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Chapter 2

Inhibition-augmented Trainable COSFIRE
Filters for Shape Detection and Object
Recognition

Abstract

The shape and meaning of an object can radically change with the addition of one or more
contour parts. For instance, a T-junction can become a crossover. We extend the COS-
FIRE trainable filter approach which uses a positive prototype pattern for configuration
by adding a set of negative prototype patterns. The configured filter responds to pat-
terns that are similar to the positive prototype but not to any of the negative prototypes.
The configuration of such a filter comprises selecting given channels of a bank of Ga-
bor filters that provide excitatory or inhibitory input and determining certain blur and
shift parameters. We compute the response of such a filter as the excitatory input minus
a fraction of the maximum of inhibitory inputs. We use three applications to demon-
strate the effectiveness of inhibition: the exclusive detection of vascular bifurcations (i.e.
without crossovers) in retinal fundus images (DRIVE data set), the recognition and lo-
calization of architectural and electrical symbols (GREC’11 data set) and the recognition
of handwritten digits (MNIST data set).

1Subsection ’Localization of architectural and electrical symbols’ in Section 2.3.2 is taken from this
paper. The rest of this chapter is based on the first paper given above.
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2.1 Introduction

Recently, a novel trainable filter for object recognition has been proposed in (Az-
zopardi and Petkov, 2013b). It is called combination of shifted filter responses or
COSFIRE for brevity. A COSFIRE filter is configured to be selective for a given
local pattern by extracting from that pattern characteristic properties of contour
parts (such as orientation) and their geometrical arrangement. COSFIRE filters were
demonstrated to be effective for detection of local patterns and recognition of objects
and achieve very good performance in various applications (Azzopardi and Petkov,
2013a, 2014; Azzopardi et al., 2015; Guo, Shi, Azzopardi and Petkov, 2015a; Strisci-
uglio et al., 2015; Shi et al., 2015a; Strisciuglio, Vento, Azzopardi and Petkov, 2016).
They were also used in a multi-layer hierarchical approach (Azzopardi and Petkov,
2014).

(a) (b) (c) (d) (e)

Figure 2.1: Examples of pairs of patterns that COSFIRE filters of the type proposed in (Az-
zopardi and Petkov, 2013b) are not able to distinguish. (a) Two traffic signs which have the
opposite messages: permission and prohibition of turning right. (b) Two Chinese characters
that are translated into English as ”big” and ”dog”. (c) Two music notes: quarter and eighth.
(d) Two electrical symbols: normal and photo-diodes. (e) Bifurcations and crossovers in reti-
nal fundus images. A COSFIRE filter that is trained to detect the upper pattern in a pair of
two, will give a strong response to the lower pattern too.

Fig. 2.1 shows some examples where a COSFIRE filter of the type proposed in
(Azzopardi and Petkov, 2013b) may, however, not perform very well. COSFIRE
filters that are configured to be selective for the patterns shown in the images in the
top row of Fig. 2.1 also give strong responses to the images in the bottom row of
Fig. 2.1. This is because all contour parts of a pattern in the top row are present, in
the preferred arrangements, in the corresponding image shown in the bottom row
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of Fig. 2.1. The presence of additional contour parts, such as the diagonal bar in
Fig. 2.1a (bottom) or the extra stroke in Fig. 2.1b (bottom), do not have influence on
the response of the filter.

The COSFIRE method (Azzopardi and Petkov, 2013b) was inspired by a specific
type of shape-selective neuron in area V4 of visual cortex. This method, however,
relies on contour parts that provide only excitatory inputs. This means that every
involved contour part detector contributes to enhance the response of a COSFIRE
filter.

There is neurophysiological evidence, however, that neurons in different layers
of the visual cortex receive also inhibitory inputs (Hubel, 1988). For instance, neu-
rons in the lateral geniculate nucleus (LGN) have center-surround receptive fields
which have been modeled by difference-of-Gaussians (DoG) operators. A center-
on DoG has an excitatory central region with an inhibitory surround. Similarly,
simple cells in area V1, whose properties provided the inspiration for Gabor filters
(Daugman, 1985; Jones and Palmer, 1987), derivative of Gaussians (Florack et al.,
1994) and CORF (Azzopardi and Petkov, 2012; Azzopardi et al., 2014) filters, have
receptive fields that consist of inhibitory and excitatory regions. Non-classical re-
ceptive field inhibition in orientation-selective visual neurons provided the inspira-
tion for surround inhibition in orientation-selective filters (Petkov and Visser, 2005).
It has been shown to improve contour detection by suppressing responses to tex-
tured regions. Moreover, shape-selective neurons of the type studied in (Brincat
and Connor, 2004), located in the posterior inferotemporal cortex, respond to com-
plex shapes that are formed by a number of convex and concave curvatures with a
certain geometrical arrangement. The presence of some specific curvature elements
can inhibit the response of such a neuron. Fig. 2.2 shows the response of a TEO
neuron, studied in (Brincat and Connor, 2004), which is excited by the encircled cur-
vatures A, B and C but is inhibited by the dashed encircled curvature D. The bar
plots indicate the responses to the stimuli. Inhibition is also thought to increase the
selectivity of neurons (Sami and Mriganka, 2014).

Inhibition is an important phenomenon in the brain. It facilitates sparseness in
the representation of information that may result in an increase of the storage ca-
pacity and a higher number of patterns that can be discriminated (Rolls and Treves,
1990). End-stopped cells (Hubel and Wiesel, 1968; Bolz and Gilbert, 1986) in area V1
of visual cortex are another example.

In this work, we add inhibition to COSFIRE filters in order to increase their dis-
crimination ability. The inhibition that we propose is learned in an automatic con-
figuration process. We configure an inhibition-augmented COSFIRE filter by using
two different types of prototype patterns, namely one positive pattern and one or
more negative pattern(s), in order to extract excitatory and inhibitory contour parts,
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Figure 2.2: Selectivity of a shape-selective neuron in the posterior inferotemporal cortex (Brin-
cat and Connor, 2004). (a) The curvatures marked with circles evoke excitation of the con-
cerned cell, while (b) the curvature marked with a dashed circle inhibits the activation of the
cell. The bars specify the strength of the response.

respectively. Such a filter can effectively detect patterns that are equivalent or simi-
lar to the positive prototype but does not respond to the negative prototype(s).

The proposed inhibition-augmented filters can be used in shape detection and
object recognition. A large body of work has been done in these areas and many
methods have been proposed (Beaudet, 1978; Julesz, 1981; Harris and Stephens,
1988; Lowe, 1999; Mikolajczyk and Schmid, 2001; Oliva and Torralba, 2001; Ojala
et al., 2002; Lowe, 2004; Viola and Michael, 2004; Dalal and Triggs, 2005; Mikolajczyk
and Schmid, 2005; Lazebnik et al., 2005; Zhang et al., 2007; H. Bay and Gool, 2008).
The Hessian detector (Beaudet, 1978) and the Harris detector (Harris and Stephens,
1988), for instance, detect points of interest and are invariant to rotation but not so
much to scale. Scaling-invariances of these two operators can be achieved by ap-
plying them in a Laplacian of Gaussian scale space (Lowe, 1999), resulting in the
so-called Hessian-Laplace and Harris-Laplace detectors (Mikolajczyk and Schmid,
2001). A point of interest can be described by some local keypoint descriptors, such
as the scale-invariant feature transform (SIFT) (Lowe, 2004), the histogram of ori-
ented gradients (HOG) (Dalal and Triggs, 2005), the image descriptor GIST (Oliva
and Torralba, 2001) and the gradient location and orientation histogram (GLOH)
(Mikolajczyk and Schmid, 2005). Other keypoint descriptors include the speeded up
robust features (SURF) (H. Bay and Gool, 2008), which is akin to SIFT but faster as
it makes efficient use of integral images (Viola and Michael, 2004), the texture-based
local binary patterns (LBP) (Ojala et al., 2002), textons (Julesz, 1981; Zhang et al.,
2007), and the biologically inspired local descriptor (BILD) (Zhang et al., 2014), as
well as the rotation invariant feature transform (RIFT) descriptor (Lazebnik et al.,
2005). None of these methods employs inhibition.
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Multiple keypoints can be used to represent bigger and more complex patterns,
such as complete objects or scenes. In (Li and Perona, 2005), a bag-of-visual-words
approach was proposed to describe an image or a region of interest with a his-
togram of prototypical keypoints. This method is improved by using spatial pyra-
mids (Lazebnik et al., 2006) or a random sample consensus algorithm (Kalantidis
et al., 2011). Other object recognition approaches use hierarchical representations of
objects, which have been inspired by the visual processing in the brain. These in-
clude the HMAX model (Riesenhuber and Poggio, 1999), the object representation
by parts proposed in (Fidler et al., 2006), neural networks (Krizhevsky et al., 2012),
and the deep learning approach (LeCun et al., 2015).

