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Purpose: To develop and validate prediction models of overall survival (OS) for head and neck cancer
(HNC) patients based on image biomarkers (IBMs) of the primary tumor and positive lymph nodes
(Ln) in combination with clinical parameters.
Material and methods: The study cohort was composed of 289 nasopharyngeal cancer (NPC) patients from
China and 298 HNC patients from the Netherlands. Multivariable Cox-regression analysis was performed
to select clinical parameters from the NPC and HNC datasets, and IBMs from the NPC dataset. Final pre-
diction models were based on both IBMs and clinical parameters.
Results: Multivariable Cox-regression analysis identified three independent IBMs (tumor Volume-
density, Run Length Non-uniformity and Ln Major-axis-length). This IBM model showed a concordance
(c)-index of 0.72 (95%CI: 0.65-0.79) for the NPC dataset, which performed reasonably with a c-index
of 0.67 (95%Cl: 0.62-0.72) in the external validation HNC dataset. When IBMs were added in clinical
models, the c-index of the NPC and HNC datasets improved to 0.75 (95%CI: 0.68-0.82; p=0.019) and
0.75 (95%CI: 0.70-0.81; p < 0.001), respectively.
Conclusion: The addition of IBMs from the primary tumor and Ln improved the prognostic performance of
the models containing clinical factors only. These combined models may improve pre-treatment individ-
ualized prediction of OS for HNC patients.
© 2017 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 124 (2017) 256-262
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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Head and neck cancer (HNC) accounts for about 0.65 million new
cancer cases and 0.35 million cancer deaths worldwide every year
[1].Based on the Surveillance, Epidemiology, and End Results (SEER)
data, the 5-year overall survival (OS) for HNC patients is approxi-
mately 60% [2]. The introduction of more intensified treatment reg-
imens has resulted in improved OS rates, however the number of
patients developing locoregional failure or distant metastases
remains substantial [3,4]. To enable more personalized treatment
approaches, risk stratification is becoming increasingly important
[5]. Risk stratification in HNC requires new, robust and prognostic
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parameters to identify patients with different risk profiles for locore-
gional recurrence, distant metastasis and death [6-8].

In routine clinical practice, the TNM staging system is used to
guide treatment decision-making often in combination with other
classical prognostic factors such as performance status, tumor
characteristics and age [9,10]. However, patients with similar prog-
nostic factors may have different outcome [6,7] and thus new
prognostic factors are needed to improve outcome prediction accu-
racy when added to prediction models based on classical prognos-
tic factors only.

Recent studies have demonstrated the potential value of image
biomarkers (IBMs), which are significantly associated with OS and
complications in HNC, thoracic, pancreatic and colorectal cancer
[11-13]. IBMs can be extracted from medical images and provide
quantitative information regarding intensity, shape and textural
characteristics of the region of interest [14-17]. By extracting
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IBMs, the three-dimensional morphological tumor information can
be transformed into multi-dimensional and mineable data [5,18].
Furthermore, IBMs enable decoding of a general prognostic pheno-
type existing in different cancer types, which may widen the scope
of application [11].

Although many IBMs are significantly associated with outcome,
it remains unclear to what extent the addition of IBMs improves
the predictive power of models only consisting of classical prog-
nostic factors, such as TNM staging and performance status. The
aim of this study was to test whether the performance of predic-
tion models for OS could be improved by the addition of IBMs com-
pared to models based on solely classical prognostic factors for
nasopharyngeal cancer (NPC) patients. Furthermore, the ability to
generalize the prognostic value of IBMs for different tumor types
was determined by externally validating this value for other HNC
subtypes.

Materials and methods

Patient demographics and treatment

This retrospective study was composed of 289 consecutive NPC
patients. Patients were treated with (chemo-)radiotherapy
between January 2010 and June 2011 at the Cancer Hospital of
Shantou University Medical College. All patients received a pre-
treatment computed tomography (CT) scan (Philips Brilliance CT
Big Bore Oncology Configuration, Cleveland, OH, USA; voxel size:
1.0 x 1.0 x 3.0 mm; scan voltage: 120kV; convolution kernel:
Philips Healthcare’s B) for radiotherapy planning. Patients were
primarily treated with intensity-modulated radiotherapy (IMRT)
and received a total dose of 70.4 Gy with fractions of 2.2 Gy in
6.5 weeks (5 fractions per week).

