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Abstract

Aims/hypothesis Epigenetic mechanisms may play an impor-
tant role in the aetiology of type 2 diabetes. Recent epigenome-
wide association studies (EWASs) identified several DNA
methylation markers associated with type 2 diabetes, fasting
glucose and HbA . levels. Here we present a systematic review
of these studies and attempt to replicate the CpG sites (CpGs)
with the most significant associations from these EWASs in a
case—control sample of the Lifelines study.

Methods We performed a systematic literature search in
PubMed and EMBASE for EWASS to test the association be-
tween DNA methylation and type 2 diabetes and/or glycaemic
traits and reviewed the search results. For replication purposes
we selected 100 unique CpGs identified in peripheral blood,
pancreas, adipose tissue and liver from 15 EWASs, using
study-specific Bonferroni-corrected significance thresholds.
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Methylation data (Illumina 450K array) in whole blood from
100 type 2 diabetic individuals and 100 control individuals
from the Lifelines study were available. Multivariate linear
models were used to examine the associations of the specific
CpGs with type 2 diabetes and glycaemic traits.

Results From the 52 CpGs identified in blood and selected for
replication, 15 CpGs showed nominally significant associa-
tions with type 2 diabetes in the Lifelines sample (p < 0.05).
The results for five CpGs (in ABCGI, LOXL2, TXNIP,
SLCIAS5 and SREBFI) remained significant after a stringent
multiple-testing correction (changes in methylation from —3%
up to 3.6%, p < 0.0009). All associations were directionally
consistent with the original EWAS results. None of the select-
ed CpGs from the tissue-specific EWASs were replicated in
our methylation data from whole blood. We were also unable
to replicate any of the CpGs associated with HbA . levels in
the healthy control individuals of our sample, while two CpGs
(in ABCG1 and CCDC57) for fasting glucose were replicated
at a nominal significance level (p < 0.05).
Conclusions/interpretation A number of differentially meth-
ylated CpGs reported to be associated with type 2 diabetes in
the EWAS literature were replicated in blood and show prom-
ise for clinical use as disease biomarkers. However, more pro-
spective studies are needed to support the robustness of these
findings.

Keywords DNA methylation - Epigenome-wide association
studies - Glucose - Glycated haemoglobin - Systematic
review - Type 2 diabetes

Abbreviations
CpG Cytosine-phosphate-guanine
CVD Cardiovascular disease
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EWAS  Epigenome-wide association study
GWAS Genome-wide association study
WGBS Whole-genome bisulphite sequencing

Introduction

Type 2 diabetes mellitus is a complex metabolic disease, of
which the prevalence worldwide is growing rapidly.
According to recent data, globally 415 million people are es-
timated to have type 2 diabetes [1]. Hallmarks of type 2 dia-
betes include chronically elevated blood glucose levels due to
decreased insulin secretion from pancreatic beta cells and in-
sulin resistance in different tissues [2].

In addition to well-known risk factors for type 2 diabetes
such as being overweight, unhealthy lifestyle, metabolic alter-
ations, previous diagnosis of gestational diabetes, or a family
history of cardiovascular disease (CVD) or type 2 diabetes [3],
genetic susceptibility to the disease is also important, with
heritability estimates ranging from 20% to 80% [4, 5]. To date,
genome-wide association studies (GWASs) have identified at
least 75 loci associated with type 2 diabetes [6]. However,
these genetic variants explain only 10-15% of disease herita-
bility, suggesting a major role for environmental and lifestyle
factors [6, 7].

To identify the missing component of type 2 diabetes
pathogenesis, researchers have started to examine the role
of epigenetics in the disease aetiology. Epigenetics refers to
DNA alterations that lead to differences in gene expression
without changing the DNA sequence. These epigenetic
changes can be influenced by the environment and may
cause differences in disease susceptibility between individ-
uals [8].

Initially, epigenetic studies used a candidate gene approach
to identify DNA methylation changes in known type 2 diabe-
tes susceptibility genes. With the advances in measurement
technology, approaches have shifted towards epigenome-
wide association studies (EWASSs), allowing novel biomarkers
for complex diseases to be found. Development of type 2
diabetes requires perturbation of multiple biological mecha-
nisms in different organs, including pancreas, liver, skeletal
muscle and adipose tissue [9]. EWASs using those tissues
would provide a comprehensive insight into the disease
aetiology; however, access to such samples is not possible
on a large scale. Therefore, most EWASs have been conducted
using whole blood [10].

Here, we present an overview of recent human EWASs
investigating DNA methylation changes associated with type
2 diabetes and/or glycaemic traits represented by fasting glu-
cose and HbA . levels. Moreover, we discuss the EWASs
findings and the strengths and limitations of different ap-
proaches. To validate methylation loci identified in the
reviewed EWASs, we also performed a replication study in
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blood samples of 100 diabetic and 100 control individuals
selected from a Dutch population-based Lifelines study [11].
Next, we investigated whether differential DNA methylation
patterns as previously identified in pancreas, liver and adipose
tissue were also reflected in blood.