These methods require many training examples to configure models of objects
of interest. When such detectors and descriptors are trained, only positive examples
are considered without the inclusion of inhibition mechanisms. The resulting detec-
tors and descriptors can detect objects that are similar to positive examples but may
also give strong responses to objects that contain additional contour parts. For in-
stance, the detectors, which are trained by examples shown in the top row of Fig. 2.1,
will give strong responses to objects that are equivalent or similar to the ones shown
in the top row of Fig. 2.1. They will, however, also give strong responses to objects
that are equivalent or similar to the ones in the bottom row of Fig. 2.1. Therefore, it is
difficult for these methods to discriminate the pairs of patterns shown in Fig. 2.1(a-
f).

The rest of the chapter is organized as follows. In Section 2.2, we explain how an
inhibition-augmented filter is configured by given positive and negative prototype
patterns. In Section 2.3, we demonstrate the effectiveness of the proposed approach
in two applications. In Section 2.4 we discuss some aspects of the proposed method
and finally we draw conclusions in Section 2.5.

2.2 Method

2.2.1 Overview

Fig. 2.3a shows an input image containing a rectangle with a vertical line inside
it. Let us consider the two local patterns encircled by a solid and a dashed line,
which are shown enlarged in Fig. 2.3b and Fig. 2.3c, respectively. The two solid
ellipses in Fig. 2.3b and Fig. 2.3c surround a line segment that is present in both
patterns, while the dashed ellipse surrounds a line segment that is only present in
Fig. 2.3c. We use these two patterns to configure an inhibition-augmented filter that
will respond to the pattern shown in Fig. 2.3b, a line-ending, but not to the pattern
shown in Fig. 2.3c, a continuous line.
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(a) (b) (c)

Figure 2.3: Example of a positive and a negative prototype that are used for the configuration
of the inhibition-augmented COSFIRE filter. (a) Synthetic input image (of size 300×300 pix-
els). The solid circle indicates a positive prototype of interest (a line ending) while the dashed
circle indicates a negative prototype of interest (a continuous line segment). The images in (b)
and (c) show enlargements of the selected positive and negative prototype patterns, respec-
tively. The gray crosses in (b) and (c) indicate the center positions of interest and the ellipses
illustrate the orientation and location of the contour parts in the neighborhoods. The solid
ellipses represent line segments that are present in both prototypes, while the dashed ellipse
represents a line segment which is only present in the negative prototype.

We consider the line-ending and the continuous line shown in Fig. 2.3b and
Fig. 2.3c as a positive and a negative prototype, respectively. A positive prototype is
a local pattern to which the inhibition-augmented filter to be configured should re-
spond, while a negative prototype is a local pattern to which it should not respond.

We use the positive and the negative prototypes to configure two COSFIRE filters
with the method proposed in (Azzopardi and Petkov, 2013b). Next, we look for and
identify pairs of contour parts with identical properties in the two filters. In Fig. 2.3
we use a solid ellipse to indicate that the corresponding contour part is an excitatory
feature. We use a dashed ellipse to indicate the contour part that is only present in
the negative prototype, and therefore we consider it as an inhibitory feature.

The response of the inhibition-augmented filter is the difference between the ex-
citatory input and a fraction of the maximum of the inhibitory inputs. The resulting fil-
ter will only respond to the patterns that are identical with or similar to the positive
prototype but will not respond to images similar to any of the negative prototypes.
This design decision is inspired by the function of a type of shape-selective neuron
in posterior inferotemporal cortex.

In the next sub-sections we elaborate further on the configuration steps men-
tioned above.



2.2. Method 15

(a) (b) (c)

Figure 2.4: Gabor filter and its responses. (a) Intensity map (of size 21×21 pixels) of a sym-
metric Gabor function with wavelength λ = 6 and orientation θ = 0. Light and dark re-
gions correspond to positive and negative values of the Gabor function, respectively. (b-c)
The thresholded (at t1 = 0.2) Gabor response images (of size 30×30 pixels) to Fig. 2.3b and
Fig. 2.3c, respectively.

2.2.2 Gabor Filters

The proposed inhibition-augmented filter uses as input the responses of 2D Gabor
filters (Daugman, 1985) which are the generalization of 1D Gabor functions pro-
posed by (Gabor, 1946). We denote by gλ,θ(x, y) the response of a Gabor filter, which
has a preferred wavelength λ and orientation θ, to a given input image at location
(x, y). We threshold the responses of Gabor filters at a given fraction t1 (0 ≤ t1≤ 1)
of the maximum response across all combinations of values (λ, θ) and all positions
(x, y) in the image. We denote these thresholded response images by |gλ,θ(x, y)|t1 .
Fig. 2.4a shows the intensity map of a Gabor function with a wavelength λ = 6

and an orientation θ = 0. Fig. 2.4b and Fig. 2.4c are the corresponding thresh-
olded response images of this Gabor filter |g6,0(x, y)|t1=0.2 to the input images in
Fig. 2.3b and Fig. 2.3c, respectively. Such a filter has other parameters, including spa-
tial aspect ratio, bandwidth and phase offset on which we do not elaborate further
here. We refer the interested reader to (Petkov, 1997; Kruizinga, 1999; Azzopardi
and Petkov, 2013b) for technical details and to an online implementation2.

2.2.3 Configuration of an Inhibition-augmented COSFIRE Filter

The configuration of an inhibition-augmented filter involves two steps.
In the first step we configure two separate COSFIRE filters with the method pro-

posed in (Azzopardi and Petkov, 2013b) to be selective for the specified positive and
negative prototypes that are shown in Fig. 2.3b and Fig. 2.3c, respectively. Fig. 2.5a

2http://matlabserver.cs.rug.nl
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and Fig. 2.5b show the corresponding superimposed thresholded responses of a
bank of Gabor filters (θ ∈ {0, π/8, . . . 7π/8} and λ ∈ {4, 4

√
2, 6, 6

√
2}) to the posi-

tive and negative prototypes. In this example, for the configuration of a COSFIRE
filter with a given prototype, we consider the Gabor responses along two concentric
circles with radii ρ ∈ {5, 14} pixels around the specified point of interest. In Fig. 2.5c
and Fig. 2.5d we illustrate the structures of the resulting selected filters. The size
and orientation of an ellipse represent the preferred wavelength λ and orientation θ
of a Gabor filter that provides input to the COSFIRE filter. The position of its center
indicates the location at which we take the concerned Gabor filter response.