An additional set of 298 consecutive HNC patients (including
4.4% NPC patients) was treated with definitive radiotherapy, either
combined or not, with chemotherapy or cetuximab at the
University Medical Center Groningen between November 2007
and May 2013. For all patients, a pre-treatment CT-scan (Somatom
Sensation Open, Siemens, Forchheim, Germany; voxel size:
1.0 x 1.0 x 2.0 mm; scan voltage: 120kV; convolution kernel:
B30) was acquired for radiotherapy planning. Radiotherapy con-
sisted of primarily three-dimensional conformal radiotherapy or
IMRT to a total dose of 70 Gy with fractions of 2 Gy in 6-7 weeks
(6 or 5 fractions per week).

Inclusion criteria were as follows: confirmed primary tumor
with pathological diagnosis, standard contrast-enhanced planning
CT-scan, treatment with curative intent, and OS data available.

Clinical parameters

All clinical parameters including age, gender, tumor location,
treatment modality, human papilloma virus (HPV) status (only
for oropharyngeal cancer (OPC)) and World Health Organization
performance status (WHO PS) [19] were derived from medical
records. Dose-volume information of the primary tumor (PT) and
positive lymph nodes (pLN) was derived from the radiotherapy
planning system (mean dose, V50, V60, V70, V80, Dggy, Dgsy and
Dggy). Tumor (T) and positive lymph node (N) stage were defined
according to the 6th edition of the American Joint Committee on
Cancer Staging Manual [10].

CT image biomarkers

The PT and pLN were delineated for the NPC and HNC datasets
on the planning CT-scan by experienced head and neck radiation-
oncologists. In-house software was used to extract the IBMs,
developed using common formulas in Matlab R2014a (Mathworks,

Natick, USA). Twenty-four CT intensity and 20 geometric IBMs
were directly derived from every delineated structure (the PT, all
pLN and the pLN with the largest volume). The intensity IBMs were
obtained from the histogram of all voxel values, such as median of
the voxels and entropy of the voxels. Geometric IBMs, such as vol-
ume, compactness and major axis length, were calculated from the
three-dimensional shape and size of the contoured structures.
Ninety textural CT IBMs from both the PT and the pLN with the lar-
gest volume were defined to quantify the heterogeneity of tissue.
They were derived from three different matrices: the gray level
co-occurrence matrix (GLCM) [15], gray level run-length matrix
(GLRLM) [16] and gray level size-zone matrix (GLSZM) [17]. GLCM
describes the gray level transition, GLRLM and GLSZM describe the
directional and volumetric gray level repetition. They were calcu-
lated from the three-dimensional contoured structures. More
details on feature extraction and used algorithms are described
in our previous publication [20]. The lymph node IBMs from
patients without lymph node metastasis were defined as 0.

Data analysis

The endpoint of this study was OS, defined as the time from the
first day of radiotherapy to the date of death from any cause.
Patients alive were censored at the date of last follow up. An over-
view of the analysis design is shown in Fig. 1.

Step 1: Clinical models

Potential clinical parameters that were considered for their
prognostic ability in the NPC and HNC datasets included age (>me-
dian vs. <median), gender (female vs. male), T-stage (T3-T4 vs. T1-
T2), N-stage (N2-N3 vs. NO-N1), treatment modality (RT with sys-
temic treatment vs. RT only), WHO PS (1-3 vs. 0) and dose param-
eters (>median vs. <median). HPV status assessed by p16
immunohistochemistry and DNA polymerase chain reaction (OPC
positive vs. others) was included in the analysis for the HNC data-
set, as this is a strong risk factor for oropharyngeal cancer
[10,21,22]. Due to the known difference in etiology between NPC
and HNC, two multivariable clinical prediction models were cre-
ated: one based on the NPC and the other on the HNC dataset.