Methods
Literature search

The systematic review was conducted according to the
PRISMA and MOOSE guidelines. We searched PubMed and
EMBASE for relevant studies investigating DNA methylation
associated with type 2 diabetes or fasting glucose and HbA .
levels, up to 26 April 2017. The search strategy, inclusion and
exclusion criteria are provided in the electronic supplementary
material (ESM Methods). Ultimately, 22 publications were se-
lected for whole-text evaluation. Three studies were excluded
(Fig. 1), resulting in a total of 19 studies included in the review.

Replication analyses: selection of CpG sites

For the replication analyses, four additional studies were ex-
cluded: one that only indirectly investigated association with
type 2 diabetes [12] and three that used a different platform
from the Illumina array [13—15]. Thus, 15 studies were includ-
ed for replication analysis (Fig. 1). For further CpG sites
(CpGs) selection, we applied a study-specific Bonferroni cor-
rection for multiple testing for EWASs results (p value < 0.05/
(the number of CpGs analysed)), even if a different multiple-
testing correction was used by the authors of the original man-
uscript. This was done to avoid false positive results from the
studies that used lenient significance thresholds.

Lifelines case—control sample

Lifelines is a prospective population-based cohort to study
health and health-related behaviours of 167,729 individuals
living in the North of the Netherlands [16]. Details on clinical
examination and biochemical measurements have been de-
scribed elsewhere [16]. In short, a standardised protocol was
used to obtain blood pressure and anthropometric measure-
ments such as height, weight and waist circumference.
Blood was collected in the fasting state, between 08:00 and
10:00 h. On the same day, fasting blood glucose and HbA .
were measured.

For this study we used a case—control sample selected from
the baseline of the Lifelines study (all unrelated and European
ancestry samples, n = 13,436) [11]. Four groups were selected
based on the following criteria (n = 50 for each group):

(1) type 2 diabetes patients without CVD complications;
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(2) type 2 diabetes patients with CVD complications;

(3) non-diabetic control participants, with no history of
CVD risk factors, and age- and sex-matched to groups
1 and 2;

(4) healthy, normal-weight control participants (BMI < 25),
additionally obtained from available methylation dataset
to increase the power of the study.

In total, we included 100 type 2 diabetic individuals and 100
control individuals. Diagnosis was based on self-reported
disease and/or use of blood-glucose lowering medication, or
an elevated fasting blood glucose > 7.0 mmol/l at examina-
tion. Individuals with CVD complications had a CVD history
defined as self-reported myocardial infarction, stroke, angina
pectoris or vascular intervention.

DNA methylation methodology

DNA was isolated from fasting whole blood samples. Next,
500 ng of genomic DNA was bisulphite modified using the
EZ DNA Methylation kit (Zymo Research, Irvine, CA, USA)
and hybridised to Illumina 450K arrays (San Diego, CA, USA)

according to the manufacturer’s protocols. Data were generated
by the Genome Analysis Facility of UMCG, the Netherlands
(www.rug.nl/research/genetics/genomeanalysisfacility/).
Quality control (QC) and normalisation steps are described in
detail elsewhere [17] and in ESM Methods. In short, the QC
pipeline developed by Touleimat and Tost was used with back-
ground correction and probe type normalisation [18]. Then,
normalised 3 values were logit-transformed into M values for
downstream analysis, since they have been shown to perform
better in studies with smaller sample sizes [19].

Statistical analysis

All analyses were performed using R-studio software (version
3.3.0; https://www.rstudio.com; https://www.r-project.org) and
the limma package. Linear regression model 1 included age,
sex, measured blood cell composition (percentage of basophilic
granulocytes, eosinophilic granulocytes, neutrophilic
granulocytes, lymphocytes and monocytes), plate number and
position on the plate as covariates. Additionally, we adjusted
for other covariates in models 2—6: (2) model 1 + BMI; (3) model
1 + medication use and newly diagnosed diabetes; (4) model 1 +
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smoking status and education level; (5) model 1 + presence of
cardiovascular complications; (6) model 2 + education level. In
addition to the adjustment for measured cell type composition,
we estimated cell types based on the Houseman method [20] and
compared results. We also performed sensitivity analyses using
the model 1 in smaller groups: (1) 50 type 2 diabetes individuals
without complications compared only with 50 age- and sex-
matched control individuals; and (2) 100 type 2 diabetes individ-
uals with and without complications compared only with 50 age-
and sex-matched control individuals. To determine whether the
methylation levels at replicated top hits were correlated with type
2 diabetes risk factors, we calculated Pearson correlation coeffi-
cients based on methylation 3 values. We used a strict analysis-
specific Bonferroni correction for multiple testing (p value
< 0.05/(the number of CpGs selected for replication)).

