”The theory of games and the evolution of animal conflicts.” Journal of Theoretical Biology, vol. 47, no. 1, pp. 209-221,

1974.
[E3] P. D. Taylor and L. B. Jonker. ”Evolutionary stable strategies and game dynamics.” Mathematical Biosciences, vol. 40, no. (1-2), pp.

145-156, 1978.
[E4] J. Hofbauer, P. Schuster, and K. Sigmund. ”A note on evolutionary stable strategies and game dynamics.” Journal of Theoretical Biology,

vol. 81, no. 3, pp. 609-612, 1979.
[E5] G. T. Vickers, and C. Cannings. ”Patterns of ESS’s I.” Journal of Theoretical Biology, vol 132, no. 4, pp. 387-408, 1988.
[E6] J. M. Smith. Evolution and The Theory of Games. Cambridge University Press, 1982.

Appendix F. Lotka-Volterra equation

The Lotka-Volterra Equation, describing the interaction of m species, is given by

ẏi = yi

ri +

n∑
j=1

bi jy j

 , i = 1, . . . ,m

where yi ≥ 0 denotes the population size of species i, ri ∈ R denotes the growth rate of species i and bi j ∈

R describes the extent to which species j competes for resources used by species i [F1, F2]. Apparently, the
(m − 1)-dimensional Lotka-Volterra equations are equivalent to the m-dimensional replicator dynamics (8) when
ri = πim − πmm and bi j = πi j − πm j for all i, j ∈ {1, . . . ,m}. This can be shown by applying the transformation
xi 7→

yi

1+
∑m−1

j=1 y j
for i = 1, . . . ,m [F1].

Because of their application in ecology and biology [F3, F4], a huge body of literature is dedicated to the
stability analysis of the Lotka-Volterra equations. In particular, the equations are known to exhibit multiple limit
cycles [F5, F6], strange attractors [F7] and chaotic behaviors, even for m = 3 [F8]. In view of the equivalence
explained above, this implies that the same phenomena can happen in 4-dimensional replicator dynamics.
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Appendix G. Convergence proofs for asynchronous best-response dynamics

It is convenient for the analysis here to consider a strategy set S := {+1,−1} with corresponding payoff matrix:

πi j :=


+ −

+ ai j bi j

− ci j di j

, ai j, bi j, ci j, di j ∈ R.

The total payoffs can then be expressed in a compact form:

ui(xi, x−i) =


1
2

∑
j∈Ni

ai j(1 + x j) + bi j(1 − x j), if xi = +1

1
2

∑
j∈Ni

ci j(1 + x j) + di j(1 − x j), if xi = −1
.

The best-response update (2) can be expressed as follows:

xi(k + 1) = sign
( ∑

j∈Ni

(δ+
i j − δ

−
i j) + x j(k)(δ+

i j + δ−i j)
)
, (G.1)

where δ+
i j = ai j − ci j and δ−i j = di j − bi j. Here, we have implicitly assumed that the case when both strategies result

in equal payoffs results in an update to the +1 strategy, which is equivalent to setting zi = A for all agents in the
update rule (6). By symmetry of the problem setup, every case in which zi ∈ {A, B} can be transformed into the
case where zi = A for all i ∈ V by rearranging payoff matrices of some of the agents. It is therefore sufficient to
prove convergence of the update rule (G.1).

Proof of Theorem 4

Proof. Let hi =
∑

j∈Ni δ
+
i −δ

−
i

δ+
i +δ−i

, and define the following potential function:

Φ(x(k)) =

n∑
i=1

φi(x(k)), (G.2)

where

φi(x(k)) = −xi(k)
(1
2

∑
j∈Ni

x j(k) + hi

)
.
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From (G.1), it holds that an agent who activates at time k only changes strategies if

xi(k) sign
( ∑

j∈Ni

(δ+
i − δ

−
i ) + x j(k)(δ+

i + δ−i )
)
< 0

⇐⇒ xi(k)
( ∑

j∈Ni

(δ+
i − δ

−
i ) + x j(k)(δ+

i + δ−i )
)
< 0

Since δ+
i +δ−i > 0, we can divide by δ+

i +δ−i without changing the sign. The criteria for an agent to switch strategies
then becomes

xi(k)
( ∑

j∈Ni

x j(k) + hi

)
< 0 (G.3)

At this time, the change in potential is given by ∆Φ(x(k))

= Φ(x(k + 1)) − Φ(x(k))
= φi(x(k + 1)) − φi(x(k))

+
∑
j∈Ni

φ j(x(k + 1)) − φ j(x(k))

= −
1
2

∑
j∈Ni

xi(k + 1)x j(k + 1) − hixi(k + 1)

+
1
2

∑
j∈Ni

xi(k)x j(k) + hixi(k)

−
1
2

∑
j∈Ni

xi(k + 1)x j(k + 1) − h jx j(k + 1)

+
1
2

∑
j∈Ni

xi(k)x j(k) + h jx j(k)

Since only the active agent changes strategies, we have xi(k + 1) = −xi(k) and x j(k + 1) = x j(k) for all j , i.
Therefore, we can simplify the above expression as follows:

∆Φ(x(k)) = 2
∑
j∈Ni

xi(k)x j(k) + 2hixi(k)

= 2xi(k)
( ∑

j∈Ni

x j(k) + hi

)
.