Step 2: IBM model

IBM variables were pre-selected to reduce the probability of
over-fitting. If the Pearson correlation between pairs of IBMs was
larger than 0.80, then the IBM with the lower univariable associa-
tion with OS was omitted from further analysis [23,24]. All pre-
selected potential IBMs were analyzed for their prognostic power,
using their median value (>median vs. <median) in the NPC data-
set as the threshold value in the univariable analysis. After selec-
tion of the independent prognostic factors, the threshold values
were optimized by testing the values around the median. A multi-
variable IBM model was developed based on the NPC dataset only.
Finally, the thresholds of IBMs for the NPC dataset were used for
the HNC dataset to externally validate the IBM model.

Step 3: Combined models

All clinical parameters from the NPC and HNC datasets and pre-
selected IBMs from the NPC dataset were merged into multivari-
able analysis and the coefficients (B) of the features were refitted
to the NPC dataset and HNC dataset respectively, to generate the
combined IBM-NPC and IBM-HNC models.

Normal Q-Q probability plot, cumulative frequency (P-P) plot
and the Kolmogorov-Smirnov test were used to test the normality
of all potential clinical parameters and IBMs. The chi-square test
was used to compare the rates and an independent sample t-test
was used to compare normally distributed variables between dif-
ferent groups. Univariable Cox regression analysis was performed
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Fig. 1. Analysis workflow. Step 1: Two different clinical prediction models were created: for each of the NPC and HNC datasets. Step 2: an IBM model was created based on
the NPC dataset and externally validated using the HNC dataset. Step 3: The combined models were created by combining the IBMs with the clinical parameters from NPC and
HNC datasets separately. Abbreviations: NPC = nasopharyngeal cancer; c-index = concordance index; HNC = head and neck cancer; IBM = image biomarker.

to assess the risk factors for OS, and multivariable Cox proportional
hazards regression analysis (forward selection: Likelihood ratio
test, p-value < 0.05) was used for the development of the multi-
variable model. The concordance index (c-index) was determined
to assess the models discriminative power. The z-score test
(Package “compareC” in R) was used to test the difference between
two c-indices. Internal validation was performed using bootstrap
validation [25]. The differences in c-indices of the bootstrap model
on the bootstrap sample and the original sample were calculated
1000 times. The optimism-corrected c-index was obtained by sub-
tracting the average c-indices difference. The median of the linear
predictor was defined as the threshold to separate the Kaplan-
Meier survival curves: one curve showing patients with high haz-
ard values (high risk) and the other with low hazard values (low
risk). The Kaplan-Meier survival curves were compared using a
log-rank test. Two tailed p-values < 0.05 were considered statisti-
cally significant. Statistical analysis was performed using the R
software (version 3.2.1).

Results

The median follow up for the NPC patients was 37.6 months
(range 2.4-58.6) and overall 64 deaths (22.1%) were observed.
The median follow up for the HNC patients was 32.8 months
(range: 1.6-89.7) and overall 126 deaths (42.3%) were observed.

Step 1: Clinical models

The clinical characteristics of the patients in the NPC and HNC
datasets are listed in Table 1. All characteristics except gender
were significantly different between the two datasets.

In the NPC dataset, the univariable analysis revealed significant
associations between the minimum dose value of 98% of the pri-
mary tumor volume (Dggy of GTV-PT), age, N-stage and T-stage
with OS (Table S1). In the multivariable analysis (Table S2), lower
values of Dggy, of GTV-PT (hazard ratio (HR): 0.37; 95% confidence
interval (CI): 0.21-0.63), increasing age (HR: 2.14; 95%CI: 1.30-
3.53) and N-stage (HR: 2.37; 95%Cl: 1.26-4.45) were associated
with worse OS. The multivariable clinical NPC model based on
these three clinical features resulted in a c-index of 0.69 (95%ClI:
0.61-0.76).