Results
Recent discoveries

Our search strategy retrieved 19 EWASs investigating DNA
methylation associated with type 2 diabetes or glycaemic traits
(Fig. 1), including 16 studies focusing on type 2 diabetes as
outcome (Table 1) and four studies focusing on glycaemic
traits (Table 2), with one study listed twice [25]. We assessed
the quality of included studies using the Newcastle-Ottawa
scale for observational studies (details in ESM Methods) [36].
Seventeen out of 20 studies (one listed twice) were assessed to
have a low or medium risk of bias and only three studies were
evaluated to have high risk of bias (data not shown). In the
majority of the reviewed studies, an array-based methodology
was employed in the discovery phase: two using the 27K and
13 using the 450K Illumina array. Only one study used whole-
genome bisulphite sequencing, which is considered a gold
standard in methylation studies [14]. Most of the blood-
based studies (ten out of 19) were performed in larger sample
sizes (n = 6 — Z2000) than studies in pancreas, liver, skeletal
muscle and adipose tissue (n = 12-100). The EWASs were
conducted in different ethnic groups: Europeans, Indian
Asians, Mexican Americans, and Ashkenazi Jews [21, 24,
25, 28]. Despite the differences in ethnicity and study design,
some CpGs such as those in the ABCG1, TXNIP and SREBF'1
genes were reported in multiple blood-based studies [21,
23-25, 33, 34]. There was no clear overlap in significant
CpGs across tissues, but some studies reported a significant
correlation between the level of methylation at specific CpGs
in blood and liver [21] or in blood and pancreas [12].

Study design The majority of the reviewed EWASs (18 out
of 19) used a cross-sectional design, in which phenotype
and DNA methylation profile were measured at the same
time point either in unrelated individuals (type 2 diabetic
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and healthy control participants, 15 studies) or in twin
pairs, discordant for type 2 diabetes (three studies)
(Tables 1, 2). Strengths of this approach typically include
a large study population selected from ongoing cohorts and
the possibility to adjust for existing confounders like BMI
or smoking. However, a cross-sectional approach cannot
establish whether the difference in methylation preceded
the onset of type 2 diabetes.

Tissue

(1) Blood: The interpretation of blood-based EWASs re-
sults can be difficult, because many top hits from EWASs
are known genes from immune response and inflammatory
pathways, which can be mediated by the blood cell com-
position and, thus, do not reflect true associations with type
2 diabetes. Six out of ten blood-based studies used the
reference-based estimation methods by Houseman [20] or
Jaffe [37] to adjust for confounding effects of cell compo-
sition. Results from the majority of those studies indicate
that differentially methylated sites in the TXNIP, ABCGI,
CPTIA and SREBFI genes are associated with type 2 dia-
betes and glycaemic traits [21, 23-25, 33, 34].

(2) Pancreas: The pancreas plays a key role in maintaining
normoglycaemia through insulin secretion in response to
blood glucose elevation [9]. In addition to the ten EWASs
performed in blood, four of the included studies examined
the association between DNA methylation in pancreas and
type 2 diabetes. These studies were conducted in a limited
number of individuals (n = 16 to 87) [27, 28] and no overlap
in identified CpGs was found between the studies when con-
sidering specific multiple-testing corrections applied by the
authors (FDR < 5% [12, 27]; p < 0.01 and 15% group-wise
difference on methylation [28]). Interestingly, one study used
whole-genome bisulphite sequencing (WGBS) and identified
over 25,000 differentially methylated regions across the whole
genome, suggesting large changes in methylome associated
with type 2 diabetes [14].

(3) Liver: Another important organ in glucose metabolism is
the liver where, in diabetic individuals, suppression of hepatic
glucose output by insulin is reduced, contributing to
hyperglycaemia [38]. The exact pathophysiology causing
liver insulin resistance is still unknown, suggesting a role for
epigenetic mechanisms. We found two EWASs performed in
liver tissue (Table 1) using rather small sample sizes (n = 15
[32] and 95 [31]). The majority of CpGs showing a significant
methylation difference from these two studies were
hypomethylated in individuals with type 2 diabetes
compared with control individuals (92% and 94%, FDR
< 25% and FDR < 5%, respectively). No overlap was
found between liver and blood-based results of EWASS,
suggesting that significant CpGs from liver EWASs might
be tissue specific.
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(4) Adipose tissue: Pathogenesis of glucose intolerance
is also associated with adipocyte metabolism and altered
fat topography [39]. Among the reviewed studies, three
EWASs were performed in adipose tissue: two investi-
gating an association with type 2 diabetes (one study
with five twin pairs and another with unrelated individ-
uals, n = 95) and one investigating an association with
HbA, . level (96 healthy male, 94 healthy female partic-
ipants) [29, 30, 35]. We observed no overlap (manually
checked) in the top 100 CpGs from the two studies
focusing on type 2 diabetes [29, 30].