We specify a COSFIRE filter by a set of 4-tuples in which each 4-tuple represnts
a Gabor filter and the positions at which its response has to be taken. We denote by
Pf and Nf the two COSFIRE filters, configured with the patterns shown in Fig. 2.3b
and Fig. 2.3c, respectively:

Pf =

{
( λ1 = 6, θ1 = 0, ρ1 = 5, ϕ1 = 3π/2 ),
( λ2 = 6, θ2 = 0, ρ2 = 14, ϕ2 = 3π/2 )

}
and

Nf =


( λ1 = 6, θ1 = 0, ρ1 = 5, ϕ1 = π/2 ),
( λ2 = 6, θ2 = 0, ρ2 = 5, ϕ2 = 3π/2 ),
( λ3 = 6, θ3 = 0, ρ3 = 14, ϕ3 = π/2 ),
( λ4 = 6, θ4 = 0, ρ4 = 14, ϕ4 = 3π/2 )


In the second step we form a new set Sf by selecting tuples from the sets Pf

and Nf as follows. We include all tuples from the set Pf in the new set Sf and
add a new parameter δ = +1 to indicate that the corresponding Gabor responses of
such tuples provide excitatory input to the inhibition-augmented filter. We define a
dissimilarity function, which we denote by d(P if , N

j
f ), of the distance between the

locations indicated by the i-th tuple in the set Pf and the j-th tuple in the set Nf :

d(P if , N
j
f ) =

{
1, if D > ζ

0, otherwise
(2.1)

D =
√

(ρi cosϕi − ρj cosϕj)
2 + (ρi sinϕi − ρj sinϕj)

2

where D is the Euclidean distance between the polar coordinates (ρi, ϕi) of tuple i
in the positive set Pf and the polar coordinates (ρj , ϕj) of tuple j in the negative set
Nf . ζ is the threshold and we provide further details on the selection of its value in
2.3.

We compute the pairwise dissimilarity values between one tuple N j
f from Nf
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(a) (b)

(c) (d)

ρ

ϕ

Figure 2.5: Configuration of two COSFIRE filters as proposed in (Azzopardi and Petkov,
2013b). Thresholded responses of a symmetric Gabor filter with λ = 6 and θ = 0 to (a) the
positive and (b) the negative prototypes shown in Fig. 2.3b and Fig. 2.3c, respectively. The
cross markers indicate the centers of the filter. We consider the dashed circles of given radii
(here ρ ∈ {5, 14}) around the center of the pattern of interest. The black dots indicate the
positions of the local maxima of the Gabor responses along these circles. In each such point,
we select the Gabor filter which gives this local maximum response. (c-d) Structure of the
resulting two COSFIRE filters. The ellipses illustrate the wavelengths and orientations of the
selected Gabor filters and their positions indicate the locations at which the responses of these
Gabor filters are taken with respect to the center. The blobs represent the blurring functions
that are used to provide some spatial tolerance to these positions.

and all tuples from Pf . If N j
f is dissimilar to all tuples in Pf , we include it to the

new set Sf and add a tag δ = −1, which indicates that the corresponding Gabor re-
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sponse provides an inhibitory input. We repeat the above procedure for each tuple
in set Nf . With this process we ensure that a line segment that is present in both the
positive and the negative prototypes in roughly the same position gives an excita-
tory input. On the other hand, a line segment that is only present in the negative
prototype, i.e. it does not overlap with a line segment in the positive prototype,
provides an inhibitory input.

For the above example, we include the two tuples in set Pf , which are illustrated
by the two ellipses in Fig. 2.5c, in the new set Sf . We add to each of these two
tuples a tag δ = +1 to indicate that they provide excitatory input to the inhibition-
augmented filter. These two tuples are also present in set Nf . Then we include in
Sf the other two tuples from Nf indicated by the two ellipses at the top of Fig. 2.5d
with a tag δ = −1 as we do not find any matches in Pf . For the above example this
method results in the following set Sf :

Sf =


(λ1 = 6, θ1 = 0, ρ1 = 5, ϕ1 = 3π/2, δ1 = +1 ),
(λ2 = 6, θ2 = 0, ρ2 = 14, ϕ2 = 3π/2, δ2 = +1 ),
(λ3 = 6, θ3 = 0, ρ3 = 5, ϕ3 = π/2, δ3 = −1 ),
(λ4 = 6, θ4 = 0, ρ4 = 14, ϕ4 = π/2, δ4 = −1 )


Fig. 2.6 shows the structure of the resulting inhibition-augmented filter that is

represented by the set Sf . The red ellipses indicate Gabor filters that provide excita-
tory input and the blue ellipses indicate Gabor filters that provide inhibitory input
to the inhibition-augmented filter at hand.

For example, the second tuple in Sf (λ2 = 6, θ2 = 0, ρ2 = 14, ϕ2 = 3π/2, δ2 = +1)
corresponds to the ellipse in the bottommost of Fig. 2.6. It describes a line segment
with a width of (λ2/2 =) 3 pixels in a vertical (θ2 = 0) orientation at a position
of (ρ2 =) 14 pixels to the bottom (ϕ2 = 3π/2) of the point of interest. This tuple
provides excitatory (δ2 = +1) input to the inhibition-augmented filter. On the other
hand, the last tuple in Sf (λ4 = 6, θ4 = 0, ρ4 = 14, ϕ4 = π/2, δ4 = −1) corresponds
to the topmost ellipse in Fig. 2.6. It describes a similar line segment at a position of
(ρ2 =) 14 pixels to the top (ϕ4 = π/2) of the point of interest and provides inhibitory
(δ4 = −1) input to the filter.

2.2.4 Configuration with Multiple Negative Prototypes

In the above example, we configured an inhibition-augmented filter to be selective
for line-endings by using one positive and one negative prototype pattern. In prac-
tice, however, a positive pattern may be contained within multiple other patterns,
and thus we may need multiple negative examples.
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Figure 2.6: The structure of an inhibition-augmented filter. The four ellipses indicate the
responses of four Gabor filters with the parameter values specified by the set Sf . The two red
ellipses at the bottom represent the excitatory input to this inhibition-augmented filter, while
the two blue ellipses at the top represent the inhibitory input.

Fig. 2.7(a-c) shows an example of three similar Chinese letters that have com-
pletely different meanings and are translated into English as “big”, “dog” and “ex-
tremely”, respectively. The letter in Fig. 2.7a is also present in Fig. 2.7b and in
Fig. 2.7c but accompanied with additional strokes. Next we demonstrate how we
configure an inhibition-augmented filter with more than one negative prototype
pattern. Here, we use the letter image in Fig. 2.7a as our positive pattern of interest
from which we extract contour parts that provide excitatory input to the resulting
filter. The letter images in Fig. 2.7b and Fig. 2.7c are used as negative prototype
patterns from which we determine inhibitory contour parts.

First we configure a filter Pf for the positive prototype pattern in Fig. 2.7a as pro-
posed in (Azzopardi and Petkov, 2013b) that results in only excitatory inputs. For
this example, we consider three values of the radius ρ (ρ={0, 15, 33}) and we apply
a bank of Gabor filters with four wavelengths (λ ∈ {8, 8

√
2, 16}) and eight orien-

tations (θ ∈ {πi8 | i = 0...7}). Then we use the procedure proposed in (Azzopardi
and Petkov, 2013b) to apply the filter Pf to both the negative prototype patterns in
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(a) (b)

(c) (d)

Figure 2.7: The inhibition-augmented COSFIRE filter configured with multiple negative pro-
totypes. (a-c) Images of three similar Chinese letters (of size 120×120 pixels). (d) Structure of
the resulting filter Sbig that is configured by using (a) the positive prorotype and (b-c) the two
negative prototypes. The red ellipses represent the preferred wavelengths and orientations
of the Gabor filter responses that provide excitatory input to the concerned filter Sbig, while
the blue and green ellipses represent the Gabor filter responses provide inhibitory input.

Fig. 2.7(b-c). For each negative pattern we determine the location at which the max-
imum response is achieved by the filter Pf . We take the patterns from Fig. 2.7(b-c)
that surround these locations and use them to configure two COSFIRE filters, which
we denote by Nf1 and Nf2 , respectively. Finally, we form a new set Sbig by select-
ing appropriate tuples from Pf , Nf1 and Nf2 as follows. We include all tuples from
set Pf in the new set Sbig with a tag δ = +1 and compute the dissimilarity values
between the locations of the tuples in Nfi (here i = 1, 2) and those in set Pf by the
method described in Section 2.3. The tuples in Nf1 and Nf2 that are not similar to
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any of the tuples in Pf are added to Sbig and marked as inhibitory parts with tags
δ = −1 and δ = −2, respectively. These two different negative tags indicate that
inhibitory contour parts are extracted from two separate negative patterns.

