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The epithelial-to mesenchymal (EMT) process is increasingly recognized

for playing a key role in the progression, dissemination, and therapy resis-

tance of epithelial tumors. Accumulating evidence suggests that EMT

inducers also lead to a gain in mesenchymal properties and promote malig-

nancy of nonepithelial tumors. In this review, we present and discuss cur-

rent findings, illustrating the importance of EMT inducers in tumors

originating from nonepithelial/mesenchymal tissues, including brain

tumors, hematopoietic malignancies, and sarcomas. Among these tumors,

the involvement of mesenchymal transition has been most extensively

investigated in glioblastoma, providing proof for cell autonomous and

microenvironment-derived stimuli that provoke EMT-like processes that

regulate stem cell, invasive, and immunogenic properties as well as therapy

resistance. The involvement of prominent EMT transcription factor fami-

lies, such as TWIST, SNAI, and ZEB, in promoting therapy resistance and

tumor aggressiveness has also been reported in lymphomas, leukemias, and

sarcomas. A reverse process, resembling mesenchymal-to-epithelial transi-

tion (MET), seems particularly relevant for sarcomas, where (partial)

epithelial differentiation is linked to less aggressive tumors and a better

patient prognosis. Overall, a hybrid model in which more stable epithelial

and mesenchymal intermediates exist likely extends to the biology of

tumors originating from sources other than the epithelium. Deeper investi-

gation and understanding of the EMT/MET machinery in nonepithelial

tumors will shed light on the pathogenesis of these tumors, potentially pav-

ing the way toward the identification of clinically relevant biomarkers for

prognosis and future therapeutic targets.
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1. Introduction

The ability of epithelial cells to lose their defining

epithelial features and gaining a more loosely oriented

mesenchymal phenotype is known as the process of

epithelial/mesenchymal transition (EMT). EMT has

been well described during embryonic development

and is an essential process required for the formation

of mesoderm and the neural tube (Kalluri and

Weinberg, 2009; Thiery et al., 2009). In organisms,

EMT plays a role in wound healing and tissue fibrosis.

Upon EMT, cell polarity and cell–cell adhesion are

lost and cells gain a migratory and invasive phenotype

that is characteristic for mesenchymal cells.

In cancer, a key role for EMT in tumor progression

has been proposed (Thiery, 2002). Over the last dec-

ade, accumulating evidence has indicated an important

role for EMT in various malignant properties of tumor

cells including tumor infiltration, metastasis, cancer

stem cell (CSC) properties, therapy resistance, and

immunosuppression (De Craene and Berx, 2013; Yang

and Weinberg, 2008; Ye and Weinberg, 2015). In gen-

eral, the mesenchymal state of tumor cells, character-

ized by cell autonomous motility and invasiveness, has

been associated with worse clinical prognosis. In

essence, EMT is a reversible process and cells can

revert back to an epithelial state by mesenchymal/ep-

ithelial transition (MET) that appears to be essential

for colonization of tumor cells at distant sites, a key

step in the metastatic process. Of note, cells display

plasticity to the EMT/MET processes and may possess

intermediate features of these two opposite states (Ye

and Weinberg, 2015). In fact, recent reports indicate

the existence of cells with a stable hybrid epithelial/

mesenchymal (E/M) status simultaneously expressing

epithelial and mesenchymal markers. E/M is character-

ized by weak cell adhesions, migration in multicell

aggregates giving rise to circulating tumor cells,

enhanced stemness, and therapy resistance (reviewed in

Jolly et al. 2015). Each of the three phenotypes of

EMT, epithelial, hybrid, and mesenchymal, seems to

take on distinct responsibilities during cancer progres-

sion, indicating the complexity of this process and the

challenge to find efficient therapies to comprehensively

combat tumor metastasis (for schematic representa-

tion, see Fig. 1).

The initiation of EMT and maintenance of a mes-

enchymal state is controlled by multiple heterotypic

signals and is context dependent (Nieto and Cano,

2012). During tumor progression, cell autonomous

triggers as well as paracrine signals derived from stro-

mal cells such as fibroblasts and immune cells regulate

the EMT status. The cell intrinsic molecular mecha-

nisms of EMT have been examined extensively and

consist of complex and overlapping signaling net-

works. The hallmark of EMT is loss of the cell adhe-

sion glycoprotein E-cadherin, encoded by the CDH1

gene, leading to the loss of intercellular junctions/cell–
cell interactions and alterations in intermediate fila-

ment composition from cytokeratins to vimentin,

allowing cells to dissociate and gain migratory poten-

tial. The enhanced secretion of proteases, particularly

the matrix metalloproteinases (MMPs), facilitates

extracellular matrix degradation and cell invasion.

Fig. 1. Hybrid and reciprocal phenotypes of EMT/MET. Schematic representation of reciprocal phenotypic conversion of epithelial (E), hybrid

epithelial/mesenchymal (E/M), and mesenchymal (M) phenotypes of cancer cells.
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A number of key EMT transcription factors (EMT-TFs)

have been identified that directly control E-cadherin

expression through transcriptional repression of

CDH1. These include the SNAIL/SNAI1, SLUG/

SNAI2, E47, and zinc finger E-box-binding homeobox

(ZEB) family of EMT-TFs, whereas other TFs like

TWIST and goosecoid are indirect CDH1 suppressors

(Thiery and Sleeman, 2006). The regulation and acti-

vation of the EMT-TFs is complex involving pleiotro-

pic and contextual signals and different regulatory

layers including negative feedback loops with micro-

RNAs (miRNAs) and alterations in the DNA methy-

lation status, facilitating short time or prolonged

induction of the mesenchymal state.

Logically, EMT has been particularly studied in car-

cinomas (epithelial tumors) where it can be locally and

time dependently activated to generate tumor cells

with enhanced aggressive mesenchymal properties.

Much less is known about the role of EMT/MET-

related processes in nonepithelial tumor types such as

gliomas, hematopoietic malignancies, and sarcomas.