Univariable analysis showed that Dggy of GTV-PT, WHO PS,
N-stage, T-stage and HPV-status were significantly associated with
OS (Table S1) in the HNC dataset. The multivariable clinical

Table 1
Baseline characteristics of the patients in the NPC and HNC datasets.
Characteristic NPC dataset HNC dataset p-Value
(n=289) (%) (n=298) (%)

Gender 0.489"
Male 203 (70.2) 217 (72.8)
Female 86 (29.8) 81 (27.2)

Age at diagnosis 51+12 62+11 <0.001°¢
(median + SD) (year)

T stage® <0.001°
T1 22 (7.6) 22 (7.4)
T2 49 (17.0) 103 (34.6)
T3 104 (36.0) 90 (30.2)
T4 114 (39.4) 83 (27.9)

N stage® <0.001°
NO 28 (9.7) 117 (39.3)
N1 60 (20.8) 24 (8.1)
N2 158 (54.7) 142 (47.7)
N3 43 (14.9) 15 (5.0)

Treatment modality <0.001"
RT only 48 (16.6) 161 (54.0)
RT with systemic treatment 241 (83.4) 137 (46.0)

Dogy of GTV-PT 69.60 +2.30 68.22 +3.10 <0.001°¢
(median + SD) (Gy)

WHO PS
0 241 (83.4) 192 (64.4) <0.001"
1-3 48 (16.6) 106 (35.6)

HPV
OPC negative - 68 (22.8)
OPC positive - 29 (9.7)
Not OPC - 201 (67.4)

Tumor site
Nasopharynx 289 (100.0) 13 (44)
Oropharynx - 97 (32.6)
Hypopharynx - 26 (8.7)
Larynx - 120 (40.3)
Oral cavity - 29 (9.7)
Others - 13 (44)

Abbreviations: NPC = nasopharyngeal caner; HNC=head and neck cancer;
T =tumor; N=Ilymph node; RT = radiotherapy; Dggy of GTV-PT = minimum dose
value of 98% volume of primary tumor; WHO PS=World Health Organization
performance status; HPV = human papilloma virus; OPC = oropharyngeal cancer.

@ According to the 6th edition of the AJCC/UICC staging system.

b p-Value was calculated using the chi-square test.

¢ p-Value was calculated using the independent samples t-test.

HNC model (Table S2) including WHO PS (HR: 3.46; 95%CI:
2.41-4.97), Dggy of GTV-PT (HR: 0.51; 95%CI: 0.35-0.74) and
T-stage (HR: 1.93; 95%Cl: 1.28-2.91) as independent prognostic
factors for OS, had a c-index of 0.72 (95%Cl: 0.67-0.78).
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The Kaplan-Meier curves of clinical NPC and HNC models are
shown in Fig. 2A and B. The probability of OS after 2 and 3 years
was calculated for the two datasets, and shown in Table S3.

Step 2: IBM model

Forty-eight of the 312 IBMs were pre-selected from the NPC
dataset by testing the inter-variable correlation. In the univariable
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analysis, nine of the pre-selected IBMs were significantly associ-
ated with OS (Table S4). Multivariable analysis revealed three inde-
pendent features: Volume-density (HR, 0.44; 95%Cl: 0.26-0.74),
Run Length Non-uniformity (RLN) (HR, 2.98; 95%CI, 1.73-5.14)
from the PT and Major-axis-length from all pLN (threshold:
55mm; HR: 2.11; 95%CI, 1.29-3.46) (Table S5). The optimal
threshold was the median unless stated otherwise. A multivariable
IBM model was developed based on the three IBMs and resulted in
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Fig. 2. Overall survival stratified by risk groups for the NPC and HNC datasets. The survival curve separation and hazard ratio (>median vs. <median) between different risk
groups are shown based on the clinical model of NPC dataset (A) and HNC dataset (B), IBM model in NPC dataset (C) and HNC dataset (D), the combined IBM-NPC model (E) in
the NPC dataset and the combined IBM-HNC model in the HNC dataset (F). Abbreviations: NPC = nasopharyngeal cancer; HNC = head and neck cancer; IBM = image biomarker;
HR = hazard ratio; CI = confidence interval.
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a c-index of 0.72 (95%Cl: 0.65-0.79). External validation using the
HNC dataset resulted in a c-index of 0.67 (95%Cl: 0.62-0.72)
(Fig. 2C and D). The subgroup multivariable analysis using patient
data with positive lymph nodes only revealed the same three sig-
nificant IBMs with similar model performance.