Sbig =



(λ1 =10, θ1 = π
4 , ρ1 =15,ϕ1 = 25π

16 , δ1 =+1 ),
. . .

(λ9 =14, θ9 =3π
8 ,ρ9 =33,ϕ9 = 27π

16 , δ9 =+1 ),

(λ10=12, θ10=3π
8 ,ρ10=33,ϕ10= 3π

16 , δ10=−1 ),

(λ11=10, θ11= π
4 , ρ11=33,ϕ11= 3π

2 , δ11=−2 )


Fig. 2.7d shows the resulting structure of the inhibition-augmented filter Sbig, in

which the red ellipses indicate the tuples of the filter that provide excitatory input to
the inhibition-augmented filter, while the blue and green ellipses indicate the tuples
that provide inhibitory input.

2.2.5 Implementation

In the following we first explain how we blur and shift the responses of the involved
Gabor filters, and then we describe the functions that we use to compute the collec-
tive excitatory input, the various collections of inhibitory inputs, and the ultimate
filter output.

Blurring and Shifting Gabor Filter Responses

We blur the Gabor filter responses in order to allow for some tolerance in the po-
sitions at which their responses are taken. We define the blurring operation as the
weighted maximum of local Gabor filter responses. For weighting we use a Gaus-
sian function Gσ(x, y), the standard deviation σ of which is a linear function of the
distance ρ from the center of the COSFIRE filter:

σ = σ0 + αρ (2.2)

where σ0 and α are constants. The choice of the linear function in Eq. 2.2 is advo-
cated for more detail in (Azzopardi and Petkov, 2013b). For α > 0, the tolerance to
the positions of the considered contour parts increases with an increasing distance ρ
from the center of the concerned COSFIRE filter. We use values of α between 0 and
2, depending on the aplication.

Then we shift all blurred Gabor filter responses so that they meet at the support
center of the inhibition-augmented filter. This is achieved by shifting the blurred
responses of a Gabor filter (λi, θi) by a distance ρi in the direction opposite to ϕi. In
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polar coordinates, the shift vector is specified by (ρi, ϕi + π). In Cartesian coordi-
nates, it is (∆xi, ∆yi) where ∆xi = −ρi cosϕi, and ∆yi = −ρi sinϕi. We denote by
sλi,θi,ρi,ϕi,δi(x, y) the blurred and shifted thresholded response of a Gabor filter in
position (x, y) that is specified by the i-th tuple (λi, θi, ρi, ϕi, δi) in the set Sf :

sλi,θi,ρi,ϕi,δi(x, y)
def
= (2.3)

max x′,y′{|gλi,θi(x−x′−∆xi, y−y′−∆yi)|t1 Gσ(x′, y′)}

where −3σ ≤ x′, y′ ≤ 3σ.
In order to prevent interference of inhibitory and excitatory parts of the filter, we

restrict ζ (in Eq. 1) to be three times the maximum standard deviation of any pair of
tuples in Pf and Nf .

Response of an inhibition-augmented COSFIRE filter

We denote by rSf (x, y) the response of an inhibition-augmented COSFIRE filter
which we define as the difference between excitatory response rS+

f
(x, y) and a frac-

tion of the maximum of the inhibitory responses rS−jf (x, y).

rSf (x, y)
def
= |rS+

f
(x, y)− η max n

j=1{rS−jf (x, y)}|t3 (2.4)

where S+
f = {(λi, θi, ρi, ϕi) | ∀ (λi, θi, ρi, ϕi, δi) ∈ Sf , δi = +1}, S−jf =

{(λi, θi, ρi, ϕi) | ∀ (λi, θi, ρi, ϕi, δi) ∈ Sf , δi = −j}, n = max |δi|, η is a coeffi-
cient that we call inhibition factor and |.|t3 stands for thresholding the response at a
fraction t3 of its maximum across all image coordinates (x, y).

We denote by rS+
f

and rS−f
, the weighted geometric means of all the blurred

and shifted responses of the Gabor filters sλi,θi,ρi,ϕi,δi(x, y) that correspond to the
contour parts described by S+

f and S−jf :

r
Sδ̂f

(x, y)
def
=

∣∣∣∣( |S
δ̂
f |∏

i=1

(sλi,θi,ρi,ϕi,δi(x, y))ωi
)1/Σ

|Sδ̂f |
i=1 ωi

∣∣∣∣
t2

(2.5)

ωi = exp−
ρ2i

2σ′2 , 0 ≤ t2 ≤ 1

where |·|t2 stands for thresholding the response at a fraction t2 of its maximum
across all image coordinates (x, y). For 1/σ′ = 0, the computation of the COSFIRE
filter becomes equivalent to the standard geometric mean. We refer the interested
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(a) (b) (c) (d)

Figure 2.8: Illustration of the intermediate computations performed in an inhibition-
augmented filter that is selective to vertical line endings pointing upwards. (a) We first con-
volve the input image (of size 300×300 pixels) with a Gabor filter which has a wavelength
λ = 6 and an orientation θ = 0. The three enframed inlay images illustrate (top two) the
enlarged positive and negative prototype patterns and (bottom) the structure of the resulting
inhibition-augmented filter. The red ellipses represent the preferred wavelengths and orien-
tations of the Gabor filters that provide excitatory input to the concerned filter Sf , while the
blue ellipses represent the channels of the Gabor filters that provide inhibitory input. Then,
(b) we blur and shift all thresholded (here t1 = 0.2) Gabor responses appropriately. Next, (c)
we compute two weighted geometric means (here σ′ = 11.89), one for the excitatory blurred
and shifted Gabor responses and the other one for the inhibitory input. Finally, (d) we calcu-
late the thresholded (here t3 = 0.4) output of the inhibition-augmented filter by subtracting
a fraction η (here η = 1) of the inhibitory response from the excitatory response. The local
maxima responses correspond correctly to the three vertical line endings in the input images,
which are indicated by the cross markers.

reader to (Azzopardi and Petkov, 2013b) for more details.
Fig. 2.8 shows an illustration of the application of an inhibition-augmented filter

that is selective for vertical line endings pointing upwards. Fig. 2.8d shows the
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(a) Set of elementary features

(b) Responses, rSf

(c) Rotation-tolerant responses

(d) Rotation- and scale-tolerant results
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Figure 2.9: Illustration of the rotation- and scale- tolerances of the inhibition-augmented COS-
FIRE filter. (a) A systematically designed data set of line-endings that vary in orientation (in
intervals of π/8) as well as in scale (the line width ranges from 1 pixel to 5 pixels). The en-
framed feature is the same one shown in Fig. 2.3b which is used as a positive prototype for
configuring an inhibition-augmented filter. The resulting filter is applied to all features in
the data set and (b) the responses are rendered by shading the features in gray. (c) Rotation-
tolerant responses. (d) Rotation- and scale-tolerant results.
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: The responses of the configured filters to the prototype patterns. (a-c) Images
of three similar Chinese letters (of size 120×120 pixels). (d-f) The response images of the
resulting filter Sbig to the corresponding images in (a-c). The filter responds to the letter
shown in (a) but does not respond to the letters shown in (b) and (c).

output of this filter and the positions of the strongest local output are marked by
crosses in the input image. In this example, this filter only responds strongly at the
locations where the positive pattern is present.

Fig. 2.9a shows a data set of line-endings with different line widths and orienta-
tions. We applied the same configured inhibition-augmented filter to the stimuli in
this data set and the responses of this filter are rendered by a gray level shading of
the features (Fig. 2.9b). The maximum response is reached for the feature that was
used as a positive prototype in the configuration process while it also reacts, with
less than the maximum response, to line-endings that differ slightly in scale and ori-
entation. This example illustrates the selectivity and the generalization ability of the
proposed filter. The rotation-invariance in Fig. 2.9c indicates the circularity of the
extracted features, which is defined as the invariance of probability distribution of
variables that are rotated by any angles (Mandic and Goh, 2009).