Ethnicity In 2013, the highest diabetes prevalence was
observed in the North American and Caribbean region
(around 11%), while the lowest was in the African re-
gion (around 5.7%) [40], suggesting differences in prev-
alence between ethnic groups. In the recent EWAS, the
total risk of developing type 2 diabetes was three times
higher in Indian Asians than in Europeans, regardless of
differences in adiposity, physical activity and glycaemic
values [21]. The authors estimated that 32% of the un-
explained risk for future type 2 diabetes among Indian
Asians compared with controls was associated with a
higher methylation score based on the top five markers
at TXNIP, ABCGI, SREBFI, SOCS3 and PHOSPHOI
[21]. A family-based study of 859 Mexican Americans
showed that the degree of methylation at top regions
including 7XNIP, ABCGIl and SAMDI2 genes and two
intragenic regions accounted for 7.8% of the heritability
of type 2 diabetes in Mexican Americans [25]. An
EWAS performed in an Arab population showed that
around 10% of methylation sites with FDR < 1% had
median heritability of 0.7, supporting previous findings
[22, 41]. These differences in DNA methylation be-
tween ethnic groups can be partly explained by their
genetic ancestry, but also environmental and lifestyle
factors may contribute to the variation, while some
methylation loci (TXNIP or ABCGI) were found in pop-
ulations with divergent ethnic backgrounds [21, 23-25].

Replication study

Selected CpGs From the 19 studies included in the review, we
selected 15 studies (Fig. 1). A list of CpGs robustly associated
with type 2 diabetes or glycaemic traits was compiled based
on the application of a stringent study-specific multiple-test-
ing correction threshold to avoid false positive results (see
Methods). After the removal of duplicates, we obtained a list
of 100 unique CpGs (ESM Table 1) identified in peripheral
blood (52 for type 2 diabetes and 21 for fasting glucose),
pancreas (15 for type 2 diabetes), adipose tissue (ten for
HbA . blood level) and liver (two for type 2 diabetes).

@ Springer

Study population We investigated which of the above-
mentioned EWASs findings, both in blood and in other tis-
sues, could be replicated in blood samples from the Lifelines
case—control sample (for clinical characteristics see Table 3
and ESM Table 2). Individuals with type 2 diabetes were
older, had a significantly higher BMI, waist-hip ratio and
blood pressure, as well as higher levels of HbA |, fasting
glucose and triacylglycerols compared with control individ-
uals. We observed no differences in socioeconomic status rep-
resented by level of education between type 2 diabetic and
control participants (Table 3).

Association with type 2 diabetes: blood-specific CpGs
First, we analysed the 52 CpGs associated with type 2 diabetes
in blood (ESM Table 1). In our Lifelines sample, five out of 52
included CpGs showed significant associations with type 2
diabetes (the Bonferroni-adjusted p < 0.0009 (0.05/52
CpGs)), including the loci in the ABCGI, LOXL2, TXNIP,
SLCIAS5 and SREBF1 genes (see a short description in ESM
Box 1). This number increased to 15 CpGs when using the
nominal significance level (p < 0.05) (Table 4). In agreement
with previous studies, we observed hypermethylation in the
loci at the ABCGI and SREBF '] genes and hypomethylation in
TXNIP, LOXL2 and SLCIAS in type 2 diabetic compared with
control individuals. Also, all nominally significant associa-
tions showed the same direction of effect as in the original
EWASs. After adjustment for BMI, only the CpG site in
ABCG] remained significantly associated with type 2 diabe-
tes, while for all other CpGs effect sizes became smaller and
were no longer significant (ESM Fig. 1). Based on 3 values
from regression analysis, we concluded that associations be-
tween significant CpGs and type 2 diabetes are partly ex-
plained by BMI (BMI accounted for 5-70% of variance, data
not shown). Additional adjustment for other factors (see
Methods) demonstrated that these covariates had only a rela-
tively small impact on effect sizes and p values (ESM
Table 3). Furthermore, we performed a sensitivity analysis
on subsamples (see Methods), in which only the CpGs in
TXNIP (50 vs 49) and ABCG1 (100 vs 49) reached the signif-
icance threshold (p < 0.0009), suggesting lack of power com-
pared with the total group comprising 198 samples (data not
shown). We also examined, for the 15 nominally significant
CpGs, whether the differences in methylation were influenced
by the occurrence of complications in diabetic individuals. We
found no significant difference between individuals with and
without complications (ESM Table 4). Finally, to check the
effect of inflammation, we also adjusted the analysis for C-
reactive protein (CRP) level and found no difference in the
outcome (data not shown).

