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Abstract

With the current observations of the Planck satellite, the measurements that probe
cosmological scales are entering a new high precision era. This provides interesting
information regarding the very early stages of the universe, including on the era
of inflation which is studied in this thesis.

One of the observables is the cosmic microwave background (CMB) radiation,
which was emitted when the universe was relatively young (380 000 years). This
radiation encodes a wealth of information concerning the state of the universe when
it was emitted and can therefore be regarded as a picture of the early universe.
One of the interesting features of this ‘picture’ is that the observed deviations in
the temperature of the CMB radiation are tiny, implying that the CMB radiation
is isotropic.

A popular explanation for the isotropy of the universe is cosmological inflation,
which is the main topic of this thesis. During the inflation era the universe rapidly
expanded, generating a causal connection between points in the CMB radiation
that were far apart at the moment this radiation was emitted. Therefore, inflation
explains the isotropy of the universe. Quantum mechanics generates small differ-
ences for different patches of the universe during the inflationary phase, which are
responsible for the small anisotropies – deviations from the perfect isotropy – in the
CMB radiation. Indeed, dedicated experiments have observed these anisotropies,
which are exactly as predicted by (single field) inflation. In addition to these small
perturbations in the density of the universe, inflation also predicts a cosmological
source of gravitational waves. Though the existence of these gravitational waves
could be visible in the CMB radiation, they have not been observed.

The first line of research on which this thesis is based considers large ensem-
bles of inflation models and compares them with the data from the CMB radiation
observed by the Planck satellite. From these large ensembles generic predictions
were deduced for given parametrizations. By comparing the predictions from a
polynomial expanded inflation model to a model defined by the ratio of polyno-
mials, we find that the latter (which represents plateau inflation) are in better
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agreement with the data than the former. Therefore, we conclude that the current
data favours plateau inflation. This observation is strengthened by our subsequent
study of the strong coupling attractor inflation model, which also naturally have
a plateau if a parameter (ξ) is chosen sufficiently large. Our study of generic pre-
dictions of this attractor showed that if ξ = O

(
104), these models are in perfect

agreement with the data.
The second line of research studies inflation embedded in supergravity, which is

an extension of both the standard model of particle physics and general relativity.
In this study, we consider a particular embedding of inflation in supergravity,
and study its theoretical consistency. In addition, we are able to address another
problem in cosmology, which is that the total amount of matter in the universe
is larger than the amount of observed matter. In part of the parameter space of
our supergravity model the additional matter (dark matter) is naturally explained
as originating from this new supersymmetric sector. Thus, we have a model that
simultaneously describes supersymmetry breaking, inflation and dark matter.



Samenvatting

Binnen de natuurkunde wordt een grote verscheidenheid aan afstandsschalen be-
studeerd. Zo worden bijvoorbeeld zeer precieze metingen verricht aan kosmolo-
gische datasets. Deze metingen genereren interessante informatie over het zeer
vroege universum, inclusief de inflatieperiode die bestudeerd wordt in dit proef-
schrift.

Een van de kosmologische datasets is de kosmische achtergrondstraling (CMB).
De CMB is straling die uitgezonden is toen het universum relatief jong (380 000
jaar) was. Deze straling werd uitgezonden in het vroege universum en bevat een
grote hoeveelheid informatie over deze periode. Feitelijk kan het beschouwd wor-
den als een meting van de temperatuur van het vroege universum. Vreemd genoeg
bevat deze meting nagenoeg geen variaties in de temperatuur, hetgeen betekent
dat de CMB isotroop is (merk op dat de CMB enkel waargenomen wordt in ver-
schillende richtingen aan de hemel).

De populairste verklaring voor de isotropie van het universum is een vroege
fase van kosmologische inflatie en het onderzoek hiernaar is het onderwerp van dit
proefschrift. Tijdens inflatie expandeerde het universum versneld, hetgeen ervoor
zorgde dat punten in de CMB causaal met elkaar verbonden raakten. Hiermee
verklaart inflatie de isotropie van het universum. Echter, kwantummechanische
fluctuaties genereerden tijdens inflatie zeer kleine veranderingen in de energiedicht-
heid van het universum die vervolgens anisotropieën in de CMB veroorzaakten.
Deze anisotropieën zijn inderdaad gemeten en zijn precies zoals voorspeld door
inflatie. Behalve deze anisotropieën voorspelt inflatie ook deformaties in het gra-
vitationele veld die zich manifesteren als zwaartekrachtgolven. Hoewel de gevolgen
van de zwaartekrachtgolven zichtbaar zouden moeten zijn in de CMB, is dit nog
niet waargenomen.

De eerste tak van het onderzoek dat beschreven wordt in dit proefschrift is het
vergelijken van grote ensembles van inflatiemodellen met de data van de CMB zo-
als gemeten door de Planck satelliet. Van deze grote ensembles kunnen generieke
voorspellingen worden afgeleid voor de verschillende parametrisaties waarmee deze
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ensembles zijn gemaakt. Door een parametrisatie van de potentiaal gebaseerd op
een polynoom te vergelijken met modellen met een verhouding van polynomen,
wordt geconcludeerd dat deze laatste modellen (die een realisatie zijn van plateau
inflatiemodellen) beter overeenkomen met de CMB. We concluderen hieruit dat
de huidige data suggereren dat inflatie geparametriseerd wordt door plateau infla-
tiemodellen. Deze observatie is versterkt door een studie van zogenaamde sterke
koppeling attractormodellen die een natuurlijk plateau genereren als een parame-
ter (ξ) groot genoeg wordt gekozen. Onze studie naar de generieke voorspellingen
van deze modellen toonde aan dat als ξ = O

(
104) gekozen wordt, deze modellen

in perfecte overeenstemming zijn met de data.
De tweede tak van het onderzoek bestudeert inflatiemodellen in supergravitatie,

hetgeen een extensie is van zowel het standaardmodel van de deeltjesfysica als van
de algemene relativiteitstheorie door middel van een nieuwe symmetrie genaamd
supersymmetrie. In dit onderzoek bestuderen we een bepaalde inbedding van
inflatie in supergravitatie en bestuderen we de theoretische consistentie. Daarnaast
zijn we in staat om donkere materie, een ander probleem in de kosmologie, te
bestuderen. In een deel van de parameterruimte van ons model wordt deze donkere
materie verklaard door een deeltje in de supersymmetrische sector. Hierdoor zijn
wij in staat om in ons model zowel supersymmetriebreking, inflatie als donkere
materie te beschrijven.



CHAPTER 1

Introduction

1.1 Physics at extreme length scales
Contemporary physics experiments study events at a large variety of length scales.
At the smallest length scales, the Large Hadron Collider (LHC) probes the elemen-
tary particles, while at the largest scales the initial state of the universe is probed
by the Planck satellite [1] and the BICEP/KECK telescope [2] which observe the
cosmic microwave background (CMB) radiation. Between these extremes, there
are many orders of magnitude at which interesting physical phenomena occur. A
few of these are shown in Fig. 1.1.

When considering this wide range of distance scales, it should be realised that
for many observations it is sufficient to consider effective theories, instead of a
theory that describes the full set of energy scales. For instance, when calculating
the acceleration of a falling apple, at first order only the gravitational force needs
to be included. In general, the physics of a falling apple is, as is most of the physics
that we observe around us in daily life, well described by classical mechanics.

When considering small distance scales, quantum mechanics provides a better
explanation for the observed effects. Within quantum mechanics, there is an in-
trinsic uncertainty for observable quantities given by the Heisenberg uncertainty
principle. Due to this principle, the position and momentum operators do not com-
mute in quantum mechanics, while such an effect is not encountered in classical
physics. Therefore, there is an intrinsic length scale named de Broglie wavelength
λdB = ~/p given by the momentum (p) of a particle at which quantum mechanical
effects become relevant.
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Figure 1.1: The different observed distance scales, G.W. stands for gravitational
waves. The wavelength of protons (denoted p) is the De Broglie wavelength and
the diameter of the visible universe refers to the surface of the cosmic microwave
background radiation that we observe. The total universe that can theoretically be
observed, the current particle horizon, is larger.

At large velocities close to the speed of light (hence also at large momenta)
special relativistic effects become relevant, since the speed of light is the maximal
possible velocity at which information can travel. In this extreme, the fact that
the speed of light is the same for all inertial frames, i.e. non-accelerating frames, is
relevant. Therefore, when boosting to a faster-moving inertial frame (thus without
acquiring an acceleration), time in this new frame will run slower. This implies
that the laws of physics are not invariant under independent transformations of
space and time, as implied by Galilean relativity, but are invariant under the
Lorentz transformations.

In the limit of small distance and large velocity, the de Broglie wavelength
is smaller than the Compton wavelength λC = ~/(mc). In this regime quantum
field theory is the established theory, since it combines quantum mechanics and
special relativity. The standard model of particle physics was developed within
this paradigm and is a fundamental theory that is experimentally well verified.
The standard model contains three types of particles: fermions, gauge bosons and
the Brout-Englert-Higgs boson, which differ by their spin. Gauge bosons have
spin 1, fermions spin 1/2 and the Brout-Englert-Higgs boson has spin 0. All ob-
served matter, with the exception of dark matter, can be explained with this set
of particles together with three of the four fundamental forces: the electromag-
netic, the weak and the strong force. The gravitational force is not described in
this framework, for it is extremely weak at the energy scales where the standard
model of particle physics is tested. At the moment of writing this thesis, collider
experiments did not observe any significant deviations from the standard model
of particle physics.

When we study the physics at large distances, usually the involved masses
become large. If, in addition, large velocities are considered, general relativistic
effects must be taken into account. Within general relativity, space-time is curved
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depending on the mass distribution inside it and a freely falling object follows the
path with the shortest distance in this curved space. The difference of this path
with respect to a straight line in flat space explains gravity. General relativity
is typically relevant for describing the physics from the solar system scales, for
instance the perihelion precession of Mercury, up to quantifying the shape of our
universe.

At these large distance scales the standard model forces do not play an impor-
tant role, since there are no charged structures. Moreover, the weak force has only
a finite range and for distances beyond about 10−15 metre their effects are negli-
gible. The strong force between two strongly charged objects grows with distance,
therefore, if two quarks are separated, then the energy quickly increases and a new
pair of quarks appear. This process is known as confinement, quarks are confined
to be close together, thus at cosmological distance scales no strongly charged ob-
jects can exist. Though the dipole interaction resulting from the separation of the
strong charges in nucleons does not confine, this force only has a finite length and
is not of cosmological importance. This leaves us with only the gravitational force,
which is – evidently – important when we are studying the universe.

Experimental studies showed that at large distances general relativity describes
the astronomical data extremely well, if two new ingredients are taken into ac-
count. The first is that the total matter density is about a factor 4 larger than
the luminous matter. The required additional matter, named dark matter, is not
accounted for in the standard model of particle physics and is one of the moti-
vations for studying extensions of this theory. Another new ingredient to explain
the astronomical data is to add a source of acceleration for the late-time universe.
The simplest approach to explain this acceleration is by adding a cosmological
constant Λ to the Einstein equations. Thus parametrizing the two unknowns of
current cosmology, the standard model of cosmology is named the ΛCDM (Λ Cold
Dark Matter) model, where cold stands for the assumption that dark matter is
non-relativistic. It is in good agreement with the data.

The ΛCDM model assumes that the evolution of the universe is described by
general relativity, which postulates that the gravitational force attracts all matter
equally due to the equivalence principle. Since gravity is for all objects in the
universe an attractive force, structures are formed in the universe, like galaxies,
galaxy clusters and superclusters. However, structures larger than superclusters
(about 100 Mpc ≈ 3 × 1025 m) have not been observed. This is in agreement
with the cosmological principle, which postulates that for scales larger than ap-
proximately 100 Mpc the observations in the universe become independent on the
position of the observer (homogeneity) and independent on the direction in which
the universe is observed (isotropy). For a discussion on the cosmological principle
and its emergence at large distances, see Ref. [3].

To further investigate the cosmological principle, one should realise that observ-
ing phenomena in cosmology at large spatial distance also implies a large temporal
distance due to the finite speed of light. Therefore, by looking far away we observe
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Figure 1.2: History of the universe. Figure from Ref. [4], original from NASA.

the early universe, of which the different eras are shown in Fig. 1.2. The current
paradigm is that the universe started with a hot Big Bang, after which it was
extremely hot. During this era, the universe was radiation dominated. However,
the energy density contained in the radiation decreased faster than the energy
density of the matter fluid, so after about 104 years the universe became matter
dominated.

During this radiation dominated phase and the beginning of the matter domi-
nated phase (the first 105 years), all matter in the universe was in the plasma phase
and the mean free path of a photon in a plasma is small. Due to the expansion of
the universe, the primordial plasma cooled down and at some moment the forma-
tion of neutral particles was energetically favourable, hence the universe entered
the gas phase. Photons do not scatter as strongly in a gas as they do in a plasma,
so the mean free path of the photons was greatly enhanced. The photons emit-
ted at this phase transition are observable on the earth as the cosmic microwave
background (CMB) radiation. Since before the CMB radiation was emitted the
universe was not transparent, this is the earliest moment in the universe that is
directly observed.

The CMB radiation was discovered by Penzias and Wilson in 1965 [5, 6]. The
signal that they observed was extremely isotropic. Moreover, the spectrum of the
CMB radiation represents a perfect black body spectrum with a temperature of
2.7255 ± 0.0006 K [7]. The low temperature is caused by the expansion of the
universe. When the CMB radiation was emitted, its spectrum was a black body
with a temperature of the order of 3000 K [8]. After the first measurement of the
CMB no deviations of the black body spectrum have been observed.

In 1992 the Cosmic Background Explorer (COBE) satellite measured small an-
isotropies in the sky [9], implying a breaking of the cosmological principle. These
anisotropies were expected, since they are the seeds of the current density fluctua-
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tions in the universe, like the galaxies, galaxy clusters and superclusters mentioned
earlier. However, if there is no new era in the history of the universe, the CMB
radiation should be completely uncorrelated at an angle in the sky larger than
about 1.8 degrees [3]. Since the CMB radiation that we observe is correlated at
larger angles, it is not clear how the universe became so isotropic and how this
isotropy is slightly broken to generate the observed structures. This problem is
known as the isotropy problem.

The isotropy problem can be translated into the homogeneity problem by using
the Copernicus principle, which states that the earth is not situated at a centre of
the universe. Since the only possibility that the universe is isotropic but not homo-
geneous is when the earth was located in the center of the universe, we conclude
that the universe is also homogeneous. Recently, also direct observation of ho-
mogeneity became possible with large scale structure surveys. These observations
confirm that at large scales the universe is homogeneous [10].

1.2 Inflation
In principle, it can be understood how a perfectly scale invariant universe came into
existence, solving the question: ‘why the universe is isotropic and homogeneous?’
The argument is that if there was only one single possible initial condition of the
universe, it should not come as a surprise that the final universe is highly scale
invariant. But this does not explain the origin of the small anisotropies. Obviously,
these can be solved by imposing that the initial conditions of the universe were
such that it is nearly isotropic and homogeneous, with only small anisotropies
and inhomogeneities. However, this approach is highly unsatisfactory since such
initial conditions are rather artificial. A more elegant solution is to propose that
the universe went through an extra era during which the observable part of the
universe became homogeneous and isotropic, which was first investigated by Guth
in [11]. This new epoch in the universe is called inflation and is the main subject
of this thesis.

The era of inflation was a period during which the early universe underwent
an accelerated expansion. Due to this expansion the universe was smoothed and
flattened, not only explaining why the universe is nearly isotropic and homoge-
neous, but also why measurements show that it is extremely flat. This inflationary
era can be described in quantum field theory by introducing a scalar field called
the inflaton (multiple inflatons are possible, but not considered in this thesis) that
slowly rolls down a potential. The slow roll condition implies that at leading order
the kinetic energy of the inflaton can be neglected with respect to its potential
energy. If the inflaton potential is positive, neglecting the kinetic energy generates
effectively a de Sitter vacuum, which undergoes the above-mentioned accelerated
expansion. When the inflaton has rolled sufficiently far down the potential, the
kinetic energy overtakes the potential energy and inflation ends.
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During inflation, the inflaton field undergoes quantum fluctuations. Due to
these quantum fluctuations there are patches in the universe in which the inflaton
was higher in the potential while in other patches the inflaton was lower. The
accelerated expansion of the universe implies that some of these patches are not
able to equilibrate. So, during inflation several patches in the universe became
disconnected with a slightly different value for the inflaton field, meaning that
they were unable to equalize their inflaton field value amongst them. Inflation
ends at a certain value for the inflaton field, so these patches will stop inflating at
different moments in cosmic time. This difference in the moment at which inflation
ends implies a difference in the subsequent evolution of the universe, with small
density perturbations appearing in the cosmic plasma.

At the moment the CMB radiation was emitted these density perturbations
were transformed into temperature fluctuations, which are the anisotropies ob-
served today. These anisotropies can be parametrized using two parameters, As
and ns. The parameter As measures the size of the perturbations, while the param-
eter ns measures the deviation from a scale-independent spectrum. CMB observa-
tions show that As = (2.14± 0.05) · 10−9 [12] and in addition the Planck satellite
in Ref. [13] showed with 5σ confidence that the spectrum changes slightly with
respect to the energy scale at which the fluctuations are measured. A more recent
analysis from the same satellite resulted in the parameter ns = 0.965± 0.004 [14],
where ns = 1 corresponds to scale invariant fluctuations.

Another potentially observable feature of inflation is that it produces gravita-
tional waves. That gravitational waves exist was observed by the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO) in September 2015 [15], but the
gravitational waves observed in this experiment were emitted relatively recently.
Unfortunately, the gravitational waves emitted by inflation are today less energetic
and therefore not directly observable. However, they leave imprints on the polar-
ization of the CMB radiation, which can be measured by dedicated experiments.
This results in the third important parameter for inflation, r, which is the ratio of
the tensor (gravitational wave) power spectrum over the scalar power spectrum.
Current experiments have set the upper bound r < 0.07 [16] with 95% confidence
level [17], and it is expected that in the near future these bounds will strongly
improve, or result in a detection.

The goal of inflationary physics is to explore the space of inflation models that
satisfy the current measurements of ns and As and the bound on r. These current
constraints are strong enough to falsify a large set of the known inflation models,
however also an extremely large number of models do satisfy the observations.
Therefore, it is important to study classes of inflation models with a similar ob-
servable behaviour. Examples of these classes of inflation models are the attractor
models, which introduce a special feature in the inflaton action so that ns and r
become nicely aligned with the observations.

Since the standard model of particle physics does not account for inflation, this
study is also relevant for the study of extensions of the standard model of particle
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physics. There is the possibility that the Brout-Engert-Higgs boson is the inflaton,
but consistency with the observables requires for this scenario a non-minimal cou-
pling of the Brout-Engert-Higgs boson with gravity. Therefore, inflation provides
a view on physics beyond the standard model of particle physics.

Inflation is not the only hint that the standard model of particle physics is
only an effective theory and that at sufficiently large energies, which in quantum
field theory correspond to small distance scales, the theory should be altered.
Another indication is the fact that the gravitational force is not incorporated in
the standard model. Using dimensional analysis, it can be shown that effects from
general relativity become important at energy scales of the order of 1018 GeV,
which corresponds to 10−37 meters. Therefore, at least at these energies new
physics should emerge.

A candidate for combining quantum field theory with general relativity is string
theory, which can only be theoretically consistent if an additional symmetry is in-
troduced. This symmetry, named supersymmetry, relates particles of different
spin. The simplest version of supersymmetry relates every boson in the theory
to a fermion and visa versa. Current experiments have not observed these super-
partners of the standard model particles, but it is possible that their masses are
beyond the energy scales that experiments can probe.

Extensions of both the standard model of particle physics and gravity, which
include supersymmetry, have been studied. The minimal extension of the standard
model with supersymmetry is named the MSSM (minimal supersymmetric stan-
dard model), which is currently being constrained by the experiments at the LHC.
The gauging of supersymmetry (i.e. making the symmetry transformation depen-
dent on position) results in an interesting quantum field theory that also describes
the gravitational force. This is called supergravity. Since inflation takes place
at large energies, and supersymmetric effects are supposed to become relevant at
large energies as well, an important field of research is to study the embedding of
inflation models in supersymmetry and supergravity.

1.3 Outline of the thesis
This thesis focusses on unravelling the characteristics of inflation models. This will
be achieved through two approaches. The first will be to investigate the generic
observational predictions from different parametrizations of inflation models. The
second approach will be to study if a certain set of supergravity inflation models,
known as nilpotent inflation models, can account for the inflationary observables
and at the same time realise low energy supersymmetry breaking.

Before dealing with inflation, in chapter 2 the physics of the standard models
of particle physics and cosmology will be reviewed and the problems leading to
inflation will be highlighted. This chapter starts in section 2.1 with a review of
the standard model of particle physics, followed by a review on the ΛCDM model
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in the subsequent sections. In chapter 3, inflation will be reviewed.
Chapters 4, 5 and 6 deal with the problem of generating parametrizations for

inflation models that have ns and r generically in agreement with the observa-
tions. Chapter 4 reviews the inflationary flow code, which is a numerical method
to compute predictions for large sets of inflation models and uses them for a poly-
nomial Hubble function. In addition, another numerical method will be derived
that can be used to obtain the general predictions from any parametrization of the
inflation potential (or Hubble function). Using this code, it will be shown that ns

in polynomial inflation models is generically too small to explain the Planck data.
In chapter 5 this numerical analysis is extended using a novel analytical method
to solve the inflationary dynamics. In addition, another parametrization will be
developed, which uses a ratio of polynomials known as the Padé approximant to
parametrize the Hubble function. Since this parametrization generically agrees
with the observed data much better than the polynomial parametrization, we con-
clude that it is not suitable to use the polynomial parametrization as a generic
prescription for inflationary models (as was used in the literature). This analy-
sis uses the same numerical tools that were developed for polynomial inflation in
chapter 4. However, it raises the question of whether the Padé approximant is the
correct parametrization, or that yet another alternative parametrization should be
used.

The parametrization introduced in chapter 6 is inspired by the strong coupling
attractor models, which has an interesting interpretation of being a theory non-
minimally coupled to gravity. It will be shown analytically and using the above-
mentioned numerical procedure that also for this parametrization the predictions
generically agree with the observables, if the parameter ξ is sufficiently large.

Chapters 7 and 8 discuss the embedding of inflation in supergravity. For this
purpose, chapter 7 shortly reviews supersymmetry and supergravity with the em-
phasis on supergravity inflation. Then, in chapter 8, a model will be introduced
in which inflation is embedded in supergravity using the nilpotent inflation model.
It will be shown that the consistency of this embedding is not always guaranteed,
however an example of a new model that does have a valid inflationary phase will
be provided.

After obtaining this valid supergravity embedding we compute the superpar-
ticle masses, which are in agreement with the current constraints from the LHC.
In addition, we verify that the lowest supersymmetric particle, in our model the
gravitino, does not overclose the universe. For part of the parameter space, the
gravitino can account for dark matter. This thesis therefore provides one of the
few known examples of an inflation model that includes supersymmetry breaking,
the MSSM spectrum and dark matter.

The thesis is structured in three parts, as shown in the flow chart in Fig. 1.3.
The introductory part consists of chapters 2 and 3. Then, the chapters 4 – 6 con-
sider the general parametrization of inflation. The third part of the thesis contains
the remaining chapters 7 and 8. The second and third part can be read separately,
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Figure 1.3: Flow chart of the thesis.

though section 6.2 reviews the α-attractor inflation model used in chapter 8. We
conclude in chapter 9.

In the following natural units will be used, where ~ = c = 1, and additionally
we define the reduced Planck mass Mp = mpl√

4π =
√

~c
GN

. We assume that the
reader is familiar with general relativity and quantum field theory.





CHAPTER 2

The standard models of cosmology
and particle physics

Introduction
In this chapter the standard models of particle physics and cosmology will be
briefly introduced. We will focus on the standard model of cosmology, since within
this model inflation will be described in the next chapter. The standard model
of particle physics, simply named the standard model in the following, will be
extended with supersymmetry in chapter 7 to provide candidates for the inflaton.

This chapter will be structured as follows. First, in section 2.1 the standard
model of particle physics will be discussed. Then, in section 2.2 and 2.3 the
mathematical framework of our universe will be shortly reviewed, followed by an
explanation of the Cosmic Microwave Background (CMB) radiation in section 2.4.
Combining the standard model of particle physics and cosmology provides us with
the history of the universe, as will be reviewed in section 2.5, while in section 2.6
will be shown that this generates the problems of dark energy and dark matter.
Finally, we finish in section 2.7 with selected problems concerning the origin of
our universe, of which some will be solved by the inflation paradigm in the next
chapter.

More information concerning the ΛCDM cosmology can be found in the text-
books [3, 8, 18–20], while textbooks concerning the standard model of particle
physics are Refs. [21–24].
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Figure 2.1: The particle content of the standard model of particles. The figure
is taken from [25], but the masses of the particles are extracted from [26]. The
quoted neutrino masses are the masses in the flavour eigenbasis.

2.1 The standard model of particle physics
The standard model of particle physics is defined as the most general renormaliz-
able quantum field theory with the gauge symmetry SU(3)× SU(2)L × U(1) and
the particle content seen in nature. This symmetry group represents the three
fundamental forces that are described by the model, the electric force, the weak
force and the strong force. The first two forces, the electric and the weak force, are
unified within the standard model as the electroweak force (with the symmetry
group SU(2)L × U(1)), while the strong force (the SU(3) part) is for the energy
scales probed so far fundamental. The U(1) symmetry corresponds to a charge,
the hypercharge. For the energy scales where the standard model is being tested,
gravity is too weak to have observable effects and can be neglected.

The particle content of the standard model is shown in Fig. 2.1. The first
three columns of Fig. 2.1 correspond to the three families of fermions, of which the
first two rows are the quarks (in purple), and the bottom two are the leptons (in
green). The particles in every generation are more massive than in the previous
generation and are increasingly unstable, except for the neutrinos. Concerning
the neutrinos it is known that they have a mass, however it is not known which
neutrino is exactly the heaviest. Moreover, the neutrinos do not decay, but their
mass matrix is not aligned with the flavour matrix (the basis with νe, νµ and ντ )
so they oscillate into the different flavours. The last column contains the gauge
bosons that carry the fundamental forces.
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Quarks in the standard model are charged under all three forces [24]. Due
to the strength of the strong force, all quarks with exception of the top quark
form bound states called hadrons if the temperature of the medium is below 100
MeV and do not appear as distinguishable particles1. These bound states appear
as SU(3) singlets, hence they consist either of a quark and an antiquark, called
mesons, or of three quarks which are called baryons. Due to the electroweak force,
the mesons are unstable while the lightest baryon, the proton, is stable. The next-
to-lightest baryon is the neutron, which has a half-life of about 14 minutes but is
stable if it is in a bound state with protons.

The leptons, of which only the electron appears in everyday life, are only
charged through the electroweak force and carry no strong charge. Muons can
be observed due to interactions of cosmic radiation with the atmosphere, while to
study tau particles collider experiments are necessary. Finally, the three neutrinos
are electrically neutral and do not couple to the strong force, hence they couple
solely through the weak charge (and gravity) with other particles. It requires
large dedicated experiments to observe even a tiny part of the neutrino flux that
permeates the earth, since to neutrinos the earth is nearly transparent [21].

In quantum field theory a force is characterized by a local symmetry of the
Lagrangian. All known matter particles in the standard model are either in the
singlet (trivial) or the fundamental representation of the gauge group. This means
that the Lagrangian is invariant under the symmetry transformation2 ψ → eiα(x)ψ,
if the particle ψ transforms under the fundamental representation of the gauge
group and α is the parameter of the symmetry transformation. For a global
symmetry α is space-independent, while for local symmetries α depends on the
space-time coordinate x. This implies that the kinetic term of ψ in the Lagrangian,
which includes iψ̄γµ∂µψ (where γµ are the gamma matrices), is usually invariant
under global symmetries, but if the symmetry is local the space-time dependence
of α generates a term linear in ∂µα(x). This term has to be eliminated by an
additional vector field that transforms as Aµ → Aµ + ∂µα(x), which has to be
introduced [22]. The resulting theory is known as a gauge theory, and the local
symmetry group as the gauge group.

The number of introduced vector fields equals the dimension of the gauge
group, hence the number of vector fields in the standard model is 12: 8 gluons
(from SU(3)) + 3 W fields (from SU(2)L) and the B field (from U(1)). Since the
standard model preserves the SU(3) symmetry of the strong force, the gluons are
massless. However, the vacuum of the standard model is not invariant under the
U(1)Y × SU(2)L (Y stands for hypercharge) part of the standard model gauge
group which is broken to U(1)EM (electromagnetism). Due to this spontaneous
symmetry breaking, the observable vector bosons are the massive W± and Z
bosons and the massless photon (γ). Weak interactions are mediated by the W±

1The top quark decays before it can hadronize.
2We use U(1) as an example. Non-Abelian gauge theories transform similarly, but the equa-

tions are more cumbersome [22].
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and Z bosons, while the electromagnetic force is mediated by the photon.
The weak force only couples to left-handed particles, which means for a Dirac

particle that it couples only to the combination ψL = 1
2 (1 − γ5)ψ, where γ5 =

iγ0γ1γ2γ3. This implies that a left-handed muon decays into a left-handed elec-
tron, a left-handed muon neutrino and a right-handed electron antineutrino, but
that no right-handed electron or neutrino is produced [21].

In the standard model Lagrangian, mass terms for the fermions and gauge
bosons are forbidden because they are not invariant under the U(1)Y × SU(2)L
symmetry. To give the fermions a mass, the U(1)Y × SU(2)L symmetry is bro-
ken spontaneously to U(1)EM , meaning that the Lagrangian is invariant under
the U(1)Y × SU(2)L symmetry but the ground state is not. To describe this
spontaneous symmetry breaking the Brout-Englert-Higgs doublet (named Higgs
doublet in the following) was introduced in Refs. [27, 28]. This doublet consists
of two complex scalar fields that are charged under the U(1)Y × SU(2)L group.
The renormalizable potential for the Higgs field that breaks the U(1)Y × SU(2)L
symmetry spontaneously is [21]

LH = DνH
†DνH + µH†H − λ(H†H)2, (2.1)

where µ and λ are constant parameters, and Dν is the gauge covariant derivative.
It is easy to see that, if µ and λ are positive, in the vacuum the Higgs doublet can
be written as

H = 1√
2

(
0
v

)
, (2.2)

where the Higgs vacuum expectation value is v = µ√
λ
.

Since the Higgs field consists of two complex scalar fields, four scalar particles
should appear in nature. This is not the case, as can be seen from a counting
of degrees of freedom in the gauge sector. If a local symmetry is exact, the cor-
responding gauge bosons are massless. However, if the symmetry is broken, the
gauge bosons corresponding to the broken symmetry acquire a mass and there-
fore also an additional degree of freedom. Hence the breaking of gauge symmetry
introduced by the Higgs field increases the total number of degrees of freedom in
the standard model with 3 (2 for the W± bosons and 1 for the Z boson). Since
the number of degrees of freedom in the vacuum of the model is the same as the
number of degrees of freedom in the Lagrangian, 3 of the 4 degrees of freedom
of the original Higgs field are absorbed by the gauge fields. In the end the Higgs
field only contains a single propagating scalar boson, with the three longitudinal
components being part of the (now massive) W± and Z bosons.

The remaining symmetry group of the standard model, U(1)EM ×SU(3) is un-
broken, hence the gauge mediators of these forces (photon and gluons) are massless.
This is indeed observed in nature, so the full expression for the standard model
Lagrangian can be obtained. This expression is rather long, but can be represented
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as
L = LF +LV +LH +LY , (2.3)

where LF contains the fermionic kinetic terms, LV contains the gauge interac-
tion terms, LH (defined in Eq. (2.1)) contains the Higgs kinetic term and self-
interaction terms and LY contains the Higgs-fermion couplings. In this thesis
only the Higgs Lagrangian LH will be explicitly used, the expressions of the other
Lagrangians are defined in Ref. [21].

2.1.1 Some problems in the standard model
There are several issues with the standard model of particle physics that ask for
an explanation. In this section some of these will be shortly discussed, while a
longer discussion on dark matter will be given in section 2.6.

The first problem is the Higgs naturalness problem. Naturalness is the theoret-
ical assumption that no small parameters should exist in a low energy description
of a model if setting the parameter to zero does not introduce a symmetry [29].
Since the theory does not acquire additional symmetry if the Higgs mass is zero,
it is expected that the Higgs mass is of the same order as the cut-off scale of the
standard model. If the cut-off scale would be much larger than the Higgs mass,
small deviations in the bare parameters of the high-energy (UV) theory will con-
siderably change the (low-energy) Higgs mass. Therefore, any UV-theory of the
standard model must be fine-tuned such that the standard model Higgs mass is
125 GeV. Such a strong dependence of the parameters in the low-energy theory on
the high-energy completion is undesirable.

The Higgs naturalness problem can be solved by imposing a large amount of
tuning in the bare parameters of the UV theory, but this is rather unnatural. Other
solutions to this problem exist. In chapter 7 we will consider supersymmetry to
solve the hierarchy problem, though the Large Hadron Collider is constraining the
favourable parameter range considerably. Other solutions impose for instance that
the Higgs is a composite particle [30] or use extra dimensions [31]. Cosmologically,
the relaxion mechanism is interesting, in which the Higgs VEV was reached in
the very early universe due to a dynamical relaxation process [32]. Explaining all
solutions to the Higgs hierarchy problem deviates too much from the thesis, see
Refs. [33, 34] for reviews.

Another issue that will be relevant in this thesis is the stability of the Higgs
vacuum. As is shown in Fig. 2.2, the Higgs quartic coupling (λ) runs to negative
values at an energy below the Planck scale, so the vacuum of the standard model
given in Eq. (2.2) is metastable [35]. Fortunately, the lifetime of the current
vacuum is orders of magnitude larger than the age of universe, so the probability
that the universe has already decayed to the true vacuum is negligible, but at some
moment in the future it might decay. Whether this is a true problem is, at this
stage, philosophical, since there is no reason that in the distant future the universe
might not completely change. As was explained in chapter 1 the early universe
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Figure 2.2: Running of the Higgs quartic coupling. The error bars correspond to
the 1 and 2σ errors on the top quark mass measurement. The quartic coupling,
and therefore the potential, becomes negative unless the top quark mass is more
than 2 standard deviations lighter than its measured value. Figure from Ref. [35].

had an extremely large energy density, thus a problem is why the standard model
is in a metastable state in the first place. Fortunately, finite temperature effects
converge the Higgs VEV to zero, so that at low energies the universe is confined
to the present metastable state [36, 37]. But if inflation is driven by the Brout-
Englert-Higgs field this problem will be important, as will be explained in section
3.4.3.

Another issue in the standard model is the strong CP problem. According to
the current paradigm, it is compulsory to construct a field theory from all renor-
malizable terms invariant under the given symmetry group and matter content.
The gauge sector consists of two terms [24]

−1
4F

a
µνF

µµa + g2
3Θ

64π2 εµνρσF
µνaF ρσa, (2.4)

where a runs over the gluons, εµνρσ is a fully anti-symmetric tensor, g3 is the QCD
coupling and Θ is the QCD theta parameter. The second term in Eq. (2.4) is only
possibly for QCD, since in Abelian gauge theories a term similar to Eq. (2.4) has
no physical effects [39] and for the SU(2)L group it can be rotated away [38]3.
The theta parameter can be measured since it invokes a breaking of CP symmetry
in strong decays, which has not been observed. The current constraint is that
θ < 10−9 [39].

3In the electroweak theory all fermions charged under SU(2)L are massless.
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The strong CP problem would not have been a problem if the standard model
as a whole was CP invariant, however the electroweak force breaks CP. There-
fore, imposing that the strong force is CP invariant while the electroweak force is
unnatural. A solution is to impose that the whole standard model at some high
energy scale is CP invariant, which is then broken by a new particle named the
axion (χ) [39]. This axion will enter the action with the dimension-5 operator [24]

χ

ΛεµνρσF
µνaF ρσa. (2.5)

If the vacuum expectation value of the axion is sufficiently small, this coupling
will be naturally suppressed.

A fourth issue are the neutrino masses. It is shown experimentally that the
neutrinos oscillate between the different flavour states of Fig. 2.1 [40, 41]. Such
an oscillation can only exist if the neutrinos are massive and the mass eigenstates
of the neutrinos are not aligned with the flavour eigenstates. Using cosmological
data, the bound

∑3
i=1mνi < 0.234 eV [12] for the neutrino mass in the mass

eigenbase can be obtained. Though the resulting mixing matrix can be defined,
as is shown in Refs. [21,23], there is no renormalizable interaction in the standard
model that gives mass to the neutrinos. Different proposals are in Refs. [21, 42],
but the origin of the neutrino masses will not be studied in this thesis.

Finally, the standard model is not well defined at large energies. At energy
scales of the order of the Planck scale Mp ≈ 2.44 · 1018 GeV gravitational effects
become relevant with respect to the forces introduced in the standard model. To
make predictions of what happens at these energies a quantum theory of gravity
is required. To go beyond this energy scale we need a description that unifies
the standard model with gravity, like string theory, but also other solutions were
posed, for instance by imposing that the standard model is scale invariant [43].

It would be somewhat surprising if there is no new physics up to the Planck
scale, especially since there are interesting theories that postulate new physics at
energy scales far below the Planck scale. An example are the grand unification
theories [44]. These theories postulate that at a certain energy scale physics is
represented by a simple group, instead of a product group as is the standard model.
At the grand unification scale the three standard model groups, SU(3)×SU(2)L×
U(1), appear due to a spontaneous symmetry breaking. Several interesting features
of the standard model can be explained in grand unification theories, for instance
why electric charge is quantized.

However, at the grand unification scale all the standard model couplings must
be equal. Extrapolating the (running) couplings to higher energies shows that they
do not [44], implying that grand unification is not possible if the standard model
is not extended at lower energy scales. Possible extensions have been proposed,
for instance if the standard model is supersymmetric the couplings can combine
and grand unification is possible.
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2.2 The expanding universe

2.2.1 The FLRW universe
After reviewing the standard model of particle physics, we continue in the remain-
der of this chapter with reviewing the standard model of cosmology: the ΛCDM
model. The most relevant assumption in this model is that our universe can be
considered homogeneous and isotropic at large distance scales, implying that it is
the same at all locations [3, 10]. Within general relativity the unique metric that
describes such a universe is the Friedmann-Lemaître-Robinson-Walker (FLRW)
metric [8, 45]

ds2 = −dt2 + a(t)2
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]
, (2.6)

where a(t) is the scale factor, t is the cosmic time, r is the comoving radial coordi-
nate and θ and φ are the comoving angular coordinates. The parameter k labels
the curvature of the universe, if k > 0 the universe is positively curved (spherical),
if k < 0 the universe is negatively curved (hyperbolic) and if k = 0 the universe is
flat. To simplify the analyses, the metric (2.6) can be rewritten as

ds2 = −dt2 + ã(t)2 [dχ2 + f(χ2)(dθ2 + sin2 θdφ2)
]
, (2.7)

where

r2 = f(χ2) =


sinh2 χ κ = −1
χ2 κ = 0
sin2 χ κ = +1

(2.8)

In Eq. (2.7) the scale factor ã(t) is normalized such that κ = sign k, where the sign
function represents the sign of the argument, i.e. sign k = k

|k| . Since the sign of
the curvature of space is time invariant this choice is constant in time.

The FLRW metric only contains one unspecified function of time, the scale
factor a(t), that defines the time-dependent size of the universe. In a static uni-
verse a(t) is constant in time, however Edwin Hubble observed in 1929 that the
wavelength of the emitted light from distant galaxies scales linearly with the dis-
tance to these galaxies [46]. Within the FLRW metric (2.6), this observation can
be interpreted by considering an object at which no external forces act. Such an
object has a constant comoving distance r to the observer, that we consider to
be located at r = 0. The physical distance between the observer and the object
(d) is obtained from the comoving distance (χ) as d = a(t)χ, where the angular
coordinates in Eq. (2.7) are ignored due to the isotropy of the universe. Using this
definition for physical distance, the physical velocity of this object is

ḋ = ȧχ = ȧ

a
d = Hd, (2.9)
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Figure 2.3: Hubble diagram showing the redshift of supernovae Ia with respect to
their luminosity, which is a probe for the distance. The figure is obtained from [47].

where a dot denotes a derivative with respect to time, i.e. ḟ ≡ df
dt and the Hubble

parameter H ≡ ȧ
a . The parameter that Hubble calculated in his seminal paper

[46]4 is H0 = H(t0), where 0 denotes the current value, since during the evolution
of the universe the Hubble parameter changed.

In the coordinate system used to define the FLRW metric in Eq. (2.6), light
does not move with a constant velocity but its velocity depends on the scale factor.
Obviously, this is a result of the coordinate choice, and it is more convenient to
use conformal time τ , defined as

dt = a(τ)dτ , (2.10)

for which the speed of light is constant during the evolution of the universe. Using
conformal time, the FLRW metric becomes

ds2 = a(τ)2 [−dτ2 + dχ2 + f(χ2)(dθ2 + sin2 θdσ2)
]
. (2.11)

Another way to compute the expansion is to use the amount of redshift of light
as a time parameter. Due to the expansion of the universe, electromagnetic waves
get stretched out, so their wavelength increases. Therefore, there is a difference
between a certain measured wavelength λobs and the actually emitted wavelength
λem. The redshift z is defined as the fraction between the two

z = λobs − λem

λem
= H0d, (2.12)

4Though he was off by a large factor due to an error in the measurement of the distances to
the galaxies.
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where H0 denotes the current Hubble constant. Observationally, the redshift is
used to probe the distance to an object, since for most sources the parallax, which
can be used to measure distances directly, is not observable.

However, to measure distances using redshift the Hubble constant has to be
known, which is observed in multiple experiments. For example, if the emitted
brightness of a certain object is known, the object is named a standard candle
and the distance can be obtained from its apparent brightness. Several standard
candles were used in the analysis in Ref. [47] to produce Fig. 2.3. In this survey
the Hubble parameter was found to be H0 = 73±1 km s−1 Mpc−1. Another mea-
surement of the Hubble constant uses the cosmic microwave background radiation
that will be described in section 2.4, however this measurement resulted in a signif-
icantly lower Hubble parameter H0 = 67.3± 0.7 km s−1 Mpc−1 [12]. Though the
discrepancy between the data sets is large, it might originate from errors in either
of the two experiments, since the extraction of the Hubble parameter is subtle.
Moreover, there are indications that the measurement of the local measurement
of H0 is a statistical outlier [48].

Since this is an important tension between the CMB experiments and local ex-
periments, much ongoing investigations attempt to remove it. An interesting de-
velopment is the observation of a gravitational wave signal together with a gamma
ray burst. Combining the two observations, H = 70± 12 km s−1 Mpc−1 was ob-
tained [49], which is not yet competitive. However, if more neutron star mergers
are observed in the future, this provides a useful third measurement of the local
Hubble constant [49].

2.2.2 Horizons
Another property of the FLRW universe is the appearance of horizons [50,51]. In
this thesis the most important horizon will be the particle horizon, which is the
maximal distance such that two objects in the universe could have been in causal
contact. Using that the maximal velocity is the speed of light, the particle horizon
distance at time t can be obtained from the FLRW metric (2.6) as [8]

dpart =
∫ t

0

dt
a(t) . (2.13)

It will be shown in the next section that normal cosmologies are either dominated
by non-relativistic matter or by radiation. Using the results of that section it is
easily verified that the integral in Eq. (2.13) converges. Therefore, at a certain
time t there is a finite distance dpart beyond which two objects have never been in
causal contact. In section 2.7 we will see that this generates problems in the early
universe.

Another useful quantity is the comoving Hubble sphere, which is the distance
at which the velocity5 due to the expansion of the universe exceeds the speed of

5Formally this is not a velocity, since both objects are at rest in their own rest frames.
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light
DH = 1

aH
. (2.14)

Since the expansion of the universe is a general relativistic effect this quantity does
not correspond to a physical horizon, i.e. objects outside our Hubble sphere might
be inside the particle horizon. However, for a universe where a ∝ tq all the way
to t = 0, which corresponds to the single-component universes studied in the next
section, the comoving Hubble sphere equals the particle horizon.

2.3 Components of the universe
Our universe is not entirely empty, but it is filled with matter and radiation. To
describe the universe we observe, we write the most general energy-momentum
tensor for an isotropic and homogeneous universe as T00 = −ρ, Tii = p where i =
{1, 2, 3} are not summed over and the off-diagonal components of T are zero. This
energy-momentum tensor corresponds to a perfect fluid with an energy density ρ
and pressure p. For such a fluid the Einstein equation

Rµν − ( 1
2R− Λ)gµν = 1

M2
p
Tµν , (2.15)

where Rµν is the Ricci tensor, R the Ricci scalar and Λ the cosmological constant,
can be rewritten as the Friedmann equations [8, 19,20]6

H2 = 1
3M2

p
ρ− k

a2 + Λ
3 , (2.16a)

Ḣ +H2 = − 1
6M2

p
(ρ+ 3p) , (2.16b)

0 = dρ
dt + 3H (ρ+ p) , (2.16c)

where the third equation describes energy conservation and can be derived from
the first two.

When studying the universe, it is convenient to consider the equation of state
parameter w ≡ p

ρ . The equation of state can be computed in the different limits
at which matter manifests itself. In non-relativistic matter, also named dust,
the energy density is dominated by the relativistic mass while the pressure is
parametrically smaller. This implies that w ≈ 0. In contrast, in an isotropic
universe the equation of state parameter for relativistic matter is w = 1/3. In
both limits the equation of state is independent of time and integrating the energy
conservation equation (2.16c) gives [8]

ρ ∝ a−3(1+w) . (2.17)
However, the rest frames themselves move apart [51].

6A derivation without using general relativity is provided in [18].
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w a(t) H(t) ρ(t)
Matter 0 ∝ t2/3 2

3t ∝ 1
t2

Radiation 1/3 ∝ t1/2 1
2t ∝ 1

t2

Λ −1 ∝ et/t0 1
t0

const.

Table 2.1: Time dependence of several cosmological quantities in a universe dom-
inated by matter, radiation or the cosmological constant (Λ). The Hubble constant
is exact, for the others the proportionality constant is not shown.
Thus, for a radiation-dominated universe the energy density scales as ρrad ∝ a−4,
while for a matter dominated universe it scales as ρmat ∝ a−3. This is not sur-
prising: If the universe consists of only a single heavy particle with mass M , the
energy density for matter is ρmat = MN/V , where N is the number of particles
in volume V . In an expanding universe, the number of particles and their masses
are constant, while the volume scales as a3, hence the total energy density scales
as a−3. For the radiation dominated universe the statement is similar, except that
the mass of the particle is replaced by its energy. Since in an expanding universe
the energy of radiation decreases as a−1 due to redshift, the energy density of
radiation scales as a−4 [18].

Combining the energy density of Eq. (2.17) with the Friedmann equation
(2.16a) (and setting Λ = 0), the scale factor dependence of the Hubble constant can
be obtained. Finally, solving the subsequent differential equation (using H ≡ ȧ

a ),
the time dependence of the scale factor is

a ∝ t
2

3(1+w) , (2.18)

from which the time dependence of the energy density and Hubble function are
easily obtained. An overview of the different components of the universe is given
in Table 2.1.

Note that the energy densities of matter and radiation scale differently when
the universe expands, as is shown in Fig. 2.4. If the universe is small, hence if a is
small, the energy density of radiation is larger than the energy density of matter,
while if a is large the matter energy density dominates. This indicates that the
very early universe was radiation dominated, while afterwards the universe became
matter dominated. The moment at which the universe became matter dominated
is known as the matter-radiation equilibrium point.