Moreover, in Fig. 2.10(d-f) we show the response images of the filter Sbig, which
we configured in Section 2.2.4, to the corresponding patterns in Fig. 2.10(a-c). The
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configured inhibition-augmented filter correctly responds only to the pattern shown
in Fig. 2.10a but not to the ones in Fig. 2.10(b-c).

2.2.6 Tolerance to Geometric Transformations

The proposed inhibition-augmented filter can achieve tolerance to scale, rotation
and reflection by similar parameter manipulation as proposed for the original COS-
FIRE filters (Azzopardi and Petkov, 2013b). Fig. 2.9 (c-d) show the rotation- and
scaling- tolerant responses of the inhibition-augmented filter that correspond to the
set of elementary features shown in Fig. 2.9a. We do not elaborate on these aspects
here and we refer the reader to (Azzopardi and Petkov, 2013b) for a thorough expla-
nation.

2.3 Applications

In the following we demonstrate the effectiveness of the proposed inhibition-
augmented filter in two practical applications: the detection of vascular bifurcations
in retinal fundus images and the recognition of handwritten digits.

2.3.1 Detection of Retinal Vascular Bifurcations

The retina contains cues of the health status of a person. For instance, its vascular
geometrical structure can reflect the risk of some cardiovascular diseases such as
hypertension (Tso and Jampol, 1982) and atherosclerosis (Chapman et al., 2002). The
identification of vascular bifurcations is one of the basic steps in such analysis. For
a thorough review on retinal fundus image analysis we refer to (Patton et al., 2006)
and (M. Abramoff and Sonka, 2010).

Fig. 2.11 shows an example of a retinal fundus image and its segmentation in
blood vessels and background, both of which are taken from the DRIVE data set
(Staal et al., 2004). It contains 109 blood vessel features (81 bifurcations marked by
red circles and 28 crossovers marked by blue squares). A bifurcation-selective filter
configured by the basic COSFIRE approach (Azzopardi and Petkov, 2013b) gives
a response also to crossovers and therefore cannot be used to exclusively detect
bifurcations. The existing methods that are used to distinguish bifurcations from
crossovers preprocess the binary retinal fundus images by morphological operators,
such as thinning. Then they typically apply template matching or connected com-
ponent labeling, which do not work very well for complicated situations, e.g. two
bifurcations that are close to each other can be detected as a crossover. An overview
of these methods can be found in (Tsai et al., 2004; Bhuiyan et al., 2007; Azzopardi
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(a) (b)

Figure 2.11: Example of a retinal fundus image from the DRIVE data set (Staal et al., 2004). (a)
Original image (of size 564×584 pixels) with filename 21 training.tif. (b) Binary segmentation
of vessels and background (also from DRIVE). The red circles surround vessel bifurcations
and blue squares surround crossovers and this labeling is part of the current work.

and Petkov, 2011). In the following, we illustrate how inhibition-augmented filters
that we propose can be configured to detect only vascular bifurcations in retinal
fundus images.

First, we select a bifurcation prototype from a given retinal fundus image and
use it as a positive example to configure a COSFIRE filter Pf1 that is composed of
excitatory vessel segments. For the configuration of this filter, we use three values
of the distance ρ (ρ = {0, 5, 10}), threshold value t1 = 0.2, t2 = 0.45, a bank
of symmetric Gabor filters with eight orientations (θ ∈ {πi8 | i = 0...7}) and five
wavelengths (λ ∈ {4(2

i
2 ) | i= 0 . . . 4}). Fig. 2.12b and Fig. 2.12e show an enlarged

prototype and the corresponding filter structure, respectively. Then we apply the
configured filter Pf1 to all 20 training retinal fundus images (with filenames from
21 manual1.gif to 40 manual1.gif) without tolerance to rotation, scale and reflection
transformations. We consider the points that characterize crossover patterns and
evoke sufficiently strong responses (which is more than a fraction ε of the maximum
response to the positive pattern, here ε = 0.2). We then use these patterns as negative
prototypes. Fig. 2.12a and Fig. 2.12c show two of the negative prototypes and the
structures of the resulting COSFIRE filters are shown in Fig. 2.12d and Fig. 2.12f. We
generate an inhibition-augmented filter Sf1 by the method proposed in Section 2.4.
Fig. 2.12(d-i) show how two groups of inhibitory line segments are automatically
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selected by the proposed configuration procedure.

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Figure 2.12: Examples of positive and negative prototype patterns. (b) A positive prototype
pattern, which is the feature of interest. (a and c) Negative prototype patterns. (d-f) The struc-
ture of the filters that are selective for the features in (a-c). (g-h) Two inhibition-augmented
filters configured by one positive and one negative prototype. (i) An inhibition-augmented
filter configured by one positive and two negative prototypes. The tuples that are indicated
by the red ellipses come from the positive pattern in (b) and the tuples that are indicated by
the blue and green ellipses come from the negative patterns in (a) and (c), respectively.
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f1 f2 f3 f4

Figure 2.13: A set of 4 bifurcations (f1 . . . f4) taken from the DRIVE data set. These four
bifurcations are extracted from the binary retinal fundus image shown in Fig. 2.11b with
filename 21 manual1.gif.

We repeat the above procedure by applying the filter Pf1 in reflection- and
rotation-tolerant mode in order to find more negative patterns. Finally, the filter
Sf1 contains 19 groups of inhibitory tuples.

The values of the inhibition factor η and the threshold t3 are determined as fol-
lows. We apply the filter Sf1 to the 20 training retinal fundus images and perform
a grid search to estimate the best pair of parameters η and t3. For η we consider
the range of values [0,5] and for t3 we consider the range [0,1], both of which are
in intervals of 0.01. For each combination of these two parameters, we calculate the
precision P and recallR. The corresponding harmonic mean (2PR/(P+R)) reaches
a maximum at an inhibition factor η = 2 and threshold t3 = 0.29 when the precision
P is at least 90 percent. Here, the filter Sf1 detects 30 bifurcations and achieves 100
percent precision.

For the remaining bifurcations that are not detected by Sf1 , we perform the fol-
lowing steps. We randomly select one of the undetected bifurcations and use it as
a new positive prototype. Then, we use the same procedure as described above to
find the inhibitory parts of the new filter Sf2 as well as the corresponding inhibition
factor η and threshold value t3. The prototype pattern f2 is shown in Fig.2.13. By
applying the filters Sf1 and Sf2 (η(Sf2) = 1.80, t3(Sf2) = 0.37) together, we correctly
detect 42 correctly detected bifurcations and no crossovers. We continue increasing
the number of filters by using vascular features that are not detected by the previ-
ously configured filters. For this given retinal fundus image, we achieve 95 percent
recall and 100 percent precision with only four filters, Fig.2.13. Table 2.1 reports the
values of the parameters η and t3 that were determined with the grid search method
described above.

In order to evaluate the performance of proposed approach, we apply the four
inhibition-augmented filters to the 20 test retinal fundus images in the DRIVE data
set. We perform two experiments with the four filters; the first one using the fine-
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Figure 2.14: Precision-recall plots of the inhibition-augmented method and original COSFIRE
method, indicated by the dashed and solid line, respectively.

tuned inhibition factors η and the other one with η = 0. We change the value of
the threshold parameter t3(Sfi) to compute the precision P and recall R. For each
filter, we alter the threshold value t3(Sfi) by the same offset value (ranging between
−0.2 and 0.2 in intervals of 0.01) which results in the P-R plots shown in Fig.2.14.
For the same value of recall, the precision of the inhibition-augmented method is
substantially higher than that of the method without inhibition.

Table 2.1: The optimal values of η and t3.