Theoretically, the occurrence of an EMT-like process

in gliomas might be expected considering their origin

from primitive epithelium, the neuroectoderm. How-

ever, sarcomas and hematological malignancies main-

tain a mostly mesenchymal status as they originate

from muscle or blood cells, respectively, tissues that

are derived from the embryonic mesoderm. In this

review, we will discuss the current insights into the

contribution of EMT/MET-like processes and underly-

ing mechanisms to the development and progression of

nonepithelial tumor types.

2. MT in tumors of the central nervous
system

During embryonic development before the onset of

neurogenesis, the neural plate is formed of a single

layer of highly undifferentiated neuroepithelial cells.

These neural stem cells (NSC) can differentiate into

the three cell types of the brain: neurons, astrocytes,

and glial cells. Neurogenesis is also ongoing in distinct

areas of the adult brain such as the subventricular

zone (SVZ), the olfactory bulb, or the dentate gyrus of

the hippocampus (G€otz and Huttner, 2005). Although

neural tissue does not originate from a classical epithe-

lial background, accumulating evidence indicates that

molecular drivers of epithelial cell differentiation take

on similar responsibilities in the brain, particularly

during tumor development. Below, we summarize the

current understanding on how the EMT-like process is

regulated in brain tumors and discuss its utility as a

therapeutic and diagnostic target.

2.1. Glioblastoma

Glioblastoma (GBM) is the most common and highest

malignant primary brain cancer in adults with an aver-

age patient survival of less than two years (Stupp

et al., 2005). GBM, characterized by high invasive

growth and high degree of cellular/genetic heterogene-

ity, accounts to the most lethal tumors overall (Siegel

et al., 2015). The field of mesenchymal transition (MT)

research in GBM has attracted significant attention.

The core findings are discussed below and summarized

in Fig. 2.

2.1.1. MT in maintenance of neural and GBM stem

cells

A tight link between a cellular gain of mesenchymal

properties and CSCs has been observed in various

tumors including GBM (Liu and Fan, 2015). CSCs are

considered to be responsible for tumor occurrence,

progression, and emergence of resistance against thera-

peutic interventions (Lathia et al., 2015). Several

prominent members of the EMT network have been

identified to contribute to the CSC pool in GBMs. For

example, ZEB1 promotes the expression of NCS mark-

ers and the chemoresistance marker O6-alkylguanine

DNA alkyltransferase (MGMT), thereby facilitating

GBM tumorigenicity and resistance against temozolo-

mide (TMZ), the standard-of-care chemotherapeutic

today (Siebzehnrubl et al., 2013).

Phylogenetically conserved stem cell signaling path-

ways represent the most accepted anti-CSC targets in

various tumors including GBM (Kahlert et al., 2017;

Takebe et al., 2015). Interfering with such pathways

has been shown to affect MT in GBMs. As such,

WNT signaling controls GBM invasion at least in part

through the initiation of MT (Bhuvanalakshmi et al.,

2015; Duan et al., 2015; Jin et al., 2011; Kahlert et al.,

2012). Forkhead box M1 (FoxM1) promotes glioma

tumorigenicity through the WNT pathway partly by

inducing EMT (Wang et al., 2015a; Zhang et al.,

2011). Targeting the Sonic Hedgehog (SHH) pathway

at the level of Smoothened suppresses glioma malig-

nancy by upregulating miR200 and consequently

blocking ZEB1 (Fu et al., 2013). In addition, SHH/

glioma-associated oncogene homolog 1 (Gli1) signaling

promotes GBM cell invasion by the induction of

EMT-TF SNAI1 (Wang et al., 2010). Recently,

Jagged1 ligand-mediated Notch pathway activation

has been shown to promote MT in gliomas

(Katz et al., 2014). However, currently pharmacologi-

cal studies that make use of, for example, c-secretase
inhibitors to further demonstrate the concept that
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Notch activity controls MT in GBMs are lacking. Fur-

thermore, transcriptional coactivator with PDZ-bind-

ing motif (TAZ), which is primarily regulated through

the developmental conserved stem cell pathway Hippo,

induces mesenchymal differentiation in GBM and

NSC cells and promotes tumor aggressiveness (Bhat

et al., 2011).

Independent of developmental conserved stem cell

pathways, c-MET signaling induces the reprogram-

ming of glioma cells into CSCs (Li et al., 2011). More-

over, c-MET was recently found to promote MT

featuring enhanced MMP activation and cadherin

cleavage as well as fostering resistance against TMZ

(Huang et al., 2016).

The concept that MT in cells of the central nervous

system (CNS) is intertwined with stemness is sup-

ported by discoveries in developmental biology. ZEB1

expression is high in stem cell-rich embryonic brain

but fades during maturation (Koch et al., 2016). ZEB1

controls invasion of human NSC of the SVZ (Kahlert

et al., 2015), proliferation of spinal cord stem cells of

adult mice (Sabourin et al., 2009), and restricts differ-

entiation of murine granular neuron precursors (GNP)

(Singh et al., 2016). Moreover, transforming fetal NSC

into invasive tumorigenic cells leads to the induction

of an MT signature featuring high SNAI1 expression

(Mao et al., 2013).

Taken together, several studies have revealed that

CSC properties in GBM are linked with the MT net-

work. Targeting MT thus can be an efficient way to

eradicate CSCs particularly when interfering with

ZEB1 signaling as SNAI1 was reported to play diver-

gent roles in stemness and MT. It is reported that

SNAI1 in GBM cells promotes invasion but has a neg-

ative effect on tumorigenicity, consistent with the ‘go

or grow’ hypothesis (Han et al., 2011; Savary et al.,

2013). The fact that EMT-TFs also regulate various

processes in non-neoplastic CNS stem cells further

supports the existence of a stem cell/MT axis during

neuro-oncogenesis.