Next, we investigated whether the five replicated type 2
diabetes-associated CpGs are also correlated with glycaemic
and lipid phenotypes of healthy individuals (r» = 98, Table 5).
The methylation level at the ABGC1 site was significantly and



Diabetologia

diyppeaqg ospuoneAyoNuewny wnrugu] Y0s ‘diyypeag [ zuone[AyoNuewng wniugu] /g sa1eqelp g 2dA ‘qzl “ueuodwod fedouud ‘Hg syuoned
‘d ‘snnedayoyed)s d1joyoo[e-uou ‘HSYN JUSWSSISSE [9POW d1e)S0dWOoY Y[-VINOH (orel AI9A00SIp ds[e) Y.] ‘U011 pje[Ayiouwl A[[elUaIdlIp YN SNS PAB[AIOW A[[IIUSIIIP ‘SN S[OBUO0D D)

PIOYSaIY) UONIALI0D TuoLRjuog d1J103ds-Apnys passed soyis HA) 019z suraw UWNod Isey Ul (),

Apws repnoned o soyine oy £q AjjeurSuo paje[nofed pjoysaity Sunsai-o[dnniy

PIOYSIY} U010 TuoLRJuOg Jots passed yorym ‘sod) oapraoid oy Apmys uonesrjdor ojur papnjour saIps ,

110409 oW 2
ur [0A9] °1yqH YIm pIJRIdosse
ApuediIuSIs d1om YoIyMm JO duou
10100 9[BWIAY A} Ul PUNOJ dIoM
TYQH s pajeroosse SINA

paunojad sgym g areredas

L oudd JJYINYV e Uone[o11oo INg °lyqH 7 “a3e)s uonepIfeA 10y
9ATIE3U JUBOIIUSIS ISOW [IIM ‘a3e ‘oa13pad pue [INg ‘93e syuedronaed orewoy Ayreay
10y0d 110405 [l Y} Ul PUNOJ dIom SJoquunu S500>b oNsSI)  [JIM UONBIOOSSE J[eWdj 6 6 “05e)s A19A00SIp 10} o Lsel
Jrew woy 11 °MyqH yim pajeroosse SINA 111 A[ruuey x9S ‘96 >ddd  JOSy osodipy  [BUONIIS-SSOID) oJrew 96 syuedronred oew APesay 96 S1OZ ‘T8 10 UUOY
3so0on[3
Sunsey yIm pajeroosse SING ON
“AJu0 J[-VINOH WM pojeroosse
(40T x 9¢°¢ = d ‘668188159)
(sourjayry DDV Ul OS[e QIS JULOYTUTIS
ul S[OA9] AjrewiSrewt {(19710059089)  9soon[3 ‘urpnsut a3e)s uoneordar
urnsur noqe D08V ~dI-VINOH pue uinsur Od v ons ur ¢6 “a8es A10A00SIp (7€l v10T
UoneULIOJUI OU) () Sunsey ym pajeroosse SING | Apmis xds ‘08 wouRjuog YOSy Ppoolg  [BUOIDIS-SSOID) 857/98¢ ur s[enpIAIpul Ap[esy 1< ‘Ie 10 03[epIH
dI-VINOH
M §7 pue 9soon[3 unsey (popowr dgjer) (syuoned
as00n|3 W 61 ‘ATL Y pajeroosse junoa 99 (Jonuoo—oseo) dTL pL1) suedtowy . [sTl 10T
Sunsey 10] 6] Apueogrusis azom snd) 1§ ‘[ING XS 93y ouuog YOSy Poojd  [BUOIOIS-SSOID) $1€/9€S uedIXaJN pa213ipad g8 ‘e 30 TRy
399JJ9 SuIpunojuod
' pey [N Sunsa3sns ‘9z1s 109
ur uononpal 9, ¢~ Ul pA)nsal
[INF 103 yusunsnipe ‘[apowr
oriIp € Suisn °lyqH pim (urnsur y-g)
Quou pue {I-VINOH M 9T S[EnpIAIPUL ON2qRIp-UoU L9
‘unnsur Sunsej s g osoon(3 {(I-VINOH
Y-z s 1 (VILdD ‘1DOgV NG ‘Sunjouws ‘unnsur Sunsey)
Surpnjour) esoon[3 Sunsey ‘(poypowu S[enpIAIpUI ONAQRIP-UOU ()} |
M PAjeIdosse SN § :Sien UBWISNOH) {(°lyqy ‘esoon3
asoon(3 ordKjouayd yym pajeroosse junod y-g ‘osoon|3 Jumsey) Lleglotoz
Sunsey 10} ¢ 2q 0} punoj a1om snd) [¢ Jo [e10], 1190 “xas ‘98y Mad YOSy Poolg  [eUOnOas-SSOI)  Q[BW 9 [°/f  S[ENPIAIPUI ONAQRIP-UOU 84| ‘e 12 191y
JApmys uoneordar sIsAJeue
ur papnjout qUON21I00 ojul papnjour SIsAJeue uone[Ayaw
snd) jo 'oN sSurpuy doy,  Sunsoy-oidnniy SOJELIEAOD) PO\ onssif, ugIso  o[ew/Q[eW,{ VN( oj uonendog LOURIJOY
s)ren oIudeIA[S YIIM PAJRIOSSE SSYMH JO SONSLIDIoRIR) 79Iq¢%L

