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Appendix A. Sliding contacts of lubricated 
randomly rough surfaces* 

 Introduction A.1

The friction of contacting interfaces is a function of surface roughness, 
normal load, temperature, sliding velocity, and environmental parameters: 
e.g., under boundary lubrication, the frictional behavior changes as a function 
of wettability, viscosity, and density of the applied lubricant, by practically 
decreasing the possibility of dry (solid/solid) contact. Many atomistic studies 
of rough contacts adopt simplified sinusoidal shapes for the roughness, and 
model the interface as that between a deformable surface and a rigid flat; 
however, as shown in Chapter 5, roughness has a random nature down to the 
atomic scale. This appendix presents some early results on the frictional 
behavior of lubricated rough contacts. 

 Simulation Methodology A.2

Figure A1 summarizes the simulation setup and the contact process, which 
was performed in two phases: normal and sliding contacts. The following 
sections discuss the details of the simulations. 

A.2.1 Setup 

A pair of Gaussian randomly rough surfaces was generated with a root-

mean square roughness and correlation length of 10 Å and 8 Å, respectively. 
These were used for constructing two atomic blocks of fcc-nickel with the 
(100) lattice planes normal to the 𝑧 direction. The solid structure was built 

with a length of 40a0 ≅ 14.1 nm in the lateral directions, with a0 = 3.52 Å 
being the lattice constant of nickel, and a minimum thickness of 2.5 nm for 
each block. