
 

 

 University of Groningen

Local convergence of generalized Mann iteration
Maruster, St.; Maruster, L.

Published in:
Numerical algorithms

DOI:
10.1007/s11075-017-0289-x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Maruster, S., & Maruster, L. (2017). Local convergence of generalized Mann iteration. Numerical
algorithms, 76(4), 905-916. https://doi.org/10.1007/s11075-017-0289-x

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1007/s11075-017-0289-x
https://research.rug.nl/en/publications/ab2e5b38-2e83-4a48-bc4a-46ce95ab38ff
https://doi.org/10.1007/s11075-017-0289-x


Noname manuscript No.
(will be inserted by the editor)

Local convergence of generalized Mann iteration

St. Maruster · L. Maruster

Received: date / Accepted: date

Abstract The local convergence of generalized Mann iteration is investigated
in the setting of a real Hilbert space. As application we obtain estimations of
the local radius of convergence for some known iterative methods. Numer-
ical experiments are presented showing the efficiency of the proposed esti-
mates. In the case of One point Ezquerro-Hernandez method (J.A.Ezquerro,
M.A.Hernandez, An optimization of Chebyshev’s method, Journal of Com-
plexity, 25 (2009) 343-361) the proposed procedure gives radii which are very
close to the maximum local convergence radii.

Keywords Fixed point · Iterative method · Mann iteration · Local
convergence · Local convergence radius

1 Introduction

Let H be a real Hilbert space (scalar product 〈·, ·〉 and norm ‖ · ‖), C an
open subset of H and T : C → H a nonlinear mapping. In this paper we are
concerned with the problem of estimation of the local radius of convergence
for the generalized Mann iteration. Recall that the generalized Mann iteration
is defined by [1]

xn+1 = (I −Dn)xn +DnT (xn), (1.1)
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where I is the identity mapping and {Dn} ⊂ L(H) is the generalized control
sequence. Recall also that a mapping T is said to be generalized demicontrac-
tive with respect to the control linear mapping D : C → L(C) if

〈Dx(x− T (x)), x− p〉 ≥ λ‖Dx(x− T (x))‖2, ∀x ∈ C, p ∈ Fix(T ),

where λ is a positive number. The generalized control sequence is a sequence
of linear bounded mappings, usually defined by a function of x, Dx = D(x)
(we will use the notation Dn = Dxn

), or it can be defined recursively as a
mapping depending on xn and Dn−1. In fact (1.1) is equivalent to xn+1 =
xn − DnF (xn) where F (x) = x − T (x). Iterations of this type have been
extensively investigated over the years, especially the case Dn = B−1n ; however,
considering it as Mann iteration some new results can be obtained.

Various known iterative methods for iterative approximation of the solu-
tions of the equation F (x) = 0 are particular cases of (1.1). The following two
cases will be considered in the sequel:

1. The Newton method, obtained from (1.1) by choosing T (x) = x− F (x)
and Dx = F ′(x)−1.

2. The One point Ezquerro-Hernandez method, obtained from (1.1) by
choosing T (x) = x− F (x)− F (x− F ′(x)−1F (x)) and Dx = F ′(x)−1.

Some efforts have been made to obtain improved values of the local ra-
dius of convergence, especially in the case of Newton method or its variants.
However ”... effective, computable estimates for convergence radii are rarely
available” [2]. Among the oldest known results we could mention those given
by Vertgeim (1956) [3], Rall (1974) [4], Rheinboldt (1975) [2], Traub and Woz-
niakowski (1979) [5], Smale (1997) [6]. Relatively recent results (in the last
decade) on these topics were communicated by Argyros [7–9], Ferreira [10],
Hernandez-Veron and Romero [11], Ren [12] and Wang [13]. Determining ef-
fective and computable estimates for the local convergence radius is challenging
and we aim to make a contribution in this sense.

In this paper we propose a general procedure (algorithm) for the estima-
tion of the local radius of convergence for generalized Mann iteration (1.1).
The procedure proves to be efficient, i.e., it provides a radius close to the
maximal one and it is satisfactory computable. As applications we obtain the
local radius of convergence for the two known methods mentioned above. It
is worthwhile to mention that in the case of One point Ezquerro-Hernandez
method, the experiments show that our algorithm gives local radius of conver-
gence very close (or even identical) to the maximum radius of convergence.

2 Preliminary lemmas

We shall suppose throughout the paper that the set of fixed points of T is
nonempty, Fix(T ) 6= ∅.

Lemma 1 Let T : C → H be a Fréchet differentiable mapping on C. Then
for given points x, p ∈ C there exists a linear mapping Rx,p (which depends on
x, p), such that
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(i) T (x)− T (p) = (T ′(x) +Rx,p)(x− p);
(ii) for any ε > 0 there exists rε > 0 such that if x ∈ B(p, rε) = {x| ‖x −

p‖ ≤ rε} then ‖Rx,p‖ ≤ ε.

The proof is straightforward by defining Rx,p as

Rx,p(u) =
〈x− p, u〉
‖x− p‖2

(T (x)− T (p)− T ′(x)(x− p)).

Lemma 2 [14] Let p be a fixed point of T . Suppose that T is Fréchet differ-
entiable on C and that I − T ′(p) is invertible, η = ‖(I − T ′(p))−1‖. Let c be
such that 0 < c < η−1 and let rc be defined in Lemma 1 for ε = c. Then

‖x− p‖ ≤ β‖x− T (x)‖, ∀x ∈ B(p, rc), (2.1)

where β =
η

1−cη .

The condition (2.1), called quasi expansivity, was considered in a recent
paper [15], in order to prove the strong convergence of the Mann iteration
for strongly demicontractive mappings. It is easy to see that (2.1) implies
‖T (x)− p‖ ≥ 1−β

β ‖x− p‖ which justifies the terminology quasi-expansive. It is

also obvious that the set of fixed points of a mapping T which satisfies (2.1)
consists of a unique element p in B(p, rc).

Condition (2.1) is similar but stronger to the following condition:

‖x− T (x)‖ ≥ α inf
p∈Fix(T )

‖x− p‖, ∀x ∈ C,

where 0 < α < 1, which is considered in [16,17] as an additional condition
to prove strong convergence of the Mann iteration for nonexpansive (quasi-
nonexpansive) mappings in Banach spaces.

3 Local convergence

The Theorem 1 in this section provides conditions under which the iteration
(1.1) converges weakly/strongly to a fixed point of T ; its proof is similar to
the proof of Theorem 1 from [18] and therefore omitted.

Theorem 1 Let T : C → H be a nonlinear mapping with a nonempty set of
fixed points, Fix(T ) 6= ∅. Let p be a fixed point of T and r such that B(p, r) ⊂
C. Suppose the following conditions are satisfied:

(i) T is demiclosed at zero on B(p, r);
(ii) Dx is invertible and ‖D−1x ‖ ≤M , ∀x ∈ B(p, r);
(iii) T is generalized demicontractive with λ > 0.5 for ∀x ∈ B(p, r) and

∀p ∈ Fix(T ).
Then the sequence generated by the generalized Mann iteration (1.1) with

starting point in B(p, r) remains in B(p, r) and converges weakly to a fixed
point of T . If, in addition, T satisfies the quasi-expansivity condition (2.1) on
B(p, r), then the sequence converges strongly to the unique fixed point of T in
B(p, r).
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In the sequel we apply Theorem 1 to prove local convergence of the two
methods considered in Introduction.

For the Newton method, taking T (x) = x − F (x) and Dx = F ′(x)−1, we
get:

Corollary 1 Let F : C → H be a nonlinear mapping, where C is an open
subset of H. Suppose that F is Fréchet differentiable on C, that there exists
F ′(x)−1, ‖F ′(x)−1‖ ≤ β, ∀x ∈ C and that F ′ is L-Lipschitz continuous on C.
Then the set of solutions of F (x) = 0 is composed of isolated points and the
Newton method converges locally to some solution.

Proof Let p be a solution of F (x) = 0 (or a fixed point of T ). From Lemma 2
it follows that T is quasi-expansive on some B(p, rc) and, therefore, p is the
unique fixed point of T in B(p, rc). Let rη = 2η/(βL), where η <

√
5− 2 and

r ≤ min{rc, rη}. We can suppose that B(p, r) ⊂ C.
Using the mean value theorem, we have for any x ∈ B(p, r)

Dx(x− T (x)) = F ′(x)−1F (x) = F ′(x)−1(F (x)− F (p))

= F ′(x)−1
(∫ 1

0
F ′(p+ t(x− p))dt

)
(x− p)

=
[
I − F ′(x)−1

(
F ′(x)−

∫ 1

0
F ′(p+ t(x− p))dt

)]
(x− p).

Using the notation

∆x = F ′(x)−1
(
F ′(x)−

∫ 1

0

F ′(p+ t(x− p))dt
)
,

the condition of generalized demicontractivity becomes

〈(I −∆x)(x− p), x− p〉 ≥ λ‖(I −∆x(x− p)‖2. (3.1)

We have

‖∆x‖ ≤ ‖F ′(x)−1‖
∫ 1

0
‖F ′(x)− F ′(p+ t(x− p))‖dt

≤ βL
∫ 1

0
‖(1− t)(x− p)‖dt ≤ 1

2βrL ≤ η, x ∈ B(p, r).

Now, from 0 < η <
√

5− 2 it results 0.5 < (1− η)/(1 + η)2 < 1. Let λ be such
that

0.5 < λ <
1− η

(1 + η)2
.

Consider the quadratic polynomial

P (t) = λt2 + (2λ+ 1)t− 1 + λ.

The largest solution of P is s(λ) = (−2λ − 1 +
√

8λ+ 1)/(2λ). Now because
η < s(λ) and P (0) < 0, for any 0 < t ≤ η it results P (t) ≤ 0. As ‖∆x‖ ≤ η we
have that P (‖∆x‖) ≤ 0 which is equivalent to

1− ‖∆x‖ ≥ λ(1 + ‖∆x‖)2, ∀x ∈ B(p, r).



Local convergence of generalized Mann iteration 5

For any ‖y‖ = 1 we have

〈(I −∆x)y, y〉 = 1− 〈∆xy, y〉 ≥ 1− ‖∆x‖
≥ λ(1 + ‖∆x‖)2 ≥ λ‖I −∆x‖2 ≥ λ‖(I −∆x)y‖2.

Taking y = (x−p)/‖x−p‖ we obtain (3.1) i.e., T (x) = x−F (x) is generalized
demicontractive with respect to F ′(x)−1 and with λ > 0.5 on B(p, r), which
is the condition (iii) of Theorem 1. The condition (i) is obviously satisfied and
condition (ii) results from L-Lipschitz continuity of F ′ and Dx = F ′(x)−1.

For One point Ezquerro-Hernandez method, taking T (x) = x − F (x) −
F (x− F ′(x)−1F (x)) and Dx = F ′(x)−1, we get:

Corollary 2 Suppose that F satisfies the conditions of Corollary 1. Then the
set of solutions of F (x) = 0 is composed of isolated points and the One point
Ezquerro-Hernandez method converges locally to some solution.

Proof The proof follows the same lines as the proof of Corollary 1. The radius
rη is defined now as the (unique) real positive root of the equations

β2L2

2

(
1 +

βL

4
r

)
r2 − η = 0, η <

√
5− 2, (3.2)

and r = min{rc, rη}. Using the notations: w = x − F ′(x)−1F (x), Ix =∫ 1

0
F ′(p + t(x − p))dt, Iw =

∫ 1

0
F ′(p + t(w − p))dt, ∆x = F ′(x)−1(F ′(x) −

Iw)F ′(x)−1(F ′(x)− Ix), we get for x ∈ B(p, r)

Dx(x− T (x)) = (I −∆x)(x− p)

and the condition of generalized demicontractivity becomes (3.1). We can es-
timate the upper bond of ‖∆x‖ as

‖∆x‖ ≤
β2L2

2

(
1 +

βL

4
r

)
r2.

Now, if r is less than the positive root of (3.2) then ‖∆x‖ < η. The rest of the
proof follows as the proof of Corollary 1.

Following the same type of reasonings we can obtain conditions to local con-
vergence and values for local radii of convergence for other iterative methods.
For example, takingDx = F ′(x0)−1 and T (x) = x−F (x) the generalized Mann
iteration reduces to Modified Newton method, xn+1 = xn − F ′(x0)−1F (xn).
Supposing that all conditions of Corollary 1 are satisfied, the convergence of
this method is assured if x0 belongs at the ball B(p, r), where r ≤ 3η/(2βL).

The Picard iteration (successive approximations) can be also obtained from

(1.1) by takingDx = I and T (x) = F (x). In this case∆x =
∫ 1

0
F ′(p−t(x−p))dt

and the condition ‖∆x‖ ≤ η is satisfied if ‖F ′(x)‖ ≤ η =
√

5− 2 on some ball
on which the other conditions of Corollary 1 are fulfilled.

These corollaries show that the conditions of Theorem 1 are satisfied for
a sufficiently large class of mappings; they do not provide algorithms that
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efficiently compute convergence radii. For example, the estimation given in
Corollary 1 (r = 2η/βL ≈ 0.472/βL) is less that the value proposed by Rhein-
boldt [2] (r = 2/3βL ≈ 0.667/βL).

In finite dimensional spaces the condition of quasi-expansivity is superflu-
ous; the first three conditions of Theorem 1 are sufficient for the convergence
of the generalized Mann iteration. Therefore, in finite dimensional spaces, sup-
posing that conditions (i), (ii) of Theorem 1 are fulfilled, we can develop the
following algorithm to estimate the local radius of convergence:

Find the largest value for r such that

m = min
x∈B(p,r)

〈Dx(x− T (x)), x− p〉
‖Dx(x− T (x))‖2

(4.1),

and m > 0.5.

This procedure involves the following main processing:

1. Apply a search line algorithm (for example of the type half-step algo-
rithm) on the positive real axis to find the largest value for r;

2. At every step of 1 solve the constraint optimization problem (4.1) and
verify the condition m > 0.5.

Several numerical experiments in one and several dimensions were per-
formed to validate this method. It is worthwhile to underline that the values
obtained by the proposed algorithm are, to some extent, larger than those
given by other methods (Experiment 4), and, in some cases, our procedure
gives local radii of convergence very close to the maximum ones (Experiments
1,2,3).

4 Numerical experiments

This section is devoted to numerical experiments to evaluate the efficiency
of the proposed procedure. The obtained radii are compared (numerically or
graphically) with the maximum radii of convergence. In our experiments the
maximum radius was computed by directly checking the convergence of the
iteration process starting from all points of a given net of points. The attraction
basin (hence the maximum convergence radius) computed in this way has
only relative worth. Nevertheless, this method provides significant information
about the attraction basins, and the efficiency of proposed algorithm can be
accurately evaluated.

Experiment 1

We have computed the local radius of convergence with the proposed algo-
rithm corresponding to the two considered methods, and for a number of real
functions. In all these examples the radii corresponding to Newton method
are close to the maximum radii, and the radii corresponding to One point
Ezquerro-Hernandez method coincide with the maximum radii. For exam-
ple, in the case of function f(x) = 0.5x2 + cos(x) with p = 1.04855836...
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the estimates (computed with seven decimal digits) are: for Newton method,
r = 0.3501329 (maximum radius, rm = 1.0485583); for One point Ezquerro-
Hernandez method, r = 0.2549290 (maximum radius, rm = 0.2549290).