Fig. 2. Regulators of MT in glioblastoma. Schematic representation of the complex molecular interactions of MT in glioblastoma including

its relationship to cancer stem cells (CSCs), neural stem cells (NSCs). MT can be influenced through epigenetics, microenvironmental

stimuli, long noncoding RNAs (lncRNAs) or as a response to therapy.
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2.1.2. Regulators of MT and GBM progression

Several reports have further highlighted the relevance

of MT in the progression of GBM. ZEB2 is upregu-

lated in GBM cells and suppression of ZEB2 inhibits

invasion (Qi et al., 2012) and results in a blockade of

resistance against vascular endothelial growth factor

(VEGF), which involves inhibition of a hypoxia-indu-

cible factor (HIF)1a-ZEB2-EphrinB2 MT pathway

(Depner et al., 2016). Similarly, TWIST1 is highly

expressed in GBM and is involved in promoting cellu-

lar invasion (Elias et al., 2005; Mikheeva et al., 2010).

The Janus kinases (JAKs) and signal transducer and

activator of transcription (STAT) proteins, particularly

STAT3, are among the most promising targets for can-

cer therapy (Yu et al., 2014). STAT3 signaling has

been identified as a core driver of mesenchymal trans-

differentiation in GBMs (Carro et al., 2010). STAT3

assists in GBM cell invasion by inducing SNAI1 and

activation of MMPs (Priester et al., 2013). Recent

work suggests that mesenchymal transformation by

STAT3 is controlled through Annexin-A2 (ANXA2)

that is inactivated in GBMs that exhibit mutations in

the isocitrate dehydrogenase (IDH) gene (Kling et al.,

2016).

Interestingly, STAT3 may also suppress the recogni-

tion of GBM cells by the immune system (Ciaglia

et al., 2015). Recent observations suggest that cellular

metabolic adaptations such as in choline homeostasis

or autophagy can trigger or support the induction of

mesenchymal transcription factors in GBM (Koch

et al., 2016; Zou et al., 2016).

Overall, accumulating evidences occur that a variety

of potent oncogenic signaling pathways contribute to

MT in GBMs.

2.1.3. Tumor microenvironment regulators of MT

The tumor microenvironment (TME), consisting of

blood vessels, immune cells, and fibroblasts, is a potent

influence for a variety of cellular processes and has

been observed to promote mesenchymal transforma-

tion in different contexts (Cooper et al., 2012). The

impact of the TME on MT in GBM is discussed

below.

Transforming growth factor beta (TGF-b), most

often produced by immune cells and microglia, is a

prominent therapeutic target in GBM and has been

investigated both in preclinical and in clinical studies

(Joseph et al., 2013). Exogenously added TGF-b
induces ZEB1 leading to increased invasiveness, and

targeting TGF-b signaling can block MT in GBMs

(Joseph et al., 2014). Moreover, in GBM xenografts

and patient samples, evidence for local TGF-b-depen-
dent MT was provided. In another study, TGF-b2
transcript levels were demonstrated to serve as a pre-

dictive marker for inferior patient overall survival

(Frei et al., 2015). At the cell surface, the Fas receptor

(CD95) has recently been associated with CSC and

MT properties in GBM cells, involving activation of

PI3K signaling (Drachsler et al., 2016).

Shortage of blood supply leads to hypoxia (< 5%

oxygen tension) and is a characteristic neuropathologi-

cal hallmark of GBM. ZEB1 is active in hypoxic pseu-

dopalisades that surround necrotic areas and exposure

to low oxygen augments invasive properties of glioma

cells through the induction of EMT activators (Depner

et al., 2016; Joseph et al., 2015; Kahlert et al., 2015;

Xu et al., 2015). Given this unequivocal correlation

between low oxygen and GBM MT, therapies that aim

to block tumor oxygenation such as through blocking

VEGF signaling can have contraintended consequences

and induce tumor malignancy through the activation

of MT (Piao et al., 2012). Of note, VEGF signaling

has been shown to directly augment GBM cell inva-

sion upstream of MT signaling, and this network is

activated in an oxygen-dependent manner, further rais-

ing concerns for the use of anti-VEGF therapy in

GBM. The study by Piao et al. also indicates that the

activation of the local immune cell environment in

response to therapy may promote the mesenchymal

shift. Confirming data comes from another study

showing that GBM-associated immune cells produce

high levels of TGF-b, which causes activation of

MMPs in the tumor cells to enhance invasion

(Ye et al., 2012). Given the current rise of immune

therapeutic interventions as an innovative treatment

avenue in cancer, including GBM, caution needs to be

drawn on potential unintended effects such as inducing

dissemination of a subset of tumor cells with

mesenchymal features.

In conclusion, TME-derived signals appear to be of

key importance in controlling the mesenchymal status

of GBM.

2.1.4. MT and response to therapy

Cancer cells are characterized by high plasticity having

the ability to adapt to alterations in their microenvi-

ronment to overcome cellular stress such as that

inflicted by therapeutic treatment. Some indications

have been obtained that standard therapies can cause

a selection for therapy-resistant cells that have under-

gone MT or lead to the initiation of MT. Treatment

with radioactive iodine-125 (125I) inhibited ZEB1 and

MT accompanied by reduced cellular invasion and
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growth (Tian et al., 2015). GBM cells with an MT sig-

nature are less affected by standard treatments. For

example, following c-radiation of patients SNAI1,

EMT markers and invasion were elevated in recurrent

GBM samples, and in vitro, SNAI1 knockdown pre-

vented radiation-induced MT leading to reduced cellu-

lar invasion (Mahabir et al., 2014). Radiation was

also found to activate NF-jB/STAT3 cooperative sig-

naling that was linked to increased expression of inter-

cellular adhesion molecule-1 (ICAM-1) and cell

invasion (Kesanakurti et al., 2013). The standard

chemotherapeutic TMZ was reported to select for

GBM cells with different properties than the parental

cells including an increase in migration and invasion

and upregulation of EMT markers like SNAI1 and

SNAI2 (Stepanenko et al., 2016). As earlier men-

tioned, treatment with the VEGF inhibitor causes MT

in a hypoxia-dependent manner eventually establishing

therapy-resistant cells (Piao et al., 2013). Interestingly,

various plant-derived compounds can also efficiently

impair glioma cell invasion through suppression of

MT. The spermine derivative kukoamine A causes

cytotoxicity and inhibits motility by inducing apopto-

sis and blocking EMT-TFs such as SNAI1 (Wang

et al., 2016). Members of anthocyanidins, a class of

polyphenols, have been reported to effectively regulate

MT in GBM cells, thereby providing a molecular link

on how fruit and vegetable-rich diet has the potential

to fight tumor cell dissemination. As such, delphinidin

inhibits TGF-b signaling to block SNAI1 and invasion

of U87 GBM cells (Ouanouki et al., 2017). Moreover,

periostin, a matricellular protein secreted in the

microenvironment, induces MT in GBMs and

increases malignant properties such as invasion

(Mikheeva et al., 2015).