Current measurements show that the universe is expanding in an accelerating
manner, hence that ä > 0 [52, 53]. The particles known to us satisfy the strong
energy condition, which implies that ρ + 3p > 0. From Eq. (2.16) follows that
matter satisfying this condition always generates a decelerating universe [18, 45].
To explain these measurements a nonzero cosmological constant Λ was added to
the Einstein equations. This constant term can be interpreted as an energy of the
vacuum, hence an energy density that is independent of the volume. Since also
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in an expanding universe the energy density generated by a cosmological constant
is constant, it will be the leading contribution to the total energy density if a is
sufficiently large. Also this is shown in Fig. 2.4. However, in order to explain the
present acceleration of the universe Λ must be very small, Λ ≈ 10−122M2

p [12].
This tuning problem is known as the cosmological constant problem, and will be
shortly addressed in section 2.6.

Using the above arguments, the history of the energy densities in the universe is
shown in Fig. 2.4. Shortly after the Big Bang, the universe was small and therefore
dominated by radiation. In this era the energy density of the universe was coupled
to the temperature of the plasma since, using the black body spectrum, [8]

ρrad = gπ2

30 T 4, (2.19)

where g is the number of relativistic degree of freedom. For fermionic degrees of
freedom g = 7/8, while for bosons g = 1. Due to the expansion of the universe, the
energy density of the plasma decreased, hence it cooled down and after some time
the energy density of matter became larger than the energy density of radiation.
When the universe cooled down even further, the energy density of matter got
below the energy density generated by the cosmological constant. Currently the
cosmological constant is the main contribution of the total energy of the universe.

There is a peculiar phenomenon in Fig. 2.4, which is that the cosmological
constant started to dominate the universe relatively recently7. This is known as
the coincidence problem: why do we live so close to the moment that the cosmo-
logical constant became the dominant contribution of the total energy density [54].
Another way to phrase the coincidence problem is to ask why currently the energy
density generated by the cosmological constant is roughly equal to the matter en-
ergy density, as is also visible in Fig. 2.4. This indicates that we are living in a
rather peculiar moment in the universe.

The coincidence problem and the cosmological constant problem are linked,
since if the cosmological constant had been larger, the matter-Λ equilibrium time
would have been different. A solution to these problems is the anthropic principle,
which states that we cannot live in a universe in which life is impossible. For
instance, if the matter-Λ equilibrium would have occurred much earlier, the current
universe would have diluted so much that life is impossible. Using this philosophy,
Weinberg and Vilenkin predicted a value in Refs. [55, 56] for Λ which agrees with
what is measured by current observations.

The density of the universe depends on the Hubble parameter H and the
curvature k. From these, a critical density can be defined as the energy density
for which the universe is exactly flat. This density is, neglecting the cosmological
constant, obtained from Eq. (2.16) as [8]

ρc = 3M2
pH

2. (2.20)
7Note that due to the logarithmic axis and in the definition of redshift of Eq. (2.12) the

number of years is large, 1010 years, see Table 2.2, but corresponds to a redshift of z = 0.4.
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Figure 2.4: Evolution of the energy density of matter (blue), radiation (orange)
and cosmological constant (green) in the universe as a function of time. The den-
sities are normalized to the current critical density in Eq. (2.20), such that the
present time is at t = t0. The dotted lines correspond to the matter-radiation
equilibrium and matter-Λ equilibrium. Since the single fluid approximation is not
sufficient around these equilibria, this analysis is not sufficient to study their pre-
cise position.

Note that due to the appearance of the Hubble parameter, which is time dependent,
the critical density of the universe changes in time. Since our universe is extremely
flat, as will be discussed in more detail in section 2.7, the total density of the
universe is very close to the critical density. It is therefore customary to express
the densities of the different components that make up the energy density in the
universe as fractions of the critical density

Ωi = ρi
ρc
, (2.21)

where i denotes the component of the energy density. The energy density pa-
rameters Ω are a function of time since the density of most components in the
universe are time-dependent and since the critical density depends on time. The
density parameter of the substance that contributes mostly to the total energy of
the universe is constant, as can easily been seen from Table 2.1.

2.4 CMB
When the temperature of the universe was of the order of 3 × 103 K, it was
dominated by a plasma of protons, electrons and traces of heavier elements like
Deuterium, Helium and Lithium [20]. Protons require for nuclear fusion an energy
of 105 eV, which is much more than available at the energy of the universe at that
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time, so no fusion events happened. Also neutrinos existed in the universe, but
their interaction with the matter is so tiny that they can be considered decoupled
from the plasma to first approximation. When the temperature of the plasma
decreased, the plasma formed a hydrogen gas, in a phase transition named recom-
bination. Since photons do not couple as strongly to hydrogen as to a plasma, the
mean free path of photons got enhanced and after recombination they were able
to permeate the universe. The surface at which the photons last scattered8 from
the electrons that we currently observe with the CMB is named the surface of last
scattering. The photons that were emitted from this surface make up the CMB
radiation.

When the CMB was emitted, it had a black body profile with a temperature of
the order of 3× 103 K [8]. Due to the expansion of the universe, the photons lost
their energy and the temperature of the radiation decreased to the value observed
today, which is 2.7255 ± 0.0006 K [7]. Since the redshift leaves the profile of the
CMB invariant, the CMB can be interpreted as a picture of the universe at the
time it was emitted. A tiny fluctuation of the temperature of the universe at
the moment the CMB was emitted is represented in a small change in the current
temperature spectrum. This section will give a short overview of the CMB physics,
leaving a more technical description to section 3.3.

When observing the CMB carefully, very small temperature fluctuations of the
order of δTT ≈ 10−5 are found. A map of these fluctuations in the sky as measured
by the Planck satellite is shown in Fig. 2.5. These temperature fluctuations can be
interpreted as originating from very tiny density fluctuations in the universe at the
time of last scattering. They can be quantified using the correlation between two
temperatures separated with an angle θ. Then expanding in spherical harmonics
leads to the parameter l, which can be understood as l ≈ 180°

θ [3].
The mechanism that creates these density fluctuations depend on the value of

l. At small l, the anisotropies purely originate from gravitational effects known as
the Sachs-Wolfe effect. Light that leaves a minimum in the gravitational potential,
named a gravitational well, which is caused by an overdensity in the primordial
plasma experiences a gravitational redshift, while the light gets blue-shifted if it is
emitted towards an overdensity. Thus the CMB temperature observed from points
that were matter overdensities on the surface of last scattering is lower compared
to the CMB emitted at underdensities [3].

The Sachs-Wolfe effect is mainly important for large angular distances, since
there was no causal connection between the different patches that sent out the
CMB. When, on the contrary, we consider small θ, causal mechanisms are rele-
vant. In this regime the deviations in the gravitational potential of the universe
during CMB emission are mainly caused by deviations in the density of the so-
called dark matter. Dark matter, which will be explained in more detail in section
2.6, is only gravitationally coupled to baryons and to radiation. Since the baryons
and photons are coupled through the standard model forces, the universe before re-

8The duration of last scattering, hence the thickness of this surface, is negligibly small.
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Figure 2.5: Map of the anisotropies observed by the Planck satellite [12].

combination can be interpreted as a baryon-photon fluid moving in a gravitational
potential caused by the dark matter. This baryon-photon fluid flows towards the
gravitational wells. However, in a gravitational well the fluid gets compressed, the
pressure rises (w is not exactly 0 due to the photons) and the fluid will move out of
the gravitational well. At the maximum of these acoustic oscillations (this process
resembles sound), the matter is denser and therefore also hotter, generating hot
spots in the CMB. The matter that flows away or towards the overdensities will
also cause a Doppler effect in the light. These two effects, the rarefaction of the
matter and the Doppler effect, together produce the large-l anisotropy spectrum.
The large-l temperature fluctuations in the CMB are therefore a probe to measure
the density profile of the very early universe [3].

The density fluctuations at the CMB surface are observed to be randomly
spread across the sky, thus their defining features are encoded in statistical av-
erages. For this reason the averages over the sky of 2-point correlation functions
are studied. If the primordial density fluctuations are Gaussian, the higher or-
der correlation functions are all determined by this two-point function. Also 3-
point functions are studied, but no deviations from the Gaussian hypothesis were
found [57].

The CMB power spectrum, which will be explained in more detail in section 3.3
and is shown in Fig. 3.3, has several interesting features. For instance, the power
spectrum consists of several peaks, that appear due to the density fluctuations in
the plasma. The location of the first peak is caused by modes that are of the size
of the Hubble sphere at the moment of last scattering [3]. The size of the Hubble
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sphere that we observe in the sky depends on the curvature of the universe. If the
universe is positively curved, the light from different parts of the Hubble sphere
during last scattering will arrive at the earth from a slightly larger angle compared
to when the universe is hyperbolic. The location of the first peak in the power
spectrum at l = 200 implies that our current universe is flat.

Another relevant piece of information from the CMB is the height of the dif-
ferent peaks, which are generated by gravitational collapse of overdensities in the
cosmic plasma. This collapse also generated the additional peaks in the spectrum
and the relative height of the secondary peaks in the CMB give a measure on the
amount of matter in the universe and the amount of standard model matter [3].
The peak structure requires the introduction an additional non-observed particle,
the dark matter particle. For a longer discussion on how the CMB can be used
to measure the energy densities of the universe, see Ref. [58]. Solutions to the
problem of dark matter will be discussed in more detail in section 2.6.

2.5 The radiation dominated universe
The different eras in the history of the universe are shown in Table 2.2. As is
shown in this table, before the CMB was emitted the universe went through an
era of radiation domination that (according to the ΛCDM model) lasted from the
Planck scale until the moment of matter-radiation equality. What happened when
the energy density was above the Planck scale is unknown, since in this regime
quantum gravity effects become relevant. After the Planck dominated era the
universe slowly cooled down during which phase transitions occurred.

Most of these phase transitions follow the same pattern. While the temperature
of the universe decreases, at some point the thermal bath does not contain enough
energy to create a heavy particle in a sufficiently large amount to sustain its
abundance in the thermal bath. Such a particle typically scatters and decays into
lighter particles9, hence the particle disappears from the thermal bath. Since the
particles in a thermal bath have a range of energies, the typical temperature at
which this (so called freeze-out) process happens is roughly at T = O (M/10),
with M the mass of the heavy particle.

This happened with most of the particles of the standard model of particle
physics. For instance, the high energy universe contained free quarks, which
hadronized when the temperature was T ≈ 100 MeV. After the hadronization,
the protons and neutrons were formed at a temperature T ≈ 8 MeV. This was a
rather critical moment in the history of the universe, since neutrons are unstable,
they decay with a half-life of roughly 10 minutes unless they are bound to the
protons as helium nuclei. It was energetically possible to generate Helium and
other light elements in a process known as Big Bang nucleosynthesis (BBN) 3

9If the particle does not decay, a fraction of its abundance stays in the universe, as explained
in section 2.6.2.
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minutes after neutrons were formed [8]. During this process light elements up to
7Be were formed, after which the universe was not hot enough to support nuclear
fusion. The abundances of these elements – at least the stable ones, 7Be decays
to 7Li – are measured in very old stars. There are some discrepancies in the 7Li
abundance [58], but in general the consistency between the theory of BBN and the
observations is remarkably good. Indeed, the measurement of the cosmic abun-
dances of light elements is a strong indication that the ΛCDM model is the correct
description of the early universe, at least up to these energies.

Before the BBN, when the temperature of the universe was 1 MeV, the neu-
trinos decoupled from matter and generated the cosmic neutrino background ra-
diation [8, 59]. These neutrinos, just as the photons in the CMB, move through
the universe nearly without interactions and form a small part of the radiation
density in the universe10. But since the neutrinos hardly interact with matter,
this radiation has not been observed.

All the eras described above contain standard model physics that is well tested,
hence they could have occurred in the early universe. However, there are some
features observed in the universe that the standard model cannot explain. The
first feature is dark matter, which will be discussed in the next section. Neither
is it understood how the number of particles versus the number of antiparticles
η = nB−nB̃

nγ
≈ (6.1 ± 0.2) × 10−10 [60] (where nγ is the photon number density)

became so large, since from the usual evolution of the universe it is expected
that η is significantly smaller. Within the standard model, it is not possible that
such a large difference between the abundances of particles and antiparticles is
generated, but by introducing new physics this asymmetry can be created, which
is called baryogenesis [8, 60]. In most models baryogenesis happens at very high
temperature, of the order of T ≈ 1010 GeV.

2.6 Problems of the late time universe
When combining the standard model of particle physics with cosmological data of
the current universe, two striking discrepancies appear. In section 2.3 it was men-
tioned that relatively recently the expansion of the universe started to accelerate,
while in a matter dominated universe the expansion decelerates. In addition, when
computing the total matter density of the universe there seems to be more matter
in the universe than the standard model can account for. The additional energy
that generates the acceleration is called dark energy and the additional matter is
known as dark matter. In this section both will be explained in more detail.

10If the neutrinos are massive, they might currently be non-relativistic [59].
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Time Energy
Planck era (?) < 10−43 s > 1018 GeV
Inflation (?) > 10−34 s < 1015 GeV

Electroweak transition 10−10 s 1 TeV
Quark-hadron transition 10−4 s 100 MeV

Nucleon freeze-out 0.01 s 10 MeV
Neutrino freeze-out 1 s 1 MeV

BBN 3 min 0.1 MeV
Matter-radiation equality 104 yr 1 eV

Recombination 105 yr 0.1 eV
Dark ages 105 – 108 yr 0.1 eV – 1 meV

Reionization 108 yr 1 meV
Galaxy formation 6× 108 yr 1 meV
Matter-Λ equality 109 yr 0.3 meV

Present time 1010 yr 0.2 meV

Table 2.2: Major eras during the evolution of the universe. It is not certain
if any of the eras before BBN actually occurred. The energies correspond to the
temperature of the radiation medium (except during inflation). Table from [45].
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2.6.1 Dark energy
A minimal explanation for dark energy is that the cosmological constant in the
Einstein equation (2.15) is nonzero and positive, as explained in section 2.3. In
Table 2.1 it is shown that a cosmological constant dominated universe is indeed
expanding exponentially fast. However, to explain the current observations the
cosmological constant has to be of the order of Λ ≈ 10−122M2

p [12], which is ex-
tremely small. Using the interpretation that the cosmological constant is a vacuum
energy, dimensional analysis shows that the vacuum energy is ρΛ = Λ2M2

p ≈M4,
where M is the cut-off scale of the theory. The maximal cut-off scale for a field
theory without gravity is the Planck scale, so the expected vacuum energy is of
the order of M4

p , which leads to Λ ≈M2
p . This value for the cosmological constant

is a factor of 10122 too large [58]. Another way to phrase this is that the current
measurement of Λ implies that the energy scale of the physics that describes the
cosmological constant, M , is 10−30Mp ≈ 10−12 GeV, which is far below the mass
scales in the standard model of particle physics [58].

The cosmological constant problem can be solved in two different ways. The
first is to accept that the cosmological constant is as it is and to explain why it is
so small. One attempt in this direction is to use an anthropic statement. It was
shown by Weinberg and Vilenkin in Refs. [55, 56] that it is not possible for life to
be formed if the cosmological constant is much different than what is observed.
If the original universe was a multiverse, containing many different patches with
different values for the cosmological constant, then there would be a set of patches
where we could live and patches where we cannot. Even if a large majority of
these patches has a cosmological constant that is much larger than ours, since we
cannot live in these patches we do not need to consider them as natural universes.

However, a problem with the multiverse argument is that the measure over the
set of universes is not known, a problem known as the measure problem. This
measure should be provided by a theory that explains the origin of our universe,
like string theory. But though string theory indeed predicts a multiverse, the
precise measure is not known. Therefore also other solutions are probed. These
solution for the cosmological constant problem either change general relativity, as
for instance in Refs. [61,62], or introduce a scalar field that mimics the cosmological
constant [63–65]. This last idea is very similar to inflation, which will be introduced
in the next chapter. Indeed, some of the models introduce a scalar field that
generates both the late time accelerated expansion of the universe and drives
inflation at early times, which are known as quintessential inflation models [64,65].

Alternative solutions of the cosmological constant problem often predict that
the equation of state of dark energy wde is different from the prediction of a cos-
mological constant wΛ = −1. The equation of state is directly related to the
acceleration of the universe and the Hubble parameter and observations show that
wde = −1.023±0.1 (95% confidence) [12], which is compatible with the hypothesis
that dark energy is due to a cosmological constant.
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Figure 2.6: Galaxy rotation curves as measured in the galaxy NGC 3198 versus
the Keplerian curve from Eq. (2.22). Figure taken from Ref. [66].

2.6.2 Dark matter
Several observations show the existence of dark matter. The first is the veloc-
ity distribution of matter in galaxies and clusters [3]. In both objects, at large
distances the velocity of the observable matter seems to be flattening, while New-
tonian physics11 expects that the velocity scales as [3]

v =
√
GM(R)

R
, (2.22)

where M(R) is the mass inside a sphere of size R. Since at large distances only a
negligible amount of mass is prevalent, we expect that v ∝ 1/

√
R, hence decreases.

The measured velocities shown in Fig. 2.6 instead flatten for large distance, con-
trary to what is predicted [66].

Another probe for the amount of dark matter comes from the acoustic CMB
peaks as explained in section 2.4. These peaks can be interpreted as appearing due
to a resonance effect in the primordial plasma at the time the CMB was emitted.
This resonance effect depends on the amount of gravitationally interacting matter,
and it exceeds the size of the peaks predicted by the matter density observed today.

11In this regime relativistic effects are negligible.
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Finally, dark matter can be indirectly observed using the movement of stars and
due to lensing of light [3]. During a collision of two clusters the (non-interacting)
dark matter continues without interacting, while the (interacting) visible matter
feels a friction force and slows down, separating the two types of matter. In these
clusters, of which the bullet cluster is the most famous example [67], the dark
matter is therefore displaced from the normal matter (mainly hot gas). This sepa-
ration is made visible by comparing data from gravitational lensing of background
light with the X-ray data collected from the hot interstellar gas.

The nature of dark matter is not known, though there are some hints. The first
hint is that the bullet cluster measurement is best explained using a very weakly
interacting particle and also the early universe arguments imply that this particle
should not interact with the cosmic plasma at the time of BBN. In addition,
the dark matter particle has to be heavy enough since light dark matter will,
due to a larger free streaming length, wash away structures in the universe [8].
By measuring Lyman-α lines from structures in the early universe the structure
formation rate can be estimated. These experiments give a bound on the dark
matter mass of mDM > 5.3 keV [68].

The only weakly interacting massive particle in the standard model is the
neutrino, but the Lymann-α bound on the dark matter mass is above the sum of
the standard model neutrino masses,

∑
mν < 0.236 eV [12]. This scenario can be

made consistent if an additional heavy neutrino (known as the sterile neutrino) us
added to the standard model spectrum that will play the role of dark matter, see
for instance [69] and references therein.

The standard paradigm for dark matter is that there is a stable non-standard
model particle in the thermal plasma that freezes out before BBN to obtain the
current day abundance [19]. In the freeze-out process the dark matter particle is
in thermal equilibrium in the very early universe, meaning that the annihilation
process is as fast as the creation process. When the temperature drops below
the mass of the dark matter particle, the creation process becomes thermally
suppressed, and the dark matter particle density decreases nearly exponentially.
If the dark matter particle is stable, its only interaction is through annihilations
and due to the sharp drop in the number density two dark matter particles cannot
‘find each other’, hence they freeze out.

The components in the cosmic plasma are described by a set of Boltzmann
equations. The Boltzmann equation that characterizes the abundance of dark
matter is [19]

a−3 d(nDMa3)
dt = 〈σv〉

(
(neqDM )2 − n2

DM

)
, (2.23)

where 〈σv〉 is the thermal average of the cross section times velocity of the dark
matter particle and nDM the dark matter number density. At high temperatures,
the equilibrium dark matter density (neqDM ) is large, and the dark matter abun-
dance follows it. After the dark matter decouples from the thermal bath, the
number density (nDM ) is much larger then the equilibrium density and the latter
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can be ignored.
Before solving Eq. (2.23), it is convenient to define some terminology. Instead

of using the scale factor and time, it is useful to define x ≡ m/T , where the
temperature is rewritten as T ∝ a−1. In addition, instead of number densities it
is convenient to work with the yield Y ≡ n/s, where s is the entropy density12.
In terms of these parameters the Boltzmann equation (2.23) becomes a Riccati
equation [19]

dY
dx ≈ −

λY 2

x2 , (2.24)

where
λ = 2π2g∗

45
m3〈σv〉
H(m) , (2.25)

and g∗, the number of relativistic degrees of freedom at decoupling, is assumed
constant. When also assuming that λ is constant in time, it is possible to integrate
(2.24) between the moment of freeze-out xf and current time x0 = m/T0

Y = λ−1

x−1
f − x

−1
0
≈ xf

λ
(2.26)

where the last expression assumes that the yield after freeze-out is large compared
to the yield at late time. Typically, the parameter λ can be rather large and
xf = O (10). Thus, at late times there exists a small non-zero dark matter density,
given by (2.26).

If the universe had continued expanding without any extra energy injections,
the dark matter density would have been unchanged after decoupling. However,
annihilations of other particles after dark matter freeze-out will increase the tem-
perature of the medium with respect to the dark matter density13. Assuming that
these energy injections are adiabatic, the current day dark matter density can be
obtained using Eq. (2.21) [19]

ΩDM = mY∞T
3
0

ρc

(
a0T0
a1T1

)2
= π

9
xf
〈σv〉

√
g∗(aDM )2

10g∗(a0)
T 3

0
M3

pH
2
0
, (2.27)

where for the second equality was used that in an adiabatic process the entropy
density s = g∗(aT )3 is conserved. Demanding ΩDMh2 ≈ 0.1198± 0.0015 [12] and
that the mass of the dark matter particle is roughly at the weak scale, we find
that 〈σv〉 ≈ 0.1

√
GF , where GF is the Fermi coupling. This observation, known

as the WIMP miracle [70], means that a massive dark matter particle is expected
to be interacting with the weak force or a force similar in strength.

12Note that the yield can also be defined as Y ≡ n/T 3.
13The photon density will decrease less compared to the dark matter density, but it never

increases [19].
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Unfortunately, experimental observations currently constrain most of the pa-
rameter space for WIMP dark matter candidates. There are three different search
methods for dark matter. The first is to search for dark matter in collider exper-
iments, where the dark matter particles are visible as missing transverse momen-
tum [71]. The second method is to search for recoils of dark matter particles with
the nucleus or the electrons of some material, for instance silicon [72]. Finally, if
dark matter annihilates there could be an electromagnetic or neutrino signal from
regions where the dark matter clusters, i.e. at the center of a galaxy or the sun.
From these experiments, there is a hint of a detection from an electromagnetic
signal with an energy of 3.5 keV from the center of several galaxy clusters [73,74].
However, this signal is debated [74]. In other experiments no signal of dark matter
was found [71,72,74].

Another production mechanism for dark matter, which is less constraint by
observations, is freeze-in [75]. In freeze-in the original dark matter density was
negligibly small and some particle in the thermal plasma decayed or annihilated
into the dark matter particle. Therefore, the dark matter particle can be extremely
weakly coupled to the known standard model particles, while the intermediate
particle might have a mass beyond the reach of current colliders.

Freeze-in can occur both by decay processes B1 → B2 + X, where the Bi are
bath particles and X is the dark matter particle, or freeze-in can occur using a
scattering B1 + B2 → X + X (or annihilation, if B1 = B2). If in the former
scenario, the Boltzmann equation for the dark matter particle is [75]

ṅX + 3nxH ≈
gB1m

2
B1

Γ
2π2 TK1

(mB1

T

)
, (2.28)

where g is the number of internal spin degrees of freedom, Γ is the partial decay
width of B1 into B2 and X, and K1 is the modified Bessel function of the second
kind. In Eq. (2.28) the effects of Pauli blocking and stimulated emission are
neglected. The yield Y = n/S can be obtained, adding the possibility of multiple
particles decaying into the dark matter particle, as [75]

Yfreeze-in =
∑
i

45
√

90gi
4π5g

3/2
∗

ΓiMp
m2
i

∫ xi,max

xi,min

K1(x)x3dx , (2.29)

where i runs over all particle states that decay to the dark matter particle, Γi is
the partial decay width of particle i to the dark matter particle and gi its internal
number of degrees of freedom.

The current temperature of the universe is much smaller than the mass of the
dark matter particle, hence sending xmax → ∞ is a good approximation. If it
can also be assumed that the original temperature of the universe is much larger
than m1, hence if xmin ≈ 0, the integral of (2.29) can be solved analytically and is
3π/2. In section 3.5 it will be shown that when assuming inflation, the maximal
temperature of the radiation era of the universe is the reheating temperature. If
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the masses of the fields decaying into X are close to the reheating temperature,
then xmin = 0 is not a proper choice. It is possible to analytically perform the
integral, but it is simpler to use an interpolating function, that we numerically
found to be

I = 2
3π

∫ ∞
x

K1(y)y3dy ≈
{

1 if x < 1,
1
3e
−x (0.07x3 + 2.2x2 + 2x+ 4

)
if x > 1,

(2.30)

where x = xmin. Note that if xmin < 1 this interpolation function coincides with
the value given in [75]. Finally, the dark matter abundance can be obtained from
the yield using

ΩDM = s0mDMY

(ρc/h2)M2
p
, (2.31)

where s0 = 2π2g∗0T
3
0 /45 is the current entropy density (T0 = 2.735K is the

CMB temperature and g∗0 = 43/11 the current number of relativistic degrees of
freedom), ρc = 3H2

0M
2
p is the critical density and H0/h = 100 km s−1Mpc−1.

Note that for freeze-in the main contribution to the dark matter density comes
from the particle with the lowest mass and highest partial decay width intoX. This
is a general freeze-in effect, that the strongest interacting particle has the strongest
contribution to the process. The result of this is that freeze-in is dominated by
the contribution at the moment this bath particle freezes out of the thermal bath.
This can be presented in a nice form using phase diagrams, as in Ref. [76].

In addition to particle dark matter, the observations leading to dark matter
can be caused by a modification of gravity. Typically, modified gravity theories
are able to explain the galaxy rotation curves better than particle dark matter.
But to explain the early universe probes of dark matter with modified gravity is
challenging. Nevertheless, some models are studied, see for instance Refs. [62, 77]

2.7 Initial condition problems
The universe described above agrees extremely well with the universe we observe,
with only a few small discrepancies. Three of these, the existence of dark energy
and dark matter and the question why there is a large difference between the
amounts of matter and antimatter were discussed in the previous sections. These
problems are problems in the current universe, while in this section we will discuss
some problems related to the extrapolation of our universe to very early times.
Some of these problems of the standard Big Bang model will be solved with the
introduction of a new phase in the history of the universe, the inflation phase, in
the next chapter.

The clearest problem of the Big Bang model is the initial singularity. At the
moment that the coordinate time t = 0, the scale factor vanishes, meaning that the
matter density given in Eq. (2.17) diverges. In this thesis, the initial singularity
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problem will not be considered, since due to the era of inflation introduced in the
next chapter no physical observations can be related to it. Instead, we will assume
that at some moment the universe had an energy density ρi ≈ M4

p and will not
deal with the reason how this emerged. Note that the era of inflation, that will
be introduced in the next section, will make the initial condition of the universe
unobservable.

Another initial condition problem of the ΛCDMmodel is the horizon or isotropy
problem. The reason is that two different universes can be realised. The first is
a universe that is highly inhomogeneous and anisotropic. The initial condition of
such a universe are completely random. The second kind of universe is instead
completely homogeneous and isotropic, in such a universe there existed only a
single initial condition, and the universe evolved from that point onwards.

However, it turns out that we live in neither of these two universes. In section
2.4 was explained that the temperature of the CMB is extremely similar in different
directions. This is strange, since there has not been a moment of causal contact
between points in the CMB surface which are separated by more than about 0.4
Mpc, which corresponds today to points separated by an angle of 1.8° in the
sky [3]. In the ΛCDM model there is no causal mechanism that can generate such
an isotropic CMB surface [70].

This statement can be made mathematically explicit by using the particle
horizon. The particle horizon was defined in section 2.2.2 as the maximal distance
that information could have travelled during the evolution of the universe and it
can be computed using Eq. (2.13) [70]

dpart(t) =
∫ a(t)

0

d log a

aH
= τ(t)− τi

= 2
H0(1 + 3w)

[
a

1
2 (1+3w) − a

1
2 (1+3w)
i

]
, (2.32)

where τ is the conformal time defined in Eq. (2.10) and the subscript i defines
the initial time a(ti = 0). The second line assumes that the equation of state
w is constant. The problem is that both during radiation domination as well as
during matter domination the particle horizon converged. Therefore, the particle
horizon at last scattering was much smaller than the particle horizon now, since
the amount of conformal time from the start of the Big Bang until the moment
of recombination was smaller than the conformal time up to now. This is shown
schematically in Fig. 2.7. The conformal time is shown on the vertical axis, while
the size of the particle horizon is shown on the horizontal axis. At the start of the
universe, where τ = 0, the two points at the CMB surface could not have been in
causal contact, since their particle horizons (the orange cones) do not overlap [45].

The angular scales in the sky that correspond to the particle horizon at the
moment of last scattering can be computed using the distance to the CMB, and
result in the above-mentioned angle of about 1.8°, corresponding to l ≈ 100 in the
CMB power spectrum [3]. This means that, according to the standard Big Bang
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Figure 2.7: Schematic representation of the horizon problem from Ref. [45]. The
orange cones represent the particles horizons of two points on the surface that
emitted the CMB. The cones do not overlap, hence the points are causally discon-
nected. Since the causally connected patches at the moment of recombination are
much smaller than the observed CMB sphere, the CMB anisotropies should have
been highly anisotropic.

model, points in the CMB separated in the sky by more than 1.8° cannot have a
causal reason to be isotropic.

A related problem is the homogeneity problem. It is easily seen that the
universe is not completely homogeneous: in a perfectly homogeneous universe
there would be no earth. The universe around us does become homogeneous when
considering very large distances, as can be observed using large scale structure
studies. These studies show an amount of homogeneity that is consistent with the
ΛCDM model and the cosmological principle [10].

The cosmological principle is an additional reason for the homogeneity problem.
From the definition of isotropy follows that it is possible for a universe to be
isotropic but not homogeneous if it is rotationally symmetric with the observer in
the center [3]. Hence, the isotropy of the universe can be explained by postulating
that we are located in the center, however this is in conflict with the Copernicus
principle which states that we are not.

The last problem we consider here is related to the curvature of our universe.
Using the definition of the critical density of Eq. (2.20) and writing the cosmo-
logical constant as an energy density, ΩΛ = ΛM2

p
ρc

, the Friedmann equation (2.16a)
can be written as [70]

1− Ωtot(t) = − k

a2H2 , (2.33)

where Ωtot =
∑
i ρi and i runs over all the constituents of the universe including Λ.
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From the Friedmann equation follows that the curvature k is independent of time,
so the energy density generated by the term given in Eq. (2.33) increases with time.
The current energy density due to curvature is measured to be |1− Ωtot| < 0.005
[12], hence the curvature at last scattering was 1 − Ωtot ≤ O

(
10−14), while the

curvature at Planck time was 1 − Ωtot ≤ O
(
10−60). The flatness problem is

therefore how it is possible that such a small curvature originated from the Big
Bang process.

Mathematically, the change of the flatness of the universe in time can be ex-
pressed as [70]

d|Ωtot − 1|
d ln a = (1 + 3w)Ωtot(Ωtot − 1) , (2.34)

where w is the equation of state of the universe defined in section 2.3. During the
evolution of the universe, Table 2.1 shows that the scale factor always increased
and during radiation and matter domination w < − 1

3 . Hence Ω − 1 = 0 is an
unstable fixed point, so it is expected that the universe has a very large curvature.
This is in contrast to observations.

Note that these problems in the early universe can be solved by choosing the
proper initial condition [45]. If initially the universe was not curved, the bounds
in the previous paragraph would be trivially satisfied. However, a very small
deviation from complete flatness will generate an enormous curvature at large
scales. The horizon problem is more difficult to solve, since Fig. 2.5 shows that
in the early universe there were small but nonzero anisotropies. Therefore, the
universe started from a state that was not completely isotropic, but had small
ripples. Though in principle the problems are initial condition problems and the
initial conditions of the universe are not known [70], in the next chapter inflation
will be introduced. Inflation will provide a solution for these problems without
the need to set very specific initial conditions of the universe.



CHAPTER 3

Inflation

Introduction
In section 2.7 the horizon and flatness problems of the ΛCDM model were posed.
The horizon problem originates from the observation that the CMB is isotropic at
angular scales beyond the size of the causal patches at the time of recombination,
meaning that it is more isotropic than causal physics can account for. This problem
is related to the homogeneity problem, which asks how the nearby universe became
inhomogeneous, and why the distant universe is homogeneous. In addition to being
homogeneous and isotropic, the current universe is also spatially flat, which is not
explained in the ΛCDM model.

A solution to these problems is to impose a very specific initial condition for the
universe. However, it requires a large amount of fine-tuning to explain the isotropy
in the temperature of the CMB. A more appealing solution is to impose that there
is a new phase in the history of the universe that generated this homogeneity,
isotropy and flattened the universe.

In this thesis we will assume that the universe had such an additional phase
called inflation in which it experienced an accelerated expansion. Though inflation
is the main paradigm for solving these early universe problems, other ideas are
proposed as well. For instance, in an ekpyrotic universe [78], the horizon and
flatness problems are solved during an era of rapid contraction of the universe,
followed by a bounce.

The structure of this chapter is as follows. In section 3.1 inflation will be
defined and it will be shown that it solves the initial condition problems of the
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ΛCDM model. However, the model proposed in this section will not include an end
of inflation, so in section 3.2 inflation with a dynamical scalar field is introduced,
which results in the theory of slow roll inflation. In section 3.3 the anisotropies
in the CMB will be explained using the theory of single field slow roll inflation
and in section 3.4 some selected inflation models will be reviewed. This chapter
finishes with section 3.5 concerning reheating, during which the inflaton decayed
to produce the radiation dominated era.

This chapter is based on the Refs. [8, 20,45,79].

3.1 Solving the horizon and flatness problems
The main idea of inflation is to impose that the early universe went through an
era of accelerated expansion, hence when ä > 0. This can be related to the
conditions [70]

d
dt

(
1
aH

)
< 0, (1 + 3w) < 0. (3.1)

Then, if the inflationary phase continues until the start of the universe where a = 0,
the second line of Eq. (2.32) diverges so that the conformal time τi → −∞ [70].
Therefore, inflation can be interpreted as a phase that stretches the amount of
conformal time to large negative values, which solves the horizon problem. This
is shown pictorially in Fig. 3.1.

The conditions for inflation in Eqs. (3.1) are satisfied in a universe dominated
by a cosmological constant, which is described in section 2.3. Using the results
from a cosmological constant dominated universe summarized in table 2.1, we find
that the scale factor can be parametrized as [3]

a(t) = e−N(t)aend, (3.2)

where aend is the scale factor at the end of inflation and N(t) the number of e-folds.
Since the final state of inflation is known, rather than the initial state, the number
of e-folds is defined counting backwards with respect to time1.

An example is a universe dominated by a cosmological constant. For such a
universe

1
aH
∝ e−t/t0 (3.3)

hence the universe undergoes an accelerated expansion. In the flow equation (2.34)
this implies that while the universe is Λ dominated, a flat universe is an attractor
solution. Hence, the flatness problem is solved if the universe accelerated for
enough e-folds. For reasonable values of the parameters, it can be found that the
required number of e-folds is between 60 and 70, as is shown in Ref. [79]. However,

1Note that different definitions are used for the number of e-folds, including the definition
starting from ti, as well as the above definition without the minus sign (rendering N(t) negative
during inflation). If these definitions are used N increases during inflation.
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Figure 3.1: Schematic picture of the solution of the horizon problem, compare with
Fig. 2.7. Inflation extends the amount of conformal time before recombination, so
that the particle horizon at recombination is increased. If inflation lasted long
enough, the horizon problem is solved. Figure from Baumann’s Tasi lectures [45].

this depends on the post-inflationary evolution of the universe, as will be discussed
in section 3.5. In addition, during inflation the particle horizon increases as

dpart(tend) = a(tend)
∫ tend

ti

dt
a(t) ∝

eN

H
eH(tend−ti) . (3.4)

Therefore, if N is sufficiently large, the horizon distance at last scattering will be
beyond the size of current observations. If inflation lasted for 60 e-folds, also the
horizon problem is solved, as is shown in Ref. [79].

Other issues with the early universe are also solved by an inflation era. One of
the problems of many UV-completions of the standard model is that they postulate
very massive stable particles, for example cosmic strings and magnetic monopoles
[3]. These particles could easily be measured even if their abundance is small.
Since they are not observed, either the UV-completion is incorrect or there is
a mechanism that efficiently dilutes these particles. During inflation the total
volume of the universe greatly increased and since the density of a set of particles
scales as ρM ∝ a−3 ∝ e−3Ntot during inflation, any pre-inflationary abundance of
particles is efficiently washed out. If after inflation these particles are not created,
their current density will be unobservably small.

Unfortunately, the above inflation model is not complete. The model lacks
a mechanism to end inflation and start a radiation dominated phase, which is
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necessary for Big Bang nucleosynthesis. Therefore, in the next section, inflation
models will be considered that use a scalar field, the inflaton. Then the dynamics
of the inflaton provides the end of inflation.

3.2 Inflation with a scalar field
Three main proposals were raised to explain inflation; old, new and chaotic infla-
tion. In the following these proposals will be discussed, and it will be explained
why old inflation does not explain the observations. Then, the equations of mo-
tion for the remaining dynamical inflation scenarios will be reviewed, which leads
to the Hamilton-Jacobi description of inflation and potential slow roll inflation.
This section finishes with a comment on the stability of the inflation trajectory
calculated with these methods.

3.2.1 Old, new and chaotic inflation
The first model of inflation is now known as ‘old inflation’, and was first posed by
Guth in [11]. In old inflation, the early universe is trapped in a false vacuum state,
depicted with a dot in the left frame of Fig. 3.2. At very early times, the value
for the inflaton field φ is large, and it rolls down the right potential hill towards
the local minimum denoted with the black dot. While being trapped in the false
vacuum state, the universe is expanding exponentially fast and the scale factor can
be parametrized with the number of e-folds, as in Eq. (3.2). After a sufficiently
long expansion in the inflating local minimum, the inflaton tunnels through the
potential barrier and inflation ends.

At the time that Guth posed old inflation, the anisotropies in the CMB were not
yet observed. However, a rough bound on the amount of breaking of homogeneity
was known, parametrized by the amount of density fluctuations in the energy
density in the universe over the total energy density δρ

ρ . These density fluctuations
could be explained by posing that the bubbles generated by the first order phase
transition that ended inflation were sufficiently small [11].

However, the end of inflation is paradoxical. To have enough inflation, the
inflaton had to stay sufficiently long in the local minimum before tunnelling to
the global minimum, while a quick phase transition is required to generate many
small bubbles. Therefore, the Guth model of inflation was abandoned in favour of
new and chaotic inflation.

Shortly after Guth introduced the theory of old inflation, Albrecht and Stein-
hardt [80] and Linde [81] proposed new inflation in which the inflaton rolls slowly
to the bottom of the potential after the tunnelling towards the true vacuum. An
example of such a potential is schematically shown in the middle frame of Fig. 3.2.
Note that the potential on the left of the local minimum in this frame is much
flatter compared to the potential in old inflation to provide a phase in which the
inflaton slowly rolls down the potential. During this slow roll phase, the speed of
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Figure 3.2: From left to right, examples of potentials for old, new and chaotic
inflation. During old and new inflation, the inflaton (which acts as the parame-
ter of the phase transition) is situated on the right (local) minimum, but tunnels
to the global minimum after some time. After tunnelling, the new inflation po-
tential is sufficiently flat to maintain inflation, while old inflation stops with the
tunnelling. Chaotic inflation has no initial metastable minimum, but slowly rolls
down a sufficiently flat potential.

rolling is small compared to the potential energy and the field is approximately a
cosmological constant. This effective cosmological constant generates a nearly ex-
ponential expansion, similar to old inflation, which ends when the inflaton stopped
to roll slowly. Because during the slow roll era the universe still expands nearly
exponentially fast, the whole observable universe will be dominated by a single
bubble. New inflation solves the early universe problems similarly as the Guth in-
flation model, with the difference that the number of e-folds is a more complicated
function of time.

A similar model, that did not require a phase transition to start inflation, was
proposed by Linde in Ref. [82]. It is schematically depicted in the right frame of
Fig. 3.2. In this model the inflaton field value obtains a random initial condition
in the early universe, such that it starts with its field value displaced from the
origin. Due to this random initial condition the name chaotic inflation was given
to this inflation model2.

To make qualitative predictions for new and chaotic inflation models, the equa-
tions of motion for a scalar field in an FLRW background have to be obtained.
These are most easily found by observing that for a scalar field with a canoni-
cal kinetic term and a minimal coupling to gravity which has a potential V, the
energy-momentum tensor behaves as a perfect fluid with [79]

ρ = 1
2 φ̇

2 + V (φ), p = 1
2 φ̇

2 − V (φ) . (3.5)

Using Eq. (2.6) the Friedmann and Klein Gordon equations are obtained

H2 = 1
3M2

p

(
1
2 φ̇

2 + V (φ)
)
, (3.6a)

0 = φ̈+ 3Hφ̇+ V ′(φ) , (3.6b)
2The name chaotic inflation was also given to the φn and quadratic inflation models.
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where the prime corresponds to differentiation with respect to φ. The Klein-
Gordon equation describes a harmonic oscillator with a damping due to the cosmic
expansion generated by the inflaton field.

To model inflation, it is useful to rewrite the third equation of (2.6) as [79]

ä

a
= H2(1− εH), εH ≡ −

Ḣ

H2 = 3
2(1 + w) , (3.7)

where εH is the first Hubble slow roll parameter. The inflationary phase is defined
to be the era in which the universe underwent an accelerated expansion, which
can be cast into the condition

εH < 1. (3.8)
Computationally, condition (3.8) is simpler to use than the conditions ä > 0 or
(3.1). It implies, using (3.7), that inflation occurs if the change in time of H is
smaller thanH2. Hence for inflation to occur the Hubble parameter of the universe
has to decrease slowly.

The number of e-folds (N) is defined by Eq. (3.2), as in the Guth model of
inflation. The number of e-folds and the Hubble parameter H are the most natural
quantities obtained from the scale factor a considering that multiplying a with a
constant does not have physical implications.

3.2.2 Hamilton Jacobi
For most purposes, it is convenient to consider the inflaton field value instead
of a time parameter (t or τ) or the number of e-folds to parametrize inflation.
Obviously, this is only consistent if φ̇ never vanishes during inflation, hence if the
inflaton field does not initially roll up the potential and returns its path. In the fol-
lowing it will be assumed that the inflaton field is moving down its potential during
the full part of the inflationary trajectory under consideration. Then the Hubble
parameter is expressed as H(φ) and by differentiating the Friedmann equation in
(3.6) and plugging that into the Klein-Gordon equation (3.6b), we obtain [83]

φ̇ = −2M2
pH
′(φ), V = 3M2

pH(φ)2 − 2M4
pH
′(φ)2. (3.9)

The second equation is the Hamilton Jacobi equation, which relates the Hubble
function to the inflaton potential. Using this equation any H(φ) can be mapped
to a unique potential. In addition, from the first relation of (3.9) another relation
for εH is obtained [84]

εH = 2M2
p

(
H ′(φ)
H(φ)

)2
. (3.10)

Finally, differentiating Eq. (3.2) with respect to time an expression relating the
number of e-folds with the field value is

N =
∫ φ

φend

dφ
Mp
√

2εH(φ)
. (3.11)
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Inflation is completely specified if H(φ) is known [83]. From the Hubble func-
tion the first slow roll parameter (εH) can be obtained using Eq. (3.10) and when
this parameter is smaller than one inflation takes place. In section 3.1 was shown
that inflation needs to last for at least 60-70 efolds. During these e-folds εH must
be smaller than one, so the derivative of εH with respect to the number of e-folds
must be small. For this purpose the second slow roll parameter is defined as [84]

ηH = 2M2
p
H ′′(φ)
H(φ) . (3.12)

With this definition, η corresponds to the acceleration of the inflaton velocity
within the Hubble function. For inflation to persist it is typically required that
|ηH| < 1 [70].

In addition, in this framework a very large and positive ηH is never allowed,
since from Eq. (3.9)

V ′(φ) = 2M2
pH
′(φ)H(φ) (3− ηH) , (3.13)

and if ηH > 3 either the potential or the Hubble function increases with time.
From the second equation of Eq. (3.8) it is easily verified that the Hubble func-
tion decreases during inflation, hence ηH > 3 corresponds to a model in which the
inflaton rolls up the potential. This situation can be obtained for certain initial
conditions of the inflaton, but at some point the inflaton field will loose its mo-
mentum and will start to move down the potential. This is not consistent with the
ansatz that φ is a monotonic function, so we require that ηH < 3. In fact, some
inflation models, named ultra-slow roll inflation, exist in which ηH = 3 [85]. For
this type of models the full field equations in Eqs. (3.6) have to be used instead of
the Hamilton-Jacobi equation.

3.2.3 Potential frame
In the Hamilton-Jacobi frame of inflation the Hubble function is specified and the
potential is derived from Eq. (3.9). To embed inflation in particle physics it is
more convenient to specify the potential and derive the Hubble function instead.
Numerically this is possible, as the Hubble function can be found using Eq. (3.9),
but since this is a first order quadratic differential equation it is usually not possible
analytically. Therefore, in this section the slow roll conditions (εH, |ηH|) � 1 will
be used to solve Eq. (3.9) order by order. Only the first order analysis is shown
here, but more information regarding higher orders in slow roll can be found in
Ref. [83].

The potential slow roll parameters are defined analogously to Eqs. (3.10) and
(3.12) [86],

εV(φ) ≡
M2

p
2

(
V ′(φ)
V (φ)

)2
, ηV(φ) ≡M2

p
V ′′(φ)
V (φ) (3.14)
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and can be related to the Hubble slow roll parameters using Eq. (3.9)

εV = εH +O
(
ε2H
)
, ηV = εH + ηH +O

(
ε2H
)
, (3.15)

where O
(
ε2H
)
implies corrections of second order in the slow roll parameters (hence

also terms of order η2
H and εHηH). Since εV ≈ εH, the relation for N in Eq. (3.11)

is the same interchanging εH for εV.
Expanding Eq. (3.15) to higher order in slow roll is not difficult, but the results

are not very illuminating [83]. However, the resulting expression cannot be given
in terms of εV and ηV only, but will depend on derivatives of these quantities.
These derivatives can be nicely captured in a generic set of higher order slow roll
parameters [83]

εV =
M2

p
2

(
V ′(φ)
V (φ)

)2
, (3.16a)

nλV(φ) = M2n
p
V ′(φ)n−1V (n+1)(φ)

V (φ)n , (3.16b)

where 1λV = ηV. In addition, for slow roll inflation to occur it is necessary that for
all n, |nλV| < |n−1λV|, but due to the structure of the parameters this is usually
satisfied if εV < 1 and |ηV| < 1.

The slow roll phase of inflation is defined as the period in which the potential
slow roll parameters εV and |ηV| are below one. Theoretically the end of this phase
does not have to be the end of inflation, but the end of inflation typically follows
soon after the end of the slow roll era. The location at which inflation ends is
mainly important for computing the number of e-folds, but since if εV > 1, also
εH ≈ 1 and the integrand of (3.11) is small, hence the error that is made when
using the end of slow roll is typically small. An example with models with εV < 0
but εH > 0 was explored in [87], though in this regime always |ηV| > 1, so formally
there was no slow roll inflation.