Experiment 2

We applied the proposed algorithm to estimate the local radius of conver-
gence for Newton method, for Picard iteration, and for One point Ezquerro-
Hernandez method and for a number of mappings in several variables. For the
following test mapping (we will refer to it as Ex.1):

F (x) =

(
0.8x1 − cos(x1) + x22 + 1

x31 + 0.8x2

)
,

and the fixed point p = (0, 0)T the results are given in Figure 1.

Fig. 1 Estimations of local convergence radii with proposed algorithm:
(a) For Newton method; (b) For Picard iteration; (c) For One point Ezquerro-Hernandez

method

The black areas represent the whole attraction basins and the white cir-
cles the local convergence balls. It can be seen that the proposed algorithm
gives local radii of convergence with satisfactory accuracy in the all cases.
In the case of One point Ezquerro-Hernandez method the estimate are very
close to the maximum radius of convergence or even coincide with them. For
example, the estimate (with four decimal digits) is r = 0.3192 and it coin-
cides with the maximum radius. Indeed, for any starting point ‖x0‖ ≤ 0.3192,
the One point Ezquerro-Hernandez method converges to p = (0, 0)T ; for
x0 = (−0.2850, 0.1441), ‖x0‖ = 0.3193 the method fails to converge.

Experiment 3

We applied our algorithm to the Newton method and to the One point
Ezquerro-Hernandez method for the complex function f(z) = z3−1. In the case
of Newton method the attraction basins corresponding to the three solutions
of the equation z3 − 1 = 0 are well known and the reunion of these basins
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has an interesting fractal structure. In Figure 2 it is drawn only the attraction
basin corresponding to the solution z = 0. The same structure proves to be
maintained in the case of the One point Ezquerro-Hernandez method. We could
find the same conclusion as we found in Experiments 1 and 2: our algorithm
gives radii of convergence close to maximum radii for the Newton method,
and very close to the maximum ones (or even coincide with them) for the One
point Ezquerro-Hernandez method.

The results are presented in Figure 2.

Fig. 2 Estimations of local convergence radii with proposed algorithm for the complex
function f(z) = z3 − 1: (a) For Newton method; (b) For One point Ezquerro-Hernandez

method

Experiment 4

In this experiment we estimate the local radius of convergence of One point
Ezquerro-Hernandez method using two relatively recent procedures proposed
in [19] and [11] respectively. Recall that the first procedure gives the radius
of convergence of the iteration xn+1 = G(xn) in terms of q = ‖G′(p)‖ and of
the Holder continuity constant Kt. More precisely, the radius of convergence
is given by r = [(1 + t)(1 − q)/Kt]

1/t (in our experiment t = 1). The second
algorithm works as follows: Suppose that p is a solution of the equation F (x) =
0, there exists F ′(p)−1, ‖F ′(p)−1‖ ≤ β and F ′ is k-Lipschitz continuous on
some B(p, r0) = {x : ‖x − p‖ ≤ r0}. Let r̃ = min{r0, r}, where r = ζ0/[(1 +
ζ0)βk] and ζ0 is the positive real root of the equation t3 + 4t2− 8 = 0. Then r̃
is a local radius of convergence. The mapping Ex.1 defined in Experiment 2,
and the following two mappings are the test mappings:

Ex.2 : F (x) =

(
3x21 − x1x32 + 3x2
2x1 + x32 − 0.2x2

)
,

Ex.3 : F (x) =

(
x1x

3
2 − x1 + 2x22

x21 + sin(x2)

)
.
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The results are given in Table 1. For reason of comparison, the third row
contains the radii computed using our algorithm (maximal radii).

Method Ex.1 Ex.2 Ex.3

Catinas algorithm 0.19241 0.15000 0.16223
Hernandez-Romero algorithm 0.22111 0.17027 0.13811

Our algorithm (maximal radius) 0.31923 0.25800 0.27415

Table 1: Local radii of convergence computed with different algorithms.
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