Recent observations in lung cancer suggest that

EMT-dependent tumor cells are preferentially targeted

by immune checkpoint antagonists (Chen et al., 2014).

Also inflammatory stimuli themselves may lead to an

induction of cancer cell EMT (Ricciardi et al., 2015).

Vice versa, the role of EMT in tumor cell immuno-

genicity is not fully understood and currently contro-

versially discussed (Terry and Chouaib, 2015).

However, molecular networks regulating cellular plas-

ticity must be taken into account when designing new

immune system-based therapeutic avenues to fight can-

cer, including in GBM.

Summarizing, MT induction appears to function as

an adaptive response in glioma cells in order to

enhance treatment resistance or to facilitate escape

from cell toxic niches. Hence, targeting EMT pathways

will likely enhance antitumor efficacy of available

treatments in GBM.

2.1.5. Epigenetic regulation of MT and long noncoding

RNAs

miRNAs are 20- to 23-nucleotide noncoding RNAs

that post-transcriptionally regulate gene activity

through RNA silencing. Several miRNAs have been

identified as potent targets to impede EMT-TFs in

GBMs. Mostly negative correlations of miRNA

expression with tumorigenesis, tumor invasion, and

activation of EMT promoters have been described.

miR-7, miR-21, miR-23a, miR-124, miR-128a/b,

miR-200, and miR-221 are among the most studied

candidates. The field is heavily investigated, and for a

concise review about miRNAs regulating MT in

GBMs, see Møller et al. (2013). Interestingly, recent

observations indicate that miRNAs can indirectly influ-

ence MT in GBM by modulating their metabolism

(Hatziapostolou et al., 2013). TMZ treatment was

found to enhance autophagy leading to MT that

involves regulation by miR-517c. In glioma cells

expressing wild-type TP53, but not in a TP53-mutant

background, miR-517c inhibits the activation of autop-

hagy causing a disturbance of the nuclear translocation

of TP53 that in turn blocks mesenchymal transforma-

tion and autophagy-induced invasion (Lu et al., 2015).

Modulating miRNA homeostasis gains attraction as a

powerful approach in clinical translation in various dis-

eases and may be a very applicable way to target MT

in brain cancer oncology (Li and Rana, 2014).

Alterations in the chromatin packaging density is

another epigenetic mechanism to stereologically influ-

ence gene activity that is mediated through histone-

modifying enzymes. For example, histone deacetylase

5 (HDAC5) has been shown to promote MT in glio-

mas and regulate therapy resistance (Liu et al., 2015).

Of note, HDAC inhibition has emerged as a novel

strategy to overcome EMT and chemoresistance in

pancreatic cancer (Meidhof et al., 2015), but currently

little is known whether targeted histone modification

has therapeutic potential in GBM.

Promoter methylation is another important mecha-

nism for the control of gene transcription and EMT

regulation. Recent evidences occurred showing that

expression of ANXA2, an inducer of mesenchymal

transformation, is suppressed by promoter hyperme-

thylation and is associated with a better prognosis in

CpG hypermethylator phenotype (GCIMP) GBM

(Kling et al., 2016).

Finally, long noncoding RNAs (lncRNA) have

recently emerged as therapeutic targets in various dis-

eases. MT in GBM seems to be influenced by

lncRNAs as HOTAIR promotes GBM cell invasion

through the activation of WNT-dependent MT
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(Zhou et al., 2015). LncRNA ZEB1 antisense 1

(ZEB1-AS1), a noncoding antisense transcript con-

trolled by the ZEB1 promoter, serves as biomarker for

poor clinical prognosis in patients with GBM and aug-

ments cell invasion by inducing EMT activator ZEB1

(Lv et al., 2016). Also, lncRNA AB073614 can influ-

ence the expression of mesenchymal differentiation in

glioma cells although no effect on EMT-TFs expres-

sion was found (Li et al., 2016).

In summary, blocking (E)MT in cancer cells through

targeted modification of the epigenome or the house-

hold of lncRNAs may be an attractive therapeutic

strategy to impede tumor malignancy. This is particu-

larly promising as epigenetic alterations are reversible

and may be applied to transiently make tumors more

susceptible to traditional, clinically approved drugs.

Some promising ongoing clinical trials underline the

potential of epigenetic cancer therapy but targeted

delivery must be improved to limit off-target effects

(Nervi et al., 2015).

2.1.6. Methods for the detection of MT

Liquid biopsy is a minimal invasive procedure for

diagnosis and monitoring disease progression. It has

recently been identified that circulating brain cancer

cells (CBCCs) can be identified in the blood from

patients with GBM and those cells are highly tumori-

genic as shown in xenotransplantation experiments. Of

note, CBCCs exhibit an MT gene signature featuring

high SERPINE1, TGFB1, TGFBR2, and VIM expres-

sion (Sullivan et al., 2014). Moreover, noninvasive

imaging has emerged as a promising tool in precision

medicine. Recently, it was shown that the MT status

of GBM cells can be monitored by determining the

intracellular composition of choline derivatives using

high resolution of proton nuclear magnetic resonance

spectroscopy; the targeting of choline kinase 1a

(CHK1a) impaired MT (Koch et al., 2016).