pringer

Qs



Diabetologia

positively correlated with age, fasting glucose and triacylglyc-
erols, while the methylation levels of the TXNIP and SLCIAS
CpGs was negatively correlated with age. The methylation
level at SREBF'] was positively correlated with both fasting
glucose and lipid levels. No significant correlation with BMI
was found in healthy individuals.

Associations with type 2 diabetes: other tissue-specific
CpGs In addition to the 52 CpGs associated with type 2 dia-
betes in blood, we also analysed 17 CpGs that were associated
with type 2 diabetes in pancreas and liver to test whether DNA
methylation in metabolically active tissues may be reflected in
DNA methylation in blood. No significant associations were
found for any of these CpGs in blood samples (all p > 0.1).

Associations with glycaemic traits Finally, we tested the
CpGs previously shown to be associated with fasting glucose
and HbA . levels. In blood samples from the 98 healthy indi-
viduals, we replicated the association between CpGs in the
CCDC57 and ABCG1 genes and fasting glucose level at nom-
inal significance (p < 0.05, Table 6). Interestingly, after adjust-
ment for BMI, two more CpGs, located in MDN1I and FLAD1
genes reached nominal significance (Table 6). We found no
significant association between the level of HbA . and DNA
methylation at any of the ten CpGs identified in adipose tissue.

The EWASs for other metabolically relevant traits Since
high BMI and dyslipidaemia are well-known risk factors for
type 2 diabetes and are commonly observed in diabetic indi-
viduals [43], we compared the results from our replication
study with the results from recent EWASs studying DNA
methylation related to adiposity and blood lipids [42,
44-46]. We found a large overlap between CpGs that are
significantly associated with BMI and triacylglycerol levels,
and those that are associated with type 2 diabetes and fasting
glucose (ESM Table 5).

Discussion

In this study, we first comprehensively reviewed recently pub-
lished EWASs investigations of DNA methylation patterns
associated with type 2 diabetes and glycaemic traits. The po-
tential use of DNA methylation as biomarker for type 2 dia-
betes is frequently reported in the literature, mostly using
cross-sectional approaches. A more ideal setting for testing
biomarkers would be to capture changes in the methylation
profile prior to disease onset. A longitudinal study design
would allow for this, since it provides measurements of meth-
ylation at multiple time points in the same individual, thereby
capturing the epigenetic dynamics during life. However, due
to higher costs and study duration, such EWASs are scarce,
especially for complex diseases. To date, only one

@ Springer

longitudinal EWAS study focusing on type 2 diabetes has
been published, identifying five CpGs associated with disease
onset in Indian Asians during the follow-up period [21], two
of which (the CpGs in ABCGI and PHOSPHO!) were repli-
cated in a prospective study [47]. In our analysis we replicated
three CpGs from the longitudinal study (i.e. ABCGI, TXNIP
and SREBFI) indicating that those differences in methylation
can also be captured in a cross-sectional study, for example,
due to the stability of methylation level after disease onset.
These CpGs represent potential predictive biomarkers for type
2 diabetes susceptibility.

Another issue concerns the inconsistency in EWASs
methylation levels across tissues and whether blood can
serve as a proxy tissue to capture these patterns. Changes
in DNA methylation have been reported for different tis-
sues like pancreas, liver, skeletal muscle or adipose tissue
relevant in type 2 diabetes (ESM Table 1) [27, 31, 32, 48,
49]. The overlap in those results is limited, suggesting that
the majority of the identified DNA methylation loci are
tissue specific. However, some studies reported an overlap
in disease-specific and age-related differentially methylat-
ed CpGs between blood and other relevant tissues. In re-
cent EWASs, around 60% of the methylation changes as-
sociated with age in pancreatic islets also occur in blood,
including FHL2, KLF14, FAMI123C and GNPNATI, all
genes known to be associated with type 2 diabetes or insu-
lin secretion [12]. Chambers et al reported that two out of
five tested CpGs (in TXNIP and SOCS3) were differential-
ly methylated in liver and reflected in blood [21].
Interestingly, another recent study showed hypermethyla-
tion at a CpG located in the SREBFI gene in pancreatic
cells and blood from type 2 diabetic individuals, and hy-
pomethylation at the ZXNIP locus in pancreatic islets, skel-
etal muscle and blood, which is directionally consistent
with our findings in blood [47]. Taken together, these data
indicate that some methylation changes found in the other
tissues can be mirrored in blood. However, in our study we
did not replicated the CpGs from the liver, pancreas and
adipose tissue EWASs. This may be due to the small dis-
covery sample sizes, the relatively small sample size of our
replication study and/or reflect tissue-specific methylation
patterns.