Step 3: Combined models

For the NPC dataset, RLN, Volume-density, lymph nodes’ Major-
axis-length, Dggs, of GTV-PT and age were identified as independent
prognostic factors. However, N-stage was no longer significantly
related to OS. Compared to the clinical prediction model, the com-
bined model showed a significantly improved c-index of 0.75 (95%
CI: 0.68-0.82; p =0.019) (Fig. 2E). For the HNC dataset, WHO PS,
RLN, lymph nodes’ Major-axis-length, T-stage, Volume-density
and Dggy, of GTV-PT were identified as independent prognostic fac-
tors. Compared to the clinical HNC model, the combined IBM-HNC
model showed better performance with an increased c-index of
0.75 (95%Cl: 0.70-0.81; p < 0.001) (Fig. 2F and Table S6). The coef-
ficients and performance of the two combined models are depicted
in Table 2.

Discussion

Non-invasive tools to predict treatment outcome could add
value in the guidance of individual therapeutic strategies for HNC
patients [26]. In this study, two PT IBMs (Volume-density and
RLN) and one pLN IBM (Major-axis-length) were extracted from
CT images of an NPC dataset. These IBMs performed well for the
external HNC dataset and significantly improved the prognostic
performance of the models based on the clinical parameters only,
both in NPC and HNC populations. This study is the first to inves-
tigate not only IBMs of the primary tumor site but IBMs of the
pathologic lymph nodes as potential prognostic factors.

Although NPC falls under the category of HNC, the prognosis of
patients with NPC is more favorable than HNC of other sites [2,7].
Furthermore, NPC has a distinct etiology compared to other HNC
sites. The risk factors for NPC (Epstein-Barr virus, salted fish, pre-
served foods and genetic components) are also different from those
of HNC (HPV, smoking and alcohol) [27]. Moreover, the geograph-
ical distribution and incidence of NPC are different from other HNC
[28-31]. Therefore, two separate clinical models for both the NPC
and the HNC datasets were developed and the combined models
were fitted to the respective cohort without external validation.

Volume-density refers to the tumor volume bounded by the
smallest cube containing the tumor (Fig. 3A and B). The smaller
the Volume-density, the more irregular the tumor shape, indicat-
ing tumor growth patterns [25,32,33]. A more invasive, irregular-
shaped tumor requires a larger bounding cube. In Fig. 3A, the
tumor with a smaller Volume-density is in more irregular shape.

Table 2
Estimated coefficients of the combined models.

A B

Fig. 3. Examples of patients with low (A) and high (B) values of Volume-density of
the tumor. Examples of patients with low (C) and high (D) values of Run Length
Non-uniformity of the tumor. Examples of Major-axis-length in patients with two
unilateral (E) and two bilateral (F) positive lymph nodes.

Irregularly shaped tumors were associated with worse OS, which
may reflect the increase of their aggressive behavior [1,25,32,33].

The RLN is derived from the GLRLM, which describes the fre-
quency of consecutive voxels with the same gray level value. RLN
is low when runs are equally distributed along the run length in
contoured structures. A higher RLN value indicates PT heterogene-
ity, our results showed it was associated with worse survival for
the NPC and HNC datasets (Fig. 3C and D). This observation is sup-
ported by other studies [11,34,35]. Aerts et al. quantified the intra-
tumor heterogeneity using another feature “Gray level Non-
Uniformity”, which had a high correlation (0.79) with RLN [11] in

Combined IBM-NPC model

Combined IBM-HNC model

B Corrected B p-Value HR B Corrected 8 p-Value HR
(95%CI) (95%CI)
Run length non-uniformity 0.69 0.47 0.028 2.00 (1.08-3.69) 0.37 0.24 0.099 1.45 (0.93-2.25)
Volume-density —0.88 —0.60 0.001 0.42 (0.24-0.71) -0.41 -0.27 0.023 0.66 (0.46-0.94)
Major-axis-length 0.77 0.52 0.003 2.16 (1.31-3.57) 1.33 0.86 <0.001 3.79 (2.00-7.19)
Daggy, of GTV-PT —-0.84 —-0.57 0.008 0.43 (0.23-0.81) —0.44 -0.29 0.032 0.65 (0.43-0.96)
Age 0.56 0.38 0.029 1.76 (1.06-2.91) - - - -
T stage - - - - 0.55 0.36 0.020 1.74 (1.09-2.76)
WHO PS - - - - 1.36 0.88 <0.001 3.88 (2.66-5.66)