A classical gene expression analysis is used to pre-

dict therapy success. As such, EMT gene expression

levels have been found to serve as predictive biomark-

ers for estimating the overall survival of radiation-trea-

ted GBM patients (Meng et al., 2014). Moreover,

cellular components excreted in exosomes show

promising results to be suitable for diagnosis in oncol-

ogy. Exosomes have even been found to carry an

‘EMT payload’ such as b-catenin or HIFs that

enhance the invasive and migratory capabilities of

recipient cells, thereby indirectly mediating cancer

metastasis and cellular dissemination (Syn et al.,

2016). Interestingly, exosomes of GBM cells were

found to reflect the hypoxic signature of the tumors

and transmit hypoxia-associated signals to receiving

cells (Kucharzewska et al., 2013).

Taken together, we hypothesize that traits of MT in

cellular metabolism or spread of proteome/RNA/DNA

into the blood or cerebral spinal fluid together with

recent technical advantages in noninvasive imaging

methods will contribute to the development of highly

personalized and minimally invasive diagnostic

approaches for patients with cancer extending the

importance of (E)MT not only as a therapeutic target

but also to diagnostic value.

2.2. MT in other cancers of the central nervous

system

Although less understood and investigated, several

strong indications exist that EMT-like processes and

related factors are involved in the development of

other brain malignancies, which will be discussed

below.

2.2.1. Medulloblastoma

Medulloblastoma (MB) is the most common primary

malignant pediatric brain tumor and can be subcatego-

rized into molecular subgroups (Cho et al., 2010).

SHH activation in GNP, the believed cellular origin of

MBs, as well as in MB cells induces the expression of

SNAI1, consequently activating the proto-oncogene N-

MYC to induce cellular transformation and prolifera-

tion (Colvin Wanshura et al., 2011). Hypoxia induces

MT in MB cells by activating SNAI1, vimentin, and

N-cadherin (Gupta et al., 2011). Moreover, ZEB1

expression is high in SHH-MB and inhibits granular

zone exit, which eventually contributes to tumor for-

mation (Singh et al., 2016).

2.2.2. Other brain tumor types

A comprehensive histological analysis of ZEB1 in

different brain tumors showed that ZEB1 activation

correlates with increasing tumor malignancy grade

(Kahlert et al., 2015). Also assessed by histology,

gliosarcomas express high levels of EMT-TFs such

as TWIST1 and SNAI2 (Nagaishi et al., 2012). His-

tone mutations as well as gene expression profiling

can differentiate diffuse intrinsic pontine glioma

(DIPG), one of the most devastating pediatric brain

tumors, into molecular subgroups including a mes-

enchymal branch (Castel et al., 2015; Puget et al.,

2012). Interestingly, subgrouping according to the

expression levels of EMT markers revealed a positive

prognostic value, indicating that MT in DIPGs may
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not play the classical protumorigenic role (Puget

et al., 2012).

Thus, although not extensively studied as yet, MT

appears to play a role in different brain tumor types.

3. MT in hematological malignancies

Tumors of the hematopoietic and lymphoid tis-

sues derive from either myeloid or lymphoid blood cell

lineages and give rise to leukemias or lymphomas,

respectively (Vardiman et al., 2009). Although the role

of MT in these malignancies originating from the

mesoderm is less well studied than for gliomas, there is

evidence for the involvement of EMT-TFs in their

malignant progression.

3.1. Lymphomas

Lymphomas occur mostly in lymph nodes and can be

subdivided in to two major groups, Hodgkin’s (HL)

and non-Hodgkin’s lymphoma (NHL). NHLs include

many different types such as B cell-derived Burkitt

lymphoma, diffuse large B-cell lymphoma (DLBCL),

mantle cell lymphoma (MCL), and T-cell lymphomas

(Sun et al., 2016).

3.1.1. MT inducers in B-cell malignancies

A role for ZEB1 in the regulation of B-cell lymphoma

protein 6 (BCL6), a master transcription factor in the

differentiation and development of B cells, has been

reported (Papadopoulou et al., 2010). ZEB1 together

with C-terminal binding protein binds to the BCL6

promoter leading to transcriptional suppression and

contribute to normal B-cell differentiation and devel-

opment. In malignancies, BCL6 expression in DLBCL

has been linked to better prognosis, and consistent

with this, immunohistochemical analyses of diagnostic

patient samples indicated a correlation between

nuclear ZEB1 staining and adverse clinical presenta-

tion and clinical outcome (Lemma et al., 2013). In

Helicobacter pylori-positive gastric DLBCL, which has

a better prognosis than negative counterparts, also a

role for ZEB1 has been implicated. Molecular analysis

revealed an association between elevated expression of

miR-200 and consequently inhibition of ZEB1 and an

increase in BCL6 expression in H. pylori-positive sam-

ples (Huang et al., 2014). This provides a further link

between ZEB1 expression and a more aggressive

DLBC phenotype. Involvement of miR-200 also has

been described in a radiation-induced thymic lym-

phoma (RITL) mouse model. RITL samples showed a

decrease in miR-200c and forced expression of this

miRNA resulted in cell death, which was associated

with suppression of the polycomb group protein BMI1

(Cui et al., 2014).

In MCL, also an important role for ZEB1 in

tumor aggressiveness has been identified. MCL is a

rare B-cell malignancy demonstrating resistance to

treatment and poor prognoses. In half of the MCL

cases, the canonical WNT pathway is activated, and

recently, this was linked to ZEB1 expression and a

shorter overall survival (Sanchez-Tillo et al., 2014).

Beta-catenin could bind and activate the ZEB1 pro-

moter and ZEB1 protein on its turn activates prolif-

eration and antiapoptotic genes while suppressing

proapoptotic ones. Moreover, ZEB1 contributes to

chemoresistance by enhancing expression of drug

efflux pathways and consequently silencing of ZEB1,

resulting in sensitization to doxorubicin in a xeno-

graft mouse model.

3.1.2. MT inducers in T-cell lymphomas

S�ezary syndrome (Sz) is a rare cutaneous T-cell lym-

phoma (CTCL) that primarily manifests in the skin.

Analyses of the T cells in Sz patients and normal con-

trols revealed particularly high selective expression of

EphA4 and TWIST as well as in other types of CTCL

(van Doorn et al., 2004). More recently, promoter

DNA hypomethylation of TWIST has been associated

with protein overexpression (Wong et al., 2015).