3.2.4 Slow roll attractor
The slow roll inflation model as described above chooses a specific trajectory
through the two dimensional phase space of the inflaton spanned by the inflaton
field value and its time derivative. Therefore, in this section we study if the slow
roll trajectory given by Eqs. (3.9) is stable with respect to small perturbations.
This analysis is based on Ref. [83].

Consider a Hubble function H0(φ) that satisfies the Hamilton-Jacobi equation
(3.9) for a specific potential V and add a small perturbation δH(φ). For this
Hubble function, the Hamilton-Jacobi equation becomes

M2
pH
′
0(φ)δH ′(φ) = H0(φ)δH(φ), (3.17)
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where the prime refers to differentiation to φ. The perturbation equation (3.17)
can be solved as

δH(φ) = δH (φi) exp
(
−3
∫ t

ti

H0(φ(t))dt
)

= δH (φi) e−3|Ni−N(φ)| , (3.18)

where the first equation of (3.9) was used to change integration from φ to t and the
index i corresponds to the initial condition of the perturbation. The last equality
in Eq. (3.18) denotes that the size of the perturbation is exponentially suppressed
when inflation proceeds. Therefore the slow roll trajectory is stable with respect
to small perturbations.

However, inflation might have started at a point in phase space far from the
inflationary attractor. It can be shown [83], that in this scenario for a large part of
phase space the final inflation model converges to the attractor. Hence, the basin
of attraction of the inflationary attractor is large [83, 88–90]. There are points in
phase space, usually where the initial velocity is very large, that do not reach the
attractor and for which the slow roll description of inflation is not sufficient. We
will not discuss the initial conditions for inflation in this thesis, but assume that
the inflationary attractor is reached before any observable features, explained in
the next section, appear.

In addition, note that the above analyses are all assuming that the inflaton
trajectory is classical. If the inflaton is moving so slowly that the classical motion is
subleading with respect to the quantum oscillations, the quantum corrections will
push up the inflaton more than that it is rolling down. This theory is called eternal
inflation [91], but for the observable part of the inflation trajectory eternal inflation
seldom occurs and is not studied in this thesis. For the non-observable part of the
trajectory eternal inflation is often encountered and is one of the criticisms for
inflation, see for instance Ref. [92], while Ref. [93] claims that eternal inflation can
also be interpreted as a good feature of inflation.

In the following we will assume that inflation is in the slow roll attractor, and
that the dynamics is sufficiently fast that the classical path is the correct one (up
to the small quantum corrections that appear in the CMB, which will be discussed
in the next section).

3.3 The CMB anisotropies
Having defined the dynamics of inflation, it is time to study the observable pre-
dictions of inflation. The observables for inflation originate from quantum fluc-
tuations during inflation, as will be shown in section 3.3.3. These perturbations
source fluctuations in the matter density of the universe δρ. Constraints on the
breaking of homogeneity due to δρ

ρ using large scale structure observations were
used to constrain the first inflation models [94–99].
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However, since the evolution of gravity is non-linear at late times, it is difficult
to infer the primordial density perturbations from the current distribution of mat-
ter. Therefore, currently the strongest constraints for inflation originate from the
anisotropies in the CMB. In the following of this section, first the description of
the density fluctuations in the CMB of section 2.4 is extended. Since inflation also
predicts observable features in the polarisation of the CMB photons, these will
be discussed in section 3.3.2. Then the derivation of the power spectrum will be
sketched for a single field slow roll inflation model. The purpose of this derivation
is to provide the inflationary observables As, ns and r, so that inflation models can
be tested with the data. We finish with some comments on inflation with multiple
fields and a reformulation of the horizon problem into a stronger statement.

3.3.1 The CMB power spectrum
The CMB was qualitatively considered in section 2.4, where it was explained that
it is actually measured on the surface of a sphere around us. Therefore, it is
convenient to expand temperature deviations of the CMB in spherical harmonics
Ylm(n̂) [70]

∆T = T (n̂)− T0 =
∑
l,m

almYlm(n̂) , (3.19)

where T0 is the average CMB temperature. Of interest will be correlation functions
averaged over the sky, defined as 〈∆T (n̂1)∆T (n̂2)...〉. The first non-zero correla-
tion function is the two-point function, which will generate the observables for
inflation that will be used in this thesis. Since the two-point function is averaged
over the sky, it can be expanded as [8]

〈∆T (0)∆T (θ)〉 =
∑
l

2l + 1
4π ClPl(cos θ) , (3.20)

where the Pl are the Legendre polynomials. In this expansion, the values l =
1 and l = 2 correspond to the monopole and dipole respectively, and do not
contain measurable information about cosmological anisotropies. The monopole
corresponds to the average CMB temperature, while the unknown motion of the
local group with respect to the CMB generates a dipole that cannot be subtracted
from the data.

By combining Eqs. (3.19) and (3.20) the two-point function can be written
as [70]

CTTl = 1
2l + 1

l∑
m=−l

〈a∗lmalm〉 , (3.21)

where T stands for the temperature spectrum, opposed to the polarisation data
that will be considered in section 3.3.2. In Fig. 3.3 the power spectrum is shown
as the combination

DTT
l = l(l + 1)

4π CTTl , (3.22)
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Figure 3.3: The TT power spectrum 〈∆T (n̂)∆T (n̂′)〉 (more precisely defined in
Eq. (3.22)) as measured by the Planck satellite [12]. For l < 30 a different instru-
ment was used and there the x-axis is in log-space, while for l > 30 it is linear.

which is flat for a conformally invariant universe. Indeed, in Fig. 3.3 the spectrum
at low-l is rather flat, but the small tilt indicates that there is a small deviation
from conformal invariance.

3.3.2 Polarization
Additional information can be extracted from the CMB by studying the polar-
ization of the CMB photons. If there are quadrupole anisotropies in the cosmic
plasma during CMB emission, the emitted photons will be polarized due to Thom-
son scattering [100]. If a medium emits uniform radiation and this radiation is
scattered by an electron, the light becomes polarized in the direction orthogonal
to the scattering plane. Hence, if two photons originating from a hot and a cold
spot are scattered, the scattered light gets a linear polarization, as is pictured
in Fig. 3.4. When the light scatters often it will get depolarized, hence the ob-
served polarization originates only from the very last scatterings at the very end
of last scattering. Though the polarization of the CMB is therefore small, current
experiments are sensitive enough to test it.

Polarization can be represented using the Stokes parameters I,Q, U and V
[8]. The parameters I and V , which are related to the total intensity of the
polarization and to the circular polarisation respectively, can be ignored. The
remaining parameters are combined as Q ± iU which transform under rotations
with an overall factor Q′ ± iU ′ = e±iψ [Q± iU ], where ψ is the phase of the
rotation. As for the temperature power spectrum above, these parameters are
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Figure 3.4: Origin of the linear polarization in the CMB. Two photons origi-
nating from a quadrupole anisotropy scatter off an electron and get a net linear
polarization. Figure from [101].

expanded in spherical harmonics

(Q+ iU)(~n) =
∑

l≤2,|m|<l

a±2l,m±2Ỹ
m
l (n) , (3.23)

where Ỹ transform under rotations as Q+ iU does.
The two different polarization patterns of the CMB can also be distinguished

by their parity. This defines the E and B mode polarizations. The E-mode polar-
ization is even under a parity transformation and the B-mode polarization is odd.
From Eq. (3.23), the E and B modes are defined as [8]

E(~n) =
∑

l≤2,|m|<l

aEl,mY
m
l (~n), aElm = −

a2lm + a∗−2lm
2 , (3.24a)

B(~n) =
∑

l≤2,|m|<l

aBl,mY
m
l (~n), aBlm = −

a2lm − a∗−2lm
2i . (3.24b)

This definition has the additional feature that aElm and aBlm are real. Analogously
to the unpolarized part of the CMB spectrum in Eq. (3.22), the (cross-) correlation
functions are defined as

CEEl = 〈aElmaElm〉, CBBl = 〈aBlmaBlm〉, CTEl = 〈aTlmaElm〉, (3.25)
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while the correlation functions CBTl and CBEl are zero for symmetry reasons.
The primordial EE spectrum was first detected by the DASI experiment in

2002 [102], while a cosmological B spectrum has not been observed so far and
much effort is made to measure this. The Planck satellite measured both the EE
spectrum, as well as the TE cross-correlation spectrum with high accuracy [12].

3.3.3 The inflationary origin
According to the inflationary paradigm, the anisotropies in the CMB originate from
quantum fluctuations of the inflaton field value during inflation [103, 104]. These
fluctuations from the homogeneous solution, which appear in both the metric and
the inflaton field, can be expanded as

φ(~x, t) = φ̄(t) + δφ(~x, t), gµν(~x, t) = ḡµν(t) + δgµν(~x, t) , (3.26)

where the bar corresponds to the background value, which is space independent
due to homogeneity and isotropy, and δ denotes the fluctuation. The fluctuations
of the metric field can be expanded in a scalar, a vector and a tensor part [8]

δgµνdx
µdxν = −2Φdt2 + 2aBidxidt+ a2 (−2Ψδij + Eij) dxidxj , (3.27)

where Eij = 2∂2E + 2∂(iFj) + hij . Because the scalar fluctuations are not space-
time invariant, it is beneficial to define a gauge invariant perturbation R ≡ Ψ −
H
φ̇
δφ and gauge Φ = Ψ and E = 0. Vector perturbations are usually not created at

linear order in perturbation theory during inflation and decay during the evolution
of the universe, hence also Bi and Fi are set to zero. The tensor perturbations
of hµν are gauge-invariant and correspond to the tensor modes that are emitted
during inflation.

From the gauge invariant scalar perturbation R, the two-point function [70]

〈RkRk′〉 = (2π)3δ(k + k′) PR(k), ∆2
s = k3

(2π)3 PR(k) , (3.28)

can be defined, where ∆2
s is the scalar power spectrum. The powers of k in the

definition of ∆2
s are chosen such that ∆2

s is constant if the perturbations are scale-
independent. Observations show that indeed the scalar perturbations are close to
scale invariant, hence expanding ∆2

s around a scale invariant ansatz

∆2
s(k) = As(k∗)

(
k

k∗

)(ns(k∗)−1)+ 1
2αs(k∗) ln(k/k∗)+...

(3.29)

is a good starting point. Here and in the following a star will be assigned to
quantities at the moment of horizon crossing. The reference scale k∗ = a∗H∗ is
known as the pivot scale and depends on the typical size of the perturbation under
consideration. Typical choices are k∗ = 0.002 Mpc−1 for the Planck satellite [14]
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and k∗ = 0.05 Mpc−1 for the BICEP/Keck array [105]. The deviations from scale
invariance are parametrized by the scalar spectral index ns, which is 1 for a scale-
independent spectrum, while the scale dependence of ns is encoded by the running
αs. Higher order quantities can be defined as the running of the running and so
on, but these are difficult to observe.

Similarly, the power spectrum of the tensor modes hij can be obtained. The
tensor modes are gauge-invariant, hence no redefinitions are required and the power
spectrum of the tensor modes is

〈hkhk′〉 = (2π)3δ(k + k′) Ph(k), ∆2
t = 2δ2

h = k3

2π2Ph(k) , (3.30)

where the factor 2 originates from the two polarizations of tensor modes (which
are gravitational waves). The tensor power spectrum is expanded around a scale
invariant ansatz

∆2
t (k) = At(k∗)

(
k

k∗

)nt(k∗)+ 1
2αt ln(k/k∗)+...

. (3.31)

Note that, for historical reasons, the tensor spectral index nt for a scale-invariant
spectrum is 0. In addition, instead of computing the tensor power spectrum (At),
the tensor to scalar ratio is defined as

r ≡ ∆2
t

∆2
s

. (3.32)

To compute the power spectra of Eqs. (3.29) and (3.31), a second quantisation
description for R and h is used, as described in Ref. [45]. This leads, for the scalar
power spectrum, to the Mukhanov equation

v′′k +
(
k2 − z′′

z

)
vk = 0 , (3.33)

where vk ≡ zR, z2 = 2a2εH and primes are derivatives with respect to conformal
time τ .

When performing the second quantization the vacuum is defined as the state
that is annihilated by the annihilation operator. However, within a curved space-
time the vacuum is not well-defined, as is nicely explained in Ref. [70]. The
standard choice for the vacuum is to assume that the very early universe was
completely de Sitter, hence z′′/z = 2/τ2 and from solving Eq. (3.33) in this vacuum
we obtain

vk = e−ikτ
√

2k
(

1− i

kτ

)
, (3.34)

which is known as the Bunch-Davies mode function.
The dependence of the perturbation spectrum on the vacuum is unexpected,

since inflation should remove the initial conditions of the universe. There are
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examples in which the Bunch-Davies mode function is replaced by another solution
[106–108]. For instance in Ref. [107, 108] was shown that if the universe went
through a bounce, a small shift in the low-l data can be expected. Though there
is observationally a hint that such a shift exists, as can be seen from Fig. 3.3, this
is not statistically significant [14].

In this thesis we will use the Bunch-Davies vacuum for the scalar and the
tensor modes. Assuming this vacuum, the power spectra at leading order in slow
roll are [70]

∆2
s = H2

∗
8π2εH(k∗)M2

p
, ∆2

t = 2H2
∗

π2M2
p
. (3.35)

From the definitions of the slow roll parameters, the scalar indices and the tensor
to scalar ratio defined in Eqs. (3.29) and (3.31) are

ns = 1 + 2ηV − 6εV (3.36a)
r = 16εV (3.36b)
α = 16εVηV − 24ε2V − 2(2λV) (3.36c)
nt = −2εV , (3.36d)

where we neglected terms next-to-leading order in slow roll. The parameter 2λV

is defined in Eq. (3.16) and is second order in slow roll. Note that higher orders
terms of the power spectrum are also higher order in slow roll, e.g. ns − 1 is first
order in slow roll, while α is second order. Therefore slow roll inflation predicts
that α is much smaller than ns and that the scale dependence of α (named δ), is
much smaller than α, etcetera.

As qualitatively explained in section 2.4, the density fluctuations generated
during inflation seed the temperature fluctuations in the CMB. This is particularly
true for the low-l data, which probe distance scales outside of the causal horizon
at last scattering. However, for the large-l data there are some effects that change
the power spectrum, as explained in section 2.4. These effects are accounted for
by a transfer function ∆Tl, which relates the temperature anisotropies measured
in the CMB with the perturbations generated during inflation. This leads to [70]

CTTl = 2
π

∫
k2dk PR(k)∆Tl(k)∆Tl(k) , (3.37)

where CTTl was defined in Eq. (3.21). Finding these transfer functions goes beyond
the scope of this thesis, the relevant information is that the anisotropies in the
temperature spectrum of the CMB are directly related to the scalar perturbations
generated in the CMB.

Scalar modes generate in the CMB only temperature perturbations and E-
mode perturbations, but do not produce any B-mode polarisation. Tensor modes
– which are gravitational waves – do produce B-mode polarisation3 [70]. Therefore,

3Also E-mode polarization and temperature anisotropies are produced, but from the current
non-measurement of any B-mode spectrum follows that these contribution are negligible.
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if B-mode polarisation is found in the CMB this will correspond to a measurement
of At, and hence of r. This is the most promising signal of the tensor power
spectrum, since the gravitational waves emitted by inflation are far to weak to be
detected by gravitational wave experiments. Unfortunately, experiments have not
seen any primordial B-modes in the CMB [17].

From these parameters, only As and ns are observed. Observations show that
[14]

As = (2.14± 0.05) · 10−9 (3.38a)
ns = 0.9645± 0.0049 (3.38b)
r < 0.11 (3.38c)
α = −0.0057± 0.0071 (3.38d)

where the errors are 1σ, but the bound on r is the 95% confidence limit. This
analysis assumed that the running of the running δ = dα/d log(k) is zero. The
Planck satellite also considered the possibility of a nonzero running of the running,
which was found to be nonzero at roughly 1σ. Thus with the current data the
measurement of the running of the running is consistent with 0.

3.3.4 Signatures from multi-field inflation
Inflation scenarios where inflation is driven by multiple fields can generate spe-
cific features in the CMB. For instance perturbations orthogonal to the inflaton
trajectory might generate so-called isocurvature modes. The propagation of these
modes to the CMB depends on the background dynamics and a full analysis goes
beyond this thesis, see for instance Ref. [45]. If isocurvature perturbations survive
to the CMB they can be observed by a distortion of the peaks in the TT and EE
power spectra, which have not been observed [14].

In addition, multi-field inflation models predict a larger contribution to non-
Gaussian features in the CMB power spectrum [45]. These non-Gaussianities
appear in the three-point function or bispectrum4. In the single field inflation
paradigm the produced density fluctuations are very Gaussian, hence the bispec-
trum is mostly dominated by the contribution from the two-point function. If
multiple fields drive the physics of inflation, larger non-Gaussianities can be pro-
duced. The measurements of the Planck satellite did not show any hints of non-
Gaussianities in the CMB radiation [14], putting strong constraints on models
with multiple fields.

In addition to multi-field inflation models, non-Gaussianities can also appear in
single field models with higher derivative operators. These models can be distin-
guished from the multi-field inflation models by considering the shape in which the
three-point function is maximal [45]. But, since in this thesis we will not consider

4Also higher point functions could be compared, but these are observationally much less
constraint [14].



3.3 The CMB anisotropies 55

multi-field models or models with higher derivative operators, the full analysis is
beyond the thesis.

3.3.5 Predictions of (single field) slow roll inflation
The historical reasons for assuming an inflation phase were explained above, being
the horizon, the flatness and the monopole problems. In this section a few addi-
tional reasons for inflation will be phrased that use the current CMB observations.

In the derivation of the spectra, it was found that ∆2
s is related to the tempera-

ture power spectrum, while r is related to the B-mode power spectrum. However,
no quantities were introduced to parametrize the E-mode power spectrum, nor to
explain the spectrum of the ET cross-correlations. The reason is that if inflation
took place, these spectra are fixed by the shape of the TT and BB spectra. The
Planck satellite observed both the EE and TE spectra with high significance and
the result shown in Figs. 3.5 shows the remarkable agreement between theory (the
red line) and experiment (data points). The red line in the right frame of Figs. 3.5
is the prediction of ΛCDM with inflation, and is not a fit. That the line overlaps
the data points so well is therefore a strong indication that the theory of inflation
is correct.

Another prediction is a phase-coherence of the oscillations in the primordial
plasma. The observed overdensities in the CMB are the correlated spectra of
different sound waves. Due to inflation, all modes leave the horizon with the same
phase. If the initial phases of the different sound waves was not coherent, the
sum of the different modes would have averaged out so no anisotropies would be
observed in the CMB. However, the anisotropies are observed, so the initial phases
for the sound waves in the CMB have to be coherent [109].

For most modes observed in the CMB the acoustic peaks occur inside the
horizon and there could be a causal mechanism that generates them. This is not
the case for modes that are outside of the horizon. At the moment that the CMB
is emitted, the electrons in the cosmic plasma behave as a fluid. Using energy
conservation, the fluid equation for density perturbations is [109]

ρ̇ = −~∇ · (ρ~v) , (3.39)

where ~v is the velocity of the electrons. This implies that the derivative of the
monopole (left-hand site of Eq. (3.39)) equals the dipole. Since the temperature
anisotropies produce monopole radiation, while E-mode polarization is a dipole,
the TT power spectrum is a squared monopole, while the TE power spectrum will
represent the signatures of the dipole spectrum. The temperature perturbations
have a maximum at l ≈ 100 in Fig. 3.3 and at this point the TE power spectrum
is expected to be negative due to the minus sign in Eq. (3.39). This is indeed
observed in Fig. 3.5b. Since for these small values of l the modes were not inside
the horizon, some mechanism that sets the initial conditions of the anisotropies is
necessary. Inflation is such a mechanism [109].
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Figure 3.5: On the left the EE power spectrum and on the right the TE power
spectrum, as measured by the Planck satellite [12]. The red line is the ΛCDM
prediction.

3.4 Selected inflation models
In the previous sections the requirements and the observables of inflation were
studied. In the this sections a few selected inflation models will be discussed. For
a more complete set of inflation models, see [110].

3.4.1 Quadratic inflation
The simplest inflation model is the model of a free massive scalar field. This model
has a quadratic potential V = 1

2m
2φ2 [111] and is a benchmark model which is

studied in most reviews on inflation [45,112]. Quadratic inflation is closely related
to the quartic potential first studied by Linde in [81], but quartic inflation is
strongly excluded by the observations of ns and r while quadratic inflation only
mildly.

The potential slow roll parameters for quadratic inflation are obtained from
Eq. (3.14)

εV = ηV =
2M2

p
φ2 . (3.40)

After the condition for the end of inflation inflation, εV(φend) = 1 and obtaining
the number of e-folds N from Eq. (3.11), the observables As, ns and r can be
expressed in N using Eqs. (3.36)

ns = 1− 4
2N + 1 , r = 16

2N + 1 , As = (2N + 1)2

12π2

(
m

Mp

)2
. (3.41)
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Note that ns and r are independent of the overall scale m2. This is a generic
feature, since ns and r depend, due to the structure of Eqs. (3.16) and (3.36), on
ratios of the potential and its derivatives. The overall scale of the potential only
enters through the size of the CMB anisotropies, As. Using that As = 2.2 · 10−9,
the mass of the inflaton field is fixed to [45](

m

Mp

)2
= 12π2

(2N + 1)2As ≈
(

7× 10−6
(

50
N∗

))2
. (3.42)

Typically the number of e-folds is between 50 and 60, yielding a mass of the order
of 1013 GeV, far from the range of current particle colliders. Unfortunately, for
N∗ = 50 − 60 the tensor to scalar ratio r ≈ 0.13 − 0.16, which is in tension with
current observations [17]. This is shown in Fig. 3.6, where the predictions from
quadratic inflation are shown in black dots representing 50 (small dot) and 60
e-folds. Though the simplicity of quadratic inflation makes it a very pedagogical
example, it is not realised in nature.

Quadratic inflation is an example of a model with a large field excursion [45].
For this set of models the field excursion during inflation ∆φ = φ∗ − φe > Mp,
where φe is the value of the field at which inflation ends. A super-Planckian field
excursion poses problems related to the corrections of the effective theory, since
the cutoff scale of any effective theory that does not take into account gravity is
maximally the Planck scale. Generically operators of the form φn+4

Mn
p

are expected,
which will dominate over 1

2m
2φ2 ruining the predictability of the theory. We will

return to this issue in section 7.5.

3.4.2 Starobinsky inflation
Another relatively simple inflation model is a modification of gravity that was
originally posed by Starobinky in [113] to study small deviations from general
relativity. The action of this model is most elegantly written in the Jordan frame
as

SJ =
M2

p
2

∫
d4x
√
−gJ

(
R+ 1

6M2R
2
)
. (3.43)

Due to the R2 term, this action contains a metric and a scalar. The scalar degree
of freedom can be made explicit by defining an auxiliary field φ with the classical
equation of motion φ = R [114]

SJ = M2
p

∫
d4x
√
−gJ

[ 1
2 (1 + 2βφ)R− βφ2] , (3.44)

where β ≡ 1/(6M2). This auxiliary field is non-minimally coupled to gravity, but
by performing a conformal transformation on the metric,

gEµν = (1 + 2βφ) gJµν , (3.45)
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it becomes minimally coupled. In this frame, named the Einstein frame, the action
is [115]

SE = M2
p

∫
d4x
√
−gE

[
1
2R−

1
2

(
6β2

(1 + 2βφ)2

)
∂µφ∂

µφ− βφ2

(1 + 2βφ)2

]
, (3.46)

which represents a scalar field coupled to a minimal theory of gravity. The slow
roll parameters introduced in Eq. (3.14) were assuming a canonical kinetic term
for the inflaton. With the field transformation χ =

√
3
2 log (1 + 2βφ) the action is

transformed to

SE = M2
p

∫
d4x
√
−gJ

[
1
2R−

1
2∂µχ∂

µχ+ 1
4β

(
1− e−

√
3
2χ
)2]

, (3.47)

which has a canonical kinetic term.
Using Eq. (3.14) the CMB observables can be obtained. These are

ns = 1− 2
N
, r = 12

N2 As = N2

72π2M2
pβ

, (3.48)

where the parameters were expanded at leading order in 1/N and at leading order
in slow roll. In Starobinsky inflation r is suppressed by an additional factor of
1/N compared to the quadratic model in Eq. (3.41). Due to this extra factor,
the Starobinsky model is in perfect agreement with observations, as is shown in
Fig. 3.6 where the Starobinsky model is represented with orange dots. Finally, the
scalaron mass M is can be found from measurement of As

M = 2.4 · 1013 GeV50
N
, (3.49)

which is, as was the case for quadratic inflation, far beyond reach for current
collider experiments.

It is interesting to consider general F (R) models, where F (R) is an arbitrary
function of R including the linear term [116,117]. When changing the power of the
Starobinsky term, so that F (R) = R + Rp, then for p < 2 the potential typically
becomes steeper, while increasing the power p > 2 generates a hilltop-like shape.
A steep potential is disfavoured by the non-observation of r, and hilltop potentials
have a too small ns, hence only the values 2 > p > 1.92 are allowed [116,117].

Another reason to investigate f(R) theories is that these models are a candidate
for dark energy. For solving the dark energy problem, the late-time (small R) force
of gravity is modified by adding a term with p < 0. However, negative p implies
early time singularities, which can be solved by adding a term Rp

′ to f(R), with
p′ ≈ 2 [116].
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3.4.3 Higgs inflation
Inflation is driven by a scalar particle, hence either a new particle has to be
introduced as in quadratic inflation or modified gravity has to be considered as in
Starobinsky inflation. But it is also possible to use the scalar from the standard
model. As discussed in section 2.1, the standard model contains only one scalar
field, the Higgs field, which is a natural candidate for inflation. Even before
considering Higgs inflation, there is an important issue. When computing the
running of the Higgs parameters, using the current measurements for the top quark
mass, our current vacuum is metastable [118]. Hence, inflation will be running from
a hill-top and the spectral index will be too small. Moreover, if inflation runs into
the true minimum the potential becomes negative and the universe deflates. In
this section we assume that the Higgs vacuum is stable.

The Higgs potential in unitary gauge is

V = m2h2 + λh4, (3.50)

where m is the Higgs mass and λ the self-coupling. At a large value of the Higgs
field, the potential becomes λh4 which corresponds to quartic inflation, which is
completely ruled out by the data. In addition, the COBE measurement of As fixes
λ ≈ 10−14, which is much smaller than the value deduced from the standard model
masses, λSM = 0.1. The running of λ from energy scales of a GeV to the energy
scale at which inflation is taking place might reduce λ, but to reach 10−14 will
require considerable fine-tuning. Therefore, this implementation of Higgs inflation
does not agree with the observed universe.

To solve these issues with Higgs inflation, Bezrukov and Shaposhnikov proposed
in Ref. [119] to couple the Higgs field non-minimally to gravity. In unitary gauge
the Jordan frame Lagrangian of the Higgs inflation model is

LJ =
√
−gJ

[( 1
2M

2
p + ξh2)RJ + ∂µh∂

µh− VJ
]
, (3.51)

where the Jordan frame Higgs potential VJ(h) is the potential defined in (3.50)
and ξ is the coupling constant of the non-minimal coupling to gravity. As in the
Starobinsky inflation scenario described above, the conformal transformation

gEµν =
(

1 + ξh2

M2
p

)2

gJµν (3.52)

rotates the Lagrangian (3.51) to the Einstein frame, in which the Higgs field is non-
minimally coupled to gravity. The Einstein frame Lagrangian of Higgs inflation
is [119]

LE =
√
−gE

[
1
2M

2
pRE −

1
2Ω2

(
1 + 6ξ2

M2
pΩ2h

2
)
∂µh∂

µh− VJ(h)
Ω2

]
, (3.53)

where the Higgs field has a non-canonical kinetic term but is coupled minimally to
gravity and we defined the frame function Ω ≡ (1 + ξh2/M2

p). The non-canonical
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kinetic term can be removed with a field redefinition, which gives the canonical
Einstein frame Lagrangian

LE =
√
−gJ

[
1
2M

2
pRE + ∂µφ∂

µφ−
λM4

p
4ξ2

(
1 + e

− 2φ√
6Mp

)−2
]
, (3.54)

where the Higgs mass term was neglected.
The value for ξ can be related to λ using the COBE normalisation ξ ≈

49000
√
λ. As explained in the introduction, the precise value of λ at the en-

ergy scale of inflation is not known, since the running of λ depends on physics
between the LHC scale and the inflationary scale, but if λ = O (1) then ξ ≈ 5 ·104

which is rather large. At leading order in 1/N and 1/ξ, the observables ns and r
are [119]

ns = 1− 2
N
, r = 12

N2 , (3.55)

which are the same as in Starobinsky inflation (3.48).
Higgs inflation has the nice feature that it fits extremely well with the data,

while due to its embedding in the standard model it is also very well motivated.
However, the large non-minimal coupling term that enters in the Higgs potential
raised questions related to unitarity [120,121]. Though some studies showed that
there was a problem with perturbative unitarity during Higgs inflation, mainly
caused by a mixing of the kinetic terms of the different components of the Higgs
multiplet [122, 123], this has been under debate [124, 125]. Recently, the unitar-
ity problem was studied in Refs. [126, 127] and these authors showed that Higgs
inflation is unitary. The reason of that unitarity is maintained in Higgs inflation
is that in the limit h → ∞ the theory is conformal. This approximate confor-
mal symmetry is not only the basis of the success of Higgs inflation, but will also
appear in the attractor theories that we will study in section 6.2.

As will be shown in section 6.2, Higgs inflation is a realisation of a set of models
called the strong coupling attractors. The interesting feature of strong coupling
attractor models is that the results for ns and r are independent of the specific
model. Due to this attractor behaviour the Higgs inflation model will be insensitive
to small corrections, for instance in Ref. [128] it was shown that Higgs inflation
is insensitive to logarithmic corrections to the potential, which often appear in
perturbation theory.

To conclude, there is another proposal for Higgs inflation. In this scenario the
Higgs field is coupled non-minimally to the Einstein tensor Gµν [129,130]

L =
M2

p
2 R−

(
gµν − ω2Gµν

)
∂µh∂νh− λh4 , (3.56)

where for inflation to be valid, M2
p
ω ≈ 8 · 10−8. This inflation scenario has good

observational features, but the asymptotic scale invariance that characterizes Higgs
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Figure 3.6: Experimental constraints from the Planck 2015 paper [14], together
with some inflation models. The black dots correspond to quadratic inflation, the
orange dots to Starobinsky (R2) inflation, Higgs inflation and the strong coupling
attractor. The yellow lines interpolating between the black and orange dots is the
α-attractor model for different values for α. The strong coupling attractor and the
α-attractor will be discussed in section 6.2.

inflation has not been identified. It is therefore questionable if small quantum
corrections do not pose a problem to this scenario [125].

The problem that the Higgs vacuum is likely metastable is haunting both mod-
els. Typical solutions to this issue involve adding additional particles to the spec-
trum, however this solutions break the minimality of Higgs inflation [131–135].

3.4.4 Multi-field inflation
Finally there is active ongoing research on inflation with multiple scalar fields. In
general, this research can be divided in four categories, with increasing importance
of the additional fields. The orthogonal fields only play a minor role in the theory
of hybrid inflation [80], in which there are one or multiple additional fields which
end inflation immediately after they become dynamical. The second category are
the curvaton models [136, 137], where the curvature perturbations are generated
by another field than the field that generates the expansion of the universe. The
third category are models with a modest number of extra fields, which can still
be computed analytically or with numerical tools similar to the ones that will be
described in section 4.3 [138–140]. Finally, interesting developments were made in
the theory of inflation with a sufficient number of fields that the Hessian matrix
could be generated with random matrix theory [141–143].

Evidently, the idea of adding additional fields to the inflationary sector is well
motivated, as most high-energy extensions of the standard model require additional
scalar fields. However, adding more fields also complicates the model, generating
new observable features as discussed in section 3.3.4. The most important addi-
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tional observables are the bispectrum and isocurvature modes. The bispectrum
is defined by the CMB three-point function, which obtains a contribution from
the Gaussian two-point function plus a term originating from non-Gaussianities
parametrized by fNL. For single field slow roll inflation fNL is proportional to the
slow roll parameters [144–146] and very small, but for multi-field inflation non-
Gaussianities can be considerably larger. Observationally, the Planck satellite did
not observe any non-Gaussianities [57], putting the limit |fNL| < 5, 5 concluding
that there is no evidence for additional fields.

3.5 Reheating
After inflation ended was the universe extremely cold and very empty except for the
inflaton field that permeated it. Since our current universe is neither (that) cold
nor empty, some process after inflation generated a hot and dense thermal bath.
This mechanism is named reheating, and will be discussed in this section. This
analysis will be relevant in chapter 8, while for considering the generic inflationary
behaviour analysed in chapters 5 until 6 the reheating era will be ignored.

Since reheating is a vast domain of research, only some properties will be
highlighted that are relevant for this thesis. In the following, first the main physics
during reheating will be reviewed, resulting in the reheating temperature. Than
will be explained how reheating determines the number of e-folds during inflation,
and we finish with some comments concerning dark matter production related to
the reheating era. For more information on reheating, see Refs. [147–149].

A quick summary of the reheating phase of the universe is as follows. After
inflation ended the universe was still quickly expanding and while the universe
is expanding faster than the inflaton decays, the universe is inflaton dominated.
When the expansion of the universe cannot keep up with the decay time of the
inflaton, the inflaton condensate that permeates the universe quickly decays, gen-
erating a large number of particles. These particles thermalize and generate a
thermal plasma which continues with the evolution of the universe explained in
section 2.5.

By definition, reheating started at the end of inflation. After inflation ended,
the inflaton moved to the minimum of its potential. The equation of motion of
the inflaton Eq. (3.6b) represents a damped oscillator with the damping term
given by H. It follows that if H is smaller than the effective mass of the inflaton
m2

eff = V ′′(φ), the inflaton oscillates around its minimum. During these oscillations
the decay of the inflaton generates an additional damping term, and Eq. (3.6b) is
modified to [149]

φ̈+ (Γ + 3H)φ̇+ V ′(φ) = 0 , (3.57)

where Γ is the total decay width of the inflaton.
5Though the bound can be considerably weaker depending on the shape of the triangle in

which the three-point function is evaluated.
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As was shown in section 2.3, the quantity that determines the dynamics of the
universe is the equation of state. During reheating, the equation of state is not
constant, but changes from wend = 1 when inflation ended to wreh = 1/3 at the
onset of the radiation era. Fortunately, for the computations of interest in this
section only the equation of state averaged over the reheating era [150]

w̄ = 1
∆Nreh

∫ Nreh

Nend

P (n)
ρ(n) dn (3.58)

is relevant, where ∆Nreh = Nreh − Nend is the number of e-folds the universe
expanded during reheating, with Nend the number of e-folds at the end of inflation.
As in most of this thesis, we will set Nend = 0. In Ref. [151] it was found that w̄ is
dominated by the potential of the inflaton at the end of reheating. When Taylor
expanding the potential around the minimum to lowest order V = V0 + λφp +
O
(
φp+1), the average equation of state is [151]

w̄ = p− 2
p+ 2 . (3.59)

In many models of inflation, the inflaton has a mass term and p = 2, hence
w̄ = 0. This result is expected since if the inflaton is much heavier than the
Hubble function the inflaton acts as non-relativistic matter which has a vanishing
equation of state parameter.

The maximal temperature of the plasma during the radiation dominated era
(Treh) is related to the moment reheating ended, which is defined as the moment
at which [149,152]

Hreh = Γ , (3.60)

where the subscript reh is used for quantities at the moment reheating ends. From
the Friedmann equation (2.16) and the Planck equation (2.19) the reheating tem-
perature can be obtained for a universe with vanishingly small cosmological con-
stant and curvature. Assuming that the universe thermalized instantaneously
follows that

T 2
reh =

√
90
π2g∗

ΓMp , (3.61)

where g∗ represents the number of relativistic degrees of freedom at the moment
of reheating. If at the moment of reheating only the standard model particles
are in the thermal plasma, g∗ = 106.75 [70], but if more particles are added
(i.e. supersymmetry), the number of relativistic degrees of freedom is larger.

The value of the reheating temperature of the universe depends on the interac-
tions of the inflaton with matter. Since the reheating temperature is the maximal
temperature the universe reaches during the radiation dominated era, it should be
above the temperature of the known processes of section 2.5. This means that the
reheating temperature has to be at least above the temperature of nucleosynthesis
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Figure 3.7: Evolution of the Hubble sphere including reheating. The horizontal
axis shows the number of e-folds N ∝ ln a, hence if the inflation and reheating
phases are understood, the number of e-folds between the end of inflation and the
current horizon size can be obtained. Figure from [147].

at T ≈ 10 MeV [153,154]. This is the weakest bound on the reheating temperature,
while a stronger bound can be defined by demanding that the reheating tempera-
ture is above the typical temperature of baryogenesis, when the current unbalance
between matter and anti-matter was generated, which is at 1010 GeV. However,
since the mechanism of baryogenesis is unknown, it could have occurred at a much
lower temperature. Therefore, in this thesis the weak bound Treh > 10 MeV will
be used.

The importance of studying the era of reheating is that it is the only remaining
unknown phase of the universe. Therefore, if reheating is understood the size of
the CMB anisotropies can be mapped to a moment during inflation [147]. This
is shown in Fig. 3.7, where the solid line represents the horizon size at a certain
moment, while the dotted line represents a perturbation with the size of the current
universe. The number of e-folds during inflation (Nk) is related to the distance
that a mode with wavelength k has moved outside of the Hubble sphere before
inflation ended. Afterwards the Hubble sphere expands and the mode will start to
enter the horizon again. The amount of expansion of the universe after inflation
ended is therefore related to the number of e-folds during inflation.

The average speed of the expansion during reheating, which is the slope of the
line in Fig. 3.7, is given by w̄. For a given inflation model and given reheating
model, parametrized by Treh and w̄, the number of e-folds during inflation can
be found. Using that the amount the universe expanded during reheating can be
parametrized by the number of e-folds

eNreh = areh

aend
(3.62)
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and with some mathematics, explained for instance in Refs. [147,155], the number
of e-folds during inflation N∗ is

N∗ = 1
4Nreh − log

(
k

a0T0

)
− 1

4 log
(

30
g∗π2

)
− 1

3 log
(

11g∗
43

)
−1

4 log
(

(1 + λ)Vend

M4
p

)
+ 1

2 log
(
π2rAs

2

)
, (3.63)

where λ is the ratio of kinetic to potential energy at the end of inflation. If
inflation ends with εH = 1, then λ = 1/2. Furthermore, the number of e-folds
during reheating can be obtained from combining the reheating temperature [155]

Treh =
(

3(1 + λ)
10π2

)1/4
V

1/4
end e

− 3
4 (1+w̄)Nreh . (3.64)

with Eq. (3.61).
With the sensitivity of the current CMB experiments, computing the reheating

temperature is only marginally relevant since the experimental errors on ns and r
are usually larger than the spread of roughly 10 e-folds induced by reheating, as
can be seen in Fig. 3.6. However, if in the future the experimental data becomes
better, calculating the number of e-folds using reheating might become a necessary
analysis for comparing inflation models with the data [150, 156]. This will be
demonstrated in the model obtained in chapter 8, for which the predictions are
similar to the predictions of Starobinsky inflation in Eq. (3.48) but since N∗ ≈ 48–
49 they are in the 2σ region of the Planck measurements.

The theory of reheating is in full generality more complex than described above.
An important aspect that was not mentioned above is that for some theories it
is possible that during the first oscillations of the inflaton field a large number
of particles is produced due to non-perturbative effects when the field crosses
the origin of the potential [148, 149, 157–159]. This effect is named parametric
reheating, or preheating, and it can be sufficiently strong that reheating ends with
this process. Though potentially relevant, the preheating era will not be considered
in this thesis.

The reheating era is also of potential interest for solving the dark matter prob-
lem. If the inflaton decayed into the dark matter particle, a substantial part, even
all, of the dark matter density could have been produce during reheating [160,161].
As described in section 2.6, the dark matter density is defined with the yield
Y ≡ nX/s, which is the dark matter number density over the entropy density.
The dark matter yield from inflaton decay is [160,161]

Y = 3Treh

4mφ

2Γφ→XX
Γφ

, (3.65)

where Γφ→XX is the partial decay width of the inflaton into dark matter particle
X and Γφ the total inflaton decay width. The ratio Γφ→XX/Γφ is also known
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as the branching ratio of φ to XX. The total number density of dark matter
can be obtained from Eq. (2.31). This is irrelevant if the dark matter is strongly
interacting with the thermal bath, since in that scenario the current dark matter
abundance is obtained by the freeze-out process. However, if the dark matter
does not interact with the thermal bath, the density of dark matter obtained from
inflaton decay must be the current dark matter density unless a freeze-in process
occurred after reheating that increased it.

If all dark matter originates from inflaton decay it can be boosted with respect
to the thermal plasma. This is an important difference with dark matter produced
from freeze-out, because then the dark matter particles are produced in the rest
frame of the universe. Boosted dark matter is distinguishable from non-boosted
dark matter since it has a higher temperature, which will wash out structures in
the universe. This scenario was investigated in Ref. [161] using the parametrization

XFS = 2mX

εmφ

√ √
3Γ

zeqH0
, (3.66)

where zeq is the red-shift at matter-radiation equilibrium and ε a factor depending
on the energy fraction given to the dark matter particles if the decay of the inflaton
is towards a dark matter and a bath particle. In the standard scenario where the
inflaton decays into two dark matter particles, ε = 1. The free streaming length
of dark matter can be written in terms of X as [161]

λFS = 1
H0
√

1 + zeq
X−1 sinh−1X . (3.67)

Observations of the Lyman-α lines in the universe show that λFS < 1 Mpc, which
implies that X > 450.

In addition, the decay of the inflaton field is a stochastic process, hence part of
the inflaton field decayed before the end of reheating, generating a thermal plasma
if thermalization is faster than the inflaton decay. This does not affect the evolution
of the universe, since the energy density of the inflaton field exceeded the energy
density of the plasma. However, freeze-out and freeze-in can occur in this radiation
bath during reheating [162]. The density of dark matter in such a scenario is
reduced with respect to the scenario that the universe is radiation dominated. This
has two reasons, first the amount of radiation during the reheating era was smaller
than during the radiation dominated era. Secondly, during a matter dominated
reheating era the dark matter behaved as a radiation component, therefore its
energy density decreases faster than the energy density of the inflaton, which
later becomes the energy density of visible matter. Therefore, this phase will be
neglected in the analysis of gravitino dark matter in chapter 8. That this might
be a relevant effect is shown in Refs. [162–165], while in the scenario in Ref. [166]
the effect was negligible.

Finally, when the freeze-in dark matter was introduced in section 2.6, it was
assumed that the initial abundance of dark matter in the universe was negligibly
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small. This was actually a statement about reheating, since it implies that the dark
matter particle is very weakly coupled to the inflaton, so that reheating does not
produce a large dark matter abundance. This might not be the generic situation.
For instance, in chapter 8 we will consider a model with a dark matter particle
for which the dark matter abundance is obtained both through inflaton decay and
through freeze-in. Another example is shown in Ref. [167].





CHAPTER 4

Flows

Introduction
The theory of inflation developed in the previous chapter proposes candidate the-
ories for the UV-completion of the standard model. A few examples of inflation
models are given in section 3.4. However this section does not include all infla-
tion models, see for instance Ref. [110] for more than a hundred additional infla-
tion models. To investigate which type of inflation models are compatible with
the data, and can therefore be part of a high energy completion of the standard
model, all inflation models can be compared on a case-to-case study, as was done
in Refs. [110, 150, 168, 169]. However, the vastness of inflation models makes this
approach difficult.

In this thesis another strategy will be followed, which is to study generic re-
sults for a given parametrization of inflation models. There are two directions for
this study. The first is to consider a large set of arbitrarily generated inflation
models, as was first investigated by Hoffman, Turner and Kinney in Refs. [89,170].
The second direction is to study inflationary attractors, which have their generic
predictions built-in.

In this chapter the first approach to generic inflation models, utilizing random
inflation models, will be reviewed. For this purpose, sections 4.1 and 4.2 will be
dedicated to generic slow roll parameters. In this section the Hubble slow roll
parameters in Eqs. (3.10) and (3.12) will be extended similarly to the potential
slow roll parameters of Eqs. (3.16). Using these slow roll parameters, in section 4.3
the inflationary flow code of Kinney [170] will be introduced and compared with
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the data. Afterwards, in section 4.4, this code will be improved following an idea
of Ramirez and Liddle in Refs. [171,172]. This last code is simpler when evaluating
inflation models with generic Hubble functions, and will be used in chapters 5 and
6.

The analysis of the Hubble flow code will be continued in chapter 5, where
another parametrization of inflation models will be considered and an analytical
tool will be developed to solve the flow equations analytically. Afterwards, in
chapter 6, a similar code as developed in section 4.4 will be used to study the
strong coupling attractor model.

The final section of the present chapter, section 4.5, will be dedicated to
parametrizing inflation with only geometric quantities, hence without the infla-
ton field. This section combines literature and unpublished research performed
with Diederik Roest and Marco Scalisi.

4.1 Relations between the slow roll parameters
In section 3.2, two sets of slow roll parameters were defined, the Hubble slow
roll parameters in Eqs. (3.10) and (3.12) and the potential slow roll parameters
in Eqs. (3.16). Note that the definition of the latter included a set of infinite
parameters, while for the former only the first two slow roll parameters were
defined. This was not problematic in the analysis of chapter 3, since only the
potential slow roll parameters were used.

In this section two extensions of εH will be provided, which will be used in the
remainder of this chapter and in chapter 5 to make general predictions of inflation.
In addition, this section will close with an observation on the parametrization of
inflation, that might be of use for the interpretation of these sections.

4.1.1 Slow roll parameters
The first complete set of Hubble slow roll parameters are obtained similar to the
potential slow roll parameters in Eq. (3.16), by acting with higher order derivatives
on the Hubble parameter [83,170]

εH = − Ḣ

H2 = 2M2
p

(
H ′(φ)
H(φ)

)2
, (4.1a)

nλH(φ) ≡
n∏
i=1

[
−d logH(i)(φ)

d ln a

]
=
(
2M2

p
)n H ′(φ)n−1H(n+1)(φ)

H(φ)n , (4.1b)

where primes in this chapter refer to taking the derivative with respect to the
inflaton field φ, H(n+1)(φ) represents dn+1H(φ)

dφn+1 and 1λH = ηH.
For the slow roll approximation to be valid, it is required that |nλH| < |n−1λH|.

However, note that the slow roll approximation is not required for the computation
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of the end of inflation or the number of e-folds. Only in the derivation of the power
spectrum of the CMB, the Mukhanov equation (3.33) is solved order by order in
slow roll. This analysis was done for the power spectrum of the CMB at second
order in slow roll in Refs. [173,174], leading to

ns = 1 + 2ηH − 4εH − 8ε2H(1 + C) + 2εHηH(3 + 5C)− 2C
(2λH

)
,

r = 16εH (1 + 2C(εH − ηH)) , (4.2)

where C ≡ γE +ln 2−2 ' −0.7296 and γE is the Euler constant. Also higher order
expressions are known, see for instance Refs. [174,175], but these expressions will
not be used in this thesis.

During inflation, the Hubble slow roll parameters are obviously not constant.
Their dynamics is determined by the flow equations [170]

dεH
dN

= 2εH(ηH − εH), (4.3a)
dηH

dN
= −εHηH + 2λH, (4.3b)

d(nλH)
dN

= [(n− 1)ηH − nεH] nλH + n+1λH, (4.3c)

which are found using the definitions of the slow roll parameters and the Eqs. (3.9).
In Eqs. (4.3) the number of e-folds N ≡ − log(a/aend) replaces the notion of time,
and decreases when time proceeds. Solving the flow equations will be one of the
main topics of this chapter and the next.