Epigenetic changes can be either a cause or a consequence
of disease or an indirect contributing factor through environ-
mental exposures that can affect both epigenome and type 2
diabetes risk [50]. Multiple factors can affect DNA methyla-
tion, such as environmental exposures [51], psychosocial [52]
and genetic factors [53], together explaining the variance in
DNA methylation levels between individuals. Also, accumu-
lating data indicate that interactions between genetics and epi-
genetics influence gene expression levels in relevant metabolic
traits, leading to the development of complex diseases [54, 55].
Recently, genetic ancestry and ethnicity is also shown to
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Table 3  Baseline characteris-

tics of the study sample of type 2 Type 2 diabetic individuals Control individuals p value
diabetic individuals and healthy (n =100) (n =98)"
individuals from the Lifelines co-
hort (n = 198) Sex M) (n, %) 52 (52) 44 (44.9) 0.44
Age (years) 62 (53-69) 50 (46-63) 3x10°®
BMI (kg/m?) 30.8 + 4.7 253 +3.6 <22x107'°
Waist (cm) 105.3 + 124 892+ 11.0 <22x107'¢
Waist-hip ratio 0.98 + 0.08 0.9 +0.08 1.1x 1071
Fasting status® 98 (98) 97 (99) 0.57
Biochemical measurements
HbA . (%) 6.6 (6.4-8.5) 5.6 (5.3-5.7) <22x107'°
HbA;, (mmol/l) 49 (45.8-55.3) 37.5 (35.3-39) <22x107'°
Fasting glucose (mmol/I)° 7.4 (6.4-8.5) 4.9 (4.6-5.3) <22x107'°
Triacylglycerol (mmol/l) 1.4 (1.1-1.9) 1.0 (0.7-1.2) 22x10°%
HDL-cholesterol (mmol/l) 1.2 +£0.32 1.54+04 1.6x10°%
LDL-cholesterol (mmol/l) 2.8+09 35+09 3x 107
Total cholesterol (mmol/l) 45+1.0 53+£1.0 1.1 %1077
Systolic BP (mmHg) 135+ 18 122 + 11 42 x10°
Diastolic BP (mmHg) 76 +9 73+7 6.7 %107
Education level (n, %)°
Low 55(59) 34 (37) 0.2
Intermediate 22 (24) 28 (30)
High 16 (17) 30 (33)
Insulin use (1, %) 10 (10) 0 (0) -
Oral blood glucose lowering 51(51) 0(0) -
drugs (n, %)
Lipid lowering drugs (n, %) 60 (60) 1(1) -

Normal distribution assessment based on histograms and probability—probability plots

Data are shown as mean + SD for normally distributed variables, as median and 25th and 75th quintile for not
normally distributed variables and as number of individuals (%) for categorical variables

p values are obtained from Student’s ¢ test for normally distributed variables or from Mann—Whitney U test for not
normally distributed variables and x> square for categorical variables. Significant p values < 0.05

*Two controls were excluded because of a sex mismatch (between actual data and methylation data)

® Fasting status data apply to all biochemical blood measurements presented in the table

¢ Fasting glucose value missing for one individual; education level missing for seven individuals

influence the methylation level [41]. Between the EWASs
reviewed, we observed an overlap for a number of CpGs
(TXNIP, ABCGI1, SOCS3, SREBF1 and CPTIA) from
EWASs performed in blood samples from Europeans, Indian
Asians, Mexican Americans and Arabs, suggesting an associ-
ation of DNA methylation with type 2 diabetes at these sites,
irrespective of ethnic, social and environmental differences.
Moreover, this finding highlights the usefulness of data sharing
to create opportunities to perform meta-analyses, as is common
practice for genome-wide association studies (GWASS).

In this study, we replicated five CpGs in blood, from which
four reside in the genes previously shown to be associated
with type 2 diabetes (ABCG1, LOXL2, SLCIAS5, SREBFI)
(ESM Box 1). Another replicated CpG site is TXNIP
(cg19693031), which is shown to be hypomethylated in type
2 diabetes [21, 23-25]. Expression of TXNIP has been linked

to glucose levels (ESM Box 1). Despite its important function
in type 2 diabetes pathogenesis, ZXNIP was not identified as
one of the susceptibility genes in recent GWAS studies for
type 2 diabetes [6]. These data suggest that DNA methylation
is the major mechanism of controlling 7XNIP expression,
thereby affecting glucose homeostasis.