Sf1 Sf2 Sf3 Sf4

η 2.00 1.80 2.00 1.60
t3 0.29 0.22 0.29 0.14
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2.3.2 Detection of Architectural and Electrical Symbols

Recognition of Architectural and Electrical Symbols

Recognition of hand-drawn or scanned architectural and electrical symbols is an im-
portant application for the automatic conversion to a digital representation which
can then be stored efficiently or processed by auto CAD systems. Examples of ap-
plications are the recognition of architectural and electrical symbols, optical music
notes, document analysis, logo and mathematical expressions (Zanibbi et al., 2002;
Valveny et al., 2007; Rebelo et al., 2012; Tang et al., 2013). In such applications, it is
common to find that a symbol is contained within another symbol that has a differ-
ent meaning. Fig. 2.1(a-d) show some pairs of patterns taken from such applications.

Existing symbol recognition algorithms can be categorized into statistical and
structural-based approaches. The former methods extract hand-crafted features
from symbols and use them to form feature vectors and train classification mod-
els (Zhang et al., 2006). While such methods may be effective, they require large
numbers of training examples. Moreover, the selection of features is specific to the
application at hand and typically requires domain knowledge. The structural-based
approaches, which usually describe symbols by the geometrical relation between
their constituent parts (Lin et al., 2004), are not suitable to distinguish symbols with
similar shapes (Yajie et al., 2007). In the following, we illustrate how the inhibition-
augmented filter that we propose is effective for such an application.

We evaluate the proposed approach on the Graphics Recognition Contest
(GREC’11) data set (Valveny et al., 2011). The GREC’11 data set contains 150 dif-
ferent symbol classes, in which the images are of size 256 × 256 pixels. Fig. 2.15
shows some examples of the symbol classes from the data set. This data set consists
of three different sets of images, namely SetA, SetB and SetC. SetA contains 2500 im-
ages from 50 symbol classes, SetB comprises 5000 images from 100 classes, and SetC
consists of 7500 images from 150 classes. The three data sets contain examples with
different scale, rotation and various levels of noise degradation. Fig. 2.16a shows a
model symbol and Fig. 2.16(c-d) show three symbols of the same class with different
levels of noise.

In the following, we explain how the proposed inhibition-augmented filters are
configured to be exclusively selective for specific symbol classes. Fig.2.17 shows two
such examples of symbol images from the GREC’11 data set. All contour parts of
the symbol in Fig.2.17a are contained in the symbol in Fig.2.17b.

For configuration, we do the following steps. First, we consider a model symbol,
such as the one in Fig.2.17a, as a positive prototype pattern to configure a COSFIRE
filter without inhibition. Fig.2.18a shows the structure of the resulting filter. Then,
we apply the configured filter in rotation- and scale- tolerant mode to all the other
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Figure 2.15: Examples of symbol classes from the GREC 2011 data set (Valveny et al., 2011).
The symbol in the top left corner is contained within the symbol below it, which in turn is
contained within the symbol in the bottom left corner. The top two symbols in the second
column are both contained within the symbol in the third row of the same column. The top
two symbols in the third column are both contained within the symbol in the third row of
the same column. The one in the second row is contained in the third one in a rotation- and
scale- mode. The symbols in the first row of the remaining columns are contained within the
corresponding symbols of the second row.

(a) (b) (c) (d)

Figure 2.16: Examples from the GREC 2011 data set (Valveny et al., 2011). (a) A model symbol
image. (b-d) Degraded symbols of the same class from the data sets of noisy images with
different levels of degradations.

149 model images. We threshold the responses at a given fraction ε (ε = 0.3) of
the maximal filter response to the positive pattern used for configuration. The other
symbol images which evoke strong responses to the filter are considered as negative
prototype patterns. For instance, the symbol shown in Fig.2.17b is one negative pro-
totype for the pattern in Fig.2.17a. The COSFIRE filter structure that corresponds
to the pattern in Fig.2.17b is shown in Fig.2.18b. Next we compare the structures
shown in Fig.2.18a and Fig.2.18b to identify contour parts to be used for inhibition.
In Fig.2.18c, we show the structure of the resulting inhibition-augmented filter, in
which red and blue ellipses and blobs indicate Gabor responses that provide respec-
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(a) (b)
Figure 2.17: Example of (a) a symbol that is contained within (b) another symbol.

(a) (b) (c)
Figure 2.18: Structures of the configured COSFIRE filters. (a-b) The structures of COSFIRE fil-
ters configured with the positive and negative prototype in Fig. 2.17a and Fig. 2.17b, respec-
tively. (c) The structure of the resulting inhibition-augmented filter obtained. The ellipses
illustrate the wavelengths and orientations of the selected Gabor filters and their positions
indicate the locations at which their responses are used as input to the concerned COSFIRE
filter. The blobs within the ellipses represent blurring functions that are used to provide some
tolerance regarding the preferred positions. Red and blue ellipses and blobs indicate Gabor
responses that provide respectively positive and negative inputs to the inhibition-augmented
filter.

tively positive and negative inputs to the filter. In this implementation, we consider
a bank of Gabor filters with eight orientations (θ ∈ {πi8 | i = 0...7}) and two wave-
lengths (λ∈{10, 18}). We use the empirically-determined threshold values t1 = 0.2

and t2 = 0.5. For the blurring function, we use a fixed standard deviation σ = 4.
In order to make sure that we extract information from all the line segments of a
given prototype, we first use a large set of ρ values, and then we remove redundant
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Figure 2.19: The harmonic mean of the precision and recall for the filter shown in Fig.2.18c
with different values of inhibition factor η. The star indicates the minimum inhibition factor
(η = 7.1) that achieves the maximum harmonic mean.

tuples from the filters as follows. We compute the pairwise dissimilarity proposed
in Section 2.2.3 with parameter ζ equal to 3 times the maximum standard deviation
of any pair of tuples, and delete one tuple from the pair whose dissimilarity value is
0. In this way, the corresponding blurring maps of tuples do not overlap each other.

In order to determine the optimal value of the inhibition factor η for such an
inhibition-augmented filter, we perform the following steps. First, we apply the
filter to all 150 model symbol images with different values of inhibition factor η
in a range between 0 and 10 in interval of 0.1. Then for each inhibiton factor, we
calculate the harmonic mean of the precision3 and recall4 of this filter. Fig.2.19 shows
the harmonic mean of the concerned filter with different values of inhibition factor.
The optimal inhibition factor (η = 7.1) is the minimum value of η that achieves the
highest harmonic mean. In Fig.2.19 we indicate this point by a star marker.

3We compute precision as the number of images to which the filter correctly responds divided by the
total number of images to which the filter responds.

4We compute recall as the number of images to which the filter correctly responds divided by the total
number of images to which the filter should respond.
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Figure 2.20: Matrices (of size 150 × 150) obtained by (a) original COSFIRE filters and (b)
inhibition-augmented COSFIRE filters with the optimal inhibition factors. The columns rep-
resent images and the rows represent filters which are configured from symbols. The ele-
ments of the matrices are the maximum responses of the configured filters to the images,
which are rendered as grey levels.

We perform the same procedure on the remaining 149 symbols. We apply the
resulting 150 inhibition-augmented filters to the 150 symbol images. Fig.2.20(a-b)
show matrices (of size 150×150) obtained using the COSFIRE filters without inhibi-
tion (η = 0) and the inhibition-augmented COSFIRE filters, respectively. The value
of the element (i, j) in each matrix is the maximum response of the filter configured
by symbol i to symbol image j. For each filter we compute the precision and recall.
The average precision achieved by the COSFIRE filters without inhibiton is 48.0%

while the one for the inhibiton-based filters is 81.7%. The recall for both methods is
100%. Compared to the results of the original COSFIRE fillters, the matrix obtained
by the inhibition-augmented filters is much sparser and the precision is significantly
improved.