In addition to TWIST, also ZEB1 has been sug-

gested to be involved in Sz CTCL. Genomic analyses

revealed ZEB1 gene deletions in more than half of the

cases although the relevance of this deletion needs to

be further explored (Wang et al., 2015b). Recently, a

possible mechanism was provided. Biopsies of patients

with CTCL demonstrated increased interleukin (IL)-15

activity that appears instrumental for disease progres-

sion. Interestingly, ZEB1 has been identified as a

potent transcriptional repressor of IL-15 and hyperme-

thylation of its binding region in the IL-15 promoter

prevents suppression of IL-15 production in CTCL

and thus progression (Mishra et al., 2016).

A chromosomal translocation giving rise to an

abnormal nucleophosmin (NPM)-anaplastic lymphoma

kinase (ALK) fusion protein is characteristic for pedi-

atric anaplastic large cell lymphoma (ALCL). TWIST1

was found aberrantly expressed in ALK + ALCL cells,

which could be attributed to constitutive STAT3 sig-

naling in this T-cell malignancy (Zhang et al., 2012).

TWIST1 knockdown decreased invasiveness and sensi-

tized for an ALK inhibitor in cell culture models, thus

linking TWIST1 with malignant progression and ther-

apy resistance of this tumor.
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Binding of ZEB1 to SMAD3 and SMAD7 enhances

TGF-b signaling. In accordance with that, downregu-

lation of ZEB1 resulted in resistance to the growth-

suppressive effect of TGF-b in adult T-cell leukemia/

lymphoma (ATLL) (Nakahata et al., 2010). In this

context, it is interesting to note that ZEB1 is involved

in the regulation of normal T-cell development. Mice

with homozygous C-terminal deletions in Zeb1 were

among others characterized by small thymus and a

reduction in early T-cell progenitors (Higashi et al.,

1997). This provides another hint that ZEB1 is an

important regulator of differentiation pathways that

are deregulated in lymphoid malignancies.

3.2. Myelomas

Multiple myeloma (MM) originates from plasma

cells that normally produce antibodies. It is the sec-

ond most common hematological malignancy that

still remains incurable. Hypoxia, a well-known trig-

ger of EMT in solid tumors, also is able to induce

this process in MM cells. Hypoxia in bone marrow

(BM) niches resulted in MT in MM cells character-

ized by a decrease in E-cadherin levels and increases

in EMT-inducing proteins such as SNAI1 and TGF-

b, which positively correlated with levels of circulat-

ing MM cells in the peripheral blood. In addition,

hypoxia-induced CXCR4 resulted in homing of MM

cells to the BM, thus completing a malignant dissem-

ination–colonization cycle (Azab et al., 2012). The

involvement of MT in disease spreading is also

supported by the finding that TWIST1 expression is

elevated in skeletal extramedullary disease of

patients with MM and correlates with a lower rate

of progression-free survival (Yang et al., 2016). In

another study, IL-17 is reported to enhance cell pro-

liferation and repress cell adhesion by inducing MT

evidenced by downregulation of E-cadherin and

upregulation of SNAI1, SNAI2, and vimentin. In

addition, IL-17 repressed miR-192 that targets the

IL-17 receptor, thus providing a regulatory feedback

loop (Sun et al., 2014). Based on these findings, it is

postulated that inhibition of MT may provide thera-

peutic benefit in MM.

3.3. Leukemias

The involvement of TWIST2 in leukemia was first

described by Raval et al. (2005) in chronic lympho-

cytic leukemia (CLL). Absence of TWIST2 expres-

sion correlated with TWIST2 promoter methylation

in a proportion of CLL cases. The epigenetic inacti-

vation of TWIST2 also has been reported to

modulate disease progression in childhood acute lym-

phoblastic leukemia. Promoter methylation of

TWIST2 was found in more than half of the cases

and restoration of TWIST2 expression resulted in

growth inhibition and apoptosis in vitro suggestive of

tumor-suppressive functions (Thathia et al., 2012).

Consistent with this notion is a report by Zhang

et al. (2015), showing that in acute myeloid leukemia

(AML) in around 30% of examined cases hyperme-

thylation of TWIST2 occurred leading to reduced

expression of both TWIST2 and the cyclin-dependent

kinase inhibitor p21. TWIST2 activates p21 expres-

sion among other tumor suppressor genes and sup-

presses oncogenic activity.

In contrast to TWIST2, TWIST1 was linked with

enhanced aggressiveness of leukemic cells. In chronic

myeloid leukemia (CML), upregulation of TWIST1

was seen in patient samples obtained from imatinib-

resistant patients. A link between imatinib resistance

and TWIST1 exists, as in vitro knockdown of TWIST1

expression in CML cells resulted in sensitization for

imatinib (Cosset et al., 2011). TWIST1 also has been

identified as a direct regulator of BMI, which is known

for its role in maintaining self-renewal, a characteristic

of cells with a high proliferative potential or stem cells.

Analyses of TWIST1 and BMI expression in AML

revealed a positive correlation associated with

enhanced proliferation and apoptosis resistance in vitro

(Chen et al., 2015). In addition, enhanced TWIST1

expression was found in CML leukemic stem cells that

decreased upon differentiation. Downmodulation of

TWIST1 reduced their colony-forming capacity, pro-

viding further evidence for TWIST1 involvement in

leukemia stem cells and disease progression (Wang

et al., 2015c).

Recently, using an inducible MLL-AF9-driven AML

mouse model representing an aggressive type of AML,

elevated expression of EMT-related genes has been

observed. Knockdown of ZEB1 reduced the invasive

properties of this aggressive tumor (Stavropoulou

et al., 2016). In another study, shRNA screens to iden-

tify genetic dependencies for AML resulted in the iden-

tification of ZEB2. ZEB2 downregulation impaired

proliferation and caused irregular differentiation of

AML cells (Li et al., 2017). The implications of MT in

leukemia also is demonstrated by a report showing

that an increase in HIF1-related signaling is associated

with genes involved in EMT, further linking EMT-like

processes with leukemia progression (Percio et al.,

2014).