Blood cell composition can influence EWAS analyses and
outcomes. There are several ways to avoid potential con-
founding effects of the cell composition, such as adjustment
for direct measured cell count or reference-based cell count
(e.g. the Houseman method [20]). In our analysis we observed
no difference in effect sizes for the CpGs showing a significant
association when using either the Houseman method or the
measured cell count approach for adjustment, suggesting that
these two methods may be used interchangeably (data not
shown). Especially in studies in which information on blood

@ Springer
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Table 5

Lifelines sample (n = 98)

Correlations between DNA methylation (3 values) of five replicated CpGs with type 2 diabetes risk factors in healthy individuals in

ABCGI LOXL2 TXNIP SLCIAS SREBFI
r p value r p value r p value r p value r p value

Age 0.31 1.7x10°  -017 8x102%  -0.11 34x102 —027  66x10° 045  44x10°
Fasting glucose 0.31 19x10°  -0.09 033 -0.15  0.14 -0.01 086 021  35x107
Triacylglycerol 0.25 13x102%  —0.11 0.26 -0.17  9x107 -0.13  0.18 023 22x107
Total cholesterol ~ 0.15 0.14 -0.10 032 011 024 0.03 0.75 044  67x10°
LDL-cholesterol ~ 0.15 0.13 0.11 0.25 -0.14  0.16 003 071 041  28x107°
HDL-cholesterol ~ —0.07  0.46 0.04 0.65 0.09 0.37 0.27 64x10° 007 044

BMI 0.19 0.065 -0.1 0.35 -0.12 026 -0.16 0. 015  0.12

r = Pearson’s correlation coefficient
Significant p values < 0.05

cell composition is not available, methods such as the
Houseman approach are essential.

It has been recently shown that methylation changes of the
CpGs located in SREBF1, ABCG1 and CPTAI were not only
associated with type 2 diabetes but also with BMI [42, 44, 46].
Therefore, we compared our results with those from recent
EWAS:s for adiposity and other relevant metabolic phenotypes
[42, 44, 46]. We observed a substantial overlap between BMI
and triacylglycerol-related CpGs, and CpGs associated with
type 2 diabetes and glycaemic traits. Approximately 60% to
70% of diabetic individuals show some lipid abnormalities,
which are associated with insulin resistance. The observed
overlap in EWASs results could be explained by the fact that
hypertriacylglycerolaemia leads to elevated non-esterified fat-
ty acid levels, which in turn could induce insulin resistance
and beta cell dysfunction [56]. Next, recent findings from the
EWASs for adiposity indicate that adiposity determines

Table 6
EWAS subsample (7 = 98)

methylation level at the majority of the identified loci [42]
and that the methylation changes in blood might in part be a
consequence of the alterations in lipid and glucose metabolism
associated with BMI. In this EWAS, 62 of the 187 BMI meth-
ylation loci were associated with incidence of type 2 diabetes,
and the BMI methylation risk score, calculated based on those
CpGs, predicted future development of type 2 diabetes [42].
Together, this supports the hypothesis that BMI accounts part-
ly for the association between DNA methylation and type 2
diabetes.

Overall, we conclude that a number of differentially
methylated CpGs associated with type 2 diabetes in the
published EWASs can be replicated in blood and show
promise as disease biomarkers. Our data indicate that
BMI partly explains the associations between DNA meth-
ylation and type 2 diabetes (i.e. only five out of 15 CpGs
remained significant after adjustment for BMI). Whether

Significant differentially methylated CpGs for fasting glucose replicated in healthy control individuals from the Lifelines type 2 diabetes

[llumina ID CHR MAPINFO Gene Location  Location in Mean Model 1 Model 1 + BMI
name in gene CpG island methylation
(%) Delta p value Delta p value

methylation methylation

(%) (%)
cg06500161 21 43656587 ABCGI Body Shore 59.1 1.82 6.8 x 107 1.68 1.6 %107
cg06715330 17 80158206 CCDC57 Body Open sea 81.3 -1.82 0.01 -2.05 6.6 x 107
cgl6809457 6 90399677 MDNI  Body Open sea 56.6 1.71 0.08 2.08 0.04
cgl6097041 1 154965544 FLADI  3'UTR Open sea 59.4 1.27 0.09 1.61 0.04

Delta methylation is based on 3 values; p values are based on M values

Significant p values < 0.05

CHR, chromosome; MAPINFO, position on the chromosome; Shore, 0-2 kb from CpG island; Shelf, 2—4 kb from CpG island; Open sea, more than 4 kb

from CpG island
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these markers can be used as biomarkers for type 2 diabe-
tes in a clinical practice requires further investigation. We
recommend that more longitudinal studies are performed to
confirm the robustness of these markers and to identify
additional potential markers.
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