It is possible to define another set of slow roll parameters for which the flow
equations are simpler. These parameters are known as the horizon flow functions
and are defined in Refs. [176,177] as satisfying the flow equations

ε0 ≡
H

H0
,

dεn
dN = εnεn+1 , (4.4)

where H0 is a (constant) reference value. It is straightforward that ε1 = εH, but
the higher order terms will be different from the λH hierarchy. These functions
can be written in terms of the Hubble function H(φ) and its derivatives. For the
lowest order εn parameters, one has

ε1 = 2M2
p

(
H ′

H

)2
, (4.5a)

ε2 = 4M2
p

[(
H ′

H

)2
− H ′′

H

]
, (4.5b)

ε3 = 2M2
p

[
2
(
H ′

H

)2
+ H ′′′

H ′
− 3H

′′

H

](
1− HH ′′

H ′2

)−1
. (4.5c)
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For the horizon flow functions to converge, all εn have to be smaller then 1,
but there is no intrinsic hierarchy between the different orders. The parameter εn
will only appear with terms of order n− 1 in slow roll. Therefore, ns and r can be
expanded to second order in this frame as [174]

ns = 1− 2ε1∗ − ε2∗ − 2ε21∗ − (2C + 3)ε1∗ε2∗ − Cε2∗ε3∗ ,
r = 16ε1∗ (1 + Cε2∗) . (4.6)

4.1.2 Frames of inflation models
The different parametrizations introduced above are related to different frames in
which inflation can be described. The Hamilton-Jacobi frame defined in section
3.2.2 corresponds to the λH and εi parametrizations of Eqs. (4.1) and (4.4). This
frame is natural from a geometric point of view, since the Hubble function is
directly related to the scale factor. The other popular frame is the potential frame
where the most natural slow roll parameters are the potential slow roll parameters
of Eq. (3.16).

Both frames describe the same physical system, hence if the slow roll approx-
imation is not applied the predictions are the same. However, at finite order in
slow roll the two sets of slow roll parameters will yield different predictions. The
simplest example is the end of the phase of slow roll inflation. In Ref. [83] is shown
that the relation εH ≈ εV has corrections of order ε2V . Therefore, at the end of slow
roll, where εV = O (1), the condition εV = 1 for the end of inflation is ambiguous.
The standard lore is to impose in addition the constraint |ηV| = 1, which indeed
often signals the end of inflation.

Other approaches to relate the two slow roll parameters were to use a Padé
approximant in Ref. [83] or a central manifold extension in Ref. [178]. Despite the
interesting results of these groups, in this thesis we will be using εV = 1 as the end
of inflation. The reason is that the number of e-folds defined in Eq. (3.11)

N =
∫ φ

φend

dφ
Mp
√

2εH(φ)
, (4.7)

gets its main contribution from regions where εH � 1, hence where slow roll is
expected to be valid. The error made due to mistaking the end of inflation is
therefore typically less than one e-fold, which is subleading to the error in the
number of e-folds originating from reheating, which is roughly 10 e-folds [147].
Moreover, posing the condition εV = 1 is much simpler, and faster, than considering
a Padé approximant or a center manifold extension.

Inflation can also be parametrized solely by εH [179], which we will call the εH
frame. This frame is most obvious for analysing inflation, since εH defines when
inflation is taking place, but the physical origin is less obvious. A well-known
example of the εH frame is when inflation is described as an imperfect fluid. The
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equation of state w of the imperfect fluid is related to εH from Eq. (3.7)

w = 2
3εH − 1 , (4.8)

and is used to define the inflation phase for these models. Another example of the
εH parametrization is when inflation is modelled as the renormalization group flow
of a dual conformal field theory using dS/CFT. In this case the β function of the
CFT is dual to −2MpH

′(φ)/H(φ) = ±
√

2εH [180]. The arbitrary sign in the last
equality follows from the square in the definition of εH.

In principle all three frames can be used to generically model inflation. How-
ever, the most natural choice is the Hubble frame, since this corresponds most
clearly to physics while the slow roll assumption does not have to hold during
inflation. Therefore, in this chapter the Hubble slow roll parameters will be used
to compute arbitrary inflation models.

4.2 Flow equations
To study generic models of inflation, as will be done explicitly in the next section,
the flow functions of Eqs. (4.3) or (4.4) can be studied. In this section the Hubble
slow roll equations of Eq. (4.3) will be chosen, though a similar analysis can be
performed with the flow functions.

The Eqs. (4.3) make up a set of first order differential equations and before
trying to solve this dynamical system, it is customary to perform a fixed point
analysis. The system (4.3) has two fixed points [170,181],

1. The r = 0 fixed point, with εH = nλH = 0 and ηH is constant.

2. The power law fixed point, where εH > 0, ηH = εH, 2λH = εHηH and n+1λH =
εH(nλH). This fixed point represents power law inflation where H ∝ eκφ.

Physically, the r = 0 fixed point corresponds to an extremum of the Hubble
function where inflation lasts forever. The power law attractor corresponds to
the situation where the potential is strongly increasing, like a quadratic Hubble
function at large φ.

The signs of the eigenvalues of the Hessian matrix of Eqs. (4.3) correspond to
the linear stability of the system. If all eigenvalues are positive the fixed point is an
attractor, while if the eigenvalues are negative the fixed point is repulsive. The sign
convention is because an attractor fixed point is defined here as an attractor at late
time, hence for small N . At the r = 0 fixed point the eigenvalues are proportional1
to η. Therefore, this fixed point is a late-time attractor if η > 0 [170,181]. For the
power law fixed point the eigenvalues are all negative, hence this is an early time

1There is also a zero eigenvalue, but since the eigenvector corresponding to this eigenvalue is
orthogonal to the flow of ε this is not considered.
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fixed point. Therefore inflation will generically flow from a power law fixed point
or from the r = 0 fixed point with η < 0 in the past to the r = 0 fixed point in the
future. Hence we can postulate that generically inflation will move from a power
law fixed point to an r = 0 fixed point.

Below we will continue with solving the flow equations numerically. In chapter 5
the system of flow equations will be reconsidered, where we will obtain an analytic
solution for the dynamical system.

4.3 Monte Carlo inflation: The Hubble flow code
Having solved the asymptotic dynamics of the flow equations, numerical techniques
can be used to completely solve them for given initial conditions. In this section,
this analysis will be used to obtain generic predictions based on the Hubble slow
roll parameters defined in Eq. (4.1). The motivation of this analysis is that the
physics that drives inflation is completely unknown. Instead of proposing some
theory that includes inflation, we will assume that the Hubble function induced
by the new physics is some complicated unknown function of the inflaton field,
but at some point during the evolution of inflation the slow roll conditions are
satisfied. Then, using the flow equations in Eqs. (4.3), the predictions of this
unknown theory are obtained. With the Hubble flow code a large set of these
theories can be considered, and generic predictions studied.

In section 4.1 we defined a natural hierarchy of slow roll parameters in Eqs. (4.1)
and (4.3). Using the hierarchy of Eqs. (4.1), Kinney in Ref. [170] introduced the
Hubble flow code to study the general inflationary predictions from a large number
of randomly generated inflation models. In this algorithm, named the inflationary
flow code, a value for εH, ηH and nλH is chosen randomly from a prior distribution
function, typically chosen as [170,182,183]

εH ∈ [0, 0.8], (4.9a)
2ηH − 4εH ∈ [−0.5, 0.5], (4.9b)

nλH ∈ [−5/10n, 5/10n], (4.9c)

where [.] corresponds to a flat interval and the combination of εH and ηH in the
second line represents ns at first order in slow roll. Other intervals have been
studied in [172,184,185], with only minor changes in the observations. Due to the
falloff of the priors for the higher slow roll parameters, the system is saturated at
sixth order. This implies that the observables do not significantly change when
considering sixth or seventh order in the slow roll hierarchy of Eqs. (4.9). In this
chapter we will consider nλH = 0 for n ≥ 10. Note that the derivative of nλH in
(4.3c) is proportional to nλH and n+1λH, so during inflation the truncation nλH = 0
for n > N is conserved.

By drawing the slow roll parameters the inflation model is prepared at a special
location φex in a potential V (φ). Numerically, the end of inflation is then found
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using the flow equations for the slow roll parameters of Eqs. (4.3). Then the flow
equations can be solved without explicitly determining neither φex nor V (φ).

For the end of inflation there are three possibilities: either inflation moves to
εH = 1 where inflation ends, the parameter εH approaches 0 and inflation does
not end, or it stays between 0 and 1 during the evolution of the numerical code.
The second late-time behaviour corresponds to the r = 0 attractor, while the last
ending will usually be a numerical artefact. After finding the end of inflation, the
flow equations (4.3) can be used to trace back the inflation model for N∗ e-folds
and if εH < 1 along this flow, observables like the scalar spectral index and the
tensor to scalar ratio can be calculated. This gives the following possible outcomes
for the inflationary flow code [170]

1. Inflation ends at the bottom of the scalar field potential in the late-time
fixed point with εH = 0, hence inflation does not have a graceful exit. In the
fixed point inflation can end by activation of an additional field, as in hybrid
inflation [186]. Since at the end of inflation εH is still small, we assume that
N∗ is reached at the minimum of the potential and ns and r are calculated
at this point. At the fixed point η > 0, hence ns > 1. Since this is strongly
excluded by the Planck data this scenario will not be considered2.

2. During the numerical evolution εH reaches neither 0 nor 1 within some fixed
number of e-folds. Since we do not want to continue these trajectories too
long, the configuration is stopped.

3. Inflation ends, but εH becomes 1 before N∗. These trajectories do not have
enough e-folds to explain the anisotropies in the CMB and are disregarded.

4. Inflation ends, and εH < 1 for at least N∗ before this. Using Eq. (4.1)
the observables ns and r are computed at N∗. In this chapter we will use
N∗ = 50.

As can be understood from the fixed point analysis, the most generic outcome of
polynomial inflation is scenario 1 in which inflation does not terminate. Using the
method described above, a large ensemble of points was generated and Table 4.1
provides the probability for the different outcomes. Indeed, by far the most likely
outcome is that inflation does not terminate. The probability of a viable single
field inflation scenario is about 6%.

In addition, using the numerical data the density profile in the ns, r was ob-
tained. The distribution of points in the ns, r plane is shown in Fig. 4.1a and the
1σ density contour in Fig. 4.1b. The 2σ contour spreads roughly the full plane and
could not be resolved due to lack of statistics. Fig. 4.1b also displays the Planck 1
and 2 σ contours [14], which show that the observed data is more than a standard
deviation away from the predictions of the inflationary flow code. This will be

2Another option for this scenarios is that the onset of the additional field is somewhere during
inflation. We do not consider this situation, since it renders the model unpredictable.
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Figure 4.1: The CMB predictions for the horizon flow code [170] described in
section 4.3. The left figure shows a scatter plot of ns and r using 104 points. The
right plot shows in green the 1σ contour using the full data set of 106 points. Both
plots show the 1σ and 2σ contours of the Planck data from Ref. [14] in red and
black, respectively. Note that the left plot has r on a linear scale, while the plot on
the right has r logarithmic.

more thoroughly investigated in the chapters 5 and 6, where different methods
will be presented which fit the data much better.

Ensembles of inflation models, obtained with the method shown above, are
used to study generic features of inflation and to fit the correct inflation model to
the observed spectrum. Studying the general features of inflation using the Hubble
flow code resulted in the relation [170,172,187]

1− ns = 3r or r = 0 (4.10)

and a relation between the field excursion and r [182] similar to the Lyth bound
[188,189]. Another use of the Monte Carlo simulations is to reconstruct the inflaton
potential using Eq. (3.9) as was done in Refs. [14, 184,187,190].

However, since Fig. 4.1 shows that the predictions of the inflationary flow code
are not compatible with the observations, nature seems not to be represented by
the type of inflation models that are used by the inflationary flow code. Therefore,
the above analysis should be performed with a choice for the shape of the Hubble
function that agrees more with the current data. This will be the main topic of
chapters 5 and 6.



4.4 The generic flow code 77

Outcome Percentage of outcomes
1 Fixed point εH = 0 92.9%
2 No end of inflation 0.01%
3 Insufficient Ntot 0.2%
4 Good inflation models 6.8%

Table 4.1: Percentage of model outcomes of the code of Kinney using a total of
106 tries. The data uses the priors for the slow roll parameters of Eqs. (4.9) and
insists on 60 e-folds of inflation.

4.4 The generic flow code
As described above, the Hubble flow code uses the λH parameters to define a set
of inflation theories. This was motivated by claiming that the Hubble function,
which can in principle be any arbitrary function, is Taylor expanded3. However,
the Hubble flow code can also be viewed in the εH frame [171, 172], where εH
is obtained from the Hubble function and used to characterize inflation. Using
this philosophy, a faster code can be built since it does not require the numerical
integration of the flow equations. In addition, the code can be easily modified to
use arbitrary Hubble function shapes, instead of polynomials. This allows us to
investigate a crucial aspect of flow parametrizations, namely the dependence (or
lack thereof) of the results on the prior choice for the parameters of the expansion.

In this section we will explain this code with a Hubble function expanded as a
polynomial

H(φ) =
M∑
k=1

akφ
k, (4.11)

but generalizing this to another Hubble function should be obvious. Note that in
this section φ is considered dimensionless, or equivalently we considerMp = 1. The
random scan assumes that the Hubble function is expanded around a certain point,
which we denote as φex. In the Hubble flow code of section 4.3, φex corresponded
to the value of φ at which the slow roll parameters were the values drawn by the
random procedure. The algorithm of Refs. [171,172] proceeds as follows

(i) Draw the parameters ak appearing in Eq. (4.11) according to some prior
distribution (see below).

(ii) For this specific Hubble function, calculate εH(φ) through Eq. (4.1).

(iii) If εH(φex) > 1, restart from (i). Otherwise go to (iv).
3Although the prior distribution of the coefficients of the Taylor expansion are not chosen in

a simple window, but in the distribution of Eq. (4.12).
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(iv) Calculate the set of values {φ0} where εH = 0 and {φ1} where εH = 1.

(v) If H ′(φex) > 0, inflation proceeds at decreasing values of φ. Amongst the
elements of {φ0} and {φ1}, find which value is the closest to φex while being
smaller than φex. If this value belongs to {φ0}, the r = 0 fixed point is
reached and we chose not to consider such (hybrid) trajectories. If, on the
other hand, it belongs to {φ1}, identify φend with this value. Apply a similar
procedure if H ′(φex) < 0.

(vi) Calculate the value φ∗ of φ, N∗ = 50 e-folds prior to εH = 1, by integrating
Eq. (4.7) and inverting the result. If a sufficient number of e-folds cannot be
obtained, go back to (i).

(vii) Calculate the slow-roll parameters εH, ηH and 2λH using Eqs. (4.1), and the
values for ns and r from Eqs. (4.2).

In practice, we iterate this procedure until we obtain 106 successful realizations.
In step (i), the coefficients of the expansion are drawn according to some priors

that we now specify. We studied three classes of priors. The first one consists in
drawing all coefficients ak from a flat distribution between [−p/qk, p/qk], where p
and q are two fixed numbers. In the following, it is referred to as the “power-law”
priors. In the second class of priors, the ak are drawn from flat distributions in
the interval [− p

k! ,
p
k! ], where p is a constant. This prior is chosen such that at the

boundary of the prior domain, all M derivatives of the Hubble function at φ = 0
are 1. This prescription is referred to as the “binomial priors”. Finally, the third
prior class was chosen to resemble the original procedure proposed by Kinney in
Eq. (4.9). This prior choice relies on drawing

ak ∈ (
√

2/((2q)k(k + 1)!))[−p, p]/[0, 1](k−1)/2, (4.12)

where [−p, p]/[0, 1](k−1)/2 stands for the ratio of two numbers, one drawn in the
flat interval [−p, p] and the other one drawn in [0, 1] and taken to the (k − 1)/2
power. This corresponds to taking power-law priors on the values of the λ flow
parameters, defined in Eq. (4.9), at φex = 0.

The 1σ contour obtained with the third prescription is shown in the right panel
of Fig. 4.1, and it was checked that the results represent the Hubble flow code.
Unfortunately, other natural prior choices for the Taylor expansion coefficients,
such as the power-law or the binomial priors introduced above, fail to converge
as M increases. In other words, the obtained results have a large dependence on
the order of truncation, an undesirable property. More precisely, in the power-
law case, since the radius of convergence of the Taylor series is φ = q, the model
converges only when q is sufficiently large. This is shown in the left panel of
Fig. 4.2, where the power law models disappear in the M = 10 data. For such
priors, the higher order terms are strongly suppressed and, in practice, the simple
results of the second order truncation with M = 2 are obtained. This case will be
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Figure 4.2: Predictions of a Taylor expanded Hubble function, truncated at dif-
ferent orders M , when the coefficients are drawn from the power-law prior on the
left and a binomial prior on the right.

studied extensively in chapter 5. In the binomial case, the radius of convergence is
even smaller, φ = 1. Indeed, when the different orders of truncation are displayed
in the right panel of Fig. 4.2, it is obvious that the model does not converge.
Therefore, it seems difficult to design alternative parametrizations relying on a
Taylor expansion.

Another approach would be to parametrize the potential, or parametrize di-
rectly εH. This approach was followed by Ramirez and Liddle in Ref. [172], where
they found little difference between a Taylor expanded potential, a Taylor ex-
panded Hubble function and εH expanded as a ratio of polynomials. Expanding
εH as a polynomial strongly changes the result, but since εH is positively defined,
this expansion is not well motivated.

4.5 Geometric parametrizations of inflation
In the above sections the Hubble function was parametrized as a function of the
inflaton field. Another choice for parametrizing the Hubble function is the num-
ber of e-folds. This has the interesting feature that both H and N are geometric
quantities. This model will be studied in this section. This analysis is based on
unpublished work in collaboration with Marco Scalisi and Diederik Roest. After-
wards a short overview will be given of other ideas that parametrize inflation in a
geometric setting, being ε(N) and w(ρ).

Expanding the Hubble function as a function of the number of e-folds was
considered in Ref. [191], but these authors expanded H linearly in N . This is not
consistent for our approach since N � 1, so generalizing Ref. [191] to a full Taylor
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Figure 4.3: Scatter plot with the different truncation orders for theories with the
Hubble parameter expanded as in Eq. (4.13). On the left the effective description
is used, while on the right inflation is forced to end at N = 1. The highest order
shown in the figure is the order at which the series is saturated.

series4 is not possible. Instead, in this section we assume that the Hubble function
can be expanded in 1/N , thus that

H(Ñ) = H0

(
a0 +

M∑
k

ak

Ñk

)
, (4.13)

where ak are parametrized with the binomial prior5.
The meaning of Ñ depends on the interpretation of Eq. (4.13). If this relation is

considered to hold only at large N , then Ñ = N∗ and the condition εH(N = 0) = 1
is not imposed. This implies that the Hubble function is only parametrized for
large N∗, while the specific end of inflation is not incorporated. The predictions
of this model are shown on the left frame of Fig. 4.3. Though part of the possible
values for ns and r lies outside the Planck contours, most of the points are inside.

The other interpretation is to consider the expansion of Eq. (4.13) as a more
fundamental expansion of the Hubble function that also holds for small N . In this
case, we force that εH(Ñ1) = 1 and define the number of e-folds as N = Ñ − Ñ1.
A preliminary scan with the generic predictions for ns and r is shown in the
right panel of Fig. 4.3. This analysis did not include a sufficiently large number of
configurations to construct the contour levels, but from the plot it can be expected
that these contours are completely inside the Planck contours, with an extremely
small value for r. Points using M > 3 are not shown, for they completely overlap
theM = 3 data. The particular scenario where the series of Eq. (4.13) is truncated
at first order contains only a single free parameter and can be solved analytically.

4Which the authors of Ref. [191] did not intend to do.
5The ‘power-law’ prior was not considered.
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A nice feature of the geometric parametrization of Eq. (4.13) is that the La-
grangian can be written as a function of the number of e-folds in the simple
form [64]

L = −εH(N)∂µN∂µN − V (N). (4.14)

In addition, for this model the Hamilton-Jacobi equation 3.9 becomes linear in the
derivative (instead of quadratic) hence integrable. Using Eq. (4.14) to solve for
H is not possible because of the appearance of εH, which is usually not known.
However, when considering generic theories with a non-canonical kinetic term this
limit might be of interest.

In addition to the Taylor expansion of the Hubble function in Eq. (4.13), H
can also be expanded as a Padé approximant

H(Ñ) = H0
1 +

∑K
k=1

ak
Ñk

1 +
∑L
l=1

bl
Ñ l

, (4.15)

where ak and bl are arbitrary coefficients and K and L the truncation orders of
the two sums. The Padé approximant has the feature that it is a double expansion
around Ñ = 0 and Ñ → ∞, therefore both the end of inflation and the moment
in which the CMB modes left the horizon can be parametrized simultaneously. A
thorough study of this parametrization is left for future work.

Other geometric parametrizations were considered in the literature. An exam-
ple is to parametrize εH in 1/N , which was studied in Ref. [192–196]. Using the
observation that ns ≈ α/N requires the parameter α = O (1), εH(N) can be found
by solving a first order differential equation obtained from filling in the definition
of ε2 of Eq. (4.4) in Eq. (4.6) at first order in slow roll. This leads to [192–195]

εH = 1
2(α− 1)−1N +ANα

, (4.16)

where A is a constant parameter. Two regimes can be defined: If the first term
in the denominator is leading, r ∝ 1/N , as in the polynomial inflation model
explained in section 3.4.1. However, if the second term in the denominator dom-
inates and α > 1, r is stronger suppressed. For instance, if α = 2, Eq. (4.16)
corresponds to the leading order expansion of the Starobinsky model explained in
section 3.4.2, while if α > 2, the model corresponds to hilltop inflation models.
See for a complete classification of this model Ref. [194].

Finally, inflation can be parametrized with an equation of state w(ρ) that
deviates from the perfect fluid assumption (w = constant) [191, 197–200]. During
a de Sitter expansion of the universe, the equation of state represents a perfect
fluid where w = −1. However, since inflation ends the medium during inflation
has to be characterized by a deviation from the perfect fluid [191], or for instance
using a van der Waals equation of state [200]. The fluid description of inflation can
be considered a geometric parametrization since through Eqs. (3.7) and 2.16 the
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equation of state can be rewritten as εH(H), which are both geometrical quantities.
In Ref. [192, 201] w was parametrized in 1/N , which therefore closely resembles
the parametrization of Eq. (4.16).



CHAPTER 5

The Hubble flow of plateau inflation

Introduction
In the preceding two chapters, two approaches were followed to study inflation
models. In section 3.4, inflation was considered model-by-model, while in chapter
4 the Hubble function was expanded to study numerically a large class of infla-
tion models. In this chapter and the following the second approach to inflation
will be followed. The reason for this study is that the Hubble flow code with the
parametrization introduced in chapter 4 is generically ruled out. In this chapter
another parametrization of inflation will be introduced, in which the Hubble func-
tion is parametrized with a ratio of polynomials and it will be shown that this
parametrization does generically agree with the data.

The outline of this chapter is as follows. In section 5.1 the flow equations
introduced in section 4.3 will be shortly reviewed and a new method is defined to
integrate the dynamical system. In section 5.2, we apply this method at low order
Taylor and Padé expansions of the Hubble function and compare the results. (In
appendix A, we also give the results for an inverse Taylor expansion, in order to
further illustrate how our method works in practice.) In section 5.3 we perform a
numerical scan over the Padé approximant of the Hubble function which enables
us to expand to higher orders and to compare this ‘generic’ model with the Planck
data. In this section we consider the dependence on the truncation order and
the prior dependence of the numerical analysis. Finally, in section 5.4, we recap
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our main results and draw a few conclusions, including comments on potential
reconstruction with this method. The analysis of this chapter will be continued
in chapter 6 with a similar setup, but then by considering a theory that is non-
minimally coupled to gravity. In this chapter we set the reduced Planck mass
Mp = 1 and primes refer to taking the derivative with respect to the inflaton field
φ.

This chapter is based on publication [202].

5.1 Hubble flow dynamics
The horizon flow formalism relies on the introduction of a set of flow parameters
characterizing the way the Hubble scale evolves in time. Several possible sets of
such parameters were introduced in section 4.1 and 3.2.3. In this chapter, we will
use the Hubble flow parameters εi defined in Eq. (4.4) [176,177].

The horizon flow strategy that will be followed in this chapter rests on solving
a truncated hierarchy of flow equations for a given set of flow parameters, as was
explained in section 4.4. Since these flow parameters can always be written in
terms of the Hubble function and its derivatives, as in Eqs. (4.5), this procedure
thus relies on the assumption that some combination of H and its derivatives,
corresponding to the first vanishing flow parameter, is zero. Interpreted as a
differential equation for the Hubble function, this means thatH(φ) is parametrized
in a certain manner, involving a finite number of constant free parameters.

For example, if the Hubble flow hierarchy is truncated at some order M , i.e. if
one assumes εl = 0 for l > M , then εM is constant, and
H ∝ exp(a1 exp(a2 · · · exp(aMN) · · · )) where the exponential function is composed
M times. As another example, one can make use of the lλ of Eq. (4.1). Truncating
this hierarchy at order M means that dM+1H/dφM+1 = 0, hence H(φ) has a
polynomial form of degree M . In general, one can see that truncating a specific
flow hierarchy always boils down to parametrizing the Hubble function in a specific
manner.

Conversely, to any parametrization of the Hubble function, one can associate
a specific dynamical system. Let H (φ, a1, a2, . . . , an) be a given parametrization,
where the coefficients ai stem from some (e.g. Taylor or Padé) expansion truncated
at some order n. The n + 1 first derivatives of this function with respect to the
inflaton field φ can be calculated, and one can invert the system to extract the
n + 2 variables

{
φ, a1, a2, . . . , an, H

(n+1)} in terms of
{
H,H ′, H ′′, . . . ,H(n)}. Of

particular interest is the last entry of this solution, which relates the (n + 1)th

derivative of the Hubble function H(n+1) to the lower order ones. In terms of the
Hubble flow hierarchy, this means that εn+1 can be expressed in terms of the n first
Hubble flow parameters only. The flow equations (4.4), for 1 ≤ i ≤ n, thus form a
closed dynamical system. It is important to stress that all physical input resides
in this truncation: how εn+1 is expressed in terms of all preceding flow parameters
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fully determines the dynamical system and hence the inflationary predictions.
Moreover, the flow dynamics (4.4) is insensitive to the actual value of the

inflaton field φ and hence the transformation φ → φ + δφ leaves this system
invariant. For the expansions that we consider, indeed, the functional form of
H(φ) does not change under this shift, implying that there is a degeneracy in
the parameters. Amongst the n parameters, one combination can therefore be
absorbed by the shift transformation, while the remaining n − 1 combinations
are invariant. The latter are therefore constants of motion, and the space of
inflationary solutions has dimension n− 1.

This formal description will become more clear in the following section, where
we will show how these constants of motion can be derived in practice and apply
this method to second order Taylor and Padé expansions of the Hubble function.
In these cases, a single constant of motion will be obtained. Therefore, at fixed
number of e-folds ∆N∗ between the Hubble exit time of the CMB pivot scale and
the end of inflation, a one-to-one relation between ns and r will be obtained.

A last remark is in order. Though the systems will be solved exactly and
independently of the slow-roll approximation, in practice, the scalar spectral index
and the tensor-to-scalar ratio will be calculated from the flow parameters at Hubble
exit time shown in Eq. (4.6), which are valid at second order in slow roll. In the
regions preferred by the observations of the Planck satellite, the above expressions
are valid and can therefore be used to compare predictions with observations.

5.2 Analytical integration of the Hubble flow
In this section, we apply the method sketched in section 5.1 to two toy cases: a
Taylor expansion of the Hubble function at quadratic order and a Padé expansion
at linear order. We obtain analytical expressions for the inflationary trajectories
in the parameter space (ε1, ε2), as well as for the number of e-folds realized along
these trajectories. Finally, we display in each case the corresponding values of ns

and r.

5.2.1 Taylor expansion
We first illustrate our method by considering the well-known case of a quadratic
Hubble function:

H = H0
(
1 + aφ+ bφ2) , (5.1)

which was already solved in Ref. [87] but here we employ a different approach.
Using Eqs. (4.5), the two first flow parameters are given by

ε1 = 2
(

a+ 2bφ
1 + aφ+ bφ2

)2
, ε2 = 4

[(
a+ 2bφ

1 + aφ+ bφ2

)2
− 2b

1 + aφ+ bφ2

]
. (5.2)
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Let us derive the constant of motion. Under the inflaton shift transformation
φ→ φ+ δφ, the functional form of Eq. (5.1) remains unchanged if the coefficients
of the expansion change according to

a→ a+ 2bδφ
1 + aδφ+ bδφ2 , b→ b

1 + aδφ+ bδφ2 , (5.3)

where H0 has also to be rescaled according to H0 → H0
(
1 + aδφ+ bδφ2). If one

moves to the specific gauge where a vanishes, i.e. if one takes δφ = −a/(2b), then
the shifted b coefficient, 4b2/(4b − a2), is gauge invariant. This implies that the
following combination is invariant under the inflaton shift1:

γ = 32b2

a2 − 4b = (2ε1 − ε2)2

ε2 − ε1
, (5.4)

where the second equality has been obtained from Eq. (5.2).
As pointed out in section 5.1, a given parametrization of the Hubble function

can be translated into a specific dynamical system. For the case at hand, since
Eq. (5.1) implies that H ′′′ = 0, Eqs. (4.5) give rise to

ε3 = 3ε1 − 2ε
2
1
ε2
. (5.5)

This truncates the infinite set of flow equations (4.4) for all the εi into a set of two
differential equations for the first two flow parameters:

dε1
dN = ε1ε2 ,

dε2
dN = −2ε21 + 3ε1ε2 . (5.6)

This dynamical system generates a flow through the two dimensional space (ε1, ε2),
which is displayed in the left panel of Fig. 5.1. Different trajectories can be labelled
by different values of the invariant parameter γ. It can easily be checked that
Eqs. (5.6) indeed leave this particular combination invariant.

Moreover, by inverting Eq. (5.4), one can relate one of the remaining two slow-
roll parameters to the other:

ε2 = 2ε1 + γ

2 + ξ

2
√
γ2 + 4γε1 , (5.7)

where ξ = ±1 = sign [(2ε1 − ε2)ε2(ε1 − ε2)] and the argument of the square root is
always positive. Inserting Eq. (5.7) into the first of Eqs. (5.6) then leads to a first
order differential equation for ε1(N) that can be solved, and one obtains

∆N = N (ε1)−N (ε1,end) , (5.8a)

N (ε1) = 2
γ + ξ

√
γ2 + 4γε1

+ ξ

γ
log

∣∣∣∣∣
√
γ2 + 4γε1 − γ√
γ2 + 4γε1 + γ

∣∣∣∣∣ , (5.8b)

1The case with a2 = 4b or, equivalently, ε1 = ε2, is singular and needs to be treated separately.
It is straightforward to show that, in this case, one simply has ε1 = ε2 = 1/(1 + ∆N).
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Figure 5.1: Second order Taylor expansion for the Hubble function. Left panel:
flow lines of the system (5.6) in the plane (ε1, ε2). The arrows indicate in which
direction inflation proceeds. The blue dashed line corresponds to ε1 = 1 where
inflation stops. The three regions I, II and III refer to the discussion in the main
text. Right panel: Observational predictions in the (ns, r) plane, compared with the
Planck 2015 1σ and 2σ contours. The green lines stand for the values of ns and
r computed 40 e-folds before the end of inflation (dashed line), 50 e-folds (solid
line) and 60 e-folds (dotted line). The grey segment at the bottom right stand for
the fixed points (ε1 = 0, ε2 < 0).

where ε1,end = 1 (we only consider cases where inflation has a graceful exit). This
expression can be inverted to yield ε1 as a function of N ,

ε1 =
−γWχ

(
−eγ∆N−1)

[1 +Wχ (−eγ∆N−1)]2
, χ =

{
−1 if γ(2ε1 − ε2) < 0
0 if γ(2ε1 − ε2) > 0

, (5.9)

where χ determines which branch of the Lambert function Wχ is to be used. Note
that the sign of the combination 2ε1− ε2 appearing in the definition of χ does not
change during inflation, as the Hubble flow equations imply that d(2ε1−ε2)/dN =
ε1(2ε1−ε2). Therefore, the branch of the Lambert function does not change during
inflation. One can check that the above formula matches Eqs. (66-70) of Ref. [87]
where it was first derived.

Let us now discuss the structure of the phase space diagram plotted in the left
panel of Fig. 5.1. According to the type of Hubble function one is dealing with,
three possibilities must be distinguished:
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• In regime I, ε2 > 2ε1. In this regime ε1 vanishes in
the far past while ε2 takes a positive value. During
inflation, both monotonically increase. This corre-
sponds to a Hubble function that has an inverted
parabolic profile whose maximum is positive. In this
case, γ > 0 and ξ = +1. φ

0

H

• In regime II, ε1 < ε2 < 2ε1, hence both slow-roll pa-
rameters are vanishing in the far past and monoton-
ically increasing during inflation. The correspond-
ing Hubble function has a parabolic profile with a
negative minimum. In this case, γ > 0 and ξ = −1.

φ

0

H

• Finally, in regime III, if ε2 < ε1, both slow-roll pa-
rameters are again vanishing in the far past. How-
ever, during inflation, ε1 reaches a maximum, and
then decreases back to zero, while ε2 asymptotes to
a negative value in the future. This stems from a
Hubble function with a positive minimum. In this
case, γ < 0, while ξ = +1 before ε1 crosses its max-
imum and ξ = −1 afterwards.

φ

0

H

These three regions are shaded with different colors in the left panel of Fig. 5.1.
One should note that thanks to the conservation of the sign of γ defined in
Eq. (5.4), a given inflationary trajectory never changes region. Amongst the third
category, one can distinguish two cases. If the maximum value of ε1 is smaller
than one, inflation never ends and reaches the r = 0 fixed point (ε1 = 0, ε2 < 0).
If, on the other hand, the maximum value of ε1 is larger than one, and if one starts
inflating with ε2 > 0, then inflation ends naturally when ε1 = 1. This happens
when γ < −4.

Combining Eqs. (5.9) and (5.7) with the expressions of ns and r in Eq. (4.6), the
inflationary predictions of this class of models can be obtained and are displayed
in the right panel of Fig. 5.1 for 40 < ∆N∗ < 60. One should note that Eqs. (4.6)
also make use of ε3, but ε3 is related to ε1 and ε2 thanks to Eq. (5.5). For
“large-field” scenarios (region II), r is too large, and the model asymptotes the
line r = 16(1 − ns)/3 mentioned at the end of section 4.3 and commented on in
Ref. [87], which separates regions II and III. For “hilltop” or “small-field” scenarios
(region I), r is small, but ns is generically too red. When interpolating between
these two cases, there is a small range of models for which r ∼ 0.1 and the spectral
index ns has marginally the right value for low values of N∗. However, one can
check that this corresponds to very fine-tuned initial values of the flow parameters
(or, equivalently, values of γ). Moreover, we will find in section 5.3 that higher-
order terms change this result significantly.
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5.2.2 Padé expansion
Let us further illustrate our method by considering the case of a lowest order Padé
expansion,

H

H0
= 1 + aφ

1 + bφ
. (5.10)

This case has not been considered in the literature before and provides a simple im-
plementation of the idea of “plateau inflation”. The first two slow-roll parameters
can be obtained from Eqs. (4.5), and one has

ε1 = 2 (a− b)2

(1 + aφ)2 (1 + bφ)2 , ε2 = 4 (a− b) (a+ b+ 2abφ)
(1 + aφ)2 (1 + bφ)2 . (5.11)

Here, we follow exactly the same approach as the one used for the Taylor expan-
sion in section 5.2.1. For instance, under shift transformations φ → φ + δφ, the
functional form (5.10) is unchanged provided

a→ a

1 + aδφ
, b→ b

1 + bδφ
, H0 → H0

1 + aδφ

1 + bδφ
. (5.12)

By moving to the gauge where the constant term in the numerator of Eq. (5.10)
vanishes, i.e. δφ = −1/a, the b coefficient becomes b/(1 − b/a), which is gauge
invariant. This implies that

γ = 16
√

2ab
|a− b|

= ε22 − 4ε21
ε
3/2
1

(5.13)

is a constant of motion and can be used to label the different trajectories.
Let us recall that a given parametrization for the Hubble function can always

be cast in a single dynamical system in the flow parameters space. For the present
case, making use of the same procedure as before, Eq. (5.10) implies that H ′′′ =
3(H ′′)2/(2H ′), and Eqs. (4.5) give rise to

ε3 = ε21
ε2

+ 3
4ε2 . (5.14)

Again, this truncates the dynamical system to a closed set of differential equations
for (ε1, ε2), given by

dε1
dN = −ε1ε2 ,

dε2
dN = −

(
ε21 + 3

4ε
2
2

)
. (5.15)

In particular, one can check that the combination γ defined in Eq. (5.13) is left
invariant. The equation for ε1 is the same as in Eq. (5.6), since it just defines
ε2. However, the equation for ε2 is different. In general indeed, only the flow
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equation for the last flow parameter encodes the physical information about the
model, and propagates back to yield a specific dynamics for all flow parameters.
The integrated flow lines of the above system are displayed in the left panel of
Fig. 5.2.

Let us now see how this system can be integrated analytically. By inverting
Eq. (5.13), one can express ε2 as a function of ε1,

ε2 = ξ

√
4ε21 + γε

3/2
1 , (5.16)

where ξ = ±1 = sign(ε2) changes when ε1 crosses its minimum value. As before,
inserting Eq. (5.16) into Eqs. (5.15) yields a first order differential equation for
ε1(N) that can be solved, and one obtains

∆N∗ = N(ε1∗)−N(ε1,end) , N (ε1) = ξ
4
(
8√ε1 − γ

)√
4ε1 + γ

3ε3/41 γ2
, (5.17)

where again ε1,end = 1. Contrary to the result obtained in section 5.2.1, this
expression cannot be inverted analytically.

Let us now discuss the structure of the phase space diagram plotted in the left
panel of Fig. 5.2. According to the type of Hubble function, three possibilities
must again be distinguished:

• In regime I, ε2 > 2ε1, hence both ε1 and ε2 in-
crease as inflation proceeds, from the fixed point
ε1 = ε2 = 0 reached in the infinite past. Inflation
ends naturally when ε1 = 1. This implements the
idea of “plateau inflation” where the Hubble func-
tion is concave with a non vanishing plateau where
inflation proceeds. In this case, γ > 0 and ξ = +1.

φ

0

H

• In regime II, −2ε1 < ε2 < 2ε1 and ε1 = 1 is reached
both in the past and in the future. In between, a fi-
nite period of inflation takes place where ε2 increases
and ε1 goes through a minimum. The corresponding
Hubble function is convex and vanishes before the
plateau is reached (region II). In this case, γ < 0
while ξ = −1 before ε1 reaches its minimum, and
ξ = −1 afterwards. φ

0

H

• Finally, in regime III, ε2 < −2ε1, ε1 decreases as in-
flation proceeds, while ε2 increases. The (attractive)
fixed point ε1 = ε2 = 0 is reached in the asymptotic
future. This corresponds to a convex Hubble func-
tion for which the plateau is positive (region III). In
this case, γ > 0 and ξ = −1.

φ

0

H



5.2 Analytical integration of the Hubble flow 91

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
ε2

0.0

0.2

0.4

0.6

0.8

1.0

ε 1

I

II

III

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01

n
S

0.00

0.05

0.10

0.15

0.20

r

I

II

III

Planck 2015

∆N ∗=40

∆N ∗=50

∆N ∗=60

fixed point

Figure 5.2: First order Padé expansion for the Hubble function. Left panel:
flow lines of the system (5.15) in the plane (ε1, ε2). The arrows indicate in which
direction inflation proceeds. The blue dashed line corresponds to ε1 = 1 where
inflation stops. The three regions I, II and III refer to the discussion in the main
text. Right panel: Observational predictions in the (ns, r) plane, compared with the
Planck 2015 1σ and 2σ contours. The red lines stand for the values of ns and r
computed 40 e-folds before the end of inflation (dashed line), 50 e-folds (solid line)
and 60 e-folds (dotted line). The grey dot at the bottom right stands for the fixed
point (ε1 = 0, ε2 = 0).

In particular, making use of Eq. (5.17), one can check that an infinite number of
e-folds can be realized in cases I and III. However, in case II, only a finite number
of e-folds can be obtained. Parametrizing a given trajectory within region II by
ε2,end =

√
γ + 4, the value of the second flow parameter at the end of inflation, the

total number of e-folds is given by

Nmax = 8
3ε2,end

12− ε22,end(
ε22,end − 4

)2 . (5.18)

As expected, this number vanishes when ε2,end approaches 0 and diverges when
ε2,end approaches 2.

As before, combining Eqs. (5.17) and (5.16) with the expressions of ns and r
in Eqs. (4.6), the inflationary predictions of this class of models can be obtained
and are displayed in the right panel of Fig. 5.2 for 40 < ∆N∗ < 60. In Eqs. (4.6),
ε3 is related to ε1 and ε2 thanks to Eq. (5.14). When inflation proceeds in region
I, in the limit ε2end � 1, one recovers the “typical” predictions of plateau inflation
where r is small and ns is in good agreement with the observational constraints.
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Figure 5.3: Compared predictions of the Taylor model (5.1) (green) and the Padé
model (5.10) (red), for 40 < ∆N∗ < 60, in the (ns, r) plane. The black lines
are the 1σ and 2σ contours of Planck 2015. The grey solid line stands for the
model H/H0 = φ, which is a special case of both parametrizations and for which
ε3 = ε2 = 2ε1.

In this limit, Eq. (5.16) gives rise to ε2 '
√
γε

3/4
1 , and one has

ε1∗ '
(

4
3√γ∆N∗

)4/3
, ε2∗ '

4
3∆N∗

. (5.19)

This translates into ns ' 1− 4/(3∆N∗) and r ∼ ∆N−4/3
∗ � 1, which is what one

would expect from a plateau inflation model with a 1/φ fall-off [192,193].
Finally, let us note that this regime is interesting because ε2end � 1 means

that the last stage of the inflationary phase is realized far away from slow roll
(let us recall that, here, the inflationary dynamics is solved without resorting to
the slow-roll approximation). However, the number of e-folds realized between the
time when ε2 = 1 and the end if inflation when ε1 = 1 can be calculated thanks
to Eq. (5.17), and in the limit where ε2end � 1, one obtains 4/3 e-folds. This is
why, ∆N∗ e-folds before the end of inflation, slow roll is well valid and the system
gives rise to predictions that are in good agreement with observations.
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5.2.3 Comparison
In order to summarize the analysis of the two toy models discussed in the present
section, in Fig. 5.3, we have superimposed their predictions in the (ns, r) plane,
for a few fixed values of ∆N∗ ∈ [40, 60]. One can see that Taylor and Padé lines
are tangential, along the ε3 = ε2 = 2ε1 line, which is associated to the model
H/H0 = φ. This should not come as a surprise for the following reason. After a
suitable gauge transformation, Eq. (5.1) can be cast in the form

H

H0
= φ+

√
γ

2
φ2

4 , (5.20)

where γ has been defined in Eq. (5.4). Similarly, Eq. (5.10) can be cast in the
form

H

H0
= φ

1 + γ

16
√

2φ
, (5.21)

where γ has been defined in Eq. (5.13). As a consequence, a linear Hubble is a
special case of both parametrizations, corresponding to γ = 0. However, obviously,
the way γ modifies this linear H(φ) function is different for both parametrizations.

5.3 Numerical integration of the Hubble flow
The above results indicate that inflationary dynamics is better parametrized by
Padé expansions of the Hubble function rather than Taylor expansions. However,
one might worry that this statement relies on the low truncation order we have
worked with. This is why in this section, we generalize our approach by numerically
including higher order terms. Notice that the analytical method developed in
section 5.2 can in principle be used to deal with arbitrarily large order expansions,
however, one would not gain much by displaying the corresponding cumbersome
formulas. This is why, here, we directly compute the predictions of the models we
study, which consist in Hubble functions of the form

H (φ) = H [m,n] (φ) ≡
∑m
k=0 ckφ

k∑n
l=0 dlφ

l
. (5.22)

In practice, we consider orders [M, 0], which correspond to Taylor expansions of the
Hubble function, and orders [M,M ], which correspond to Hubble functions that
asymptotes to a non-vanishing plateau at large-field values. We study different
values of M in order to test the robustness of the predictions under increasing the
order of truncation and we report the results below.

The numerical procedure is explained in section 4.4. This procedure requires,
except of the parametrization of the Hubble function, the field value for the start
of the exploration, φex and prior distribution for the coefficients. As explained in
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section 4.4, expanding the Hubble function as a Taylor series requires φex = 0 and
the prior choice of Eq. (4.9), which corresponds to the prior choice first chosen by
Kinney in Ref. [170]. A Padé approximant is a simultaneous expansion around
φ = 0 and φ = ∞, which allows us to either start the exploration of the Padé
Hubble function at φex = 0 or φex = ∞. This last case corresponds to plateau
inflation and we expect it to be in best agreement with the data.

The coefficients of the Pade expansion are drawn according to some priors that
were also used in section 4.4. There we studied, except of the specific prior choice
to reproduce the results from Kinney, two classes of priors. The first one are the
power-law priors, which consists in drawing all coefficients ck and dk from a flat
distribution between [−p/qk, p/qk], where p and q are two fixed numbers. In the
second class of priors, the binomial priors, the coefficients ck and dk are drawn
from flat distributions in the interval [−pfk, pfk], where p is a constant and the
set {fk} is defined such that if ck = (−1)kdk = fk for all k, all M derivatives of
the Hubble function at φ = 0 are 1. This gives rise to

Pade : fk =
(
M
k

)(2M
k

)
k!
, Taylor : fk = 1

k! . (5.23)

As was explained in section 4.4, the Taylor parametrization only converged
if the priors were chosen following Eq. (4.12), which represents the analysis by
Kinney. The 1σ contour is shown in Fig. 4.1b, and has no overlap with the Planck
data. Therefore, only a small fraction of the points, 0.2%, was in the Planck 2σ
region. We should stress that these results correspond to the standard “horizon
flow” procedure as commonly used in the literature. They again motivate our
search for alternative parametrizations.

Let us now consider Padé approximants. First of all, we have checked that
with the two classes of priors proposed above, the results always converge (indeed,
it is well known that Padé approximants have better convergence properties than
Taylor expansions). In practice, we find that M = 6 is enough to reproduce all
higher order results with a very good accuracy. The next question is how much
the results depend on the class of priors. In Fig. 5.4, we have displayed the 1 and
2σ contours obtained with the power-law and binomial priors, in the case where
φex = 0 (left panel) and φex =∞ (right panel).

When φex = 0, the binomial prior gives rise to wide spread contours (the 2σ
contour entirely lies outside the plot frame). They are consistent with the power-
law results, but scan larger sets of inflationary trajectories. For this reason, the
percentage of points inside the Planck 2σ contour is smaller, 5% for the binomial
distribution and 38% with the power-law prior.

When φex = ∞, we find that both priors give rise to rather narrow contours,
in agreement with each other at the 1σ level. In this case, large fractions of points
lie inside the Planck 2σ contour: 18% for the binomial prior choice and 90% when
the power-law prior is used. These models correspond indeed to one’s intuitive
representation of “plateau inflation”. Interestingly also, a lower bound on r is
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Figure 5.4: 1 and 2σ contours for the two prior choices (power law and binomial),
for a Padé expansion of the Hubble function. The left panel corresponds to φex = 0
and the right panel to φex =∞.

found, which means that this class of inflationary dynamics could in principal be
ruled out by future experiments.