Together, the above illustrates that EMT inducers

and EMT-TFs play important roles in the progression

of hematological tumors.
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4. EMT- and MET-related processes in
sarcomas

Sarcomas are uncommon malignancies that arise from

mesenchymal cell types and develop in or from bone,

cartilage, or connective tissue, such as muscle, fat,

peripheral nerves, and fibrous or related tissues

(Taylor et al., 2011). Together, sarcomas account for

nearly 21% of all pediatric solid cancers and less than

1% of all adult solid malignant cancers (Surveillance,

Epidemiology, and End Results (SEER) program

(Burningham et al., 2012). Sarcomas can be pre-

dominantly grouped into two major groups, namely

malignant bone tumors and soft tissue sarcomas

(Lahat et al., 2008).

As sarcomas are mesenchymal by default, some

studies have addressed whether EMT inducers are

involved in tumorigenesis. Indeed, SNAI1 expression

is associated with worse overall survival in sarcomas.

In addition, ectopic expression of SNAI1 has tumori-

genic activity in fibroblasts and a role for SNAI1

in the generation of sarcomas has been suggested

(Alba-Castell�on et al., 2014). Similarly, in malignant

bone tumors, osteosarcomas, elevated levels of ZEB1

are detected compared to normal bone and ZEB1

expression is higher in metastatic osteosarcoma in

comparison with the group without metastases (Shen

et al., 2012). A recent study shows that TGF-b treat-

ment can trigger MT of osteosarcoma cells in vitro

involving estrogen-related receptor a-dependent activa-
tion of SNAI1 (Chen et al., 2016). Thus, MT may be

involved in the onset and progression of sarcomas but

more studies are required for further substantiation.

However, most studies have focused on studying the

involvement of the reverse process, MET, in malig-

nancy of sarcomas (see also Fig. 3).

4.1. Epithelial differentiation and prognosis in

sarcomas

A number of studies have reported the occurrence of

local epithelial differentiation in sarcomas by deter-

mining the expression of epithelial markers. Sato and

coworkers were one of the first showing E-cadherin

expression in various bone and soft tissue sarcomas

(Sato et al., 1999). Likewise, in synovial sarcomas, the

expression of epithelial markers like E-cadherin and b-
catenin was detected and a decrease in their expression

was linked to a high potential of recurrence or metas-

tasis and poor prognosis (Saito et al., 2004, 2006).

Ewing sarcoma/primitive neuroectodermal tumor, a

primitive bone and soft tissue sarcoma, frequently dis-

plays partial epithelial differentiation evidenced by the

expression of tight junction proteins claudin-1 and

ZO-1, although being negative for E-cadherin expres-

sion (Schuetz et al., 2005). In osteosarcomas, expres-

sion of E-cadherin is potentially useful as a prognostic

marker for patient survival (Nakajima et al., 2008).

An MET transcription profile appeared prognostic for

improved survival in sarcoma patients (Yang et al.,

2010). This is in agreement with another study show-

ing that sarcoma patients with higher levels of the

epithelial marker, E-cadherin, have improved survival

in comparison with those with low or no E-cadherin

(Wang et al., 2015d). It should be noted that despite

the increase in epithelial markers in sarcomas, mes-

enchymal markers continue to be abundantly

expressed (Saito et al., 2004; Yang et al., 2010).

Evidence is growing for the utilization of miRNA

profiling in the diagnosis of soft tissue sarcomas (Fuji-

wara et al., 2014). As miRNAs are known for regulat-

ing EMT/MET processes, it is likely that they affect

the mesenchymal status of sarcomas. Only few studies

have explored this (see under 4.2) and greater under-

standing of the biology of miRNAs in sarcomas will

undoubtedly contribute the advancement of novel

diagnostic and therapeutic approaches.

4.2. Mechanisms of MET in sarcomas

Additional evidence for the occurrence of MET in sar-

comas has been obtained by functional studies aiming

at elucidation of the underlying mechanisms of epithe-

lial differentiation. In synovial sarcoma, the fusion

proteins SYT-SSX1 and SYT-SSX2 are able to inter-

act with SNAI1 or SNAI2, thus preventing their sup-

pressive effects on E-cadherin expression leading to the

acquisition of epithelial features indicative of MET

(Saito et al., 2006). An integrated proteomics and

genomics analyses in soft tissue leiomyosarcomas

identified SNAI2/SLUG as a negative regulator of

E-cadherin expression; knockdown of SNAI2 increased

E-cadherin and decreased vimentin expression that was

associated with a decrease in proliferation and inva-

sion (Yang et al., 2010). A more recent study demon-

strates that the combined expression of miR-200

family members and upregulation of an epithelial gene

activator, grainyhead-like transcription factor 2

(GRHL2), drive MET in sarcomas. This study showed

that both GRHL2 overexpression and downregulation

of ZEB1 by either RNAi-mediated silencing or miR-

200 overexpression act in a synergistic manner to

control the upregulation of epithelial genes, including

E-cadherin, and consequently MET (Somarelli et al.,

2016). MET-like phenomena also have been detected

in chondrosarcomas where a downregulation of
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SNAI1/SNAIL led to a gain of mesenchymal markers

like E-cadherin, desmocollin, maspin, and 14-3-3r that

in part were regulated epigenetically by cytosine

methylation (Fitzgerald et al., 2011). Yet another

study demonstrated that the expression of T-cell

immunoglobulin mucin domain molecule-3 (Tim-3) in

osteosarcomas contributes to the mesenchymal status.

Tim-3 downregulation significantly suppressed

osteosarcoma cell (MG-63) proliferation and metasta-

sis via inhibition of the NF-jB/SNAI1 signaling path-

way causing epithelial differentiation (Feng and Guo,

2016).

Phosphoglucose isomerase (PGI), a glycolytic

enzyme catalyzing an interconversion between glucose

and fructose, extracellularly behaves as a cytokine that

includes autocrine motility factor (AMF). AMF/PGI

has been typically associated with induction of EMT.