Due to (G.3), we have ∆Φ(x(k)) < 0 whenever an agent switches strategies. For a given network, the potential
function ∆Φ(x(k)) is bounded from above and below. Since there are only a finite number of possible values
of ∆Φ(x(k)) for a given network, |∆Φ(x(k))| is lower bounded. It follows that the the network will reach an
equilibrium state after a finite number of strategy switches. Finally, by the assumption or persistent activations,
each agent will activate an infinite number of times as time goes to infinity and thus an equilibrium state will be
reached at some finite time.

Proof of Theorem 5

Proof. We again use the potential function (G.2). From (G.1), it holds that an agent who activates at time k only
changes strategies if

xi(k) sign
( ∑

j∈Ni

(δ+
i − δ

−
i ) + x j(k)(δ+

i + δ−i )
)
< 0

⇐⇒ xi(k)
( ∑

j∈Ni

(δ+
i − δ

−
i ) + x j(k)(δ+

i + δ−i )
)
< 0
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Since δ+
i + δ−i < 0, dividing by δ+

i + δ−i will always negate the sign. The criteria for an agent to switch strategies
then becomes

xi(k)
( ∑

j∈Ni

x j(k) + hi

)
> 0 (G.4)

As shown in the proof of Theorem 4, the change in potential at such a time is given by

∆Φ(x(k)) = 2
∑
j∈Ni

xi(k)x j(k) + 2hixi(k)

= 2xi(k)
( ∑

j∈Ni

x j(k) + hi

)
.

Due to (G.4), we have ∆Φ(x(k)) > 0 whenever an agent switches strategies. The rest of the proof follows exactly
as the proof of Theorem 4.

Proof of Theorem 6

Proof. Let ki j = δ+
i j + δ−i j and τi =

∑
j∈Ni

δ+
i j − δ

−
i j, and define the following potential function:

Φ(x(k)) =

n∑
i=1

φi(x(k)),

where

φi(x(k)) = −xi(k)
(1
2

∑
j∈Ni

ki jx j(k) + τi

)
.

From (G.1), it holds that an agent who activates at time k only changes strategies if

xi(k) sign
( ∑

j∈Ni

ki jx j(k) + τi

)
< 0

⇐⇒ xi(k)
( ∑

j∈Ni

ki jx j(k) + τi

)
< 0 (G.5)

At this time, the change in potential is given by ∆Φ(x(k))

= Φ(x(k + 1)) − Φ(x(k))
= φi(x(k + 1)) − φi(x(k))

+
∑
j∈Ni

φ j(x(k + 1)) − φ j(x(k))

= −
1
2

∑
j∈Ni

ki jxi(k + 1)x j(k + 1) − τixi(k + 1)

+
1
2

∑
j∈Ni

ki jxi(k)x j(k) + τixi(k)

−
1
2

∑
j∈Ni

k jixi(k + 1)x j(k + 1) − τ jx j(k + 1)

+
1
2

∑
j∈Ni

k jixi(k)x j(k) + τ jx j(k)

Since only the active agent changes strategies, we have xi(k + 1) = −xi(k) and x j(k + 1) = x j(k) for all j , i. Also,
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since all games are symmetric, ki j = k ji. Therefore, we can simplify the above expression as follows:

∆Φ(x(k)) = 2
∑
j∈Ni

ki jxi(k)x j(k) + 2τixi(k)

= 2xi(k)
( ∑

j∈Ni

ki jx j(k) + τi

)
.

Due to (G.5), we have ∆Φ(x(k)) < 0 whenever an agent switches strategies. For a given network, the potential
function ∆Φ(x(k)) is bounded from above and below. Since there are only a finite number of possible values
of ∆Φ(x(k)) for a given network, |∆Φ(x(k))| is lower bounded. It follows that the the network will reach an
equilibrium state after a finite number of strategy switches. Finally, since the activation sequence is persistent,
each agent will activate an infinite number of times as time goes to infinity and thus the equilibrium state will be
reached at some finite time.
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