This analysis thus reveals that up to a moderate prior dependence, Padé ex-
pansions of the Hubble function give rise to predictions in agreement with obser-
vations, and possess good convergence properties. Given what we observationally
know, they seem better suited to parametrize inflationary dynamics than Taylor
expansions, on which the standard horizon flow procedure rests.

5.4 Conclusion
Let us summarize our main findings. Whenever inflation is parametrized by a trun-
cated dynamical system for the flow parameters, it can equivalently be described
by an expansion scheme for the Hubble function H(φ), at some finite order. Con-
versely, any functional shape for the Hubble function (such as a Taylor expansion,
a Padé expansion, or any other expansion involving a finite set of free coefficients)
can be related to a single dynamical system in the flow parameters space.

Making use of the shift symmetry φ→ φ+δφ of the problem, we have explained
how constants of motion can be derived for such systems, and how their dynamics
can be integrated. For illustrative purpose, we have applied this new method to the
case of a second order Taylor expansion (section 5.2.1), a first order Padé expansion
(section 5.2.2), and a second order inverse Taylor expansion (appendix A). For the
second order Taylor case, we have found that generically, either r is too large and
the famous horizon flow relation r ≈ 16(1−ns)/3 is recovered, or r is small enough
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Figure 5.5: Left frame: 1σ and 2σ contours for the two Padé parametrization
around φ = 0 and φ = ∞, both with power-law priors. The predictions of the
first order Padé expansion, as obtained in section 5.2.2, are displayed too. Right
frame: potential reconstruction for the the most likely 100 trajectories (using the
Planck likelihood [14]), for the standard horizon flow procedure based on a Taylor
expansion of the Hubble function, a Padé expansion around φ = 0, and a Padé
expansion around φ = ∞. Darker colors stand for smaller likelihood of the pre-
dicted values for ns and r. The potentials are normalized so that the amplitude of
the curvature power spectrum, Pζ = V∗/(24π2ε1∗M

4
p) ' 2.203× 10−9, is correctly

obtained.

but ns is too red. For the first order Padé expansion on the other hand, the typical
predictions ns ' 1− 4/(3∆N∗) and r ∼ ∆N−4/3

∗ � 1 have been obtained, in good
agreement with observations.

We have then extended these results to higher order expansions with numerical
tools in section 5.3, and studied the dependence of the predictions on the priors
chosen for the coefficients of the expansions. We have confirmed that Padé expan-
sions of the Hubble function are more suited to parametrize inflation than Taylor
expansions, since they show good convergence properties, mild prior dependence,
and, most notably, much better agreement with observations.

When using Padé approximants, we have distinguished the case where inflation
proceeds close to φ = 0 and close to φ = ∞. These two prescriptions give rise
to results that are compared in the left panel of Fig. 5.5, where we also display
the first order Padé result of section 5.2.2. It is clear that, given observational
constraints, they provide a better parametrization of inflationary dynamics than
the usual horizon flow procedure.

These results illustrate why “model-independent” parametrizations of inflation,
such as expansion schemes for the Hubble function or truncated flow dynamical
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systems, always make non trivial assumptions about its dynamics. This is why,
a priori, parametrizations yielding predictions that are in contradiction with the
data cannot be used to infer physical information from them.

As an example, in the right panel of Fig. 5.5, we show the best 100 potentials,
obtained from the Hamilton-Jacobi equation (3.9), for the three cases: Taylor
expansion with the priors corresponding to the usual “horizon flow” procedure,
Padé expansion around φ = 0, and Padé expansion around φ = ∞. From here,
it is clear that different parametrizations sample inflation along different classes
of potentials, even when restricted to the best possible realizations. Taylor and
Padé expansions around φ = 0 seem to prefer inflationary potentials with a flat
inflection point. Because this is a rather fine-tuned configuration from a generic
Taylor expansion, we understand why the standard horizon flow procedure, which
is based on a generic Taylor expansion, produces trajectories that are most of the
time excluded by observations. On the contrary, Padé expansions around φ = ∞
mostly samples plateau inflation, as expected.

As a consequence, it is clear that “reconstructing” the potential with either of
these parametrizations biases the result towards the class of potentials that it relies
on. This is in essence a “prior effect”. However, phenomenological descriptions
are still very useful to address a number of other issues in the Early Universe,
where the background is effectively “sourcing” some physical effects. Therefore, the
question becomes: “How can we best obtain and parametrize a class of inflationary
trajectories that are in agreement with current observational constraints?” From
a Bayesian perspective, the priors for analysing the nth generation of data come
from the information provided by the n − 1th survey. In this respect, we have
shown that after Planck, Padé expansions (or other types of expansion schemes
implementing the plateau structure) should be preferred over the standard Taylor
parametrizations of the Hubble flow dynamics.





CHAPTER 6

Plateau inflation from random
non-minimal coupling

6.1 Introduction
In the previous chapter we found that if the Hubble function is chosen to be flat at
large field values, i.e. has a Padé shape, the cosmological observations generically
agree better with the CMB data than if the Hubble function is Taylor expanded.
In this section, this analysis will be extended by considering the strong coupling
attractor, which is a generalization of Higgs inflation studied in section 3.4.

The strong coupling attractor models studied in the literature use a specific
relation between the potential and the frame function, which governs the coupling
between the inflaton and the Ricci scalar. In this chapter, we aim to investigate
arbitrary corrections with a more generic ansatz and thus introduce a method to
generically alleviate the η-problem of arbitrary potentials.

This chapter is structured as follows. We start in section 6.2 with a short re-
view of different attractor models in inflation, being the strong-coupling attractor
and the α-attractor. In section 6.3 we continue to generalize the strong-coupling
attractor to arbitrary non-minimal coupling functions and potentials and demon-
strate how the coupling strength ξ may ensure a sufficient amount of observation-
ally viable inflation. After outlining the analytic approximate expressions for the
inflationary observables, we employ numerical methods to scan the landscape of
possible inflationary scenarios with arbitrary coefficients in section 6.4. We con-
clude in section 6.5 with a discussion and outline further numerical evidence in
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the appendix. In this chapter we set the reduced Planck mass Mp = 1.
This chapter is based on publication [203].

6.2 Attractors of inflation models
In this section we review attractor inflation models, which predict for a certain
part of their parameter space the same values for ns and r independently of the
potential1. Two classes will be discussed, the strong coupling attractor which
consists of a coupling between the inflaton field and the Ricci scalar and the α-
attractor which uses a particular kinetic term. In the end of this section the pole-
attractor will be shortly reviewed, which combines the two kinds of attractors.
In the remainder of this chapter a more generic version of the strong coupling
attractor will be studied, while the α-attractor will be used in the next chapters.

6.2.1 Strong coupling attractor
Higgs inflation, explained in section 3.4.3, shows how an extremely bad inflation
model, in terms of observations, characterized by the potential V ∝ h4 became a
perfectly viable theory (Starobinsky-like) by introducing a large coupling between
the inflaton field and the Ricci scalar. This attractor towards Starobinsky-like
predictions is a generic feature of a group of related inflation theories, known as
strong coupling attractors [103,204] .

Analogously to Higgs inflation, the strong coupling attractor involves an infla-
ton coupled non-minimally to the Ricci scalar in the Jordan frame, but it allows
for an arbitrary Jordan frame potential VJ(φ) and frame function (or non-minimal
coupling term) Ω(φ)

LJ =
√
−gJ

[ 1
2Ω(φ)RJ − 1

2∂µφ∂
µφ− VJ(φ)

]
. (6.1)

In the original models [103,204], the frame function and potential were related via

Ω(φ) = 1 + ξf(φ), VJ(φ) = λ2f2(φ) , (6.2)

where f(φ) is an arbitrary function of φ and λ is a positive parameter. As in the
Higgs inflation model, Eq. (6.1) can be rotated to the Einstein frame using the
conformal rotation gEµν = Ω(φ)gJµν ,

LE =
√
−gE

(
1
2RE −

1
2

[
1

Ω(φ) + 3
2

(
d log Ω(φ)

dφ

)2
]
∂µφ∂

µφ− VJ(φ)
Ω(φ)2

)
. (6.3)

When using a polynomial approximation for f(φ), the main features of this
inflationary model are, as a function of the coupling strength ξ, [204]:

1This type of attractor is unrelated to the slow roll attractor discussed in section 3.2.4.
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• ξ = 0: The minimally coupled case with a random scalar potential yields
inflationary predictions n(0)

s and r(0) that interpolate between small-field
plateau and large-field chaotic inflation described in section 4.3. Almost all
of these are ruled out by the Planck results.

• Very small ξ: At weak coupling, there is a universal behaviour for the infla-
tionary predictions. Retaining only linear terms in the coupling strength ξ
one finds [204]

ns = n(0)
s + 1

16ξfr
(0), r = r(0) − ξfr(0) . (6.4)

Note that the inflationary predictions therefore have the same behaviour in
the (ns, r) plane, corresponding to a downward line with a slope of −16.

• Finite ξ < O(1): The original behaviour will be flattened at large field values
that are beyond the region probed by the cosmic microwave background;
horizon exit of CMB scales takes place closer to the minimum and hence
allows for a wide range of inflationary predictions depending on the specifics
of the polynomial potential. In particular, in this regime one looses the
simplicity of the linear approximation, resulting in a wide range of different
behaviours.
For Higgs inflation, this regime is a particularly simple straight line, again
with a slope of −16, that interpolates between quartic and Starobinsky in-
flation; for other starting points, the results of this regime are very different
and generically complicated.

• Finite ξ & O(1): Increasing the non-minimal coupling to and beyond order-
one values pushes the plateau sufficiently close to the minimum of the scalar
potential, yielding predictions that are indistinguishable from Starobinsky
inflation, which are at next-to-leading order in 1/N :

ns = 1− 2
N∗

+ 3
2

log(N∗)
N2
∗

+ . . . , (6.5a)

r = 12
N2
∗
− 18 log(N∗)

N3
∗

+ . . . (6.5b)

where the subleading corrections from [193] are included to the well known
leading order result. The exact value of ξ where this happens depends on
the specific choice of scalar potential.

An example of a strong coupling attractor model for different ξ is shown in Fig. 6.1.
The model does not completely follow Eq. (6.2), and the intermediate and large-ξ
behaviours are visible even for the large values for ξ considered. This will be the
main motivation of the study in section 6.3. Note that for this particular model,
the potential in the ξ = 0 limit is too steep to have 55 e-folds of inflation.
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Figure 6.1: The ns, r predictions for gradually increased non-minimal coupling ξ
at N∗ = 55 of an example with Ω = 1 + ξφ and VJ = eφ − (1 + φ).

The simplification of the latter limit arise as the first term in the kinetic func-
tion is sufficiently suppressed:

Ω� 3
2Ω ′ 2 . (6.6)

In terms of a canonically normalized scalar field χ,

Ω(χ) = e
√

2/3χ, (6.7)

the scalar potential becomes

VE = λ

ξ2

(
1− e−

√
2/3χ

)2
. (6.8)

This is conformally dual to R2-inflation (3.47), and results in the relation

N∗ ∼
3
4(Ω− 1) , (6.9)

for the number of e-folds.
Already in the original paper [204] it was argued that taking an independent

scalar potential
Ω = 1 + ξf(φ) , VJ = λ g(φ) . (6.10)

does not change the leading inflationary predictions as long as the function g(φ)
and the square of f(φ) share the order of their first zero while the non-minimal
coupling is taken sufficiently strong.
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A first quantitative investigation for a toy model of higher order corrections
demonstrated that the leading order behaviour of the universal attractor can in-
deed be made robust once a certain value of the non-minimal coupling ξ is cho-
sen [205]. Specifically, the Jordan frame potential was taken to be a function of
the non-minimal coupling f(φ),

VJ(φ)→ VJ(f(φ)). (6.11)

This allowed the function f(φ) to be left completely unspecified. The deviation
of VJ(f) from a quadratic function was then used to model corrections to the
universal attractor behaviour. Different types of expansions with O(1) coefficients
were employed, from simple monomials to different series. Remarkably, it was
found that a coupling strength of ξ ∼ O(104) was sufficient to maintain the leading
order inflationary predictions.

The observation that a sufficiently large ξ can, regardless of an infinite tower
of higher order corrections with order one coefficients, induce a Starobinsky-like
inflationary plateau over a finite field range derives from ξ being able to drive
∆φ < 1 when increased. Hence all higher order terms in the Jordan frame potential
are sub-leading. In other words, the effect of higher order terms can simply be
pushed far away in canonical field space by sufficiently enlarging the non-minimal
coupling strength ξ.

In the next sections, this observation will be further strengthened using ar-
bitrary functions for g(φ) and f(φ). However, to have a more complete picture
on the space of attractor inflation models, below we will shortly introduce the
α-attractor and the pole attractor. A reader not interested in these attractors can
skip the remainder of this section.

6.2.2 α-attractor
Another attractor, that was first investigated in Ref. [206], is the T-model α-
attractor [207–214]. This attractor is defined as

L =
√
−g
(

1
2R−

α

1− 1
6φ

2 ∂µφ∂
µφ− f2

(
φ√
6

))
, (6.12)

where f(φ) is an arbitrary function and α is a positive parameter. The value 6 is
included for aesthetic reasons. As before, a canonical kinetic term can be obtained
by utilizing the field redefinition [206]

φ√
6α

= tanh ϕ√
6α
, L =

√
−g
(

1
2R− ∂µϕ∂

µϕ− f2
(

tanh ϕ√
6α

))
. (6.13)

Since the hyperbolic tangent is approximately shift symmetric if the argument is
large, the potential will flatten for large field values if f(φ) is not diverging for
x < 1. The flat potential in the canonical frame implies that the value of r is
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Figure 6.2: Predictions of ns and r for different α-attractor scenarios and N∗ =
50 with n = { 2

3 , 1, 2, 3, 4} for the colours blue, orange, gray, red and magenta.
The stars correspond to the prediction of V ∝ φn inflation. The cyan contour
regions are the 1 and 2σ contour regions of Planck [14]. The figure is inspired on
Ref. [209].

very small, indeed for small α the large N expansion of the α-attractor for the
observables, to second order in slow roll using Eqs. (4.2) is

ns = 1− 2
N

+ 1
N2

(
4
3 − 2C + α

(
1
n
ρ− 3

2

))
, (6.14a)

r = 12α
N2

(
1− 1

N

(
2
3 − 2C + α

1
n
ρ)
))

, (6.14b)

ρ =
√

9 + 3n2

α
, (6.14c)

where we expanded the expression to second order in slow roll and the potential
is assumed to be f2(φ) = λφn. The value α = 1 corresponds to first order in 1/N
to the Starobinsky and strong coupling attractor models in Eq. (6.5), but deviates
at second order [215]. The predictions for the different inflation models are shown
in Figs. 6.2 and 3.6.

From Fig. 6.2 can be inferred that in the opposite limit, where α → ∞, the
original predictions of chaotic inflation in Eq. (3.41) are retrieved [209]. Thus is
the α-attractor a method to interpolate polynomial inflation models at large α to
models where r = 0 at low α.

An interpretation of the meaning of the parameter α is by considering the
geometry of the moduli space, given by the kinetic term of the inflaton [216]. The
metric of this moduli space represents the metric of a hyperbolic surface, which
has a negative curvature R = − 2

3α . In addition, when considering a complex
inflaton field, which will be the standard in supergravity realisations of inflation
in section 7.5, the moduli space will represent a two-dimensional hyperbolic space
with the same curvature. Therefore can the α-attractor mechanism be interpreted
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as originating from a theory with a hyperbolic geometry in the moduli space, while
the above analysis showed that the curvature of this space has to be large.

The peculiar structure of the non-canonical term in (6.12) can be explained
using a broken conformal symmetry. Consider the following two-field conformal
Lagrangian [206,209]

Lc =
√
−g
[

1
2∂µχ∂

µχ− 1
2∂µφ∂

µφ+ 1
12
(
χ2 − φ2)R− V (φ, χ)

]
. (6.15)

This model contains an SO(1, 1) symmetry in the φ2 − χ2 direction if V (φ, χ) =
Vc(φ2−χ2). The Lagrangian of Eq. (6.15) is in Jordan frame, but the gauge choice
φ2−χ2 = 6 rotates it to the Einstein frame. In this gauge the conformal potential
Vc is explicitly conformally invariant (i.e. flat).

The Starobinsky and the α-attractor models can be obtained from (6.15) by
adding an explicit conformal symmetry breaking term. For the Starobinsky model,
the required Lagrangian is [206]

L√
−g

= Lc(φ
2 − χ2)√
−g

− λ

4φ
2 (φ− χ)2

. (6.16)

The gauge choice, φ2 − χ2 = 6, which is solved for the fields as

φ =
√

6 sinh ϕ√
6

χ =
√

6 cosh ϕ√
6
, (6.17)

leads to the Einstein frame Lagrangian of the Starobinsky model of Eq. (3.46).
Similarly the T-mode α-attractor can be obtained from (6.15) by breaking the
conformal symmetry with

L√
−g

= Lc(φ
2 − χ2)√
−g

− V
(
φ

χ

)(
φ2 − χ2)2 . (6.18)

With the same gauge choice φ2 − χ2 = 6, this Lagrangian corresponds to the
α-attractor model of Eq. (6.13).

There exists another type of α-attractor, named the E-model α-attractor,
which is defined with the Lagrangian [206]

L =
√
−g
[

1
2R−

1
2∂µφ∂

µφ− Λ4
(

1− e−
√

2
3α

φ
Mp

)n]
, (6.19)

where n and α are (positive) parameters. This type of α-attractor is the large field
limit of Eq. (6.13), and has observationally the same behaviour at leading order
in 1/N . However, in this thesis this attractor will not be further considered.
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6.2.3 Pole attractor
The Starobinsky model, the strong coupling attractor and the α-attractor have all
in common that the theories can be written with a singularity in the kinetic term
and a non-singular potential. This led to the introduction of the pole attractor (or
generic attractor) defined in Ref. [217], where it was shown that any Lagrangian
with a pole in the kinetic function and a regular potential will have its large-N
inflationary dynamics dictated by the order of this pole. Close to the pole, inflaton
will evolve slowly, since its kinetic function is large which requires much energy
to roll. With a field redefinition the pole in the kinetic term can be removed,
and the resulting canonical inflation model will have a nearly flat potential. Since
a flat potential corresponds to a small value for r, this corresponds to a small
tensor-to-scalar ratio, which is currently preferred by the data. As can be read of
from Eqs. (6.3) and (6.12), all attractor models shown above have a pole of order
2. Indeed, as the generic attractor predicts the values of ns and r at leading order
in 1/N are the same for these models.

6.3 Analytic predictions of the generic strong at-
tractor model

After this general introduction concerning the different attractor models, we con-
tinue with investigating the strong coupling attractor obtained in section 6.2.1.
The aim of this section is to explicitly show the robustness of the inflationary
potential from an arbitrary number of higher order terms. Consider the frame
function as well as the potential to be arbitrary polynomials with the only re-
quirement that the Jordan frame potential and the square of the frame function
share the order of their first zero for φ; in particular, we require the Jordan frame
potential to have a minimum and the frame function to contain a term linear in
the Jordan frame field φ. We thus make the following ansatz

Ω(φ) = 1 + ξ

MΩ∑
n=1

anφ
n, VJ(φ) = λ

MV∑
m=2

bmφ
m , (6.20)

where
• We have kept the factor λ to be consistent with the original work [204] and

will assume it to take a natural value of . O(1).

• We assume b2 and a1 to be positive in order to ensure a Minkowski minimum
at φ = 0 and that χ and φ both decrease at the same time (dφ/dχ > 0) close
to the minimum.

• We have introduced MΩ,V to denote the respective cut-off of both series.
These will not play a role in the analytic part; in principle, both polynomials
may contain an infinite number of terms.
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For the general set-up (6.20), and for now assuming to be in the regime φ < 1,
the expression for the number of e-folds of (6.9) obtains corrections as

N∗ ∼
3
4 Ω(φ)− b3Ω(φ)3

8 b2a1ξ
+O(2)

(
Ω(φ)2

ξ

)
, (6.21)

which may be understood as an expansion in Ω2/ξ. From the zeroth-order relation
(6.9) for the number of e-folds, we find that the lower bound on the non-minimal
coupling strength for generating a sufficient amount of inflation within ∆φ < 1 is

ξ & O(N2
e ). (6.22)

We will assume this in what follows.
To obtain a value for ξ that ensures the corrections to be sufficiently far

away from the inflaton’s minimum and to have inflation matching observations
by Planck, it is most useful to study the inflationary observables and their depen-
dence on the infinite tower of higher order terms. To leading order, the expressions
for the inflationary observables ns and r of (6.20) are given by

ns = 1− 2
N∗

+ 64
27
b3
b2

(
N∗
a1ξ

)
+O2

(
1
N∗

,
N∗
a1ξ

)
, (6.23a)

r = 12
N2
∗

+ 128
9
b3
b2

(
1
a1ξ

)
+O2

(
N∗
a1ξ

)
+O3

(
1
N∗

)
, (6.23b)

which is in line with Ref. [218]. Expressions (6.23) are expansions in 1/N∗ and
N∗/(a1ξ). For the spectral index ns, the leading order terms are the linear contri-
butions of the 1/N∗ and the N∗/(a1ξ) expansions. For the tensor to scalar ratio r,
the leading order terms are the quadratic and bilinear expressions of both expan-
sions (note that we only give two of these three terms). Further subleading terms
stem from higher order and cross terms in 1/(a1ξ) and N∗/(a1ξ) and are denoted
by O(n). Note that we have omitted the subleading corrections of Ref. [193], i.e.
higher order terms in log(N∗)/N∗, for clarity.

For ns and r to be dominated respectively by the linear and quadratic term in
1/N∗, i.e. for prolonging the intermediate plateau of the Einstein frame potential,
we quickly identify the requirement (6.22), self-consistent with the derivation’s
starting point. This hence marks the onset of a convergence of the inflationary
predictions towards the values measured. Moreover, the next to leading order
terms come with the same a1, b2, b3 dependence. This implies that the ratio of the
next to leading order terms has a universal form

δr

δns
= 6
N∗

. (6.24)

This predicts that in the vicinity of the Starobinsky point in an ns/r scatter plot,
there will be deviations to both the bottom left and the top right with a fixed
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slope that is independent of the specific coefficients. The former of these have
b3 negative (note that a1 and b2 have to be positive to guaranty the positivity
of the frame function and the potential around the minimum); these corrections
induce a hilltop-like deformation to the plateau. Similarly, the predictions to the
top right of Starobinsky arise from positive b3 corrections, corresponding to an
upward curve in the plateau.

Thus we conclude that in the presence of a generic non-minimal coupling, to
be contrasted to the simpler case satisfying square relation (6.2), we expect the
approach to the universal attractor to take place at a later stage (i.e. larger value
of ξ) but also in a cleaner manner (i.e. in a straight line). This is nicely confirmed
by Fig. 6.4 and 6.1.

Turning to the comparison with observations, for higher order terms not to
spoil the value of ns observed by Planck, we consider the 2σ bound by Planck of
δns < 0.008 at N∗ = 55 and find, given a1, b2, b3 ∼ O(1),

ξ & 104 . (6.25)

This hence sets, given order one coefficients, a lower bound on the non-minimal
coupling strength ξ to realize observationally viable slow-roll inflation. Remark-
ably, the value of ξ obtained from the requirement of matching the observed spec-
tral index ns is also similar to the value needed to match the COBE normalization2
(provided the self-coupling λ ≈ 1). Thus two independent observational indica-
tions – in technical terms the spectral index ns and the amplitude As – hint towards
an otherwise ad hoc value of the theory’s parameter. The length and the height
of the inflationary plateau are correctly set by the single parameter ξ.

The results of Ref. [205] hence nicely carry over to our more general ansatz
(6.20): given a scalar field with a minimum and polynomial non-minimal coupling
with strength ξ & 104 as required by the COBE normalization and expressions
(6.23), plateau inflation with Planck-like observables will be realised.

6.4 Numerical results
We now turn to the numerical body of this work and study the behaviour of
ansatz (6.20) given arbitrary coefficients. By choosing random values for an, bm,
a Monte Carlo analysis can be performed using a procedure based on section 4.4,
but parametrize the potential instead of the Hubble function. Then we use the
potential slow roll parameters to compute the flow. We chose the binomial prior
distribution for an and bm, thus the intervals [−1/n!, 1/n!], in order to represent
a Taylor series with an increasing convergence range for large truncation order3.

2Recalling As = (24π2)−1V/ε ∼ 10−9 stemming from the CMB temperature data, it readily
follows from Eq. (3.38) that ξ ∼ 105√λ.

3We will comment on the omission of the power law priors in section 6.5.
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Our numerical model closely follows the approach from section 4.4, with some
modifications to incorporate the non-canonical kinetic term. Thus sampling the
current model in the Einstein frame (6.3), but without utilizing the canonical
normalization (6.7). With a non-canonical kinetic term the first two slow-roll
parameters become

εV = 1
2K

(
1
VJ

∂VJ
∂φ
− 2

Ω
∂Ω
∂φ

)2
, (6.26a)

ηV = Ω2

K VJ

[
∂2

∂φ2

(
VJ
Ω2

)
− 1

2K
∂K

∂φ

∂

∂φ

(
VJ
Ω2

)]
, (6.26b)

in terms of the non-canonical kinetic function

K = 1
Ω + 3

2

(
1
Ω
∂Ω
∂φ

)2
. (6.27)

The number of e-folds then follows as

N∗ ≈
∫ 1√

2εV
dχ =

∫ √
K√
2εV

dφ , (6.28)

where χ is the canonical Einstein frame and φ the non-canonical Jordan frame
inflaton. Using these expressions for the slow-roll parameters, the rest of the pro-
cedure is similar to the one section 4.4 but using the potential slow roll parameters.
This procedure is iterated 106 times in all ensembles shown.

We expand ns and r only to first order in slow roll, while the accuracy of the
figures will imply that we need higher precision. We do not add higher order
terms since our goal is to see the approach towards the general attractor, and not
to obtain very precise high order predictions for ns and r in the attractor phase.
Moreover, at this moment there is no need to use higher orders of slow roll, since
the Planck bounds on ns and r are not precise enough. However, the linear terms
in the 1/N∗ expansion of Eq. (6.5) will not be enough in comparison with the
numerical data, and in principle higher order terms have to be included to match
the accuracy in the figures. Performing this analysis we obtain that the so-called
‘Starobinsky point’ will be at ns = 0.96157, r = 0.004192 for N∗ = 50 to first order
in slow roll.

One should distinguish different late-time behaviours, listed in section 4.3. In
addition to these behaviours, there is a fraction of the configurations with a zero
in Ω or V (or both) before inflation starts. Negative potential and frame function
are not allowed during inflation, thus we give them the label Ω, V -negative. In
what follows, we will focus on the non-trivial trajectories.

Secondly, one should worry about the effects of the truncation of the polyno-
mials in (6.20): do the resulting predictions depend on these? Fortunately, at the
large ξ values that we are presently interested in, it is computationally possible
to include a sufficient number of terms in both the non-minimal coupling and
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Figure 6.3: An r density plot, on a linear scale, for different values of MΩ with
MV = 10 and ξ = 104. For MΩ > 2 the system is truncation independent.

the scalar potential to render our results truncation independent. This is illus-
trated in Fig. 6.3. In what follows, we will consider the specific case of MV = 10
and MΩ = 5, but none of our results depend on these specific numbers if chosen
sufficiently large.

Turning to the numerical results, we start with a scatter plot in Fig. 6.4,
comparing the predictions for ξ = 102 and ξ = 104 with fixed MΩ = 5, MV = 10
(and setting N∗ = 50). In perfect agreement with our analytic results, indeed a
clearly visible line is present that goes from bottom left to top right through the
Starobinsky point shown with a red star. Around this point, its slope is given by
Eq. (6.24). Moreover, this line is much more pronounced for the larger value of ξ.

Studying models close to the Starobinsky point is difficult using scatter plots,
since the finite point size blurs too much information regarding the density of
points. Therefore, to be able to make any observation regarding the onset of the
universal attractor regime, one should consider the density of the spectrum. For
this we binned the data in small bins of ns (r) and counted the number of points
within each bin, thereby marginalizing over r (ns). The resulting curve is a rough
measure for the probability distribution of the variable, since the number of points
over which is sampled is large. For a true measure of the probability, the spectrum
has to be normalized. However, we only calculated the number of points in a bin
and divided by the total number of points, which actually depends on the chosen
binsize; fortunately, this will not influence our conclusions.

The density plots for ns and r are shown in Fig. 6.5. In these plots it is clear
that for ξ = 102, the Starobinsky point is not of any importance, and the ensemble
is most likely to be found in a hilltop state. When ξ = 104 a peak is clearly visible
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Figure 6.4: Scatter plot of 5000 trajectories from the ensembles with MΩ = 5 and
MV = 10 for ξ = 102 in green and ξ = 104 in blue. The red star represents the
Starobinsky point ns ≈ 0.962, r ≈ 0.004.

at the Starobinsky point, and this peak sharpens when ξ increases, just as the
analysis in section 6.3 demonstrated. This centering around the Starobinsky point
is a continuous process, starting from around ξ ≈ N2

∗ .
There is one final probe we want to present here that shows the emergence

of the attractor phase, and that is the percentage of the number of non-trivial
outcomes of inflation. As explained before, a random model can have different
outcomes of inflation, depending on the shape of the potential and the frame
function. However, if the attractor phase is reached at infinite ξ, the outcome
becomes independent of the model, and hence all models should be non-trivially
ending.

To probe this we plot the percentage of the number of outcomes in Fig. 6.6.
The probability that a model ends non-trivially indeed increases when ξ increases,
and the number of models with insufficient e-folds to account for the observations
and the number of models with negative potential and/or frame function during
inflation decrease.

Note that in Fig. 6.6 we observe the maximal increase of the number of non-
trivial points around ξ = 104. Also ξ = 104 was the location where the peak
was first centred around the Starobinsky point. We hence conclude that the lower
bound ξ & 104 appears first from CMB normalization arguments and our toy
model analysis in subsection 6.3 and follows to be a special value also in the
numerical study.
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Figure 6.5: Density profiles (on a log-scale) for different values of ξ. The left
frames show the density profile for ns, while the right frames show the density
profile for r. The bottom frames are a zoom in around the Starobinsky point. Both
ns and r peak at the Starobinsky point for ξ & 104.
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The circles denote actual data points, the lines are only to guide the eye.

6.5 Discussion
In this work, we have revisited non-minimally coupled inflation models in the
spirit of Refs. [103, 119,204]. Our interest was whether there exists a value of the
non-minimally coupling strength that is preferred not only by matching COBE
normalisation.

We first described how the non-minimal coupling ξ may be used to induce
an effective shift-symmetry which is protected against a possibly infinite tower of
higher order corrections. The size of the non-minimal coupling determines the field
range of this Einstein frame shift-symmetry. We identified two distinct regimes:

• ξ ∼ O(N2
e ): In this regime, the Jordan frame field is mostly sub-Planckian

during inflation. As a consequence, it is inherently protected from most
higher order terms, and may only be affected by a single correction term
to the square relation (6.2). Inflation will be driven by an intermediate
plateau of hilltop potential generating at least N∗ e-folds. The inflationary
predictions will therefore be roughly similar to those of Planck.

• ξ > O(N2
e ): For larger values, the Jordan field only takes small values dur-

ing inflation, and inflation is therefore protected from any higher-order term
and is effectively governed the square relation (6.2). Due to the larger non-
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minimal coupling, the intermediate plateau is prolonged such that the infla-
tionary observables begin to converge towards the sweet spot of Planck. The
predictions will have entered the 2-σ contours of Planck once ξ ∼ O(104).
This lower bound is in remarkable agreement with the value of ξ required to
match the scalar perturbation amplitude As [219].

In the numerical component of this work, we parametrized non-minimal cou-
pling functions and potentials as arbitrary polynomials. Drawing the coefficients
of the polynomials randomly, we examined the resulting Einstein frame potentials
to find out whether observationally viable slow-roll inflation occurs. We found
that with increasing non-minimal coupling ξ, the number of non-trivial inflation-
ary trajectories increases. Remarkably, this increase is most pronounced in the
range ξ ∼ O(N2

∗ ) to ξ ∼ O(104). Furthermore, we found that at ξ ∼ O(N2
∗ ) there

is a transition from a peak at low ns to a peak at the Starobinsky prediction of
ns = 0.962.

In other words, a non-minimal coupling ξ can induce a shift-symmetry pro-
tected against all higher order terms (i.e. length of an inflationary plateau) [210,
220]. The preferred value to match the COBE normalization coincides with the
inflationary observables taking Planck-compatible values.

To have a prediction of the implications of the assumption of factorial fall-off of
the coefficients we repeated the analysis with the power law prior, using the random
interval as [−1, 1] for an, bn in (6.20). Though, as will be explained in appendix B,
the low order truncations of this system were different, the truncation independent
regime showed the same observations. Thus we conclude that the above analysis
is independent of the choice of the prior interval.

Regarding the type of series used, for instance using Fourier series instead
of polynomials, we expect that our main finding; that for large ξ all models are
located around the Starobinsky point, is still valid. However, the approach towards
this point, i.e. the predictions for ξ ∼ O(N2

∗ ) and ξ ∼ O(104), might in general
be different as well as how these models approach the Starobinsky point, i.e. Fig
6.4. Studying the model dependence of the predictions is an interesting follow-up
analysis.



CHAPTER 7

Supersymmetry and supergravity

Introduction
In section 2.1 the standard model of particle physics was constructed. This model
fits extremely well with current experiments, but in section 2.1.1 some theoretical
puzzles of the standard model were raised. These were i) the naturalness problem
of the Higgs potential, ii) why the running of the standard model gauge parameters
does not allow for unification into a singly connected gauge group (a grand unified
theory or GUT) and iii) how at energies of the order of the Planck scale Mp ≈
2.435× 1018 GeV gravitational effects are encoded.

Finding a solution for these problems is simplified when imposing that the stan-
dard model is supersymmetric. However, supersymmetry cannot be an explicit
symmetry, thus has to be broken spontaneously. If the supersymmetry break-
ing scale is close to the electroweak scale, the loop terms originating from the
supersymmetric partner of the top quark (named stop squark), will cancel loop
contributions from the top quark, rendering the Higgs mass stable. In addition,
it is possible for such models (even models with a larger supersymmetry breaking
scale) to make the standard model couplings converge at the GUT scale. Finally,
the most popular model that unifies gravity with the standard model is string
theory, which requires supersymmetry for consistency.

To naturally solve the Higgs hierarchy problem, the stop mass has to be roughly
in the TeV range. However, no signatures of the stop squark, or other supersym-
metric particles, have been observed by experiments at the Large Hadron Collider
(LHC) up to roughly a TeV. Therefore, solving the Higgs hierarchy problem with
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supersymmetry is becoming difficult. Lifting the requirement of solving the hi-
erarchy problem, grand unification is possible if the masses of the superpartners
are below roughly MGUT ≈ 1013 TeV. However, it is unfortunate that the energy
scale at which supersymmetry is broken is unknown.

Supersymmetry is an interesting symmetry to be considered in combination
with inflation since inflation takes place at very large energies, at which super-
symmetry might be exact. Moreover, the inflaton field value during inflation can
be sufficiently large that some low energy effects of string theory are relevant.
The low energy limit of string theory is described by supergravity, which is the
quantum field theory invariant under local supersymmetry transformations.

In section 7.1, supersymmetric quantum field theories will be studied, followed
in section 7.2 by supersymmetry breaking. Then, in section 7.3, the nonlinear
realisation of supersymmetry will be studied using nilpotent superfields. In sec-
tion 7.4 global supersymmetry will be gauged to build the theory of supergravity.
Finally, in section 7.5 supersymmetric theories of inflation will be reviewed, with
focus on nilpotent inflation in supergravity. This section closes with a few words
on reheating and the gravitino problem.

The following sections on global (or rigid) supersymmetry are based on Refs. [221–
223].

7.1 Basics of supersymmetry

7.1.1 Supersymmetric Lagrangians
The defining feature of supersymmetry is a fermionic, hence anticommuting, gen-
erator of the symmetry group. This is represented in the supersymmetry alge-
bra [221]

{Q,Q†} = 2σµPµ, {Q,Q} = {Q†, Q†} = 0, [Pµ, Q] = [Pµ, Q†] = 0,
(7.1)

where Q is the supersymmetry generator, Pµ the operator of four-momentum from
the Poincaré algebra and σµ = {1, σi} are the Pauli matrices (σi) supplemented
with the identity matrix (1). Since the generator of the supersymmetry algebra
is fermionic, anticommutators are used in Eq. (7.1) instead of commutators. Here
and in the rest of this chapter fermions are represented as Weyl spinors and spinor
indices are suppressed.

After having defined the symmetry of a theory the particle content can be
chosen as irreducible representations of the symmetry group. However, since the
supersymmetry transformation changes a particle into another particle, sets of
particles have to be defined that collectively transform under the supersymmetry
rules. The anticommuting nature of the supersymmetry generator implies that
the number of states related by supersymmetry transformations are given by the
number of supersymmetry generators N . In this thesis only N = 1 superalgebras
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will be considered, so that every particle has a single supersymmetric partner with
a difference in spin of 1/2 [221].

As an example, consider a scalar field φ and a fermion ψ that transform under
supersymmetry transformations as [221]

δεφ =
√

2εψ, δεψ = i
√

2σµε̄∂µφ, (7.2)

where the spinor ε is the parameter of the variation. Using the equations of motion
it can be shown that the algebra is closed on-shell. The Lagrangian of this theory,
which is named the massless Wess-Zumino model,

L = ∂µφ
?∂µφ− iψ̄σ̄µ∂µψ (7.3)

is the Lagrangian of a free scalar field and a free fermion field. Using the super-
symmetry transformation (7.2), the action of Eq. (7.3) is invariant since

δS =
∫

d4x δL,

=
√

2
∫

d4x
(
ε(∂µψ∂µφ∗ − σν σ̄µ∂νφ∗∂µψ) + (∂µφ∂µψ̄ + ψ̄σ̄µσν∂µ∂νφ)ε̄

)
,

= 0, (7.4)

where in the last step the first three term were integrated by parts and the identity
σµσ̄ν∂µ∂νφ = ∂µ∂

µφ was used [223].
An important technical detail of the supersymmetry transformations (7.2) is

that it is only closed on-shell. This is manifest by counting the number of degrees of
freedom [221]. For a symmetry to be exact, the number of degrees of freedom inside
the theory should be the same before and after a symmetry transformation. Hence
the number of bosonic degrees of freedom should equal the number of fermionic
degrees of freedom. On-shell both the (complex) scalar and the fermion have two
degrees of freedom, while off-shell the fermion has four degrees of freedom and
the scalar only two. To equal the number of degrees of freedom also off-shell, a
boson has to be introduced that has two degrees of freedom off-shell and carries no
degrees of freedom on-shell. This auxiliary field F , appears in the massless Wess-
Zumino model of Eq. (7.2) with only the potential term F ∗F and no kinetic term,
so its equation of motion is trivial. With this auxiliary field the supersymmetry
transformations [221]

δεφ =
√

2εψ, (7.5a)
δεψ = i

√
2σµε̄∂µφ+ εF, (7.5b)

δεF = −iε̄σ̄µ∂µψ, (7.5c)

close also off-shell, meaning without imposing the equations of motion. This set
of fields forms a linear representation of the superalgebra and is therefore called a
multiplet.
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As the name suggests, adding a mass to the Wess-Zumino model is possi-
ble. However, since the momentum operator and the supersymmetry generator Q
commute (see Eq. (7.1)), the masses of the particles in the multiplet should be
equal [221]. It is also possible to add an extra set of fields and introduce interaction
terms, but this is less straightforward since the interactions have to be invariant
under supersymmetry transformations. It is possible to build an interacting Wess-
Zumino model using the formalism introduced above [221], but it is simpler to use
superfields.

7.1.2 Superfields
In the example of Eq. (7.2) the supersymmetry relations were imposed rather
straightforwardly using only a minimal number of fields. But it was also recognized
that when evaluating multiple fields with interaction terms it is complicated to find
a supersymmetric Lagrangian. Therefore it is convenient to combine the multiplets
into a single field, named a superfield. Superfields are defined within superspace,
which is a space obtained from enlarging the normal space-time coordinates to
{xµ, θ, θ̄}, where xµ are the four dimensions of space-time and θ (θ̄) is (the complex
conjugate of) an anticommuting (Grassmann) coordinate.

The superfield Φ is defined as a field in superspace. To express the superfield
in components, it is Taylor expanded in the Grassmann numbers θ and θ̄ [223]

Φ(x, θ, θ̄) =φ(x) + θη(x) + θ̄ξ̄(x) + θ2m(x) + θ̄2n(x) + θσµθ̄Aµ(x)
+ θ2θ̄λ̄(x) + θ̄2θψ(x) + θ2θ̄2d(x), (7.6)

where φ(x) and the lower case Latin letters represent scalars, the other Greek
letters fermions and Aµ a vector field. This superfield consists of far more com-
ponents than considered in the previous section and these additional components
will appear as auxiliary fields. To reduce the number of auxiliary fields, the chiral
superfield is defined by imposing the constraint

D̄Φ = ∂θ̄Φ = 0, (7.7)

where the covariant derivative (D) is defined such that it anti-commutes with the
supersymmetry operator, hence [221]

DΦ† =
[
∂θ − 2i(σµθ†)∂yµ

]
Φ†, (7.8)

and yµ = xµ + iθ̄σ̄µθ. The constraint (7.7) on the superfield Φ is solved in the
component notation of Eq. (7.6) as [223]

Ψ = φ(y) +
√

2θψ(y) + θ2F (y), (7.9a)

= φ(x) +
√

2θψ(x) + θ2F (x)− i√
2
θ2θ̄σ̄µ∂µψ(x)

+iθ̄σ̄µθ∂µφ(x) + 1
4θ

2θ̄2∂µ∂
µφ(x), (7.9b)
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where the auxiliary field F is a combination of the scalars appearing in Eq. (7.6)
and in the second line the fields are expanded in x. The matter content of the
chiral superfield in (7.9) equals the matter content of the Wess-Zumino model in
Eq. (7.5), hence this model of free supersymmetric particles can be obtained from
a single chiral superfield.

Describing gauge interactions with a chiral superfield is not possible, since it
does not contain a spin-1 gauge boson. For this purpose the vector multiplet (V )
was defined as the superfield satisfying the constraint [221]

V = V ∗. (7.10)

This constraint invokes a multiplet with 4 real scalars, 2 fermions and a vector
field, of which the full expression can be found in [221]. In addition, the gauge
transformations use a complex gauge parameter and the imaginary part of this
transformation can be used to gauge some of the fields in the vector multiplet. In
this Wess-Zumino gauge, the vector superfield becomes in components [221]

V = θσµθ̄Aµ + θ2θ̄λ† + θ̄2θλ+ 1
2θ

2θ̄2d, (7.11)

where d is an auxiliary field similar to F in the chiral multiplet (7.9). With these
two types of superfields, chiral and vector, supersymmetry invariant actions can
be obtained.

7.1.3 Kähler and superpotential
To build a supersymmetry invariant action, we can use that the action

S =
∫

d4x d2θ d2̄θ K(Φ,Φ†) +
∫

d4x d2θ W (Φ) + c.c. (7.12)

is invariant under supersymmetry transformations, where the real functionK(Φ, Φ̄)
is named the Kähler potential and the holomorphic function W (Φ) the superpo-
tential [222]. The mass dimension of the Kähler potential is 2, and of the super-
potential 3.

When considering vector fields, typically a gauge symmetry is considered. For
a general (non-Abelian) gauge group the supersymmetric field strength is defined
as [221]

Wα ≡ −
1
4D̄α̇D̄

α̇
(
e−VDαe

V
)
, (7.13)

where α is a spinor index and Dα is the SUSY covariant derivative defined in
Eq. (7.8). In analogy with non-supersymmetric gauge theories, the field strength
can be given a group index using

Wα = 2gaT aWa
α, (7.14)
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where T a are the generators of the gauge group. Then the action becomes

S =
∫

d4x d2θ

(
1
4 − i

g2
aΘa

32π2

)
WaWa, (7.15)

where Θ is a parameter and the spinor index of W is again suppressed. When
constructing a supersymmetric theory of QCD, the Θ parameter is the same as
appearing in Eq. (2.4), in the discussion of the strong CP-problem. Since the field
strength is a chiral superfield, this is an F-term.

If the gauge group is Abelian, also a D-term called the Fayet-Iliopoulos term
can be written, [221]

S =
∫

d4x d2θ d2θ̄ (−2κV ), (7.16)

where κ is a real parameter. If κ is nonzero this D-term can be used for super-
symmetry breaking, but this possibility will not be considered in this thesis.

Combining Eqs. (7.12) and (7.15) and neglecting the Fayet-Iliopoulos term, the
full action for a supersymmetric gauge theory with chiral superfields Φi and gauge
fields Vj , where i and j run over the different fields, is

S =
∫

d4x d2θ d2θ̄ K(Φi, Φ̃†i )

+
∫

d4x d2θ

[(
1
4 − i

g2
aΘa

32π2

)
WaWa +W (Φi)

]
+ c.c., (7.17)

where the fields Φ̃† ≡ Φ†eV are used to make the Kähler potential gauge invariant.
For most inflationary purposes only the scalar part of the action (7.17) is

required. Neglecting gauge interactions, the scalar potential is [222]

Vs = (Kī)−1
WiW̄̄, (7.18)

where Kī = ∂2K/∂φi∂φ̄̄ and Wi = ∂W/∂φi. In this expression the scalar com-
ponents of the superfields should be used.

A feature of supersymmetric field theories are the non-renormalization theo-
rems, which state that terms in the superpotential do not receive perturbative
corrections [224]. Hence, in Eq. (7.18) loop terms appear only through the Kähler
potential and a general expression for the 1-loop terms can be obtained, in analogy
with the Coleman-Weinberg potential in field theory. Assuming that the tree level
Kähler potential is canonical, this contribution is [224]

K1-loop = − 1
32π2 tr

[
M†M log M

†M

Λ2

]
, (7.19)

where Λ is the cut-off scale and Mij = 〈∂2V/∂φi∂φj〉 is the tree level mass ma-
trix. The 1-loop correction to the scalar potential of Eq. (7.18) from the 1-loop
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corrections of the Kähler potential are

Vs,1-loop = − 1
64π2 Str

[
(M†M)2 log M

†M

Λ2

]
, (7.20)

where the supertrace Str was defined as

StrA =
∑
j

(−1)2j(2j + 1) tr (A) , (7.21)

and sum over j corresponds to the sum over all particles with spin j. This equation
is relevant for discussing classically flat directions, for instance in the context of
the breaking of supersymmetry, as will be explained in section 7.2.

7.1.4 The MSSM
Similar to the construction of the standard model, the minimal supersymmetric
standard model (MSSM) is obtained by imposing that the theory is i) invariant
under gauge transformations of the group SU(3)×SU(2)L×U(1), ii) is renormaliz-
able and iii) has the minimal matter content necessary to explain the observations.
In the MSSM, the standard model fermions are represented by chiral superfields
and the standard model gauge fields by vector multiplets. No additional fields
except of the superpartners of the standard model fields are introduced, with the
exception of the Higgs field which has to be split into two chiral superfields for
symmetry reasons, as will be explained below. The full set of particles of the
MSSM is shown in Fig. 7.1. For terminology, all scalar superparners have a s- pre-
fix, while the fermionic superparners have an -ino suffix. For example, the scalar
superpartner of a quark is named squark and the fermionic superpartner of the
gluon is the gluino.