It has been shown in osteosarcoma that the silencing

of AMF/PGI reduces the production and secretion of

TGF-b2 and TGF-b3 resulting in downregulation of

SNAI1 that can elevate E-cadherin expression leading

to MET. Thus, silencing of AMF/PGI might con-

tribute toward the loss of malignancy in these cancers

through differentiation via MET (Niinaka et al.,

2010). Similar to this study, AMF/PGI appears to reg-

ulate the MET process in human lung fibrosarcoma

cells (Funasaka et al., 2007). In Saos-2 osteosarcoma

cells, transfection of WNT receptor low-density

lipoprotein receptor-related protein 5 (LRP5) caused a

marked upregulation of E-cadherin and downregula-

tion of N-cadherin and was associated with reduced

activity of the transcription factors SNAI2 and Twist

(Guo et al., 2007). A detailed overview of the

upstream signaling and transcription factors involved

in the initiation and regulation of MET in sarcoma is

depicted in Fig. 3.
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Nucleus

E-cadherin MET
Epithelial
State

SNAI1/
SNAI2

SYT-SSX1/
SYT-SSX2 

Tim-3

NF-κB/
SNAI1

RISC

miR200

GRHL2 ZEB1

AMF/PGI

TGF-β2/TGF-β3

SNAI1

LRP-5
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Fig. 3. Initiation and regulation of MET in sarcomas. Summary of mechanisms identified in different sarcoma subtypes (see also text).

Upstream signaling involving the oncogenic fusion proteins SYT-SSX1 and SYT-SSX2 downregulates SNAI1 or SNAI2 leading to an increase

in E-cadherin expression, a readout for MET. Downregulation of Tim-3 leads to epithelial differentiation via suppressing NF-jB/SNAI1

signaling. The silencing of the AMF/PG1 complex results in enhanced secretion of TGF-b2 and TGF-b3, which in turn can induce SNAI1

giving way to an elevated E-cadherin expression. LRP5, a component of WNT signaling, can upregulate E-cadherin, which is brought about

by the suppression of SNAI2 and TWIST. mir200 exerts a dual effect as its overexpression can lead to GRHL2 overexpression and

downregulation of ZEB1 resulting in elevated E-cadherin levels. Together, all these signals mostly lead to an elevation in E-cadherin and

consequently MET, which has been linked with a better patient prognosis.
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Together, these findings indicate the involvement of

the well-known EMT inducers in either the mainte-

nance of mesenchymal differentiation or the onset of

epithelial differentiation upon loss of activity, thus

explaining the observed heterogeneity in this mes-

enchymal neoplasm.

4.3. MT/MET and therapy in sarcomas

Several studies have implicated the involvement of

MT and MET in sensitivity of sarcomas to therapies.

The exposure of osteosarcoma cells to cisplatin gener-

ates a more resistant and mesenchymal phenotype as

was shown in in vitro and in vivo studies. SNAI1

appeared to be the major factor mediating this cis-

platin-induced MT (Fang et al., 2016). The use of

radiosensitizers like zoledronic acid can sensitize

osteosarcoma cells to c-irradiation. Sensitization is

associated with impaired cell migration, invasion and

reduced expression of EMT markers like vimentin,

MMP-9, and SNAI2, indicating epithelial differentia-

tion and reduced malignancy (Kim et al., 2016). An

interesting drug against sarcomas is the naturally

derived bioactive compound withaferin-A (WFA) that

targets vimentin. WFA induces marked apoptosis and

vimentin cleavage in vimentin-expressing tumor cells.

In a cell panel representing different types of sarcoma,

high sensitivity to WFA was observed linked to cas-

pase-dependent degradation of vimentin and apoptosis

activation. The proapoptotic response was suppressed

following vimentin knockdown or by caspase block-

ade. WFA also significantly blocked soft tissue sar-

coma growth, local recurrence, and metastasis in

xenograft models (Lahat et al., 2010). This finding

holds great promise for the use of WFA and other

antivimentin drugs as a potential therapeutic option in

soft tissue sarcomas.

5. Concluding remarks

Increasing evidences occur that similar, well-coordi-

nated processes of EMT and its counterpart MET

extend to the biology of nonepithelial malignancies.

In brain tumors, hematopoietic tumors, and sarco-

mas, EMT-like processes also contribute to malig-

nancy, as outlined above. In these nonepithelial

cancers, MT is controlled, equally as found in carci-

nomas, by comparable cell autonomous or TME-

derived signals leading to the modulation of the

well-known EMT-TFs. Although not as extensively

investigated for all nonepithelial tumors and best in

GBM, overall MT induction is associated with

increased stem cell and invasive/metastatic potential

and therapy resistance. Correspondingly, biomarkers

for MT have been linked with worse clinical outcome

in these cancers. However, particularly in sarcomas,

the opposite process MET occurs frequently resulting

in more favorable tumor properties. A therapeutic

shifting of sarcomas to a more epithelial-like state

could attenuate their aggressiveness and improve

patient outcome. Given the fact that recent observa-

tions suggest cancer EMT can be monitored through

noninvasive or minimal invasive technologies, it will

be interesting to correlate the preclinical observations

with clinical cohorts and determine possible clinical

implications.

Recent observations suggest that the distinct balance

between EMT and MET in the form of a hybrid

epithelial/mesenchymal (E/M) cellular phenotype par-

ticularly promotes cancer cell aggressiveness, which is

more drastic than fully committed EMT (Jolly et al.,

2016). Importantly, the existence of E/M condition(s)

in cells of tumors originating from tissues other than

the epithelial layer has not been studied comprehen-

sively. Studies to investigate the intermediate stage of

E/M in those tumor types are needed to verify whether

such a reciprocal, triple phenotypic classification exists

and has similar tumor progressive properties as for

epithelial cancers.

Given the complexity of EMT/MET networks and

the ability of cancer cells to adapt to stress situations,

targeting one protein or pathway may not be sufficient

to completely impede EMT. Anti-EMT therapy should

therefore be supported by other (targeted) therapies.

In conclusion, further studies are required to unravel

the mechanisms governing MT/MET in these nonep-

ithelial cancers and for being suitable as prognostic

markers or therapeutic targets in order to improve

their clinical management.
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