Before applying the configured filters to the test images in SetA, SetB and SetC,
we pre-process each image as follows. We compute the mean value of the inten-
sities of all the pixels in an image. For the images that have a mean intensity
value of at least 90% of the maximum, we apply the morphological operations pro-
posed in (Guo, Shi, Azzopardi and Petkov, 2015a). First, we dilate the images by
six line-shaped structuring elements of 6-pixel length with different orientations
({0, π6 ,

π
3 , . . . ,

5π
6 }). Then, we perform a thinning operation followed by six dila-

tions using line-shaped structuring elements of 4-pixel length with equidistant ori-
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Table 2.2: Recognition rates (%) for the three data sets in the GREC’11 set (Valveny et al., 2011)

SetA SetB SetC Average
Our proposed method 98.80 97.64 98.11 98.18

COSFIRE filters (Azzopardi and Petkov, 2013b) 96.80 94.50 91.81 94.37
Spectra of shape context (Yang, 2014) 92.96 90.70 89.79 90.62

Geometric matching (Valveny et al., 2011) 94.76 91.98 85.88 89.39

entations. Finally, we apply opening and thinning followed by a dilation operation
using a series of line-shaped structuring elements of 4-pixel length in six orienta-
tions. We do not pre-process the images that have a mean value less than 90% of the
maximum since most of them do not lose part of their contour segments.

We apply the 150 inhibition-augmented filters to each pre-processed image by
using the proposed method in rotation- and scaling-tolerant mode with parameters
ψ = {πi32 | i = 0, 1, . . . , 31} and v = {0.5, 0.6, . . . , 2.5}. A given image is classified to
the class of the positive prototype symbol by which the inhibition-augmented filter
that achieves the maximum response was configured. In Table 2.2, we compare
the results that we achieve with the existing methods on the three data sets. The
proposed approach achieves the best results in all subsets of the data sets.

Localization of Architectural and Electrical Symbols

In this subsection, we evaluate the performance of the inhibition-augmented COS-
FIRE filters for localization of symbols in circuit diagrams and floor plan images.

We experiment on the Graphics Recognition (GREC2011) localization data set
(Valveny et al., 2011). The data set contains 16 architectural and 21 electrical sym-
bols. It consists of a training and a test set. In the training set, there are 40 drawing
images, 20 of which are floor plans consisting of architectural symbols and the rest
are electrical diagrams. In each domain, there are four subsets, namely Ideal, Level
1, 2 and 3, of five images each. The latter three subsets have different levels of noise
degradation. The test set has 160 drawing images, 80 images of which are floor
plans and the rest are electrical diagrams. Similar to the training set, every domain
has four subsets (Ideal, Level 1, 2 and 3) of 20 images each. In total, the test set of
GREC2011 data set for localization contains 3463 symbols in all drawing images.
The lines in the ideal symbols have a thickness of 5, 9 or 12 pixels. Fig. 2.21 shows
an example of an electrical diagram taken from the Ideal subset.

First, we configure 16 inhibition-augmented COSFIRE filters to be selective for
the 16 architectural symbols given in the training set. The way we configure the
filters is as follows. We configure an excitatory-only COSFIRE filter as proposed
in (Azzopardi and Petkov, 2013b) for a given symbol prototype and apply the re-
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Figure 2.21: An example image (of size 2981×1463 pixels) of an electrical circuit. The symbol
encircled by a solid line, which indicates a core-air inductor, is considered here as a positive
prototype pattern of interest, while the symbol marked by a dashed circle, which indicates
a core-iron inductor, is considered as a negative prototype. The two inset images (of size
810× 294 pixels) on the right are enlargements of the positive and the negative prototypes.

sulting filter to the remaining 15 symbols. After that, we threshold each response
map at a fraction ε of the maximal response that the resulting filter achieves when
applied to the given prototype. We take the symbol images that elicit responses
greater than ε(= 0.1) as negative prototype patterns and determine the inhibitory
line segments. Then the inhibition-augmented COSFIRE filter is configured to be
selective for the given pattern. We perform the same procedure for each of the 16 ar-
chitectural symbols. For the symbols from the electrical domain, we apply the same
configuration procedure as above to configure 21 inhibition-augmented COSFIRE
filters. In this experiment, we use a bank of Gabor filters with eight orientations
(θ ∈ {πi8 | i = 0...7}) and three wavelengths (λ ∈ {10, 18, 24}). The wavelength of
a symmetric Gabor filter is roughly twice the thickness of the preferred line. The
choice of the three wavelength values is motivated from the empirical determina-
tion of line thicknesses in the images of the training set. We threshold the Gabor
responses with t1 = 0.2 and the excitatory and inhibitory inputs with t2 = 0.5.
For the blurring function, we set σ to 4 pixels. We use a value of 12 pixels for ζ,
which is three times the standard deviation σ, in order to prevent the interference
of inhibitory and excitatory parts of the filter. Next, we apply the above-configured
inhibition-augmented COSFIRE filters to all training symbol images in each domain.
We investigate the inhibition factor by varying the value of parameter η between 0

and 2 in intervals of 0.1. For η = 1, the filters give responses only to the preferred
positive prototype pattern. Then in order to determine the optimal value of t3 for
each configured filter, we apply each filter in rotation- and scaling- tolerant mode to
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Table 2.3: Comparison of results (in terms of precision, recall and F-score) between the pro-
posed method, excitatory-only COSFIRE and the Geometric matching (Valveny et al., 2011)
approach. (The results in bold font represent the maximum values among the three methods.

Our method Excitatory-only COSFIRE Geometric matching
Precision/Recall/F-score Precision/Recall/F-score Precision/Recall/F-score

Architectural Ideal 0.85 / 0.95 / 0.90 0.81 / 0.95 / 0.88 0.62 / 0.99 / 0.76
Architectural Level 1 0.98 / 0.85 / 0.91 0.45 / 0.90 / 0.60 0.64 / 0.98 / 0.77
Architectural Level 2 0.95 / 0.87 /0.91 0.64 / 0.88 / 0.74 0.62 / 0.93 / 0.74
Architectural Level 3 0.95 / 0.88 / 0.91 0.47 / 0.93 / 0.62 0.57 / 0.98 / 0.72

Electrical Ideal 0.88 / 0.87 / 0.87 0.88 / 0.92 / 0.90 0.37 / 0.56 / 0.45
Electrical Level 1 0.97 /0.97 / 0.97 0.79 / 0.95 / 0.86 0.44 / 0.63 / 0.52
Electrical Level 2 0.96 / 0.89 / 0.92 0.73 / 0.90 / 0.81 0.40 / 0.61 / 0.48
Electrical Level 3 0.95 / 0.89 / 0.92 0.80 / 0.94 / 0.86 0.43 / 0.64 / 0.51

Average 0.94 / 0.90 / 0.91 0.70 /0.92 / 0.78 0.51 / 0.79 / 0.62

the drawing images in the training set (subsets Ideal, Level 1, 2 and 3). For the im-
ages in the noisy sets, we do not apply any pre-processing method. We use different
values of t3 between 0 and 1 in intervals of 0.1 to threshold the response of such an
inhibition-augmented COSFIRE filter to a given image. We compute the harmonic
mean of the precision and recall for each value of the threshold. The optimal thresh-
old is the minimum value that achieves the highest harmonic mean.

We apply the resulting 16 inhibition-augmented COSFIRE filters selective for
architectural symbols to the images in the subsets Ideal, Level 1, 2 and 3 of archi-
tectural domain in rotation- and scaling- tolerant mode. Similarly, we apply the 21

filters selective for electrical symbols on the corresponding subsets of electrical do-
main. We compare our results with the ground truth provided in the dataset. In
each test drawing image, the ground truth provides a rectangular region in which a
symbol is located. If the distance between the center of the detected symbol and the
center of the provided region is less than 0.25 of the maximum of the width and the
height of the provided region, we consider it as a successful localization. We report
the achieved precision, recall and F-score in Table 2.3, in which we highlight (in bold
font) the best results achieved among different methods. We compare the results of
the proposed filters with those obtained by the original excitatory-only COSFIRE fil-
ters by setting the inhibition factor η = 0. The method proposed in (Azzopardi and
Petkov, 2013b) achieves the best recall in the architectural subsets while in average
the excitatory-only COSFIRE filters have better recall than that from the other two
methods. In average, the best precision and F-score are achieved by our proposed
inhibition-augmented COSFIRE filters which have slightly lower recall (0.90) than
that (0.92) achieved by excitatory-only COSFIRE filters.
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Figure 2.22: Examples of handwritten digits in the MNIST data set.