In addition, a new symmetry is introduced in the MSSM to forbid proton
decay at tree level. This symmetry, called R-parity, is a Z2 symmetry for which
the standard model particles are even and the superpartners are odd. Hence, there
will be no vertices containing an odd number of superpartners. Due to R-parity
the lightest supersymmetric particle (LSP) cannot decay, and is a candidate for
dark matter. The conditions of R-parity together with the conditions i),ii) and iii)
discussed above reduce the Kähler potential to the minimal form K = Φ†iΦi (with
i running over all superfields), and the superpotential to [221]

W = ũ†yuQHu − d̃†ydQHd − ẽ†yeLHd + µHuHd, (7.22)

where yi and µ are parameters. Note that to preserve SU(2) invariance in the
holomorphic superpotential an additional Higgs field is introduced.

The R-parity that was imposed in the standard model can be extended to R-
symmetry, which is a U(1) symmetry. Under R-symmetry, the superpotential has
R-charge 2 while the Kähler potential has a vanishing R-charge. If R-symmetry



122 Supersymmetry and supergravity

Higgsino

photino

sup scharm

sdown sstrange

stop

sbottom

stausmuonselectron

selectron
neutrino

smuon
neutrino

stau
neutrino

Zino

Wino

gluino

G
A
U
G
IN
O
S

S
L
E
P
T
IN
O
S

S
Q
U
A
R
K
S

~ ~ ~ ~

~

~

~

~~~

~ ~ ~

~~~

Standard model MSSM extension

u,du,du,d

~

Figure 7.1: The particle content of the MSSM, on the left the standard model
particles from Fig. 2.1, in the grey region the (unobserved) MSSM particles. Note
that the Higgs doublet gets doubled into Hu and Hd.

is exact, quantum corrections will not introduce R-symmetry breaking, while if
R-symmetry is broken by a single operator in the theory, the R-symmetry break-
ing operators will be suppressed by the coefficient of this R-symmetry breaking
operator. Hence, this symmetry generates selection rules on the operators that
appear in the Lagrangian.

No superpartner of a standard model particle has been observed in experi-
ments, which sets lower bounds on the masses of these particles. Unfortunately,
these bounds are strongly model dependent. Therefore, the bounds on the su-
perpartner masses are typically represented as a function of the mass of another
superpartner in this so called simplified model setup. For instance, Fig. 7.2 depicts
the excluded region for the gluino mass horizontally versus the lightest neutralino
vertically using data from the CMS collaboration [225]. The neutralino is a linear
combination of the different spin-1/2 neutral particles that appear in the MSSM,
thus a combination of the Higgsinos, the Bino and the neutral component of the
Wino. In the simplest models of supersymmetry breaking, the neutralino is the
LSP1. All other superpartners are assumed to be parametrically more massive
than the gluino in this analysis. If the gluino is lighter than the neutralino, this
decay is kinematically forbidden, so this region of the parameter space is not ob-
served in the analysis used for Fig. 7.2. The results from the ATLAS detector are

1If gravity is included, the gravitino is often lower in mass, but the decay width of the
neutralino to the gravitino is typically unobservably long at collider scales.
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Figure 7.2: Measured constraints on the mass of the gluino g̃ and neutralino (χ̃0
1)

in the simplified scenario that the gluino decays fully into a top quark pair and the
neutralino. The neutralino is considered the LSP and all other superparticles are
assumed to be infinitely massive. Figure from [225] .

similar [226].

7.2 Supersymmetry breaking
Supersymmetry imposes that the masses of the superpartners are the same as the
masses of the particles. If supersymmetry is an exact symmetry of nature, there
should be a whole zoo of bosonic superpartners of the standard model fermions.
None of these particles are observed, so supersymmetry is not an exact symmetry
of nature. This leaves open the possibility that supersymmetry is broken either
explicitly or spontaneously at some energy scale. To keep the theory predictive
below the supersymmetry breaking scale, spontaneous supersymmetry breaking
will be imposed in this thesis [221]. In this section we study how a theory with a
supersymmetric Lagrangian can break supersymmetry in the ground state of the
theory.

Supersymmetry is broken spontaneously if the ground state does not have zero
potential energy, since if the ground state has energy the algebra of Eq. (7.1)
can not be fulfilled due to the appearance of the momentum operator [221]. The
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potential of a supersymmetric theory is

V =
∑
i

|Fi|2 +
∑
j

|Dj |2, (7.23)

where the index i and j run over all F and D terms as defined in section 7.1.3.
The supersymmetric theory is therefore spontaneously broken if in the vacuum
F 6= 0 and/or D 6= 0. The possibility that D 6= 0 can only be obtained if the
gauge symmetry is Abelian through the Fayet-Iliopoulos term of (7.16) or if the
symmetry is broken. It turns out that a breaking of supersymmetry through the
U(1)Y of the MSSM is impossible, because if a Fayet-Iliopoulos term is added
to the action there exists a vacuum in which the gauge symmetries are broken
but supersymmetry is not [221]. Hence, for D-term supersymmetry breaking an
additional Abelian gauge symmetry has to be introduced. We will not discuss this
possibility, but instead use a nonzero F -term to break supersymmetry.

Chiral superfields models with a nonzero F -term in the vacuum are named
O’Raifertaigh models. Typically, these models introduce a superfield that has a
linear term in the superpotential. If, due to a proper choice of the superpotential,
all the F-terms (FΦ = ∂W/∂Φ) cannot simultaneously vanish anywhere in field
space, then supersymmetry is spontaneously broken.

The mode with a nonzero F-term contains a massless fermion called the gold-
stino – which is analogous to the massless bosonic Goldstone mode in theories
with a broken bosonic symmetry – and its scalar superpartner the sgoldstino. In
spontaneously broken supersymmetric models, there is no a-priori reason for the
sgoldstino to be massless. However, in typical examples of O’Raifertaigh models
the sgoldstino potential completely vanishes. Since there is no symmetry that pro-
tects the sgoldstino mass, a potential appears at loop level through the Coleman-
Weinberg term in Eq. (7.20). For this reason the sgoldstino has only a potential
at loop level.

A problematic feature of the O’Raifertaigh model is that the supertrace over
the masses of all particles satisfies the sum role [221]

Str
(
m2
i

)
=
∑
j

(−1)2j(2j + 1) tr
(
m2
j

)
= 0. (7.24)

This implies that there must be scalar degrees of freedom with masses below the
mass of the heaviest fermion. If also lepton flavour conservation is considered,
the bound becomes m2

ẽ1 + m2
ẽ2 − 2m2

e = 0, where the ẽi represent the two (real)
selectrons and e the electron. This forces the mass of at least one of the selectrons
to be below the electron mass, which is experimentally ruled out [221].

The sum rule (7.24) assumes that the supersymmetry breaking field is directly
coupled to the MSSM fields. This is not necessary, it is possible to introduce an
additional sector that does not couple to the MSSM at tree level and in which
supersymmetry is broken. The supersymmetry breaking is then mediated to the
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standard model sector. There are different proposals how to mediate the super-
symmetry breaking in the hidden sector to the observable sector. The two most
popular scenarios are through gravitational interactions and through messenger
particles. In the following both will be shortly explained. In chapter 8 gauge
mediated supersymmetry breaking will be used to propagate the supersymmetry
breaking.

Gravity couples to all particles identically, hence even if there are some fields
completely disconnected from the visible sector, there will always be gravitational
interactions between them. Since gravity couples equally to all particles, super-
gravity will provide new non-renormalizable interactions between the visible and
the hidden sectors [221]. From dimensional analysis, the masses introduced for the
superpartners are of the order of

msoft ≈
F

Mp
, (7.25)

where F is the size of the F -term that breaks supersymmetry.
Though gravity mediation is the a popular mediation scheme, there are several

drawbacks. The first is that there is no guarantee that the sparticle mass matrices
will be aligned with the particle mass matrices. The off-diagonal terms in the
sparticle mass matrix can generate a breaking of accidental symmetries of the
standard model, for instance flavour symmetry, whose breaking leave very clear
signatures in experiments. This problem does not exist if the full supergravity
(or string) theory suppresses these terms. However, this is the second drawback
of using gravity mediation: it is not known how to properly address quantum
gravity theories. Note that this is only a technical issue that might be solved in
the future. Moreover, since the LHC data pushes the lower bound on the sparticle
masses above the TeV scale, the supersymmetry breaking scale might be high
enough to prevent the flavour mixing to appear in current experiments.

Another scheme to mediate supersymmetry breaking to the standard model
is gauge mediation [227]. In gauge mediation, messenger particles (X) are intro-
duced, which are gauged under the standard model symmetry group and obtain a
mass due to a coupling in the superpotential with the goldstino multiplet (S),

W ⊃ ySXX̃. (7.26)

Due to this mass term, the fermion component ofX gets a mass from the sgoldstino
vacuum expectation value (VEV), while the scalars obtain an additional correc-
tion from the F term. Since X and X̃ are charged under the standard model
gauge group, supersymmetry breaking is mediated to the MSSM. The mass of the
gauginos is generated by 1-loop diagrams, while the gauge bosons are protected
by gauge symmetry. The mass splitting of the chiral fields in the MSSM is then
obtained at 2-loop order.

A simple model of gauge mediation is to assume that there exists an SU(5)
grand unification group. By introducing N5 messengers Xj (and X̃j), where the
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index j runs from 1 to N5, in the (anti-)fundamental representation of SU(5), the
superpotential of the messenger sector can be written as

Wmess = λSXjX̃j , (7.27)

where S is the goldstino field and λ a dimensionless coupling. Since the gaugino
masses are obtained at 1-loop, there masses will be [221,227]

mλa = N5αa
4π

F

M
, (7.28)

where M = λ〈S〉 is the mass of the messenger fields and αa the coupling constant
of type a running from 1 to 3. The masses of the sfermions are 2-loop suppressed,

m2
φi = 2N5

∑
a

Ca(φi)
(αa

4π

)2
(
F

M

)2
, (7.29)

where the Ca(φi) are the quadratic Casimir invariants. In Eqs. (7.28) and (7.29)
the running of the masses between the energy scale of gauge mediation (M) and the
LHC scale was neglected. The true masses at the energies of current experiments
have to be obtained by properly taking this running into account.

7.3 Constrained superfields

7.3.1 Nilpotent superfields
Similar to spontaneously broken bosonic symmetries, it is possible to construct a
non-linear realisation of supersymmetry using constrained superfields. This non-
linear realisation of supersymmetry will be used in section 7.5 to simplify the
construction of inflationary potentials in supergavity and will be the main subject
of chapter 8.

In bosonic theories the study of non-linear realisations of global symmetries is a
useful technique to explain the low-energy theory if the symmetry is spontaneously
broken, see for instance Ref. [228]. The spontaneous breaking of the global symme-
try generates a mass splitting between the different states. The heavy states can
be integrated out and only the (mass-less) Goldstone modes are left in the theory.
These Goldstone modes transform along each other under the original group, but
this symmetry is non-linearly realised.

The same technique can be applied to supersymmetry. In fact, the first super-
symmetric action that was constructed by Volkov and Akulov in 1973 [229] used
non-linearly realised supersymmetry, which was further developed in Refs. [230,
231]. In Refs. [231–233] was shown that the non-linear realisation of supersymme-
try is analogous to a theory of linearly realised supersymmetry if supersymmetry
is spontaneously broken. It is expected that at high energies supersymmetry will
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be realised linearly, but a non-linear realisation is more elegant in the low-energy
limit of the theory.

Supersymmetry is nonlinearly realised by introducing a nilpotent chiral super-
field S, which satisfies the constraint

S2 = 0. (7.30)

When writing this into components using Eq. (7.9), Eq. (7.30) leads to

s = ψ2
s

2Fs
sψs = 0, Fs 6= 0 (7.31)

where s, ψs and Fs are respectively the (complex) scalar part, the fermion part
and the F-term of the goldstino superfield S. The third relation in Eq. (7.31)
implies that supersymmetry is spontaneously broken. Note that, since fermions are
anticommuting, the first condition of (7.31) solves the second, hence only the first
condition has to be imposed. In addition, this relation implies that the sgoldstino
s is completely determined by the goldstino ψs. This will be an important feature
of nilpotent models when discussing inflation in section 7.5.

To exemplify the appearance of the constrained superfield in spontaneously
broken supersymmetry, consider the toy model [231]

K = SS† − c

Λ2
(
SS†

)2
, W = fS, (7.32)

where c and f are positive constants and Λ is the cut-off scale of the effective theory.
This cut-off scale originates from the high-energy (UV) physics that generated the
second term in the Kähler potential of which the origin will be discussed in chapter
8. Using Eq. (7.18), the sgoldstino mass can be obtained

m2
s = 4c

Λ2 f
2. (7.33)

Note that this mass is inversely proportional to the cut-off scale of the effective
theory. If the theory is evaluated at an energy below the sgoldstino mass, this
particle can be integrated out. By computing the full Lagrangian from Eq. (7.6),
the equation of motion for the sgoldstino can be obtained. This equation of motion
is solved if s satisfies Eq. (7.31), with 〈Fs〉 = −f , hence in the IR this theory
resembles a nilpotent theory. Since 〈Fs〉 is nonzero, supersymmetry is indeed
spontaneously broken. The sgoldstino is integrated out, which is a general feature
of nilpotent theories. For this reason these theories are also dubbed sgoldstinoless.

7.3.2 Additional constrained superfields
When considering supersymmetric theories in the (IR) limit where supersymmetry
is broken, the superfields will include a light particle and its heavy superpartner.
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In the IR-theory, the heavy sparticle will be too heavy to interact with other
states and can be removed. For this, additional constraints between the nilpotent
superfield (S) and other superfields (Y ) were introduced in Ref. [231]. Due to these
constraints some components in Y are projected out similarly to the removal of
the sgoldstino from the nilpotent superfield. There are two reasons for this to be
interesting. First, as anticipated above, it can be utilized to obtain a theory with
only the standard model and the goldstino [231]. This theory has the full set of
couplings between the goldstino and the standard model fields, which is nontrivial
to obtain if linear supersymmetry breaking is considered. Secondly, this type of
constraints can be used to remove the sinflaton, the complex scalar partner of the
inflaton, from the spectrum during inflation, which is useful when building single-
field inflation models. For this second reason, we will focus here on the chiral
multiplet, however similar constraints can also be defined to remove the gauginos
from the vector multiplet [231].

In the MSSM, quarks2 are represented by the chiral superfield Q, which con-
tains the standard model fermion and the complex scalar superpartner. The scalar
field from the fermion superfield can be removed with the constraint

QNLSNL = 0, (7.34)

where NL means that the theory is considered in the IR limit in which supersym-
metry is nonlinearly realised and S is the nilpotent superfield defined by Eq. (7.30).
Writing this constraint in components, the scalar field is mapped into a set of
fermions (and F-terms) [231]. Similarly, a superfield with only a scalar can be
obtained with

SNLH̄NL = chiral or SNL
(
ANL − ĀNL

)
= 0. (7.35)

The first constraint imposes that the superfield H only contains a complex scalar
field, while the second constraint imposes that A only contains a real scalar field.
The first constraint can be used to define the Higgs doublet in the standard model,
while the second is interesting for studying inflation.

Another extension to the nilpotent formalism is to define higher order nilpo-
tency constraints. The nilpotent-n superfield, where n is an integer, is defined as
a superfield obeying the constraint [234]

Sn = 0, while Sp<n 6= 0. (7.36)

The nilpotent superfields used so far were nilpotent-2 superfields. Interestingly, the
scalar part of a nilpotent-n superfield is completely determined by the fermions,
just as in the case of nilpotent-2 superfields, though in this case multiple fermions
are necessary. To generate a consistent nilpotent-n theory, n − 1 superfields are
required. The reason is that the nilpotent-n superfield requires a scalar field φ
with the condition φn = 0.

Nilpotent-n fields will not be studied in this thesis.
2The leptons can be treated similarly.



7.4 Supergravity 129

7.4 Supergravity
The discussion above focussed on global or rigid supersymmetry. However, an
interesting feature of inflation is that it might be a test ground for supergravity,
which is obtained by promoting supersymmetry to a local symmetry. Since the
supersymmetry algebra in Eq. (7.1) mixes nontrivially with the Pointcarré alge-
bra, gauging supersymmetry implies that also the Pointcarré algebra is gauged.
Therefore, local supersymmetry corresponds to a theory of gravity. In this sec-
tion, a short review on the main supergravity framework will be provided, with
the aim to write inflation models embedded in supergravity. Some general reviews
on supergravity are Refs. [235, 236], while reviews on supergravity and inflation
are Refs. [237,238].

Given that quantum gravity contains a spin-2 graviton in the spectrum, su-
pergravity should include this graviton and its spin-3/2 superpartner named the
gravitino (ψµ). To preserve Lorentz invariance, the graviton must be massless,
hence if supersymmetry is exact also the gravitino is massless. If supersymmetry
is spontaneously broken, a process similar to the Higgs effect happens, named the
superhiggs effect [236], and the goldstino is absorbed by the longitudinal compo-
nent of the gravitino, giving the latter a nonzero mass. This mass is given by the
expression

m2
3/2 = e

K

M2
p
|W |2

M4
p
, (7.37)

which in the low energy limit Mp →∞ becomes

m3/2 ≈
|W |√
3M2

p
. (7.38)

For theories with local supersymmetry, the Lagrangian can be split in six parts

L = LCB +LCFK +LCF +LVB +LVFK +LVF , (7.39)
where the subscripts B, FK and F stand for boson, fermion kinetic and fermion
interaction terms respectively, and the terms with superscript V contain gauge
fields. Complete expressions of the six Lagrangians can be found in [236], but
in this thesis only LCB will be used. Assuming in addition – as will be done
below as well – that gauge interactions do not play an important role, the bosonic
Lagrangian of supergravity becomes

LB = − 1
2M

2
pR−Gī∂µφi∂µφ∗̄ − e

G

M2
p

[
Gi
(
G−1)

ī
Ḡ − 3M2

p

]
M2

p , (7.40)

where the superscript C is dropped. The function G(φ, φ∗) is defined as

G(φ, φ∗) = K(φ, φ∗) +M2
p ln

∣∣∣∣W (φ)
M3

p

∣∣∣∣2 (7.41)
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and a subscript i (̄) implies a derivative with respect to the field φi (φ∗̄ ). Hence,
supergravity can be fully represented by a single function3, G(Φ,Φ†), though in
the following this framework will not be used and the Kähler potential and the
superpotential will be defined separately. Note that the potential (7.40) is non-
renormalizable.

In section 7.3, supersymmetry breaking in rigid supersymmetry was introduced
non-linearly using constraint superfields. However, the introduction of superspace
in supergravity is subtle since the spinor coordinates θ become part of the local
algebra and are called Θ. Let me bypass the subtleties of superspace and move
directly to the graviton multiplet which consists of the graviton, the gravitino and
some auxiliary fields. From the gravitino a chiral multiplet named the curvature
superfield R is defined which corresponds to covariant perturbations of the metric.
This field can be used to define a nilpotent superfield that will nonlinearly break
supersymmetry with the constraint [239](

R
S0
− λ
)2

= 0, (7.42)

where λ is a parameter that can be used to set the cosmological constant and S0
is the chiral compensator field, which is a field used to build supergravity actions
but carries no fundamental degrees of freedom [240]4. The constraint (7.42) can be
solved order by order and results indeed in a theory with supersymmetry breaking
but without a goldstino. This was expected, since the goldstino is absorbed by
the gravitino due to the superhiggs effect.

By using Lagrange multipliers, the action relating the constraint (7.42) can be
rewritten with an additional nilpotent-2 field X [241]. The Kähler and superpo-
tential of this theory are simply

K = 3|X|2 W = W0 + λX, (7.43)

which is what is expected for a nilpotent-2 theory. Therefore, as in rigid supersym-
metry, supersymmetry breaking in supergravity can be nonlinearly realised using
a nilpotent-2 superfield [239,241–243].

This can be expanded to a more general case with additional matter multiplets
Qi for which the Kähler and superpotential are, when expanded in the nilpotent-2
field,

K = K0 + (K1X + c.c.) +K2|X|2, W = W0 +W1X, (7.44)

where the Kj(Qi, Q†i ) and Wl(Qi) for j = 1, .., 3 and l = 1, 2 are arbitrary func-
tions. It was shown in Ref. [239] that the specific case K1 = K2 = 0 leads to the

3If gauge interactions are present, also the gauge kinetic function fij is relevant.
4It is similar to the φ2−χ2 combination in the Lagrangian (6.15). First a conformally invariant

supergravity theory is constructed, after which the conformal symmetry is broken by the chiral
compensator. See also the discussion around Eq. (6.15).
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gravitational nilpotent theory described by Eq. (7.42), with W0 and λ functions
of the fields Qi.

A similar framework can be used to obtain the Starobinsky model defined in
section 3.4.2 [244]. Also, by imposing constraints on combinations of R and the
goldstino X, certain modes in the gravitino multiplet can be opened, generating
an interesting new set of models [245]. For instance, it is natural to choose a
constraint that will integrate out the auxiliary component of the scalar part of R,
which can be accomplished by choosing XR = 0 [245].

7.5 Supersymmetric theories of inflation
In general, inflation models can be divided into two types. The first type are the
small-field models, for which ∆φ ≡ φ∗ − φend < Mp, while the large-field models
have ∆φ > Mp. Small-field models often contain multiple fields, for instance
many hybrid inflation models belong to this category, while single-field models are
typically large-field models5, as are the models described in section 3.4.

Also small-field inflation typically occurs at large energy scales when compared
to current collider scales, hence rigid supersymmetry might be the relevant exten-
sion of the standard model at those energies. Since supersymmetric extensions
typically contain a large number of scalar fields, there are a plethora of possi-
ble inflaton candidates. Typically non-perturbative terms are relevant to obtain
small-field inflation (or the model is ruled out by the CMB measurements). Hence,
building supersymmetric models with inflation is not trivial, but some progress is
reached, for instance in ISS-flation [246,247] and MSSM inflation [248].

Large-field inflation models, on the contrary, require an understanding of the
physics at energy scales where gravitational effects might not be negligible. In this
scenario, often supergravity inflation models are considered, but in principle this
might not be correct as the inflation model should be fully implemented in string
theory. It is possible that certain supergravitity models, especially the models with
a mild field excursion ∆φ ≈ Mp, can be described using supergravity. However,
it is an open question if this is indeed allowed in string theory [249–254]. Though
there are interesting developments in embedding inflation models directly in string
theory [255–260], this thesis will consider inflation in supergravity.

In the following subsections, first supergravity inflation will be shortly re-
viewed, with emphasis on nilpotent inflation and the α-attractor model introduced
in section 6.2. Then, in the second subsection, some phenomenological problems
of reheating will be explained, mainly the problem of gravitino overproduction.
In the following we will be interested in large field models, and will hence try to
obtain models of inflation in supergravity.

5Note that this is not a general statement and there are small-field models known with only
a single inflaton.
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7.5.1 Supergravity and inflation
For considering inflation in supergravity, the potential of the scalar field is written
as

V = e
K

M2
p

[
(K−1)ī

∣∣∣∣Wi + WKi

M2
p

∣∣∣∣2 − 3|W |2

M2
p

]
, (7.45)

as given by Eq. (7.40). Three features of the Lagrangian are problematic for single
field inflation to occur. The first is that the scalar components of superfields are
complex scalar fields. Thus, even when considering only one superfield, there will
be two inflaton candidates. The second feature, known as the η problem, is that a
canonical Kähler potential is at least quadratic in the fields, hence V ∝ exp

(
φ2),

where φ is the inflaton. This potential is too steep to drive inflation, since ηV > 1.
The third undesirable feature of (7.45) is the −3|W |2/M2

p in the potential, which
might render the potential unstable and negative.

In general, the first problem is usually relatively mild. The reason is that a
large VEV for the inflaton typically stabilises its superpartner. Solving the second
problem is relatively straightforward. The problematic term in the potential is
originating from the Kähler potential, hence imposing that the Kähler potential is
invariant under the shift symmetry ϕ→ ϕ+ δ, where ϕ is the inflaton, will solve
the problem [261]. Hence, if the inflaton is the imaginary part of φ, the η problem
is solved if K(Φ,Φ†) = K(Φ + Φ†).

Since the potential of a theory with an exact shift symmetric is completely flat,
lifting this symmetry of the Kähler to a symmetry of the potential is not possible.
If the superpotential breaks the shift symmetry, this breaking will be transmitted
to the Kähler potential via quantum corrections. If these quantum corrections are
small, these corrections will not reintroduce the η problem. In general, it is also
possible to break the shift symmetry directly in the Kähler potential, as long as it
is still an approximate symmetry.

The problem that many (large field) inflation models are unbounded from below
is more complicated to solve. To illustrate the problem, consider the model [261]

K = 1
2
(
Φ + Φ†

)2
, W = mΦ2, (7.46)

where m is the mass of the inflaton field. To break the shift symmetry only mildly,
it sufficies to insistent on m < Mp. In the rigid limit, this potential resembles a
two-field copy of quadratic inflation. However, in supergravity the sinflaton is
stabilized to 0 if φ . 3Mp. Integrating out the sinflaton, the inflaton potential
becomes

V = 1
4m

2ϕ2
(

8− 3ϕ2

M2
p

)
, (7.47)

where ϕ = Imφ is the inflaton. This potential is plotted in Fig. 7.3 where it is
shown that the potential has a maximum below ϕe =

√
2Mp where quadratic infla-

tion ends. Hence, this model is a hilltop inflation model, rather than a quadratic.
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Figure 7.3: In blue the potential of Eq. (7.47) representing quadratic inflation in
supergravity, and in yellow the quadratic potential. The black stars mark the value
for ϕ where inflation ends. In the relevant inflationary regime, on the right of the
black star on the orange line, the supergravity model does not inflate towards the
minimum at φ = 0.

In this particular hilltop model the top of the potential is reached in roughly a
single e-fold, hence it is not possible to obtain 50 e-folds of inflation to explain the
observed CMB anisotropies.

By considering specific Kähler and superpotentials, it is possible to solve the
undoundedness problem within the framework of a single superfield, as was done
in Refs. [212,262–266]6. However, when insisting on single-field, non-hilltop, poly-
nomial potentials this is not possible, since for large inflaton field values the −|W |2
term will always be larger than the derivative terms. A solution is to introduce a
stabilizer field S with an interaction of the type

K = 1
2
(
Φ + Φ†

)2 + S†S, W =
(
f0 −

m

2Mp
Φ2
)

(Mp + δS) , (7.48)

where δ and f0 are constant parameters. The quadratic potential 1
2m

2ϕ2 is ob-
tained when integrating out the scalar component of S and the sinflaton. The
stabilizer field S in this model also breaks supersymmetry, since 〈Fs〉 = −f0δ 6= 0.
Setting δ ≈

√
3, the vacuum Φ = S = 0 has vanishing potential. Hence, a small de-

viation from δ =
√

3 explains the current accelerated expansion7. The parameter
f0 defines the supersymmetry breaking scale.

However, by introducing an additional superfield two real scalar fields were
added to the theory. To remove these fields from the spectrum, in Ref. [267] was

6Though many of these models are hybrid inflation models.
7Though this does not explain how δ became this value, so the cosmological constant problem

is not really solved.
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proposed to constrain the stabilizer S to be a nilpotent-2 superfield, which be-
came an active field of research [239,268–274]. The important feature of nilpotent
superfields is that the scalar fields have a very large mass and can be integrated
out in the IR. Then, assuming that inflation is far enough in the IR, the stabilizer
field is integrated out and only an inflaton in a quadratic potential is left.

Simply defining the stabilizer field to be a nilpotent-2 superfield solves the
problem and in addition provides a natural mechanism for supersymmetry break-
ing [275], but an interesting question is whether this is theoretically consistent
[243,276,277]. The nilpotency constraint is a low energy effective description of a
theory in which supersymmetry is broken linearly. For supersymmetry to be re-
alised non-linearly by the nilpotent-2 constraint, the operator −γ|S|4 in Eq. (7.32),
with γ = c/M2, should exist in the Kähler potential with the parameter γ � 1.
Within a perturbative theory, this operator cannot appear at tree level but it
does appear at loop level through the Coleman-Weinberg potential. Expanding
Eq. (7.19) for small S, we obtain that γ ≈ c/Λ2, where Λ is the cut-off scale, and
c contains the loop factor. Large γ implies either large c, rendering the theory
non-perturbative, or small Λ. The energy scale Λ typically refers to the mass of
some particles that are integrated out and it is not allowed to integrate out par-
ticles with a mass below the energy scale at which the theory is considered. For
inflation the typical energy scale is H, hence for the consistency of the effective
theory it is required that Λ & H during inflation. This set of constraints strongly
limits the validity range of nilpotent inflation theories, as we will discuss in detail
in chapter 8.

For example, Eq. (7.48) can be UV-completed using the O’Raifeartaigh model

K = 1
2 (Φ + Φ†)2 + |S|2 + |X|2 + |Y |2 (7.49)

W = f(Φ)(1 + δS) + λSX2 +MXY, (7.50)

where δ and λ are constant parameters, M is the mass of the X and Y fields and
f(Φ) is an arbitrary function of the inflaton. If we consider M large, the X and
Y fields can be integrated out and the low energy Kähler potential becomes

KIR = 1
2 (Φ + Φ†)2 + |S|2 − λ4

6(8π2)M2 |S|
4. (7.51)

An interesting analysis, performed by Dudas et al. in Ref. [278], showed that
indeed there is a tachyon in the imaginary parts of the scalar components of X
and Y if M2 < 2

√
3λm3/2Mp, while the gravitino mass m3/2 is roughly at the

Hubble scale during inflation. The authors showed that the actual window for M
in quadratic inflation is very small and close to the Planck scale. This implies
that the sgoldstino mass is never more than a factor 10 larger than the gravitino
mass. Hence, for the sgoldstino mass to be sufficiently large so that it can be
integrated out during inflation, the gravitino mass has to be large as well. This
hints to the fact that consistent nilpotent inflation implies a large supersymmetry
breaking scale in the vacuum.
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Figure 7.4: The absolute value of the sgoldstino VEV after inflation in blue, with
the cutoff scale of the theory Λ in grey, using the model from Ref. [278] with the
parameters m3/2 = 104 GeV and ms = 106 GeV. For a large part of the trajectory,
the sgoldstino VEV is above the cutoff scale of the theory. The sharp drops are
caused by a crossing of the VEV through 0.

Another problem, which was not analysed in Ref. [278], is that during inflation
the sgoldstino acquires a VEV that in this scenario is beyond the Planck scale, as
is shown in Fig. 7.4. Due to this large VEV the first order Taylor expansion of the
Coleman-Weinberg 1-loop potential used in (7.51) is not sufficient. This renders
the analysis of the stability based on the terms in Eq. (7.51) incorrect. Both
problems, the large VEV for S and the impossibility to have small supersymmetry
breaking, will be studied further in chapter 8, where a model will be introduced
that circumvents these issues.

For inflationary model building, additional constraints can be imposed to re-
move more fields from the theory, as shown for global supersymmetry in section
7.3, which can be applied with minor changes also in supergravity [271,272]. The
strongest constraint, S(Φ + Φ†) = 0, can be used to remove all particles from
the spectrum, except for the (imaginary) inflaton and the goldstino. Therefore, a
possible stabilization of the sinflaton is not necessary in this case and the removal
of the fermionic inflatino simplifies reheating [279–281].

Models of the type with S2 = S(Φ + Φ†) = 0 are obtained in a Kähler and
superpotential of the form [272]

K = SS† + (Φ + Φ†)2h(Φ− Φ†), W = f(Φ)S + g(Φ), (7.52)

where f , g and h are arbitrary functions. Note that this additional condition
therefore provides an explanation for the shift invariance of the Kähler potential
in Eq. (7.45).
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Another model that can be made invariant under the two nilpotent constraints
described above is the α-attractor models introduced in section 6.2. The T-mode
α-attractor can be obtained in supergravity by considering the Kähler potential
[208–211,271,282]

K = −
3M2

p
2 α log

 (
M4

p − ΦΦ†
)2(

M2
p − Φ2

) (
M2

p − (Φ†)2
)
+ SS†. (7.53)

Taking W as in Eq. (7.52) will be consistent with the constraints. Similarly, the
E-mode α-attractor is characterized by the Kähler potential [211]

K = −
3M2

p
2 α log

((
Φ + Φ†

)2
4ΦΦ†

)
+ SS†. (7.54)

An explicit calculation that these functions can be made consistent with the above
nilpotency constraints involving two superfields is given in [271].

In section 6.2 the α-attractor was obtained by considering models with an
explicitly broken conformal symmetry. This can be obtained in supergravity with
two different approaches, depending on how the gravitino is introduced. The
Kähler potential (7.53) leads to a theory with exact conformal symmetry in the
kinetic sector of Φ only (the superpotential will break conformal symmetry, as in
section 6.2), while the stabilizer field is not conformally invariant. To also include
the S field in the superconformal theory, the Kähler and superpotentials [206]

K = M2
p log

(
−|X|2 + |Φ|2 + |S|2

M2
p

)
, W = S

(
X2 − Φ2) f (Φ

X

)
, (7.55)

are considered for which the conformal compensator field X, has the wrong kinetic
sign [206, 283]. The function f in the superpotential breaks the superconformal
symmetry to give a potential to the inflaton. As in section 6.2, different attractors
can be found with different gauge choices of the superconformal symmetry. For
instance, choosing X = X̄ =

√
3Mp leads to

K = −3αM2
p log

(
1− 1

3M2
p

(SS† + ΦΦ†)
)
,

W = Sf

(
Φ√
3

)(
3− Φ2

M2
p

)(3α−1)/2

, (7.56)

which is the T-mode α-attractor.
On closing, note that the combining factor between the different Kähler po-

tentials of (7.53), (7.54) and (7.56) is the logarithmic dependence on the inflaton
field [216]. In section 6.2 was explained that the α-attractor originates from a
hyperbolic geometry of the field space. This type of logarithmic Kähler potential
indeed implies such a conformal (or Poincaré) disk model [216].
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7.5.2 Reheating
Supersymmetry can also generate interesting features during the era of reheating.
Two important effects will be explained in this section. The first is the possibility
that the known evolution of the universe is strongly affected by a large amount of
gravitinos. A second effect of supersymmetry on reheating will be the appearance
of moduli that might generate another reheating-like era.

The gravitino only interacts gravitationally to the standard model matter.
Therefore, if it decays it decays extremely slowly. This has important consequences
when a sizeable fraction of gravitinos decay during Big Bang nucleosynthesis, dis-
cussed in section 2.5, since then the remnants of the decay will affect the abundance
of elements in the universe [153, 284]. If the gravitino is the supersymmetric par-
ticle with the lowest mass (LSP), it is stable if R-parity is conserved. Evidently,
the gravitino might be the observed cold dark matter if it is stable and produced
with exactly the right abundance. However, in many models the gravitino is over-
produced, leading to the gravitino overproduction problem. Finally, the decay of
the next to lightest supersymmetric particle (NLSP) to the gravitino is strongly
suppressed but should not be slower than the time until BBN [284]. Therefore, it
is important to study the creation mechanisms of the gravitino.

In the early universe, the gravitino can be produced through several different
processes. The standard paradigm for dark matter discussed in section 2.6 is that it
is produced through the freeze-out process, but since the gravitino is coupled very
weakly to the thermal plasma, it usually does not thermalize and this possibility is
not considered in this thesis. In addition, bath particles can decay or scatter into
gravitinos. Though both processes can be named freeze-in, gravitino literature
uses the name freeze-in only for the decay of bath particles into gravitinos, while
the scattering into gravitinos is named thermal production Refs. [285–288].

To compute the gravitino abundance through the decay of bath particles into
gravitinos, the theory developed in section 2.6 can be used. The decay widths of
particles into gravitinos is universal and only depends on the mass of the decaying
particle [227]

Γ(χ̃→ χ′G̃) =
κm5

χ′

48πM2
pm

2
3/2

, (7.57)

where χ̃ is the NLSP and χ′ the standard model partner of the NLSP. The constant
κ is of order 1, see Ref. [227] for the complete expressions. Using Eq. (2.29), the
gravitino yield from freeze-in is [75]

Yfreeze-in =
∑
X̃

135
√

90gX̃
8π4g

3/2
∗

ΓX̃Mp
m2
X̃

I , (7.58)

where the sum runs over all the superparticles (X̃) and I was defined in Eq. (2.30).
The thermal production through scatterings of bath particles into gravitinos is

rather complicated, since thermal effects have to be taken into account properly.
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These contributions were investigated in Refs. [285–288], combining analytical and
numerical techniques. These analyses found that if the gravitino mass is below 10
GeV, the reheating temperature is required to be below 1010 GeV to not overclose
the universe, while for most models of baryogenesis a reheating temperature above
1010 GeV is necessary.

Also other solutions exist to solve the gravitino problem. For instance, a late
time entropy production can dilute an earlier generated gravitino abundance [289–
293]. However, if this entropy insertion produces a large amount of antimatter, this
might reintroduce the matter/antimatter asymmetry problem. Another solution is
to use either an extremely light gravitino, [294,295] or a very heavy gravitino [296].

Typically, an additional important source of gravitino production comes from
direct decay of the inflaton into the gravitino [160,161,297], as explained in section
3.5 for a more general case. The main contribution of this decay is the inflaton
decaying into the goldstino, which is the longitudinal component of the gravitino.
Though this is often an important component of the gravitino abundance, the
computation is highly model dependent.

Finally, gravitinos can be produced in the era of preheating due to resonant
processes [279,285]. In Ref. [298] it was shown that this can be a relevant produc-
tion process if a stabilizer field is introduced. The precise amount of gravitinos
produced during preheating requires a dedicated study and is beyond the content
of this thesis.

Another effect of supersymmetry on reheating, and potentially also on inflation,
are flat directions. Typical supersymmetric theories contain many directions in the
scalar field space that have a potential characterized by the size of supersymmetry
breaking only. During inflation the supersymmetry breaking scale is defined by
the hight of the potential, which equals H2 through Eq. (3.6), thus these fields will
have a similar mass [299] and can be ignored. However, during reheating these
orthogonal states might be relevant.

An example is the Polonyi problem in inflation models with gravity mediated
supersymmetry breaking [300–302]. In most inflation models the sgoldstino field
is stabilized to S = 0 during inflation, while after inflation it acquires a nonzero
VEV. The relaxation of the sgoldstino to its VEV is through a process that is very
similar to reheating after inflation and the sgoldstino will continue adding energy
to the thermal plasma, even if it is not the main contribution to the energy density
of that plasma. Since the decay of the sgoldstino in gravity mediated models of
supersymmetry breaking ΓS ∝ m3

s/M
2
p is often after BBN, this decay will change

BBN in an observable manner.
In gauge mediation models the Polonyi problem often does not appear, since

in such models ΓS ∝ 〈F 〉/Mmess which is much larger, hence the decay time of the
sgoldstino is smaller. But also in gauge mediation a similar problem appears if
there are moduli in the supersymmetric theory, or originating from string theory,
which get displaced from their VEV during inflation and interact very weakly with
the other fields in the theory [302].
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An interesting observation is that the Polonyi problem pushes the theory to-
wards very large soft masses. Assuming that in gravity mediation all superpart-
ners, including the gravitino and the sgoldstino, have roughly the same mass, the
requirement that the sgoldstino field decays before the onset of BBN can be solved
if the sgoldstino field is above 10 TeV [301, 303, 304], but even that scenario has
severe problems with the decay products [303, 304]. Since no experimental con-
straints on supersymmetry exist on this energy scale, it would be interesting if this
cosmological bound can be lowered. For gauge mediation the moduli problem is
less severe, since the sgoldstino decay is much faster and much smaller soft masses
can be obtained. A model that solves these issues using gauge mediation was
obtained in Ref. [289] and in chapter 8 we will show another example that evades
the gravitino problem. In Ref. [289] also the matter-antimatter asymmetry in the
universe was solved.





CHAPTER 8

Sgoldstino-less inflation and low
energy SUSY breaking

8.1 Introduction
When studying large-field supergravity inflation models in section 7.5, it was shown
that it is convenient to use nilpotent multiplets to stabilize the inflaton trajectory.
However, the nilpotent inflation model that was considered in this chapter was
only consistent in a small window of energy scales for the supersymmetry breaking
scale. The reason for this small window is that the nilpotency condition required
two opposite regimes for the cut-off scale of the effective theory, which could not
always be satisfied.

Additional problems appearing in section 7.5.2 were the Polonyi problem and
the gravitino abundance problem. In models with gravity mediation the sgoldstino
mode typically has a very long lifetime and the decay of the sgoldstino occurs
during BBN, in contrast to observations. Models in which supersymmetry breaking
is mediated to the standard model through gauge mediation have the sgoldstino
decaying much faster, but for these models the gravitino mass is small and therefore
its primordial abundance is typically too large.

In this chapter a model of gauge mediation will be introduced that addresses the
two problems mentioned above. In section 8.2 we introduce the generic consistency
conditions that nilpotent inflation models should satisfy. In section 8.3 we intro-
duce our model, where the inflationary dynamics is governed by the α-attractor
mechanism introduced in section 6.2. We revisit the α-attractor predictions and
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we discuss the regime of validity of the effective field theory (EFT) approximation
in this concrete example. (Some more details are in Appendix C.) In section 8.4
we introduce a possible UV completion of the model, based on a supersymmetry
breaking sector with gauge mediation. We first analyse the consistency conditions
of the UV theory and recover bounds compatible with those discussed in the EFT
analysis. In section 8.5 we perform a phenomenological analysis of the model.
We compute the reheating temperature and implement bounds from the gravitino
overabundance problem, Big Bang nucleosynthesis and LHC constraints. Finally,
we conclude in section 8.6.

This chapter is based on publication [305].

8.2 Effective field theory for sgoldstino-less infla-
tion

The idea of nilpotency was already introduced in section 7.3, and used for in-
flation models in section 7.5. These inflation models [213, 239, 241, 256, 257, 259,
267–274, 282] are characterized by the presence of a nilpotent chiral superfield
S2 = 0 [229–232, 242], i.e. the goldstino superfield, which is responsible for spon-
taneous supersymmetry breaking, and another chiral superfield Φ whose imaginary
component is the inflaton field, which exhibits a shift symmetry in order to make
its potential viable for inflation [261]. The nilpotency condition corresponds to
the fact that the scalar component of the chiral superfield S, i.e. the sgoldstino,
has been integrated out. The theory with the nilpotent superfield (and potentially
with other constrained superfields) is then interpreted as an effective field theory
valid up to the energy scale of the sgoldstino.

In this section, our aim is to take a step back and write an effective field theory
(EFT) which includes the sgoldstino, but where we can estimate its mass and fol-
low its decoupling at low energies. As was explained in section 7.2, the tree level
potential of the sgoldstino vanishes. However, it gets its mass through non renor-
malizable operators in the Kähler potential, which can be for instance generated
perturbatively in a weakly coupled UV completion. Such physics can be simply
captured in a class of models of inflation in supergravity which is characterized by
a few arbitrary functions. We take the following Kähler and superpotential

K = K(Φ,Φ†) + SS† − (SS†)2

Λ2
eff

(8.1a)

W = f(Φ)S +Mph(Φ) . (8.1b)

In these expressions the Kähler potential for Φ typically respects a shift symme-
try which makes it independent of the imaginary component, to be eventually
identified with the inflaton field. It can be typically non-canonical with Planck
scale corrections, reducing to a canonical form when the lowest component φ is
small, i.e. after inflation. f(Φ) and h(Φ) are functions of the inflaton field and
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can include higher dimensional operators typically suppressed by the Planck scale.
These functions are arbitrary up to the constraint that h′(0) = f ′(0) = 0, since we
demand that S is the only field that breaks supersymmetry. They determine the
scalar potential for the inflaton and hence should be chosen properly in order to
have viable single-field inflationary dynamics and a (meta)-stable vacuum at the
end of inflation. Moreover, these functions have to be tuned in order to obtain a
vanishingly small cosmological constant in the vacuum at the end of inflation.

The validity of the sgoldstino-less description is controlled by the sgoldstino
mass, which is φ dependent

m2
s = 4|f(φ)|2

Λ2
eff

. (8.2)

The fermionic component of S is the goldstino and it is massless. It is eaten by the
gravitino which then acquires the mass given in Eq. (7.38), m3/2 ∝ |W |/M2

p . Note
that the sgoldstino mass depends on another scale, which is the scale that sets the
validity of this effective theory Λeff . By definition of EFT, this scale must be larger
than ms. One should then wonder what is the typical size of Λeff with respect
to the Planck scale and how such a non-renormalizable operator is generated in a
UV completion of the theory. If Λeff ∼Mp the simplest interpretation is that this
quartic operator arises from Planck scale physics. If instead Λeff �Mp then one is
necessarily integrating over some physics below the Planck scale and the operator
leading to the sgoldstino mass can be typically interpreted as the leading term in
a series of higher dimensional corrections to the Kähler potential suppressed by
powers of Λeff .

In the first case, the sgoldstino mass at the end of inflation will scale as f0
Mp

,
where f0 ≡ f(0). In order for this scalar to be decoupled from SM physics we
should demand its mass to be larger than roughly a TeV. This automatically sets
f0, the scale of supersymmetry breaking at the end of inflation, to be large, and
poses the model in a scenario where the gravity mediated contribution to the
MSSM soft terms, also scaling as f0

Mp
, are sizeable. Actually, if Λeff ∼ Mp, in the

vacuum the gravitino mass turns out to be of the same size as ms.
In the second case, the sgoldstino mass is given by f0

Λeff
� f0

Mp
. Then f0

can be small keeping ms sizeable, and SUSY breaking can be mediated to the
MSSM via gauge interactions, with gravity mediated effects subleading. In this
paper we are interested in the second case, and hence we are immediately facing
questions associated to the validity of the effective theory at very high scales
and the role played by Λeff . As reviewed in section 7.5, requires a viable UV-
completion of sgoldstino-less inflation models an effective scale Λeff of at most
one order of magnitude smaller than the Planck scale, see also Ref. [278]. Here
we discuss systematically the consistency conditions that we expect the effective
theory to satisfy, and we propose a strategy to realize models of inflation with low
supersymmetry breaking scale at the end of inflation.
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8.2.1 Consistency conditions
Let us start with identifying the consistency conditions that the effective theory in
(8.1a) should satisfy. The idea is, again, that the EFT should be in its regime of
validity at the energy scales of the physics that one is describing, that is during and
after inflation. Hence, these conditions must be satisfied along the entire inflaton
trajectory, from Planckian values to the origin:

m2
s � Λ2

eff , 〈s〉 � Λeff . (8.3)

These two conditions are necessary to have a well defined effective theory for S.
Observe that all quantities appearing in these conditions should be intended as
functions of the value of the inflaton field. The first condition in (8.3) is easily
translated into the constraint

f(φ)� Λ2
eff . (8.4)

The second condition in (8.3) is involved and requires the study of the sgoldstino
vacuum expectation value (VEV) along the entire inflaton trajectory.

Note that strictly speaking, an EFT such as (8.1a) treats differently Φ and S,
in the sense that integrating out the physics at Λeff affects the Kähler potential
of S, while the one of Φ is more generally determined by Planck scale physics.
Nevertheless, we can conservatively ask that also the degrees of freedom of Φ, at
least after inflation, are within the regime of validity of the EFT of S:

m2
φ � Λ2

eff . (8.5)

Besides these consistency conditions, in order to guarantee that inflation is
driven by a single field (or equivalently, that the goldstino superfield is nilpotent
at that time), we should demand that during inflation the sgoldstino is heavier
than the typical scale, i.e. the Hubble scale, hence

m2
s

∣∣
infl � H2∣∣

infl . (8.6)

On the other hand this translates simply to

Λeff �Mp , (8.7)

where we assume a potential dominated by |f(φ)|2. We thus see that having a
scale for new physics lower than the Planck scale is actually a requirement for
contemplating the decoupling of the sgoldstino from inflation.