Abbreviations: IBM = image biomarker; NPC = nasopharyngeal caner; HNC = head and neck cancer; HR = Hazard ratio; CI = confidence interval; Dggy of GTV-PT = minimum
dose value of 98% volume of primary tumor; T = tumor; WHO PS = World Health Organization performance status.
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our study. Multiple subclonal populations coexist in the tumor and
their evolution causes the intratumor heterogeneity. This process
has been shown at cellular and genetic levels [36-39]. However,
intratumor heterogeneity, can be underestimated if determined
from a single or limited tumor-biopsy sample [36,40]. Medical
imaging could be a better tool for detecting the spatial dimension
of tumor features. We quantified IBMs by extracting features from
the complete tumor volume, in other words IBMs reflect the overall
tumor feature. It would be even possible to distinguish different
regions within the tumor based on the IBMs. The association
between IBMs and cellular and genetic information requires fur-
ther investigation [11,38,41].

The Major-axis-length of pLN is defined as the longest distance
between any two voxels of the all pLN. This could either be for one
pLN, or any two unilateral or bilateral pLNs (Fig. 2E and F). Our
results demonstrated that the longer length (>55 mm) was associ-
ated with an increased risk of death. N-stage did not increase pre-
diction performance for the combined IBM-NPC model. N1 stage
represents patients with only unilateral metastasis. In this situa-
tion, patients with N1 would have much shorter Major-axis-
length compared to patients with N2 and N3. In fact, we found that
Major-axis-length from the entire pLN had a linear correlation of
0.67 with the clinical variable N-stage. However, in the univariable
analysis, the c-index of Major-axis-length was larger than that of
the N-stage (0.60 vs. 0.57). Therefore, we expect that Major-axis-
length would be a good substitute for N-stage to improve survival
prediction in the future.

To explore the general prognostic cancer phenotype and enlarge
the scope of the IBM model application, Aerts et al. developed
prognostic models based on IBMs from a lung cancer dataset and
validated them against HNC datasets (c-index: 0.69) [11]. We have
shown that the NPC IBM model performed well against the HNC
dataset (c-index: 0.67), supporting the generalization of prognostic
IBMs.

When IBMs were added in clinical models, the c-index of the
NPC and HNC datasets significantly improved from 0.69 to 0.75
(p=0.019) and from 0.72 to 0.75 (p <0.001), respectively. Fig. 2
showed that the Kaplan-Meier curve separation and hazard ratio
between high-low risk patients are larger if the patients are strat-
ified with the combined IBM-NPC and IBM-HNC models
(Fig. 2E and F) than with the separate clinical (Fig. 2A and B) and
IBM (Fig. 2C and D) models. The exact survival probability differ-
ence is shown in Table S3. For example, two year survival differ-
ence between low and high risk groups improved from 10.8%
with the clinical model to 14.2% with the combined model in the
NPC group.

Standardization of image acquisition and reconstruction
between different institutions are necessary for sharing quantita-
tive image analyses. Different CT slice thickness and convolution
kernel may influence the IBM model accuracy. Although the IBM
model was validated externally for the HNC dataset, the clinical
models and also the combined models were only fitted to the
respective cohort without external validation, external validation
of the combined models is the subject of future study. Moreover,
a more systematic and thorough analysis using different endpoints,
such as disease free survival and locoregional control, will also
need to be investigated in the future.

Conclusion

In conclusion, the addition of image biomarkers from the
primary tumor and positive lymph nodes improved the perfor-
mance of clinical prediction models significantly for both NPC
and HNC datasets. This addition could facilitate the pre-
treatment individualized prediction of survival for head and
neck cancer patients.
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