2.3.3 Recognition of Handwritten Digits

Handwritten digit recognition is an important application in optical character recog-
nition (OCR) systems. It helps to accelerate the distribution of postal mails, process-
ing of bank checks and so on. Various benchmark data sets and approaches have
been proposed for such application, a thorough literature review of which is given
in (Liu et al., 2003).

In this application, we use the MNIST data set (LeCun et al., 1998) to evaluate the
performance of our approach. The data set contains 60000 training and 10000 test
digit images in gray scale of size 28×28 pixels5. Fig. 2.22 shows some examples of the
handwritten digits in the MNIST data set. We first configure inhibition-augmented
COSFIRE filters to extract the local contour parts of digit images. Then we apply
these filters to all the training images and generate feature vectors from the maxi-
mum responses of these configured filters. Finally, we use these feature vectors to
train support vector machine classifier to recognize the digits in the test data sets.

For configuration, we randomly select 20 training images from each digit class.
We select a random location as the point of interest to configure a COSFIRE filter
in each image from the same digit class. The local pattern around such a point
should provide at least four tuples to the resulting filter, otherwise we select another
random location. Then we apply this filter to all the other 180 training images from
different digit classes in order to identify negative prototypes. We use the method
described in Section 2 to configure an inhibition-augmented filter. We repeat the
above process for all the 200 training digit images and configure 200 inhibition-
augmented filters. In this application, we use a bank of antisymmetric Gabor filters
with 16 equidistant orientations (θ ∈ {πi8 | i = 0...7}), one wavelength (λ = 2

√
2)

5The MNIST set is available online: http://yann.lecun.com/exdb/mnist
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Figure 2.23: The plots show the recognition rates on the MNIST data set with different num-
bers of filters by using the methods with and without inhibition.

and three values of ρ (ρ ∈ {0, 3, 8}), and threshold their responses with t1 = 0.2,
t2 = 0.99.

Next, in the application process we apply these 200 inhibition-augmented filters
to 60000 training images by using the proposed method. We take the maximum
response of each filter to these digit images and generate a matrix of size 60000×200.

Then, we apply a wrapper method for feature selection using support vector
machines (SVMs) with a linear kernel. We iteratively add the result of one filter,
the one that best improves the 7-fold cross validation accuracy, and stop the process
until no more improvement is achieved. This process results in 108 filters when the
200 inhibition-augmented COSFIRE filters are applied (η = 1) and 111 filters when
the 200 original COSFIRE filters are applied (η = 0). Then we use the inhibition-
augmented and non-inhibition-augmented training vectors with the selected fea-
tures to train two multi-class SVMs.

The plots in Fig. 2.23 show the recognition rates as a function of increasing



2.4. Discussion 41

number of selected filters. The method with inhibition achieves a recognition rate
of 98.77% with 108 filters while the method without inhibition achieves 98.66%

with 111 filters. The inhibition-augmented training vectors of 108 dimensions
have 753019 (11.62%) zero elements, which is substantially greater than the 277641

(4.17%) zero elements in non-inhibition-augmented vectors of 111 dimensions.

2.4 Discussion

We proposed an inhibition-augmented COSFIRE approach which uses a positive
prototype and a set of negative prototypes to configure a filter. The choice of neg-
ative prototypes can be either manually specified by a user or automatically dis-
covered by the system. For instance, the negative prototype shown in Fig. 2.3, a
complete line, is selected by the user. For more complex situations, such as the
recognition of symbols and handwritten digits, it is more practical to use an auto-
mated process. To discover negative prototypes, we first apply the COSFIRE filter
which is configured by a positive prototype pattern to all the other pattern images.
The ones which evoke strong responses to the filter are negative prototype patterns.

We use Gabor filters, which are the model of orientation-selective cells in area V1
and V2 of the visual cortex. Gabor filters are, however, not intrinsic to the proposed
model and other computational models of simple cells, for example the models pro-
posed in (Azzopardi and Petkov, 2012) and (Azzopardi et al., 2014), can also be
used.

The response of an inhibition-augmented filter is defined as the difference be-
tween the excitatory input and a fraction of the maximum of the inhibitory inputs.
The inhibition factor can be adjusted by changing the value of the parameter η. In
the detection of vascular bifurcations and the symbol recognition applications, we
determine an optimal value of η for each filter as the one that contributes to the
maximum harmonic mean on the training images. For the other application, we set
the same η value for all filters so that none of them achieves a response to any of the
negative patterns.

We use four parameters t1, t2, t3 and η to control the output of an inhibition-
augmented COSFIRE model. The parameter t1 regulates the threshold at which the
response of a Gabor filter indicates the presence of a contour part. The choice of
the value of parameter t1 depends on the contrast of the image and the presence of
noise. The value of t2 controls the minimum valid value of the response that pro-
vides the excitatory and inhibitory inputs to the model. The parameter t3 depends
on the noise of an input image and it is used to suppress the responses that are
below a given fraction of the maximum response value across all locations of the
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input image. We use the value of the parameter η to adjust the inhibition factor. The
inhibition contour parts and the inhibition strength parameter that we propose are
determined from the training set of a given application. The generalization ability of
an inhibition-augmented COSFIRE model decreases with an increasing number of
inhibitory contour parts and/or with an increasing value of the inhibition strength
parameter η. We determine optimal values of t1, t2, t3 and η for each model as the
ones that contribute the best to the results on the training images.

In neurophysiology there is an ongoing debate about what kind of neural coding
the brain uses to encode the representation of objects. The two extremes in the de-
bate are the grandmother cell theory (i.e. only one specific cell fires for a given pat-
tern) and population coding (i.e. a number of neurons fire for a given pattern with
different rates). In the recognition of handwritten digits, the proposed inhibition-
augmented COSFIRE filters are similar to the population coding. This application
demonstrates that the inhibition mechanism facilitates sparseness in the representa-
tion of information. This is attractive for the brain because sparse coding increases
storage capacity and allows the discrimination of more objects.

The computational cost of the configuration of a COSFIRE filter with inhibition
depends on the number of negative prototype patterns and the bank of Gabor fil-
ters it uses. An inhibition-augmented filter is configured in less than one second
for one positive and one negative prototype pattern with the size of 512×512 pixels
and a bank of Gabor filters of eight orientations and five wavelengths. The com-
putational cost of the application of an inhibition-augmented filter is proportional
to the computations of the excitatory and inhibitatory responses and their blurring
and shifting operations. For the detection of vascular bifurcations, a retinal fundus
image of size 564 × 584 pixels is processed in less than 20 seconds by four rotation-
and reflection-tolerant inhibition-augmented filters. For the recognition of architec-
tural and electrical symbols, a symbol image of size 256 × 256 pixels is processed
in less than 30s by 150 inhibition-augmented filters without any rotation or scaling
tolerances. For the third application, a handwritten digit image of size 28×28 pixels
is described by 200 inhibition-augmented COSFIRE filters without any rotation- or
scaling- tolerances in less than 5 seconds. We used a sequential implementation in
Matlab6 for all experiments that runs on the same standard 3GHz processor.

There are various possible directions for future research. One direction is to ap-
ply the proposed inhibition-augmented filters in other objection localization and
recognition tasks, as well as image classification. Another direction is to investi-
gate a learning algorithm to determine the output function by assigning different
weights to inhibitory and excitatory contour parts.

6Matlab scripts for the configuration and application of inhibition-augmented filter can be down-
loaded from http://matlabserver.cs.rug.nl.
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2.5 Conclusions

The proposed inhibition-augmented filters are versatile trainable shape and object
detectors as they can be trained with any given positive and negative prototype
patterns. We demonstrated the effectiveness of the method with three applications:
detection of vascular bifurcations (i.e. without crossovers) in retinal fundus im-
ages (DRIVE data set), recognition and localization of the architectural and electri-
cal symbols (GREC2011 data set) and the recognition of handwritten digits (MNIST
data set). The inclusion of the inhibition mechanism improves the discrimination
properties and the performance of COSFIRE filters.