Note that generically the effective scale Λeff can be a function of the inflaton
field, varying along the inflationary trajectory. This is a promising possibility
since a function Λeff(φ) increasing with φ implies that the validity threshold of
the effective theory grows with increasing φ. Note that a φ dependent Λeff would
introduce a new source of shift symmetry breaking, which should be controlled by
a small parameter.
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In the next section we will study the implications of the consistency conditions
on the effective field theory with dynamical Λeff(Φ) in a simple model. We will
then provide a UV completion which generates such an effective theory.

8.3 An illustrative model

8.3.1 Definition of the model
The Lagrangian we will consider in this section is of the form

K = −3α
2 M2

p log
(

(M2
p − ΦΦ†)2

(M2
p + Φ2)(M2

p + Φ†2)

)
+ SS† − (SS†)2

Λeff(Φ)2 ,

W = f(Φ)S +Mph(Φ) , (8.8)

where the scale Λeff is, as announced above, promoted to be a function of the
inflaton field value during inflation. The choice of a non-minimal form for the
Kähler potential resembles the α-attractor Kähler potential already discussed in
section 7.5 (compare with Eq. (7.53)). It allows us to reach much better observables
while keeping polynomial and independent the functions f and h.

The three different functions introduced above will be taken of the form

f(Φ) = f0 −
mf

Mp
Φ2 , h(Φ) = h0 −

mh

Mp
Φ2 , (8.9)

and
Λ2

eff(Φ) = |Λ0 + gΦ|2 . (8.10)
In this situation, Λ2

eff(Φ) will take large values during inflation (where Im(Φ) ∼
Mp) and fall down to lower values when Φ rolls down its potential.

Several remarks should be made about the structure of the Kähler potential
in (8.8). For field values much smaller than the Planck scale, the α-attractor
Kähler potential is a canonical one (for α = 1/3) exhibiting a shift symmetry for
Im(Φ). The non-renormalizable term for S suppressed by Λeff(Φ) is instead a non-
canonical term, whose Φ dependence introduces an extra source of breaking of the
shift symmetry. Henceforth we consider g � 1 such that the breaking of the shift
symmetry is small. Moreover, the scale Λeff(Φ) represents the mass scale where
we expect new physical states. Hence we observe that we cannot explore regions
where Re(Φ) = −Λ0

g since in this locus the Kähler potential becomes singular,
corresponding to some states in the UV completion of the model that become
massless.

As already stated, in taking into account corrections to the Kähler potential in
Eq. (8.8), somehow we are considering on different footing the inflaton superfield
and the sgoldstino superfield. The assumption is that the α-attractor type poten-
tial is set by Planck scale physics, while the corrections to the sgoldstino are gen-
erated at a much smaller scale. This assumption is valid as soon as Λeff(Φ)�Mp,
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which we ensure by demanding Λ0 �Mp and g � 1. Note that g � 1 also ensures
that condition (8.6) is satisfied.

The states at the scale Λeff(Φ) will also generically generate Kähler corrections
for the field Φ, possibly mixing Φ and S. However, we keep only the corrections
to the field S since the sgoldstino would be massless at tree level if not for such
corrections, which are the leading terms generating a sgoldstino mass. In the case
of the inflaton field Φ, possible Kähler corrections to its mass from physics at the
scale Λeff(Φ) will be proportional to g and subleading with respect to the tree level
terms. We will see how to generate the corrections to the Kähler potential in a
UV complete theory in the next section, where also other terms (allowed by the
symmetries) will be present, but will not change qualitatively the analysis of this
section.

8.3.2 EFT validity analysis
We now proceed with the analysis of the scalar potential and the consistency
conditions of the EFT description. Going to a real basis, one can define

φ ≡ χ+ iϕ√
2

, S ≡ s+ iσ√
2

, (8.11)

where due to the structure of the Kähler potential, ϕ will play the role of the
inflaton in what follows. The absence of linear terms in a small field expansion
in χ guarantees that the sinflaton (χ) is stabilized to zero VEV during the whole
inflationary trajectory.

Assuming the validity of the effective formulation and that the stabilizer S
acquires a sufficient mass during inflation, which will be checked a posteriori, one
can derive the inflaton-dependent vev of the scalar s to be

〈s〉 = Mp
(ϕ2 − 2M2

p)2f ′h′ + 24αfhM2
p

6
√

2α
(
− (ϕ2−2M2

p)2

12α (f ′2 + h′2) + 4f2M4
p

Λ2
eff
− 2h2M2

p

) , (8.12)

where a prime denotes a derivative with respect to the complex field Φ in (8.9),
and the functions f , h and Λeff are all dependent on Φ = i ϕ√2 during inflation.

In the vacuum at the end of inflation, where Φ = 0, the cosmological constant
can be removed by imposing that

V (ϕ = 0) = 0 , (8.13)

which is equivalent to fixing

h2
0 = f2

0
3

[
1 +O

(
Λ2

0
M2

p

)]
. (8.14)

Note that in this vacuum 〈s〉 ∝ Λ2
0/Mp, i.e. it is of the same order as the corrections

to the above relation. In addition, the physical mass of the inflaton mϕ is given
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by the parameter 2mh, whereas the gravitino mass (7.38) will fall down at the end
of inflation to f0/

√
3Mp.

The vacuum at vanishing Φ is not a global minimum. Indeed, there is a super-
symmetric vacuum in field space where the sinflaton gets a VEV of order

√
f0Mp
mf

.
One therefore has to ensure that there are no tachyonic directions about the ex-
tremum. We find that the stability of the non-supersymmetric vacuum in the
sinflaton direction imposes the constraint1

m2
h >

3αf0mf

2Mp
. (8.15)

The inflationary trajectory spans the space of Im(Φ) with Re(Φ) = Im(S) = 0
while the real part of the sgoldstino is given by equation (8.12). We should follow
the inflationary trajectory in the ϕ− s space in order to verify that the conditions
listed in the previous sections (and the absence of tachyons) are satisfied.

The simple conditions (8.4) and (8.5) are translated in the following constraints

f0 < Λ2
0 ,

mf

Mp
< g2 , mh < Λ0 . (8.16)

We note that the coupling g is crucial to keep the sgoldstino mass within the
validity of the effective theory. We will see how these bounds correspond typically
to no-tachyon conditions in explicit UV completions of the model.

The third condition advocated in section 8.2 is

〈s〉 � Λeff(Φ) (8.17)

and it is quite involved to solve analytically given the different terms entering
into the expression for the sgoldstino VEV (8.12). In Appendix C we perform a
simplified analysis of this VEV and we find that imposing the following inequalities

f0 �
Λ2

0mf

Mp
,

Λ2
0

M2
p
� mh

mf
,

Λ0
Mp
� mh

mf
, (8.18)

one is guaranteed that the sgoldstino VEV is within the validity of the EFT along
the whole inflationary trajectory2.

To conclude, we find that in the model (8.8) the EFT is consistent all along
inflation if the conditions (8.15), (8.16) and (8.18) are satisfied. Note that the last
condition in (8.18) leads automatically to mh � mf . This implies that during
inflation, when the inflaton takes field values of order Mp, the parameter mf

1Using the approximate formula Sbounce ∝ (∆φ)4/∆V , a qualitative estimate of the tun-
nelling rate into the SUSY vacuum indicates that the metastable vacuum is sufficiently long-lived
for the typical range of parameters that we will consider.

2Other valid regions in parameter space exist, but we found that this is the only one that
survives the more stringent bounds of the weakly coupled UV completion that we will consider
in the next section.
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dominates the scalar potential and hence sets the scale of inflation. The mass of
the inflaton at the end of inflation is instead controlled by mh, which is a different
(and much smaller) scale.

8.3.3 α-attractor inflation
During inflation, the potential will be dominated by the mass scale mf which
will be fixed by the cosmological observables. Indeed, in an expansion for small
parameters f0, mh and Λ0, the effective potential during inflation is, at leading
order

Vinf ≈
m2
f

4M2
p
ϕ4 . (8.19)

However, due to the non-canonical Kähler potential, we have to normalize the
inflaton using Eq. (6.13). This follows the α-attractor scenario, as discussed in
section 6.2.2. In this chapter, we will use the scenario of small α, since large α is
observationally unsatisfactory. Note also that the only parameters appearing in
the potential are from the φ part, there is no mixing with the additional fields in
the theory. This is a generic feature of α-attractors, as was shown in Ref. [213].
Due to the particular structure of the kinetic term, the couplings with other fields
get suppressed. In addition, in Ref. [220] was shown that the next-to-leading order
terms in the perturbation series do not modify the inflationary predictions.

The COBE normalization and the slow roll conditions can be used to extract
the values of ns, r and mf as a function of α and the number of e-folds. We here
focus on the case of the quartic power potential as in Eq. (8.19). Moreover, in
order to provide analytic expressions, we can consider N to be large and expand
the relevant quantities in powers of 1/N .

The inflation observables ns and r at second order in this expansion and
in slow roll are given in Eq. (6.14). Moreover, the COBE normalisation As =
(24π2M4

p)−1V/ε∗ ≈ 2.2 · 10−9 can be used to fix

m2
f = As

18απ2

N2 M2
p , (8.20)

where we expandedmf only to first order in 1/N since we do not require additional
accuracy.

The predictions for the α-attractor model with quartic potential is displayed
in Fig. 8.1 for different choices of α and of the number of e-folds N . In section
8.5, once we will have specified the UV completion, we will compute the reheating
temperature and derive the expected number of e-folds. One can observe that
anyway the required values of mf stand between 10−6Mp and 10−4Mp, the lowest
values being favoured for α = 1/3.

Note that generically for small numbers of e-folds one can obtain from the α-
attractor models values of ns which are in the low-end region of the allowed Planck
contours.
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Figure 8.1: Inflation observables for α-attractor models using different values of
the α parameter and number of e-folds. The color bar indicates the value of mf (in
units of Mp) required for satisfying the COBE normalization measurement. The
shaded region indicates the values favoured by the Planck collaboration at 1 and 2
σ [14].

8.3.4 Remarks on quadratic inflation
Before proceeding to analyse a UV completion of this model, we would like to make
a few remarks about the consequences of the consistency conditions identified in
this section for other inflation models. In particular we would like to assess if
nilpotent quadratic inflation (described in section 3.4) can be consistently realized
since, even if it is disfavoured by recent measurements of the tensor-to-scalar ratio
r [14, 16,17], it could represent a minimal application of the nilpotent paradigm.

The most economical possibility would be to consider a shift symmetric Kähler
potential K = 1

2 (Φ + Φ†)2 and a quadratic expression for h(Φ), with h′′(Φ) setting
the scale of inflation. In order for the stabilization of the scalar potential to be
effective at large field values, one should choose f(Φ) properly. For instance,
further requiring the cosmological constant in the vacuum to be zero restricts to
the choice f(Φ) =

√
3h(Φ) [268,306,307].

This immediately leads to two important issues. First consider the case in
which Λeff is a constant independent on the inflaton VEV. Then the requirement
f(φ) � Λ2

eff already puts strong constraints on the allowed values for Λeff . For
instance, if f(φ) is a quadratic function, i.e. f(φ) = f0 − mf

Mp
φ2, then we auto-
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matically obtain mf
Mp

φ2 � Λ2
eff . For quadratic inflation, which needs large mf and

reaches transplanckian values of φ, this implies a severe lower bound for Λeff , as
explained in [278].

Second, one can consider the possibility of a dynamical Λeff , as we assumed in
our illustrative model. Note that the derivation of the sgoldstino VEV and the
EFT analysis would be only mildly changed, since the Kähler attractor potential
reduces to the canonical shift symmetric one for small values of φ and α = 1/3.
In particular, the conditions (8.18) should still be fulfilled. If mh ∼ mf the third
condition in (8.18) would imply Λ0 � Mp which is not possible. Said differently,
the sgoldstino VEV would exceed the limit of the EFT validity if mh ∼ mf , ren-
dering the EFT description, with its truncation at quartic order in S, inconsistent.
Indeed, the same conclusion was reached in section 7.5.

A very careful different choice of the functions f(Φ), h(Φ) and Λeff(Φ) could
possibly overcome these issues, however we consider them as a sufficient motivation
to forgo quadratic inflation and prefer to work with the α-attractor scenario.

8.4 UV completion and mediation of SUSY break-
ing

We now consider a UV completion of the effective model whose aim is two-fold. We
add extra fields which, upon integrating them out, produce the effective quartic
term in S, and at the same time act as mediators of supersymmetry breaking to
the standard model. As our goal is to achieve scales of SUSY breaking which
are rather low, we use the gauge mediation scenario of supersymmetry breaking
(GMSB) discussed in section 7.2, so that the extra fields can be taken to be the
usual messengers, charged under the SM gauge group.

As is customary in GMSB, it is better to actually take the messengers to
be in representations of a grand unified group, SU(5) being the minimal choice.
Messengers come in vectorial representations, and the simplest option is to have
one or more copies of 5⊕ 5̄.

We thus introduce the fields X and Y in the 5, and X̃ and Ỹ in the 5̄, and we
consider a generalized O’Raifeartaigh model which is equivalent to the effective IR
description of the theory considered in [308].

In the rigid limit Mp → ∞, we assume a canonical Kähler potential for all
the fields (inflaton Φ included, which is indeed what one gets in this limit from
Eq. (8.8) for α = 1/3), and a superpotential

W = −mhΦ2 +f0S−λfSΦ2 +λSXX̃+(M +gfΦ)(XỸ +Y X̃)+myY Ỹ . (8.21)

Let us comment on the various terms. If we set Φ = 0 and my = 0, we have a
complexified version of the usual O’Raifeartaigh model, with S playing the role
of the superfield with a non-vanishing F-term, a classical flat direction and the
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goldstino as fermionic component. Its coupling to the messengers λ can be taken
to be typically O(1). Turning on the term with my breaks R-symmetry and thus
allows for gauge mediation to generate non-zero gaugino masses, as shown in [308].

Bringing now the inflaton into the game, the crucial term is the one with gf ,
which couples Φ to all the messengers and, more importantly, makes their mass
inflaton-dependent. The last two terms involving mh and λf = mf/Mp will not
be important for the physics of SUSY breaking. Note that, if we assume that the
term with mh preserves R-symmetry, then both gf and λf break it, and should
be taken to be small. Indeed, λf can be assumed to take its value between 10−6

and 10−4 as in the previous section3.
Since W breaks R-symmetry for generic couplings, we expect to have SUSY

vacua. However, if the R-symmetry breaking terms are small enough, we also
expect the SUSY breaking vacuum near the origin to survive as a long-lived
metastable state. We anticipate that the latter state will be obtained as follows:
one sets all the messenger fields and the inflaton to zero, and then computes the
effective potential for S. There is generically a local minimum near the origin
which becomes a global minimum if one takes my, gf , λf → 0. The SUSY vacua
(i.e. solutions to the F-term equations descending from W above) occur either
for parametrically large non-zero values of the messenger fields, i.e. outside the
domain of validity of the effective low-energy theory where the messengers have
been integrated out, or for large sinflaton VEVs. It is indeed possible to check
that the SUSY vacua are far enough from the inflationary trajectory in the Φ− S
plane.

8.4.1 No tachyons in the messenger sector
First, we discuss the conditions for which there are no tachyons in the messenger
sector, along the inflationary trajectory, i.e. around zero values of X, Y , X̃ and
Ỹ . The potential, given by the sum of squared F-terms, is

V =| − 2mhΦ− 2λfSΦ + gf (XỸ + Y X̃)|2 + |f0 − λfΦ2 − λXX̃|2

+ |λSX + (M + gfΦ)Y |2 + |λSX̃ + (M + gfΦ)Ỹ |2

+ |(M + gfΦ)X +myY |2 + |(M + gfΦ)X̃ +myỸ |2 . (8.22)
3At this point, note that W has also several terms that break the shift symmetry of the

inflaton (i.e. the imaginary part of Φ). The only one specific to the UV completion is the one
proportional to gf , which then cannot take too large values.
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Expanded to quadratic order in the messenger fields (but to any order in S and
Φ), we get

V =− 2gfΦ∗(mh + λfS
∗)(XỸ + Y X̃)− 2gfΦ(mh + λfS)(X∗Ỹ ∗ + Y ∗X̃∗)

− λ(f0 − λfΦ∗2)XX̃ − λ(f0 − λfΦ2)X∗X̃∗ + λ2|S|2(|X|2 + |X̃|2)
+ |M + gfΦ|2(|X|2 + |X̃|2 + |Y |2 + |Ỹ |2) +m2

y(|Y |2 + |Ỹ |2)
+ λS(M + gfΦ∗)(XY ∗ + X̃Ỹ ∗) + λS∗(M + gfΦ)(X∗Y + X̃∗Ỹ )
+my(M + gfΦ)(XY ∗ + X̃Ỹ ∗) +my(M + gfΦ∗)(X∗Y + X̃∗Ỹ ) . (8.23)

If we are to safely integrate out the messengers, we need to make sure that their
squared mass matrix does not have negative eigenvalues, i.e. there are no tachyonic
directions. When this is ensured, we will assume that the mass eigenvalues are
dominated by the diagonal values (the last term in the second line and the terms
in the third line in Eq. (8.23))4. Thus in order to get a flavour of when tachyons
could possibly arise, one can simply compare the off-diagonal terms to the diagonal
ones.

First of all, we must exclude tachyons near the origin, that is for values of S
and Φ subleading to any other scale. This is as in usual minimal GMSB, and we
find

M2 & |λf0| , (8.24)
where we have also assumed that my is at most of the order ofM (this is necessary
in order not to bring the SUSY vacua too close to the origin in the messenger
directions).

Going now to early times, at the beginning of the inflationary trajectory, we
can assume gfΦ � M . In this regime the diagonal terms are all of the order
of g2

fΦ2, while the off-diagonal terms are respectively of order gfΦ(mh + λfS),
λλfΦ2, λSgfΦ and mygfΦ. The new conditions are

g2
f & λλf , gfΦ & λS , gfΦ & mh , (8.25)

where we have already simplified some redundant conditions by taking into account
that my .M and λf � λ.

Finally taking values of Φ which are such that gfΦ . M , the same rule of
thumb that off-diagonal terms should be less than M2 gives the only additional
conditions

gfΦ .
M2

mh
, λS .M . (8.26)

The two conditions gfΦ & mh and gfΦ . M2/mh together imply that the infla-
tionary trajectory does not cross a tachyonic region only if

M & mh . (8.27)
4More specifically we can further assume that the diagonal terms are dominated by the term

|M + gfΦ|2. We can then distinguish two regimes, when Φ�M/gf and when Φ�M/gf .
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Note that this condition implies that the mass of the inflaton after inflation lies
within the regime of validity of the effective theory where the messengers have
been integrated out.

All in all the no-tachyon constraints are

M & mh , λS .M + gfΦ , g2
f & λλf , M2 & |λf0| . (8.28)

These are indeed the conditions we had been imposing on the EFT of the previous
section, once the UV parameters are matched to the effective theory, as we will
see in the next subsection.

8.4.2 Integrating out the messengers
We now integrate out the messengers in order to make contact with the low-energy
effective theory discussed in the previous section. Assuming that we are far away
from the tachyonic regions, we can integrate out the messenger in a SUSY fashion,
obtaining the one-loop Kähler potential directly [309, 310]. This can be further
simplified by treating the terms proportional to λS and my as perturbations with
respect to the dominant mass term proportional toM+gfΦ. The one-loop Kähler
potential thus involves, when expanded in S, the following terms

K1−loop = − Nmλ
4(SS†)2

12(8π2)|M + gfΦ|2 −
Nmλ

2

2(8π2)SS
† log[ |M + gfΦ|2

M2
p

]

−Nmλmy

2(8π2)

(
S†(M + gfΦ)2 + h.c.

|M + gfΦ|2

)
+Nmmyλ

3

12(8π2) SS
†
(

S

(M + gfΦ)2 + h.c.

)
(8.29)

where Nm is the number of copies of the system composed of the X, X̃, Y and Ỹ
superfields. We actually have Nm = 5N5, taking into account that the messengers
come in representations 5 and 5̄. Note that there are also one-loop terms dependent
only on S or only on Φ, that we omitted since they just represent loop-suppressed
corrections to the canonical terms. The expression is expanded at first order in
my/(M + gfΦ).

The first term in (8.29) corresponds to the higher dimensional correction that
we considered in the EFT description (see Eq. (8.8)) and is the one giving a
mass to the sgoldstino. The other terms are other one-loop corrections which
are allowed by symmetries and indeed can be generically added to the effective
Kähler potential in (8.8). The second term in the first line is simply a sub-leading
correction to the canonical kinetic term for the sgoldstino, which depends on the
inflaton ϕ only at order O(g2

f ).
The second and third line are suppressed by a factor of my/M and as soon

as my < M it is not relevant for the inflaton trajectory. However, these terms
include the leading order operator that determines the decay of the inflaton in the
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sgoldstino, and are hence important later on in our analysis. Moreover, they lead
to a VEV for the sgoldstino also in the non-SUSY vacuum of the (rigid) theory
at the end of inflation, which scales as 〈s〉 ∼ my√

2λ . Note that for my close to
M , which will be needed in order to have sizeable gluino masses, the sgoldstino
VEV could become a relevant contribution to the inflaton mass which is now
mϕ ' 2mh + 2λf 〈S〉. We will comment later about this fact and we will show
that in the interesting region of the parameter space this contribution is always
negligible so that we can simply take mϕ ' 2mh, as in the discussion of section
8.3.2.

As a consistency check, we verified numerically on the benchmarks considered
in the following analysis, that these extra Kähler corrections play a negligible role
in the determination of the inflaton trajectory in the S − Φ plane, and the first
term in (8.29) is enough to capture the main features.

Comparing (8.29) with (8.8), we see that we can identify

Λ0 + gΦ =
√

6(4π)√
Nmλ2 (M + gfΦ) . (8.30)

As a consequence, the effective theory parameters Λ0 and g are related to the UV
messenger theory parameters M and gf by

Λ0 =
√

6(4π)√
Nmλ2M , g =

√
6(4π)√
Nmλ2 gf . (8.31)

We see that, as it is usually the case, the UV scale of the effective theory, and its
coupling g, are somewhat larger than the messenger masses, and their coupling
to the inflaton, respectively. This has to be taken into account when comparing
the inequalities keeping us within the validity of the effective theory, to the ones
keeping us away from the tachyonic domain of the UV theory. In particular, if
we use the matching (8.31) to compare the inequalities that we have obtained in
the EFT analysis in section 8.3 (Eq. (8.16) and Eq. (8.17)) and the ones that we
have obtained by demanding absence of tachyons in the UV theory in section 8.4.1
(Eq. (8.28)), we find that the former are typically weaker. Hence in the following
we will consider the dynamics of the UV completed model and we will apply the
conditions (8.28).

8.4.3 Low-energy spectrum and gauge mediation
We now discuss the spectrum of the model, both during inflation and at the end
of it. This will help setting the scale of some of the parameters of the model.
From the inflationary sector we have the inflaton, together with its bosonic and
fermionic partners. In the SUSY breaking sector, we have the gravitino and the
sgoldstino. Eventually, we have the visible sector: we no longer consider the
messengers, however their mass scale affects the visible sector soft masses through
gauge mediation.



8.4 UV completion and mediation of SUSY breaking 155

Let us start with the inflationary sector. We concentrate here on the spectrum
after inflation, which determines how much this sector could be relevant also to
collider physics. Near the origin of Φ, the SUSY mass of all its components is
controlled by mh. The SUSY breaking splittings are given by λff0, which is
smaller than m2

h by virtue of the condition (8.15) to avoid tachyons in this sector.
In the S sector, we can consider the mass of the gravitino and the mass of the

sgoldstino. Note that the splitting between the latter two masses is all important
for the viability of a sgoldstino-less description of inflation in supergravity. Indeed,
we need to find the existence of a regime in which the gravitino is well below the
scale of inflation (so that a supergravity description is justified) while the sgoldstino
is above that scale, so that it makes sense to integrate it out (using a nilpotent
superfield from the outset, for instance).

The mass of the gravitino can be obtained from the standard SUGRA expres-
sion given in Eq. (7.37) as

m2
3/2 = e

K

M2
p
|W |2

M4
p
'
∣∣∣∣ h0
Mp
−mh

Φ2

M2
p

∣∣∣∣2 , (8.32)

where we have used the fact that in all regimes h(Φ)� Sf(Φ)/Mp. (In the large
Φ regime, one uses (8.12) to obtain S ∼ Mp

g2mh
mf

, under the only assumption
mf � mh). During inflation, the Φ-dependent term will dominate, but given that
Φ is Planckian at most, we will have m3/2 . mh, indeed smaller than the scale of
inflation which is determined by mf . At the end of inflation, the gravitino mass
is given as usual by

m3/2 '
f0√
3Mp

. (8.33)

In low scale SUSY breaking models, this will be the smallest scale.
The sgoldstino mass is controlled by the quartic term in the Kähler potential

(8.29). It gives a mass

m2
s = Nmλ

4|f0 − λfΦ2|2

3(8π2)|M + gfΦ|2 . (8.34)

During inflation, i.e. for large Φ, we have

ms '
√
Nmλ

2λfΦ√
6(2π)gf

= 2mf
Φ
gMp

. (8.35)

Thus as long as Φ > gMp the sgoldstino mass is larger than the scale of inflation,
allowing to integrate it out (as in a nilpotent formulation). However we also see
that by no means it decouples entirely from the spectrum, its effective mass soon
plunging below mf . Indeed, at the end of inflation the sgoldstino mass is

ms '
√
Nmλ

2f0√
6(2π)M

. (8.36)
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As we will see instantly, this is at a scale just an order of magnitude larger than
the soft masses of the visible sector.

Assuming gauge mediation of SUSY breaking to be exclusively operated through
the messengers which also couple to the inflaton, the soft masses of the visible sec-
tor can be completely determined using Eqs. (7.28) and (7.29). We note that
the expressions are complicated by the presence of several parameters, such as
my which is necessary to obtain non-zero gaugino masses [308]. The gaugino and
sfermion masses scale similarly to the sgoldstino mass, where however the loop
suppression is due to SM gauge couplings, and where the gaugino suffers from an
extra suppression in power of my/M because of R-symmetry

m2
sfermions '

∑
i

2N5C
i
2g

4
SM(i)λ

2|f0 − λfΦ2|2

(4π)4|M + gfΦ|2 , (8.37a)

m
(i)
gaugino '

N5g
2
SM(i)λmy|f0 − λfΦ2|
(4π)2|M + gfΦ|2 . (8.37b)

In particular the sfermion masses are quite large during inflation, but eventually
reduce to the usual value [308] after settling in the vacuum5:

m2
sfermions '

∑
i

2N5C
i
2g

4
SM(i)λ

2f2
0

(4π)4M2 , m
(i)
gaugino '

N5g
2
SM(i)λmyf0

(4π)2M2 , (8.38)

where Ci2 are the quadratic Casimir of the sfermions and i runs over the SM gauge
groups. These are the values that we will use in the phenomenological analysis in
section 8.5.

8.4.4 Analysis of the allowed parameter space
We can now combine all the consistency conditions in order to identify the allowed
regions of parameter space and determine what are the typical mass scales of the
relevant particles entering into the model, i.e. the inflaton, the sgoldstino, and the
superpartners (we will consider as reference the gluino).

The model depends on many parameters, but eventually only few of them
determine a qualitative difference in the physics outcome. We summarize here
the relevant constraints on the parameters that we have encountered along our
analysis:

• No tachyon condition in the UV model, arising from the analysis of the
messenger mass matrix:

M & mh , λS .M + gfΦ , g2
f & λ

mf

Mp
, M2 & |λf0| . (8.39)

5We neglect RG running effects.
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The condition on the sgoldstino VEV along the entire trajectory can be
analyzed as we did for the EFT in Eq. (8.18) (see Appendix C), yielding

λS .M + gfΦ ⇒
{
f0 .

mf

κMp
M2 ,

M2

κM2
p
.
mh

mf
,
M

Mp
& λ

mh

mf

}
,

(8.40)
where κ = Nmλ

4

12(8π2) . In practice, these conditions can be circumvented taking
a strongly coupled hidden and messenger sector, for which no perturbative
analysis can be done, leaving us with the EFT treatment of the previous
section.

• No tachyons in the effective theory, i.e. the inflaton sector:

m2
h >

3αf0mf

2Mp
. (8.41)

It is not straightforward to extract from this set of inequalities what is the
allowed volume in the parameter space. So, in order to investigate the allowed
region, we can proceed by fixing some parameters to typical values and plot the
resulting region. Once we fix the dimensionless quantities (λ, gf , N5,

my
M ) and we

take mf ∼ 10−5Mp as suggested by the analysis in Fig. 8.1, we are left with only 3
independent parameters, i.e. {f0,M,mh}. We can trade two of these parameters
with physical masses to conclude that our parameter space is a region in the three
dimensional space spanned by {mλ,m3/2,mh}, where we indicated with mλ the
gluino mass.

The allowed region of parameter space can then be easily displayed in the
{m3/2,mh} plane by fixing mλ to some phenomenologically interesting value, as
we do in Fig. 8.2. We considered as upper limit for the gravitino mass the value of
1 GeV since we want to focus on the case where the gauge mediated contributions
to the soft masses dominate the gravity contributions6.

As we can observe, the allowed region in the {m3/2,mh} plane gets smaller as
we increase the gluino mass, disappearing completely (in them3/2 ≤ 1 GeV region)
for mλ ≥ 20 TeV on the selected benchmark. Note that the two boundaries are
set by the two conditions (where we have reinstated the exact numerical prefactor
for added precision):

M

Mp
> λ
√

2mh

mf
=⇒ Upper border , (8.42a)

m2
h >

3αf0mf

2Mp
=⇒ Lower border . (8.42b)

We can saturate these inequalities to find the expressions m(up)
h and m(low)

h which
determine the upper and lower lines of the triangle shaped allowed regions in
Fig. 8.42b.

6In producing the plot, we also imposed M ≤ 1015GeV.
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Figure 8.2: Allowed region of parameter space in the {m3/2,mh} plane by fixing
mλ = 1, 3, 10 TeV respectively for the light red, purple, blue region. The dashed
lines represent the line defined in equation (8.47) for the different gluino masses.
The other parameters are fixed as {myM = 0.15, λ = 0.25, N5 = 3, gf = 2×10−3, α =
1/3,mf = 7.3× 10−6Mp}.

It is instructive to consider the tip of the triangles, giving the lowest allowed
values for the gravitino mass (and the inflaton mass), for a given gluino mass. It is
simply obtained by saturating the two inequalities above. Using (8.33) and (8.38)
we get:

mtip
3/2 =

√
3α
(

(4π)2

N5g2
SM

)2(
M

my

)2
m2
λ

mf
. (8.43)

This is to be confronted with the lowest gravitino mass that one could obtain in
our gauge mediated model, considered on its own, given by the bound (8.24):

mlowest,GMSB
3/2 = 1√

3λ

(
(4π)2

N5g2
SM

)2(
M

my

)2
m2
λ

Mp
. (8.44)

We thus see that
mtip

3/2 = 3αλMp
mf

mlowest,GMSB
3/2 , (8.45)

that is roughly 5 orders of magnitude above the lowest gravitino masses generically
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allowed by GMSB7. In other words, the scale of supersymmetry breaking cannot
be as low as we could hope in a GMSB scenario. Putting numbers, and using the
benchmark point of Fig. 8.2, we get

mtip
3/2 ' 2 MeV

( mλ

1 TeV

)2
. (8.46)

Thus we see that, for reasonable gluino masses, the gravitino cannot be lighter than
a few MeV. This translates into a lowest supersymmetry breaking scale of the order
of
√
f0 ∼ 108 GeV, showing that for this class of weakly coupled models the scale

of SUSY breaking cannot be arbitrarily small and compatible with sgoldstino-less
inflation.

8.5 Phenomenological analysis
In order to simplify our analysis, from now on we will focus on the dashed lines in
the middle of the triangles in Fig. 8.2, which is the average mean defined as

m∗h =
√
m

(up)
h m

(low)
h , (8.47)

which determines mh for a given value of the other parameters. In this way we are
reduced to a two dimensional parameter space spanned by {m3/2,mλ}, in which
we will present our phenomenological analysis.

Given that the model we have considered in the previous section includes pre-
dictions both for cosmology as well as for particle physics, we can constrain the
parameter space using inflation observables, considerations about the reheating
temperature, gravitino dark matter abundance, Big Bang nucleosynthesis (BBN),
as well as LHC constraints. We discuss all these aspects in the next subsections
under some simplifying assumptions. In particular, we do not take into account the
extended Higgs sector and its possible effects on the phenomenology. In our model,
the NLSP is a neutralino, thus a combination of the Bino, Zino and Higgsinos,
as discussed in section 7.1.4. We consider this NLSP to be predominantly Bino,
assuming that the µ parameter is such that the Higgsino is significantly heavier,
and consistent with the estimates of the soft terms done previously (8.38). At
the end of the section, we will comment on how our analysis would be affected if
instead the NLSP neutralino is a mixture of Bino-Higgsino.

We will present all the phenomenological characterization in the
{m3/2,mλ} plane, restricting to the line (8.47) as just mentioned. We verified that
exploring other areas of the allowed region in Fig. 8.2 does not change qualitatively
our conclusions.

7We can actually trace back this bound to one of the conditions in Eqs. (8.40), specifically
the one giving an upper bound to f0/M2 proportional to mf/Mp.
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Our investigation will show that, once we consider all bounds together, the
remaining allowed parameter space gets significantly reduced. In particular our re-
sults highlight the complementarity of the different phenomenological constraints,
suggesting that a broad approach to inflation models, including analysis of the
reheating epoch as well as the connection to particle physics, is needed in order to
extract robust conclusions and predictions.

8.5.1 Reheating temperature and ns

Since in our model the couplings between the inflaton and the MSSM particles are
well defined (up to the Higgs sector, that we do not specify), we can estimate the
inflaton decay modes and the reheating temperature, as was explained in section
3.5. This is relevant since the inflaton decays via messenger loops to MSSM parti-
cles and thus the reheating temperature will be low. A low reheating temperature
corresponds to a relatively small number of e-folds during inflation, hence a size-
able shift if compared to the usual estimate of 60 e-folds, as in Refs. [214,311]. In
addition, the gravitino problem is simpler to solve with a low reheating tempera-
ture [288,312].

The reheating temperature can be found from the energy density at which the
Hubble rate (Hreh) equals the decay width of the inflaton (Γφ) [152], combining
Eqs. (2.19), (3.61), (3.60) and (2.17)

ρreh = π2g∗
30 T 4

reh = 3H2
rehM

2
p = 3Γ2

φM
2
p = ρende

−3Nreh(1+w̄reh), (8.48)

where Hreh is the Hubble rate at the end of reheating, g∗ ∼ 220 is the number
of relativistic degrees of freedom at reheating, w̄reh is defined in Eq. (3.58) and
ρend is the energy density at the end of inflation. The first equality defines the
temperature Treh and the last equality the number of e-folds during reheating
(Nreh). Though the thermalization after the inflaton decay might take time and
result in a lower reheating temperature, we will in the following stick to this upper
bound. Finally, from Eq. (3.59) follows that w̄reh = 0, since our potential is
quadratic around the minimum [151].

Given a certain reheating temperature, the number of e-folds between the end
of inflation and the moment a mode with k∗ = 0.002Mpc−1 left the horizon can
be obtained using Eqs. (3.63) and (3.64). Note that this is an implicit equation
since r depends on N , as shown in Eq. (6.14). This relation can be solved for the
reheating temperature, resulting in

Treh = 495
√

3e3N

43π2√2Asα
Mp

(
k

a0T0

)3(4 +
√

16 + 3α−
√

3α
4 +
√

16 + 3α+
√

3α

)4 (
N +O

(
N0)) ,

(8.49)
where again we used the 1/N expansion. A more careful analysis, keeping higher
orders in N showed that in our model corrections to this equation are of the order
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Figure 8.3: From left to right, the dependence on the reheating temperature of ns,
N and mf for different values of α. The straight black line represents our scenario
with α = 1/3, while the blue and red dotted lines represent resp. α = 1, 10.

of a percent. However, due to the exponential behaviour on the number of e-folds,
a small deviation in N changes the reheating temperature considerably.

In our model the reheating temperature can be computed from the inflaton
decay width, and we use Eq. (3.63) to extract the expected number of e-folds.
Then we plug this result in Eq. (6.14) and Eq. (8.20) to obtain precise predictions
for ns, r and mf as a function of the reheating temperature. The results of this
procedure are plotted in Fig. 8.3 forN , ns andmf . The tensor to scalar ratio, being
1/N2 suppressed, is roughly 0.002, far below the current experimental constraints.

We now discuss the most relevant decay modes of the inflaton and estimate
its decay width to obtain the expected reheating temperature. The mass of the
inflaton is taken to be mϕ = 2mh, neglecting possible contributions from the
sgoldstino VEV. We will verify that this is consistent on the considered region of
the parameter space.

In the complete model there is no tree-level coupling between the inflaton and
MSSM fields and the decay channels are loop suppressed. The leading decay
mode arises from the following operator generated at one-loop (together with the
operator responsible for the gluino masses)

W ⊃
∫
d2θ

αsN5
4π

gf
M

ΦWαWα , (8.50)
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and it gives the following decay modes into gluons and gluinos

Γφ ≈ Γφgg + Γφg̃g̃ =
α2
sN

2
5 g

2
f

π3M2 m3
h . (8.51)

These are the dominant decay modes of the inflaton8 and we approximate with this
value the total decay width of the inflaton. Because of the one-loop suppression of
this decay width the reheating temperature is rather low in our parameter space,
of the order of the TeV scale,

Treh ' 900 GeV
( mh

200 TeV

)3/2 ( mλ

1 TeV

)(20 MeV
m3/2

)
(8.52)

where the numerical values of the parameters has been fixed as in Fig. 8.2. Then,
from Fig. 8.3 we see that for α = 1/3 the number of e-folds is about 48 − 49,
and hence that ns is rather small. We also note that the value of mf is around
8× 10−6Mp, as the benchmark point we have chosen in the previous section.

8.5.2 Gravitino abundance
In this model the gravitino is the LSP and can be a viable dark matter candidate
if Ω3/2h

2 ' ΩDMh2 = 0.12 (see e.g. [296, 313–315] for recent developments on
gravitino dark matter). Neglecting possible dilution factors, we conservatively
demand that the gravitino abundance does not overclose the universe by imposing
Ω3/2h

2 ≤ ΩDMh2. Gravitino relics can be obtained with several mechanisms,
as was explained in section 7.5.2. These mechanisms are i) thermal production;
ii) freeze-in production through the superparticle decays; iii) production through
inflaton decays; iv) decay of the NLSP, that here is assumed to be the Bino.

In the following we study these production mechanisms and we find the con-
straints they impose on the parameter space of the model:

i) The reheating temperature for our range of parameters is at most of O(TeV),
with gravitino at least of MeV mass, and hence the thermal production of
gravitino is not significant [286, 288, 312]. We verified this explicitly in our
numerical analysis.

ii) The freeze-in scenario for gravitino dark matter has been proposed as a
mechanism to obtain the correct gravitino relic abundance through the decay
of the MSSM superparticles [75, 286, 316, 317]. In our case the abundance
of the heavy superparticles is suppressed by a Boltzmann factor, due to
the low reheating temperature9, and hence we have to use Eq. (7.58). The

8The ones into sfermions are loop suppressed and the ones in other gauge bosons and gauginos
are coupling suppressed.

9In the period between the end of inflation and before the radiation dominated era, the temper-
ature can be higher, and hence also the freeze-in contribution. However, the produced gravitinos
get diluted before radiation starts dominating [163, 318, 319]. As a crude approximation, we
neglect these two compensating effects.
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superparticle masses are much heavier than the current temperature of the
universe, so the upper bound of the integral I in Eq. (7.58) is taken as
xmax = ∞, however we cannot ignore the low reheating temperature, so
xmin = mX̃/Treh. We numerically perform this integral, and demand this
abundance to not exceed the dark matter one.

iii) The decay of the inflaton into gravitinos, or into supersymmetric particles
eventually decaying into gravitinos, can give a large contribution to the grav-
itino relic abundance. In these processes the goldstino component of the
gravitino is the one setting the relevant interactions.
The inflaton can decay directly into goldstinos or sgoldstinos through the
interactions induced by the third line of Eq. (8.29), which determines the
direct decay into goldstinos as

Γϕ→GG = 1
4π

(
Nmgfλ

3my

48π2M3
√

2
f0

)2

mϕ , (8.53)

where mϕ = 2mh is the mass of the inflaton. This decay is very much
suppressed compared to (8.51) but can nevertheless lead to an overabundance
of gravitinos. Moreover, another relevant channel is the decay into sgoldstino,
since in our parameter space we have mϕ > ms. This decay mode has the
same partial width as the one above, hence it can be important since the
sgoldstino will decay mainly into goldstinos.
Using Eq. (3.65), we estimate the abundance of gravitinos arising from these
processes, assuming conservatively that the sgoldstino decays with 100% BR
into two gravitinos, as

Y decay
3/2 ' 3Treh

4mϕ
(2BRϕ→GG + 4BRϕ→sσ) , (8.54)

where we included multiplicity factors. We impose that this abundance does
not exceed the dark matter abundance.
Furthermore, decays of the inflaton into MSSM particles and eventually into
the NLSP have sizeable branching ratios. However, if the NLSP is in ther-
mal equilibrium, its abundance will be set by the thermal bath dynamics.
In order for the NSLP to be in thermal equilibrium we demand that the
reheating temperature is larger than the NLSP mass, i.e. the Bino mass

Treh & mB̃ . (8.55)

iv) The abundance of the Bino in the case in which the other sparticles are very
heavy has been computed in [320–322] and it depends on the slepton masses
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ml̃, which we estimate in Eq. (8.38), and reads

ΩB̃h
2 =

(
m2
B̃

+m2
l̃

)4

(460GeV)2√g∗m2
B̃

(
m4
B̃

+m4
l̃

) . (8.56)

The abundance of the Bino will set the gravitino abundance obtained via
Bino decay as

ΩB̃3/2h2 =
m3/2

mB̃

ΩB̃h
2 . (8.57)

In our analysis we will demand that ΩB̃3/2h2 . ΩDMh2.

The gravitinos produced by any of the aforementioned processes could poten-
tially carry a large energy (at most mϕ/2). A too high free-streaming length of
the gravitino could thus destroy small scale structures and is experimentally con-
strained [161,323]. Since in our model the inflaton mass is very low (compared to
other inflation models), we find, using Eq. (3.67) that this does not constrain our
parameter space.

8.5.3 BBN
Late decay of the NLSP into gravitinos can spoil BBN if the decay time is larger
than ∼ 0.1s [153,284]. This poses an absolute lower bound in the (m3/2,mλ) plane
given by the requirement that

τB̃ ' Γ−1
B̃→γ/Z+G '

48πm2
3/2M

2
p

m5
B̃

' 0.1 sec
( m3/2

10MeV

)2(225GeV
mB̃

)5
(8.58)

should be less than 0.1 seconds.

8.5.4 Combination of the cosmological and LHC constraints
We can now combine the constraints listed above in one single plot which high-
lights the viable region in the parameter space of the model in the (m3/2,mλ)
plane. As mentioned, we restrict to the dashed line in Fig. 8.2 for definiteness (cfr.
Eq. (8.47)).

In Fig. 8.4 we show our results for a representative choice of the numerical
parameters, which however does not influence the qualitative features of the con-
clusions10. The black region is excluded because of tachyons in the spectrum, and
corresponds in the plot of Fig. 8.2 to going beyond the tip of the allowed coni-
cal region along the dashed lines. The purple region is excluded because of the

10One can verify numerically that in the explored region the inflaton mass is always given
predominantly by 2mh, corroborating the previous statements.
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Figure 8.4: Phenomenological constraints on the parameter space in the
{m3/2,mλ} plane by fixing mh with the relation (8.47). The other parameters
are fixed to the same numerical values as in Fig. 8.2. The white region is the
one satisfying all the constraints explained in the text. The black region is ex-
cluded because of tachyon conditions. The red and purple regions are not viable
because of phenomenological constraints on gravitino abundance or BBN, respec-
tively. In the light blue region the gluino mass is lower than 2 TeV, the current
LHC bound [225, 226]. The contours denote the spectral tilt ns and the reheating
temperature.
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BBN constraint on the Bino decay time in Eq. (8.58). The red region is excluded
since the gravitino abundance exceeds the one expected for dark matter because
of inflaton decay (above the dashed blue line), because of Bino decay (the region
on the right of the dashed green line), or because of a combination of these two
mechanisms. The freeze-in contribution to gravitino abundance, instead, turns
out not to be relevant on the explored parameter space.

The allowed region passing all the constraints is the white spiky region. On
the border between the white and the red regions the gravitino has the correct
relic abundance to be the dark matter of the universe. In the rest of the white
region dark matter can be constituted by some other particle in the hidden sector,
e.g. as in [324].

We note that the gluino mass is bounded from above in the allowed region, and
should be smaller than around 7 TeV for the choice of parameters in the plot. In
the blue region the gluino mass is below 2 TeV, and hence excluded by the LHC
bound11. Similarly, also the gravitino mass has both a lower and an upper bound,
spanning between a few MeV and half a GeV. In particular, it is interesting to see
that the upper bounds on mλ and m3/2 are generated by a combination of the
constraints from gravitino overabundance and BBN.

In Fig. 8.4 we also show the contours of the inflation observable ns, obtained
after computing the reheating temperature and using the results of Fig. 8.3. Since
a larger ns (hence larger reheating temperature) is favoured by the Planck data, it
is interesting that both Planck and the LHC prefer the same region of parameter
space, with larger gluino and gravitino mass. This is clearly a specific feature of
the model considered, but it is appealing that two experiments probing completely
different physics can provide indications on the same BSM theory.

Our results should be considered as a preliminary analysis of an illustrative
model which combines inflation and particle physics predictions, and it emphasizes
the interplay between these two sets of physical requirements in shaping viable
scenarios.

Further remarks. There are several aspects that we did not consider in our
analysis and could be improved. First, in our model besides the inflaton there
is another scalar field, the sgoldstino, that could potentially dominate the energy
density of the universe at some stage of the cosmological evolution. This would be
problematic given that the sgoldstino decays significantly into gravitinos, eventu-
ally leading to an overabundance of the latter. However we argue that this should
not happen in the parameter space we explored for the following reasons, leav-
ing a detailed analysis to future work. The scenario is very similar to curvaton
models [137, 325, 326], with the sgoldstino playing the role of the curvaton. First,
as one can check explicitly, the decay width of the sgoldstino is of similar order
of magnitude of the decay width of the inflaton for our numerical values used for

11This estimate is very conservative since the actual bound depends on the decay mode of the
gluino and on the rest of the SUSY spectrum, see section 7.1.4.
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Fig. 8.4. Moreover, the field excursion of the sgoldstino VEV is much smaller than
the inflaton one, being constrained to be smaller than M + gfφ to avoid tachyons,
and being concretely always smaller than M along the entire inflaton trajectory
(which can be inferred from formula (C.1) and condition (C.4) in Appendix C).
These two observations can be confronted with the results of Ref. [327] which
consider the contribution to post-inflationary evolution of simple curvaton mod-
els for a range of parameters. Our sgoldstino scenario can be argued to map to
one where the curvaton never dominates the energy of the universe, though this
question deserves clearly further dedicated study.

As already mentioned, we did not include possible effects from the extended
SUSY Higgs sector and from the Higgsino, and we further assumed the Bino to be
the NLSP. Note that if the neutralino NLSP would be instead mostly Higgsino-like
the bounds from BBN (purple region) and from NLSP decay (the part of the red
region on the right of the dashed green line) would be considerably softened since
the abundance of the Higgsino-like neutralino is suppressed compared to the one
of the Bino.

Concerning the gravitino abundance, we did not consider possible non-thermal
production arising during preheating [285]. The results of Ref. [298] seem to
indicate that our model, where h(Φ) is a quadratic function, should not be hindered
by such effects, but a dedicated analysis should be performed to reach a definite
conclusion. Generically, there can be other effects during the cosmological history
of the universe, in particular in the (p)reheating epoch, that would eventually lead
to additional gravitino production mechanisms which would impact significantly
the outcome of our analysis. We leave for future studies a more thorough study
of the gravitino problem. However, we argue that our results already hint at the
possibility that the gravitino problem can be more easily circumvented in this class
of models, due to the low reheating temperature, which is an intrinsic property
of our model, in particular of the coupling of the inflaton to the supersymmetry
breaking mechanism.

8.6 Discussion
In this paper we have addressed the issue of the compatibility of nilpotent inflation
with low-scale SUSY breaking. The nilpotent approach simplifies many aspects
of the supergravity embedding of inflation since the sgoldstino is taken to be
integrated out and its dynamics can be neglected.

We consider a class of models in which the sgoldstino is present but has a mass,
given by a higher dimensional effective operator, and we have investigated under
which conditions this massive sgoldstino is always effectively decoupled from the
physics of inflation. Specializing to a field theoretic weakly coupled UV completion
of the SUSY breaking sector, which we take to have a non-trivial coupling to the
inflaton, we find that the scale of SUSY breaking cannot be as low as one could
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expect, for instance, in gauge mediated models. This can be intuitively under-
stood as follows: low SUSY breaking scales lead generically to a light sgoldstino,
and it becomes more difficult to decouple the latter from inflation physics. The
constraints are in practice more complicated, but they can be nicely summarized
as in Fig. 8.2.

An important remark concerns the implications of our results on the regime
of validity of generic nilpotent inflation models. These can encompass various
different choices, concerning on one side the inflationary supergravity model, and
on the other the type of SUSY breaking dynamics and mediation. Most notably
the coupling between two physical set-ups will be important, as in our model.
Indeed, in Ref. [278] a variety of models were considered, both for inflation and
for SUSY breaking, but no inflaton-dependence was contemplated in the operator
giving the sgoldstino its mass. This resulted in very stringent bounds on the scale
of SUSY breaking. Our findings relax these bounds, but nevertheless we cannot
explore all of the potential parameter space of the SUSY breaking and mediation
scales while staying at weak coupling.

It may well be that generalizing even more the types of models we can push
further down the bounds on the gravitino mass and the SUSY breaking scale.
Note however that our choice of inflationary sector, the α-attractor, is already very
flexible in itself. As for the SUSY breaking sector, its effective parametrization as
in section 8.3 allowed us to derive a crude approximation of the bounds, that we
found using the increased precision of the weakly coupled UV complete model for
definiteness. One way to try to overcome these bounds is to take strongly coupled
SUSY breaking and messenger sectors. Here we could hope to explore the other
valid regions of parameter space that open up in the EFT.

The specification of the UV model, and in particular of the couplings between
the inflaton and fields involved in SUSY breaking, has a positive side. It has al-
lowed us to discuss in some detail the physics of inflation, including reheating and
dark matter abundance bounds, and confront it with collider bounds on super-
partner masses. The complementarity of these bounds is manifest in Fig. 8.4. The
result is actually that our model is quite predictive, both for inflation observables
(low spectral tilt ns and reheating temperature) and for collider ones (upper and
lower bounds on the gluino and gravitino masses). A different UV completion
would certainly change the details, and the outcome of the analysis. We believe
however that we have shown how to proceed in such a task.

To conclude, we would like to convey the message that nilpotent inflation can
be compatible with low scales of SUSY breaking only with an increasing number of
conditions on its UV completion. We do not seem to reasonably expect it to allow
for arbitrarily low scales, i.e. as for a GMSB scenario with eV-scale gravitino. On
the other hand, once a UV completion is specified, such models lead to a complete
and complementary characterization of cosmological and collider observables, thus
confirming the expectation that inflation and SUSY breaking are intimately tied
together.



CHAPTER 9

Conclusions

In this thesis two approaches were studied to elucidate the era of inflation. In
chapters 4 – 6 we considered several models for the inflaton potential, and showed
that observationally a potential with an asymptotic plateau is preferred by the
data. The Starobinsky inflation model, the strong coupling attractor model and
the α-attractor model were reviewed and extended. Then, in chapters 7 and 8,
we studied the embedding of a specific model, the α-attractor, in a supergrav-
ity framework where supersymmetry was realised non-linearly. The non-linear
realisation of supersymmetry can be represented with nilpotent superfields, but,
as explained in section 7.5, there are non-trivial consistency criteria that a high-
energy completion of nilpotent inflation has to satisfy. We analysed such a high
energy completion of nilpotent inflation and showed that it is internally consistent.
Furthermore, we considered the various predictions of the model, regarding infla-
tion, dark matter and the particle spectrum, and obtained the parameter space
where these predictions were consistent with the observations.

In this chapter we will present a summary of the main results in this thesis and
point to some directions of future research. We finish with some general remarks
concerning the future of inflationary research.

Generic predictions for inflation. In chapters 4 and 5, the generic inflation-
ary predictions for different parametrizations of the Hubble function were studied.
The general method used in the community was the horizon flow code, which was
reviewed in section 4.3. An important feature of this code is that it parametrizes
the Hubble function as a polynomial, which leads to a polynomial potential. This
prescription was subsequently used to find the generic features of inflation models
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and to obtain the inflaton potential that has the best fit with the observational
data.

In section 4.4 we improved the inflationary flow code, such that instead of
numerically solving the flow equations (4.3) it used a root-finder for εH. This new
procedure, originally proposed by Ramirez and Liddle in Refs. [171, 172], allowed
us to systematically study the prior dependence of the algorithm. Using either
of the two codes, we concluded that using a polynomial expansion of the Hubble
function renders ns too small and r too large. Though this result was already
obtained in the literature, only Ref. [172] explicitly investigated the dependence
on the prior choice of the algorithm. However, the prior choices investigated by
these authors still assumed polynomial inflation models.

A polynomial expansion of the potential implies an ‘oversampling’ of convex
(exponential like) or concave (hilltop like) potentials, which indeed generically have
a too large r or a too small ns. Models that are known to be more compatible with
the CMB data are plateau-like models, which are typically not well captured by the
polynomial approximation used in the horizon flow code. Therefore, in this thesis
we considered two alternative parametrizations, i) where the Hubble function is
expanded as a ratio of polynomials (a Padé approximant) and ii) where the inflaton
action represents a strong coupling attractor. These alternative parametrizations
showed that the numerical procedure is indeed strongly model dependent.

In addition to the numerical approach introduced above, chapter 5 analytically
studied the difference between the predictions of inflation models by solving the
flow equations for a quadratic Hubble function and a Hubble function parametrized
as a ratio of two linear polynomials ([1,1] Padé approximant). For this analytical
result we used that the Hubble functions were symmetric under shifts of φ→ φ+δφ.
This symmetry allowed us to analytically solve all the flow equations except one
and in the studied cases the remaining flow equation could be integrated. Using
this approach to integrate the flow equations, we showed that the Hubble function
parametrized as a [1,1] Padé approximant was consistent with the experimental
data from the Planck satellite, while the quadratic Hubble function was not. The
reason is that the Padé approximant naturally incorporates plateau-like models,
while polynomials do not.

Indeed, the study in chapter 5 of the generic predictions of inflation concluded
that a Hubble function expanded as a ratio of polynomials better resembles the
inflationary data than a Hubble function expanded with a single polynomial. This
confirmed the hypothesis that models with a plateau at a large inflaton field value
agree much better with the observables than models with an exponential like
or hilltop like potential. This also implies that generic predictions for inflation
that use a random scan over inflation models cannot be regarded independently
of the space of models under consideration. However, this method can be used
to investigate which potential shapes are compatible with observations and which
ones are not. This technique therefore explores the space of viable potential shapes,
instead of the viable inflationary parameters.
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In chapter 6 inflation models were investigated with a non-minimal coupling
to gravity. Such models were originally considered with only certain specific po-
tentials and frame functions, where it was realised that for sufficiently large non-
minimal coupling ξ the model resembles the Starobinsky model, a plateau inflation
model that fits the data extremely well. However, it was not investigated if the
attractor also worked for models in which the potential and frame function, the
function relating the non-minimal coupling of the inflaton to gravity, were com-
pletely arbitrary.

We showed, both analytically and numerically, that for arbitrary potentials and
frame functions, if the non-minimal coupling ξ is sufficiently large, the inflation
model generically agrees with the observational data. We observed in both the
analytical and the numerical procedures that the attractor behaviour appears if
ξ & O

(
N2
∗
)
(where N∗ is the number of e-folds at horizon exit). Interestingly,

compatibility with the COBE normalization As = (2.14 ± 0.05) · 10−9 requires a
similar value for ξ. We showed that ξ ≈ 104 is sufficient to have generically the
inflation model in excellent agreement with the data, and simultaneously being in
agreement with the COBE normalisation.

The analyses of chapters 4 – 6 show that inflation is best parametrized with an
asymptotically flat potential. Interestingly, this seems to imply that the inflaton
potential for very large inflaton field values has to be flat. This flatness of the
potential could be naturally obtained if conformal symmetry is restored at these
large field values. This asymptotic symmetry also has the advantage that quantum
corrections are suppressed, since in the symmetric limit these corrections are absent
[220]. Therefore, the smallness of the slow roll parameters can be explained by
originating from a breaking of conformal symmetry.

This explains the importance of attractor theories for inflation, since the known
attractor models implement this conformal symmetry at large field values. Even
if the plateau originating from the attractor model is broken, as in the models
studied in chapter 6, the nice plateau-like features can appear if the observable
part of inflation only considers the plateau part of the model. This explains why
a sufficiently large ξ was required for the strong coupling attractor models to
converge, even if the inflaton potential was not asymptotically flat.

Considering the effects of quantum corrections on potentials that are expanded
as a Padé approximant, is difficult, since perturbation theory assumes the potential
to be polynomial. Within quantum field theory, the perturbation theory will
always break the generated plateau, and the generic results presented in chapter
5 will change strongly. However, perturbation theory is probably incorrect for
two reasons. First, there is no reason that quantum corrections only generates
corrections in the numerator, while leaving the coefficients in the denominator
untouched. If the corrections also change the denominator, the plateau at large
field values can stay intact and the generic predictions obtained in chapter 5 hold.
Secondly, it can be understood from the analysis of chapter 6 that these corrections
will be irrelevant if they break the flatness of the plateau only at large field values,
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which are not visible in the CMB. A more complete analysis of the quantum
corrections in Padé inflation models has not performed and would be an important
extension to our analysis.

Another interesting path for future research is to study other parametrizations
for inflation models which generically agree with the Planck data. An example
of such a theory was introduced in section 4.5, where the Hubble function was
parametrized as a function in 1/N (where N is the number of e-folds). The
reason for considering this model is that it is fully characterized by geometric
quantities, without the notion of an inflaton field. It might be of interest to
study the generic predictions of theories polynomially expanded in 1/N , but also
to consider again Padé expansions. This analysis can be extended by finding
the inflation potentials that correspond to these 1/N predictions and search for
possible underlying symmetries.

Generally, it is interesting to study different parametrizations for inflation mod-
els to understand what type of inflation is allowed by the current data. Examples of
such parametrizations might be inflation with an arbitrary kinetic function (with
and without an additional non-minimal coupling to gravity) or inflation with a
potential expanded in goniometric functions (i.e. Fourier expanded). The former
is a generalization of attractors of section 6.2 and the 1/N parametrization of the
Hubble function, as explained in section 4.5, while the latter is a generalization
of natural inflation. A Fourier expanded potential can also be obtained if the
high-energy completion of inflation is shift-symmetric under a discrete shift sym-
metry (while the theories in chapter 8 were shift-symmetric under arbitrary shift
symmetries).

Another possibility is to study multi-field inflation models using this flow anal-
ysis. Though it is possible to expand the flow code to an inflation model with a
few additional inflaton fields [328], this is not trivial. Moreover, the number of
arbitrary coefficients that has to be fixed increases quickly. But, studying such
models could uncover interesting multi-field features. For inflation with a very
large set of fields this method will probably be very slow due the large number
of relevant parameters and for such a scenario random matrix theory is more ap-
plicable Refs. [142,143,329]. However, these studies only considered polynomially
expanded potentials, and though the results are less constrained than those of the
Hubble flow code, considering these inflation models with attractor-like inflation
models might be an interesting scenario.

UV completing nilpotent inflation. Another approach to inflationary model
building is to choose a particular inflation model and check if it can be consistently
embedded in a theory that represents the full standard model. This approach is
interesting since it not only gives insights into which inflation theories are possible
and which ones not, but also gives useful hints for how the standard model of
particle physics can be extended to higher energies. This last constraint is relevant
since inflation is taking place at extremely large energy scales, far beyond the
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energy scales of current colliders. Thus, inflation provides a test ground for high
energy physics.

An example of such a high-energy extension of the standard model of particle
physics is supersymmetry, which for large energy scales can be extended to super-
gravity. However, as explained in section 7.5, supergravity realisations of single
field inflation models often suffer from several problems. Among these, the most
severe one is typically the unboundedness of the potential. A popular solution to
this problem is to introduce the stabilizer superfield (S) in addition to the inflaton
superfield, which stabilizes the inflaton trajectory. However, the scalar compo-
nents of the stabilizer superfield can change the inflationary predictions. To insist
on single field inflation models it is interesting to project out the scalar component
of the stabilizer superfield. This can happen if supersymmetry is spontaneously
broken and appearing in the low-energy limit non-linearly through a nilpotent
superfield, which satisfies the condition S2 = 0. Insisting that the stabilizer su-
perfield is nilpotent projects out the scalar part of this field, as required for single
field inflation.

However, nilpotent inflation requires two opposite regimes for the cut-off scale
of the high-energy theory, so a-priori it is not clear if nilpotent inflation is possible.
Firstly, the cut-off scale should be above the energy scale of inflation, otherwise
inflation cannot be described independently of the UV-effects. However, for the
nilpotent framework to work the mass of the sgoldstino (the superpartner of the
goldstino) should be large, which is inversely proportional to this cut-off scale and
proportional to the scale of supersymmetry breaking. In section 7.5 was shown that
for the considered high-energy model the bounds were sufficiently strong that the
cut-off scale of the effective theory had to be close to the Planck scale. In addition,
the supersymmetry breaking scale, and therefore the gravitino mass (m3/2), had
to be very large. Therefore, a relevant question for particle physics was whether
nilpotent inflation could be realised with a low supersymmetry breaking scale.

In chapter 8 we studied a novel nilpotent inflation model in which this problem
is, at least partially, solved. The method we chose was to add a coupling between
the inflaton and the messenger fields, which transmits the supersymmetry breaking
to the standard model sector of the theory. Due to this coupling, the effective
cut-off scale was parametrically larger during inflation than in the (non-inflating)
vacuum. The gravitino mass in our model had a lower bound m3/2 & O ( MeV)
and with such a small gravitino mass it is possible to propagate supersymmetry
breaking from a hidden sector to the standard model via gauge mediation.

We therefore introduced an explicit high-energy model for which during in-
flation the goldstino superfield was nilpotent and inflation was realised using the
α-attractor formalism, while in the vacuum supersymmetry breaking was medi-
ated to the standard model of particle physics using gauge mediation. Hence, the
superpartner masses could be computed and tested with the results from the LHC
experiments. In addition, since also the inflaton coupling to the standard model
of particle physics was known, the reheating temperature was computed and in-
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formation from the reheating phase compared with the data. Precise predictions
for ns and r could be computed, which were in agreement with the Planck data.
In addition, the gravitino is in our model a possible dark matter candidate and
its abundance strongly constrains the available parameter space. Putting every-
thing together, we were able to test the inflation model with a combination of
inflationary, nucleosynthesis, dark matter and LHC observations. These combined
constraints rendered the model very predictive.

Several improvements can be made on the above investigation. For instance,
the high energy completion of the above model was rather specific. It is therefore
interesting to consider the constraints of the supersymmetry breaking scale for
other models. In the above inflation model the α-attractor was realised using a
no-scale Kähler function for the inflaton, while the other fields in the theory were
considered canonical. Evidently, it is interesting to study the importance of this
assumption, i.e. if the validity of the effective theory changes if also the goldstino
and messenger multiplets are considered in a no-scale framework. This will not
change the effective theory, since the messenger fields are integrated out and the
nilpotent condition on the goldstino implies no difference if written canonical or
no-scale. However, there might be important new constraints for the validity of
this effective theory.

Another extension of this work is to investigate the corrections to superfields
which are constrained in combination with the goldstino. An interesting constraint
for inflation is ΦS = Φ†S, which removes the imaginary and the fermionic partner
of the inflaton superfield Φ. This is beneficial, since the imaginary partner of
the inflaton can generate multi-field behaviour if it is light and the fermionic
partner of the inflaton can create a large gravitino abundance during preheating.
Another example is to impose the nilpotent-3 condition S3 = 0 instead of S2 = 0.
The nilpotent-3 condition requires two superfields, which will both have their
scalar component integrated out. Since both fields can act as a stabilizer without
introducing new inflaton candidates, it is interesting to study if new effects emerge
in such a model.

The reheating study, performed in section 8.5, did not take into account all
possible phenomena that could occur during this phase. For instance, no non-
perturbative effects were treated and neither the nonzero velocity of the inflaton
field or possible thermal effects were taken into account. We also noted in our
analysis that the coupling between the sgoldstino field and the inflaton field might
induce additional sgoldstino oscillations. We interpreted this effect as the possibil-
ity that the oscillations of the inflaton acted as a driving force for the sgoldstino
oscillations. If this driving force oscillates with the resonance frequency of the
sgoldstino field, this field might be excited extremely efficiently. This would in-
troduce large displacement of the sgoldstino field value, even if during inflation it
is stabilized to its vacuum expectation value. It would be interesting to further
investigate this potential issue.
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Final general remarks. Cosmology is currently an active field of research and
many observatories aim to analyse possible signals that describe the universe. Sev-
eral experiments plan to measure primordial B-mode polarization in the CMB. If
this does not result in a measurement of r, the bounds might be sufficiently strong
to rule out important inflation models. Extremely interesting is the possibility to
constrain r & 10−3 in future B-mode experiments [330–332], which is sufficient to
rule out Starobinsky and Higgs inflation (with r ≈ 4 · 10−3). Since this also rules
out most of the models considered in this thesis, it would be extremely interesting
to find the right parametrization for the inflation potential.

Another very interesting possible future measurement is the bispectrum, fNL,
since a measurement of this quantity signals effects from deviations of the single
field setup. Such a measurement would indicate that the inflationary epoch was
driven by multiple fields, or that the inflation had higher-derivative interactions.
Moreover, with the bispectrum it is possible to distinguish between these different
possibilities. Though fNL can be inferred from the CMB, it is more promising to
consider large scale structure surveys. The main problem of this search is that
observing directly the matter density of the universe is very difficult, since only
20% interacts with light. Most tracers of the matter distribution therefore use
galaxies, galaxy clusters or spectral lines (i.e. 21 cm) [333], which are all biased
tracers of the total matter density profile. Hence, obtaining a good statistic for
quantities such as fNL is non-trivial. The current predictions are that within the
near future fNL > 1 will be observable [333–335], which will have a huge impact
on multi-field inflation.

Another important aim for future observatories is to strengthen the measure-
ment of the local Hubble constant, to investigate if the tension with the Hubble
constant measured by the CMB experiments is fundamental or due to some un-
known measurement effect. If this discrepancy becomes statistically significant, it
might be that the resolution will point towards a certain model of dark energy.
This would finally shed some light on this very dark corner of cosmology.

Given the current knowledge, the right model of inflation cannot be easily
identified. An important future direction of study is therefore to further investigate
the predictions that different inflation models make while the cosmological data
improves. This is of particular interest since inflation takes place at extremely high
energies and therefore provides valuable hints to how the standard model of particle
physics has to be extended to high energy scales. A compelling possibility is that
inflation provides a portal to string theory, which is difficult to access by other
probes. Therefore, a promising direction in current and future inflationary research
is the embedding of inflation in string theory and supergravity. In addition, it is
also important to consider possible implementations of inflation in particle physics
beyond the standard model, as the Higgs and MSSM inflation scenarios.

Finally, in chapter 8 was shown that another important era for cosmological
investigations is the reheating era. Though often neglected, the inflaton cannot
be a stand-alone particle without any interactions with the standard model of
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particle physics. Instead, a proper understanding of the current universe requires
an understanding of the couplings between the inflaton and the standard model
particles. Given the sensitivity to the inflationary parameters of the proposed
experiments, reheating soon will become a relevant era for consistent inflationary
results [150]. Therefore, a classification of what type of dynamics translates to
which reheating physics will be extremely useful.



APPENDIX A

The inverse Taylor expansion

In order to further illustrate the analytical method to solve the flow equations
depicted in section 5.1, in this appendix, we apply it to the case where the inverse
Hubble function is Taylor expanded at second order,

H

H0
= 1

1 + aφ+ bφ2 . (A.1)

The two first slow-roll parameters can be read off from Eqs. (4.5), and one has

ε1 = 2 (a+ 2bφ)2

(1 + aφ+ bφ2)2 , ε2 = −42b2φ2 + 2abφ+ a2 − 2b
(1 + aφ+ bφ2)2 . (A.2)

Then, under shift transformations φ → φ + δφ, the functional form (A.1) is un-
changed provided

a→ a+ 2bδφ
1 + aδφ+ bδφ2 , b→ b

1 + aδφ+ bδφ2 , (A.3)

where H0 is also rescaled according to H0 → H0/(1 + aδφ + bδφ2). These gauge
transformations are, for obvious reasons, the same as for the second order Taylor
case studied in section 5.2.1, which implies that

γ = 32b2

4b− a2 = (2ε1 + ε2)2

ε1 + ε2
(A.4)

is a constant of motion and can be used to label the different trajectories.
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Let us now derive the dynamical system associated to this parametrization of
the Hubble function. Making use of the same procedure as in section 5.2, we find
that Eq. (A.1) implies that H ′′′ = 6HH ′H ′′/H2, and Eqs. (4.5) then gives rise to

ε3 = ε1

(
3 + 2ε1

ε2

)
. (A.5)

This truncates the dynamical system to a closed set of differential equations for
(ε1, ε2), given by

dε1
dN = −ε1ε2 ,

dε2
dN = ε1 (3ε2 + 2ε1) . (A.6)

In particular, one can check that the combination γ defined in Eq. (A.4) is left
invariant. The integrated flow lines of the above system are displayed in Fig. A.1.

Let us now see how this system can be integrated analytically. By inverting
Eq. (A.4), one can express ε2 as a function of ε1,

ε2 = −2ε1 + γ

2 + ξ

2
√
γ2 − 4γε1 , (A.7)

where1 ξ = ±1 = sign
[
ε2(2ε1+ε2)
ε1+ε2

]
. As before, by inserting Eq. (A.7) into Eqs. (A.6)

we obtain a first order differential equation for ε1(N) that can be solved, and one
obtains ∆N∗ = N(ε1,end)−N(ε1∗), where ε1,end = 1 and

N (ε1) = 2
ξ
√
γ2 − 4γε1 − γ

+ ξ

2γ log

∣∣∣∣∣
√
γ2 − 4γε1 + γ√
γ2 − 4γε1 − γ

∣∣∣∣∣ . (A.8)

As in the case of the Taylor parametrization, Eq. (A.8) can be inverted,

ε1(N) =
−4Wχ

(
−e−γ∆N−1)

[1 +Wχ (−e−γ∆N−1)]2
, χ =

{
0 if γ(2ε1 + ε2) > 0
−1 if γ(2ε1 + ε2) < 0

, (A.9)

where χ determines the branch of the Lambert function Wχ. It is easy to show
that χ does not change along a given trajectory.

Let us now discuss the structure of the phase space diagram plotted in Fig. A.1.
According to the type of Hubble function one is dealing with, two possibilities must
be distinguished:

1This sign does not change for trajectories for which ε1 always decreases with time (regions
I in the classification introduced below). However, for trajectories for which ε1 first increases,
reaches a maximum and then decreases, it is positive before reaching the maximum and negative
afterwards (region II).



179

3 2 1 0 1 2 3 4 5
ε2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ε 1

I II

Figure A.1: Inverse second order Taylor expansion for the Hubble function:
flow lines of the system (A.6) in the plane (ε1, ε2). The arrows indicate in which
direction inflation proceeds. The blue dashed line corresponds to ε1 = 1 where
inflation stops. The two regions I and II refer to the discussion in the main text.

• In regime I, ε2 < −ε1, ε1 decreases and ε2 increases
as inflation proceeds, reaching one of the (attrac-
tive) fixed point (ε1 = 0, ε2 < 0) in the asymptotic
future. The corresponding Hubble function has a
convex shape with a positive minimum. In this case,
γ < 0.

φ

0

H

• In regime II, ε2 > −ε1, ε2 decreases as inflation
proceeds while ε1 first increases, crosses a maximum
and then decreases, reaching the (attractive) fixed
point (ε1 = 0, ε2 = 0) in the asymptotic future.
The corresponding Hubble function is concave and
vanishes at infinity. In this case, γ > 0.

φ

0

H

One should note that thanks to the conservation of the sign of γ defined in
Eq. (A.4), a given inflationary trajectory never changes region. Amongst the
second category, one can distinguish two cases. If the maximum value of ε1 is
smaller than one, inflation never ends and reaches the fixed point (ε1 = 0, ε2 = 0).
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If, on the other hand, the maximum value of ε1 is larger than one, and if one
starts inflating with ε2 > 0, then inflation ends naturally when ε1 = 1. This hap-
pens when γ > 4. In this case, one can check that the function N (ε1) defined in
Eq. (A.8) goes to infinity when ε1 goes to 0 which means that a sufficient number
of e-folds can always be realized.

However, this requires ε1∗ to be sufficiently small. If one parametrizes a given
trajectory within region II by ε2,end = −2 + (γ +

√
γ2 − 4γ)/2, the value of the

second flow parameter at the end of inflation, in the ε1∗ � 1 limit one has

ε1∗ '
(

2 + ε2end

1 + ε2end

)2
exp

[
1− (2 + ε2end)2 ∆N∗

1 + ε2end

]
. (A.10)

Since ε2∗ > ε2end, ε2∗ < 1 implies that ε2end < 1 hence ε1∗ < 10−104 if ∆N∗ = 60.
So essentially, r ' 0 in these models. Making use of Eq. (A.7), one then has

ε2∗ '
(2 + ε2end)2

1 + ε2end
. (A.11)

Because ε2end > 0 in those branches where inflation ends naturally, this means
that ε2∗ > 4, which is of course completely excluded by CMB observations. As
a conclusion, the only trajectories compatible with observations are those that
reach the fixed points (ε1 = 0, ε2 < 0) such that ε2 gives the correct value of ns.
However, these are rather fine-tuned situations that moreover require to invoke an
extra mechanism to end inflation.



APPENDIX B

Random non-minimal coupling:
Higher order terms

The analysis of chapter 6 demonstrated that given a1, b2, b3 ∼ O(1) and ξ >
O(N2

e ), inflation occurs with a leading order Starobinsky (or Hilltop) signature
and a value of ξ & O(104) can serve to push all higher order corrections sufficiently
far away in field space to arrive at an observationally viable model. We hence find
an inflationary regime independent of the truncation of either series in (6.20).

However, due to the randomness of the coefficients an, bm, it could in principle
happen that terms bmφm,m > 2 in the potential evade the ξ-induced flattening and
influence the inflationary dynamics. Changing our set-up to the power law prior
an, bm ∈ [−1, 1], we now examine whether or not the set-up remains truncation
independent when the coefficients are drawn such that terms bmφm for m > 2
are important, i.e. greater than unity, during inflation; in other words, the Jordan
frame field φ is trans-Planckian to maintain the required amount of e-folds.

In what follows, we study the case an, bm ∈ [−1, 1] and φ & O(1) but the
argument readily extends to the scenario an, bm ∈ [−1/n!, 1/n!] and φ & O(M).
Consider

Ω(φ) = 1 + ξ

M∑
n=1

anφ
n, VJ(φ) = λ

2M+∆∑
m=2

bmφ
m, (B.1)

where ∆ is a positive integer and hence parametrizes how much the highest order
term of the Jordan frame potential departs from a square relation with the highest
order term in the non-minimal coupling function Ω. When φ > 1, we obtain the
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Figure B.1: Density profile for r with ξ = 104, MΩ = 1 and with coefficients bm
that are not factorially suppressed.

effective potential

VE(φ) ∼ λ

a2
Mξ

2

[
b2M +

∆∑
k=1

b2M+k

(
Ω(φ)
aMξ

) k
M

]
. (B.2)

If the potential departs from the square relation between potential and frame
function at highest order, the Einstein frame potential in principle feels this effect.
While also this effect can be made negligible by tuning ∆ or simply pushing it
away in field space by enlarging ξ, it could as such play an important role when
the coefficients bm are drawn such that terms of the order > 2M become dominant
in the inflationary region of the Einstein frame potential.

As coefficients bm>2M may have either sign, the effect of these higher order
terms on the inflationary dynamics can be to curve the potential upwards and
hence increase the number of chaotic signatures in the ns, r plot or to induce a
hilltop and thus to enlarge the number of signatures with redder ns and very small
r. We conjecture that a large ∆ will increase the number of hilltop signatures while
chaotic signatures may only be visible when ∆ ∼ O(1) and M is not too large.
This is because a large ∆ will allow for an interplay of coefficients bm>2M with
possibly different signs such that hilltops occur whereas if there exists just one or
two higher order terms, a positive highest order coefficient could be sufficient to
steepen the potential before lower order terms will have induced a hilltop. The
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phenomenology of this analysis is depicted in Fig. B.1. This shows how chaotic
signatures are only visible for ∆ ∼ O(1).

We thus find that once sufficiently large ξ & O(N2
∗ ) drives the non-canonical

field displacement sub-Planckian, the form of the higher order coefficients is mostly
irrelevant for the inflationary predictions.





APPENDIX C

Analysis of sgoldstino VEV and EFT
validity

In this appendix we give more details on the analysis of the constraint on the
sgoldstino VEV performed in chapter 8. As explained in section 8.3, the infla-
tionary trajectory spans the space of Im(Φ) with Re(Φ) = Im(S) = 0 while the
real part of the sgoldstino is given by Eq. (8.12). The condition 〈S〉 � Λeff(Φ)
is quite involved to solve analytically given the different terms entering into the
expression for the sgoldstino VEV (8.12). We will discuss various limits for this
expression to extract the relevant inequalities such that the validity of the effec-
tive theory is guaranteed along the entire inflationary trajectory. We first analyse
the two extrema of the inflaton trajectory. For small ϕ the sgoldstino VEV is
Planck suppressed and scales as 〈s〉 ∼ Λ2

0
Mp

, hence the EFT condition is trivially
satisfied1. For very large inflaton, when ϕ ∼ Mp, the sgoldstino VEV scales as
〈s〉 ∼ mh

mf
g2Mp. Here we have assumed that mh � mf , since we have indeed the

freedom to decouple the scale of the inflaton mass from the scale of inflation itself.
We will see instantly that this hierarchy is actually a requirement. The condition
〈s〉 � gϕ ∼ gMp hence gives g � mf

mh
which is trivially satisfied. The two extrema

of the ϕ excursion are hence within the EFT validity range.
We now have to investigate the rest of the ϕ trajectory. A good estimate to

understand the possible regimes of validity and the constraints on the parameters
can be obtained by expanding both numerator and denominator in Eq. (8.12) in

1Here we neglect corrections due to a non-zero my in the UV theory, which are in any case
relevant only at the end of the trajectory.
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some approximation. The largest scale of the model is mf that will set the energy
scale of inflation, as illustrated in section 8.3. We then expand the sgoldstino VEV
at leading order in ρ

Mp
, where ρ is any dimensionfull parameter except mf , and at

second order in mf
Mp

2, getting

〈s〉 =
2
√

6f2
0

3Mp
− 2
√

2mfmhϕ2

3αMp

2m2
f
ϕ2

3αM2
p

+
(2f0+

mfϕ
2

Mp )2

Λ2
0+ g2

2 ϕ
2

. (C.1)

We should compare this VEV with the scale giving the upper bound on the validity
of the effective theory, i.e.

√
Λ2

0 + g2

2 ϕ
2. From now on we omit any numerical O(1)

coefficient (including α) for simplicity of the discussion; they can be reinserted
easily by inspecting the expression (C.1).

There are several critical values along the inflaton trajectory where the sgold-
stino VEV changes behavior as a function of ϕ. These are the values where the
different terms in (C.1) change from subleading to dominant, which are

ϕ2 ∼ f2
0

mfmh
,

f2
0M

2
p

Λ2
0m

2
f

,
f0Mp
mf

,
Λ2

0
g2 , (C.2)

where the last one determines also a change in the EFT validity scale. In deter-
mining these critical values we have made the crucial assumption that they are
ordered as in Eq. (C.2) in increasing size. Indeed the assumption Λ2

0
g2 � f0Mp

mf

implies that the next relevant scale for the behaviour in the denominator is f2
0M

2
p

Λ2
0m

2
f

.

This is smaller than f0Mp
mf

if we further impose f0 � mfΛ2
0

Mp
. The first ordering on

the left in Eq. (C.2) also requires a further assumption. All in all the choice of
ordering of the critical values in Eq. (C.2) leads to the following inequalities

f0 �
mf

Mp
Λ2

0 ,
Λ2

0
M2

p
� mh

mf
. (C.3)

Now we can proceed identifying the inequalities that the parameters should satisfy
in order for the sgoldstino VEV to be within the EFT validity regime, in all the
five intervals defined by the critical values in Eq. (C.2) from ϕ ∼ 0 to ϕ ∼Mp.

Analysing all the intervals one finds that the complete set of inequalities is3

f0 �
Λ2

0mf

Mp
,

Λ2
0

M2
p
� mh

mf
,

Λ0
Mp
� mh

mf
. (C.4)

2This is equivalent to assuming that the expansion parameter is ε ∼ ρ
Mp
∼

m2
f

M2
p
.

3We always assume g � 1.
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In particular the last inequality is the one emerging from the analysis of the regimes
of validity in the various intervals. Note that it imposes an upper bound on the
size of the quadratic term of the inflaton potential, resulting in an upper bound on
the inflaton mass at the end of inflation, that will have important consequences for
the phenomenology. Moreover, since Λ0 �Mp, it also confirms that mh � mf .

We conclude by observing that by changing the assumptions on the ordering
of the various turning points in Eq. (C.1), one can extend to other regions of
parameter space where the EFT is still valid. This has indeed also been checked
by randomly scanning over the various parameters. However, we have observed
that restricting the scan to EFT parameters compatible with a weakly coupled
UV completion as in section 8.4, the parameter space is cut out to the UV version
of Eq. (C.4), that is Eq. (8.40). Hence our focus on this region.





BĲLAGE D

Samenvatting

Natuurverschijnselen worden bestudeerd op verschillende afstandsschalen. Op zeer
grote schaal wordt het universum als geheel bestudeerd, terwijl op kleine schaal de
fysica van de elementaire deeltjes onderzocht wordt met de Large Hadron Collider
(LHC). De fenomenen die bestudeerd worden met deze verschillende instrumenten
zijn zeer verschillend. De fysica van de elementaire deeltjes wordt gekarakteri-
seerd door het standaardmodel van de deeltjesfysica, deze beschrijft drie van de
vier fundamentele krachten: de sterke en zwakke kernkracht en de elektromagne-
tische kracht. De vierde kracht, de zwaartekracht, wordt niet beschreven in het
standaardmodel. Maar deze kracht, beschreven door de algemene relativiteitsthe-
orie, is de belangrijkste kracht voor observaties van het universum.

Het combineren van de twee modellen, het standaardmodel der elementaire
deeltjes en de algemene relativiteitstheorie, levert theoretische problemen op. Het
belangrijkste probleem is dat het moeilijk blijkt een kwantummechanische beschrij-
ving van de algemene relativiteitstheorie te formuleren. Dit wordt vergemakke-
lijkt indien een extra ingrediënt wordt toegevoegd aan deze modellen, namelijk
supersymmetrie. Met supersymmetrie kunnen modellen als supergravitatie en
de snaartheorie worden afgeleid, die inderdaad de mogelijkheid bieden zowel het
standaardmodel als de zwaartekracht te beschrijven. Het blijkt echter dat deze
theorieën slechts relevant worden als de energieschaal van het bestudeerde proces
zeer hoog is. Dit betekent dat experimenten zoals de LHC niet gebruikt kunnen
worden voor de validatie van supergravitatie en snaartheorie, hoewel het mogelijk
is dat supersymmetrie wel te vinden is met dergelijke experimenten. Het is daarom
van belang om andere mogelijkheden te zoeken om deze theorieën te testen. Deze
mogelijkheden liggen in het onderzoeken van de oorsprong van het universum.
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Er bestaan verschillende kosmologische observaties die niet verklaard kunnen
worden met de huidige kosmologische modellen, die beschreven zijn met de alge-
mene relativiteitstheorie en het standaardmodel van de deeltjesfysica. Het is mo-
gelijk om met aanpassingen van de laatste deze observaties te beschrijven, maar
volledige duidelijkheid daarover is er nog niet. Voor deze thesis zijn twee observa-
ties van belang

Ten eerste is bij waarnemingen van ons universum significant meer massa waar-
genomen dan verklaard kan worden door de deeltjes van het standaardmodel van
de elementaire deeltjes. Deze nieuwe deeltjes worden niet rechtstreeks waargeno-
men, hetgeen betekent dat zij niet gekoppeld zijn aan licht. Om deze reden wordt
deze nieuwe vorm van materie donkere materie genoemd. De oorsprong van deze
donkere materie is onbekend.

Ten tweede blijkt uit waarnemingen dat het vroege universum (en daarmee
ook het huidige universum) uiterst isotroop was, hetgeen betekent dat elk punt
dat wij waarnemen in het vroege universum er identiek uitziet. Door de eindige
snelheid van het licht is het vroege universum opgedeeld in stukjes die causaal met
elkaar in verband hebben gestaan, en dus informatie uitgewisseld kunnen hebben.
Door de uitdijing van het universum zien wij tegenwoordig vele van dergelijke
stukjes universum, door de uitdijing is het plaatje van het universum als het ware
uitvergroot. Omdat die verschillende stukjes universum geen informatie konden
uitwisselen, zou men verwachten dat zij verschillende eigenschappen hebben, ze
hebben immers geen mogelijkheid gehad om ‘af te stemmen’. Maar zoals gezegd is
het universum uiterst isotroop. Dit probleem, dat te maken heeft met de causale
horizon, wordt het horizonprobleem genoemd.

Het horizonprobleem neemt aan dat er in het vroege universum enkel deeltjes
bestonden uit het standaardmodel. Het is echter mogelijk om dit probleem op te
lossen door een nieuw deeltje te introduceren die een nieuwe fase van versnelde ex-
pansie doet plaatsvinden in het zeer vroege universum. Deze periode wordt inflatie
genoemd. Zoals gezegd blijkt het niet mogelijk om inflatie te beschrijven binnen
het standaardmodel (hoewel er een model bestaat met het Brout-Englert-Higgs
boson, maar dit model vereist een aanpassing van de koppeling tussen dit deeltje
en gravitatie). Omdat inflatie plaatsvindt op zeer hoge energieën en het standaard-
model daar nog niet is getest is inflatie feitelijk een mogelijkheid om het zeer-hoge
energie limiet van het standaardmodel te onderzoeken. Inflatie kan daarom ge-
bruikt worden als een proefgebied om de correcte beschrijving van supergravitatie
en snaartheorie te onderzoeken.

De belangrijkste observatie die naar het horizonprobleem leidde was de kos-
mische achtergrondstraling. Deze straling ontstond toen het vroege universum
afkoelde (het universum koelt af omdat het uitdijt) en licht er plotseling (nage-
noeg) ongelimiteerd doorheen kon gaan. Dit licht wordt tegenwoordig waargeno-
men door speciale observatoria, waarvan de laatste (en nauwkeurigste) de Planck
satelliet en de BICEP/KECK-telescopen zijn. Door inflatie was het vroege univer-
sum zeer isotroop, hetgeen betekent dat de kosmische achtergrondstraling dezelfde
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temperatuur had voor elke richting waarin we ernaar kijken. Feitelijk is dit de be-
langrijkste observatie van het horizonprobleem, dat dus opgelost wordt door een
periode van inflatie.

Echter, de kosmische achtergrondstraling is niet perfect isotroop maar er zijn
zeer kleine fluctuaties van de temperatuur. Het bestuderen van deze fluctuaties
was het belangrijkste doel van de Planck satelliet (hoewel de fluctuaties zelf al
gemeten waren door de COBE-satelliet). De Plank satelliet vond niet alleen de
fluctuaties zelf, maar toonde ook aan dat ze niet zogeheten schaal-invariant waren,
uitgedrukt in de parameter ns.

Inflatie voorspelt het bestaan van deze schaal-invariante fluctuaties in de kos-
mische achtergrondstraling. De reden is als volgt. De periode van inflatie wordt
gegenereerd door een scalair veld dat in een potentiaal naar beneden rolt. Als
dit veld, het inflaton genaamd, langzaam rolt zal het universum versneld uit-
dijen. Door kwantumfluctuaties ontstaan echter kleine verschillen in delen van
het universum en ontstaan uiteindelijk zeer kleine variaties in de dichtheid van
het universum op het moment dat de kosmische achtergrondstraling uitgezonden
wordt. Deze kleine dichtheidsveranderingen veroorzaken vervolgens de waargeno-
men temperatuurfluctuaties.

Tijdens inflatie ontstonden behalve dichtheidsfluctuaties ook zwaartekrachtgol-
ven. Deze zwaartekrachtgolven zijn niet rechtstreeks waarneembaar, in tegenstel-
ling tot de golven waargenomen door de LIGO/VIRGO-collaboratie, maar hebben
wel effect op de polarisatie van de kosmische achtergrondstraling. Deze polarisatie
wordt gemeten in de Planck satelliet en de BICEP/KECK-telescoop. Helaas zijn
de effecten van de zwaartekrachtgolven nog niet gemeten, maar er is wel een zeer
strikte bovengrens. Deze bovengrens wordt uitgedrukt als een maximale waarde
die een parameter genaamd r kan bereiken.

De meting van ns en de bovengrens op r zijn dermate strikt dat al verscheidene
modellen zijn uitgesloten door deze observaties. Echter ook vele modellen zijn nog
toegestaan. Het is daarom van belang om te onderzoeken welke modellen wel
overeenstemmen met de data en welke niet. Vandaar de focus in dit proefschrift
om verscheidene inflatiemodellen te testen met de waarnemingen van ns en r.

Het eerste deel van de thesis vergelijkt de voorspellingen van verschillende pa-
rametrisaties van inflatie met de meting van ns en de bovengrens op r. Er zijn
verschillende manieren om dit te bestuderen, waarvan er twee worden gebruikt in
dit proefschrift. De eerste methode is door verschillende potentialen te parametri-
seren en vervolgens een numerieke scan te doen over deze parameters. De tweede
methode is door het bestuderen van zogenaamde attractoren in inflatie.

Voor de numerieke studie naar generieke voorspellingen van inflatie worden
drie parametrisaties vergeleken. De eerste parametrisatie was de polynomisch
geëxpandeerde potentiaal. Deze parametrisatie was de standaard in de literatuur,
maar de generieke voorspelling van deze parametrisatie had een te kleine waarde
van ns. De reden is dat een polynoom over het algemeen een vrij sterk gebogen
potentiaal oplevert. Het is bekend dat over het algemeen vlakke potentialen beter
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overeenkomen met de observaties, dus is het aannemelijk dat een parametrisatie
die over het algemeen een vlakke potentiaal heeft betere voorspellingen zou doen.

Vervolgens worden in het proefschrift modellen onderzocht met vlakke poten-
tialen door de potentiaal te parametriseren als een ratio van polynomen. Deze
parametrisatie heeft meestal een vlakke potentiaal voor hoge waarden van het
inflaton veld, dus als het inflaton veld deze waarden bereikt zal inflatie beter
overeenstemmen met de observaties. Inderdaad bleek uit de numerieke simulaties
dat deze parametrisatie veel beter overeenkwam met de data van de kosmische
achtergrondstraling.

Om deze claim te versterken werd een nieuwe methode ontwikkeld om een
analytische oplossing te verkrijgen voor de differentiaalvergelijkingen die inflatie
karakteriseren. De analytische studie gaf hetzelfde beeld als de numerieke, dus een
ratio van polynomen voldoet beter dan een enkele polynoom.

Tot slot wordt een algemene versie van het sterke-koppeling attractormodel
zowel analytisch als numeriek bestudeerd. Dit attractormodel maakt gebruik van
een niet-minimale koppeling tussen het inflaton en gravitatie. Deze koppeling
wordt geparametriseerd door een parameter (ξ) en in dit werk vonden we dat als
ξ groot genoeg wordt gekozen (van de orde 105) inflatie doorgaans voldoet aan
de observaties. De reden is dat voor een grote waarde van ξ een plateau ontstaat
voor grote waarden voor het inflaton veld, terwijl voor kleine waarden van ξ het
plateau te ver weg ligt om effect te hebben op de CMB.

Bovenstaande modellen waren allemaar valide inflatiemodellen, maar zij voor-
spelden enkel inflatie en niet de daaropvolgende evolutie van het universum. De
reden is dat zij niet gekoppeld zijn aan het standaardmodel van de deeltjesfysica.
Het tweede deel van dit proefschrift is gewijd aan het verbinden van inflatie met
de deeltjesfysica. In dit werk onderzochten we een supergravitatiemodel voor in-
flatie genaamd ‘nilpotente inflatie’. Ons belangrijkste resultaat in dit werk was dat
wij het deel van de parameterruimte van het model identificeerden waarin inflatie
mogelijk was.

Een interessant bijkomend onderdeel van dit supergravitatiemodel was dat het
consistent kon worden gemaakt met het standaardmodel van de deeltjesfysica.
Omdat dit model gebaseerd is op supersymmetrie, voorspeldt het een set nieuwe
deeltjes, zogenaamde superpartners. De massaś van deze superparners kunnen
berekend worden in ons model en vergeleken met de bovengrensen voor de massa’s
van de LHC, dat deze deeltjes niet hebben waargenomen.

Naast deze massa’s, kan in ons model ook de volledige evolutie van het uni-
versum worden beschreven. De reden dat dit niet bekend is bij effectieve inflatie-
modellen, zoals de modellen die in het eerste deel van het proefschrift beschreven
werden, is dat deze modellen het verval van het inflaton in standaardmodeldeel-
tjes niet meenemen. Voor de periode van inflatie is dit niet relevant, maar na
inflatie moet het inflaton uit het universum verdwijnen door te vervallen naar
standaardmodeldeeltjes.

Omdat ons model de interacties tussen het inflaton en het standaardmodel
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van de deeltjesfysica beschrijft kan deze periode beschreven worden in ons model.
Dit betekent dat niet alleen precieze voorspellingen van ns en r gemaakt kunnen
worden en dat we de massa’s van de superpartners kunnen vinden, maar ook dat
we een mogelijke kandidaat hebben voor donkere materie. Derhalve behandelt
het laatste deel van de thesis een model met scherpe voorspellingen voor normaal
gezien ongerelateerde gebeurtenissen in het universum.
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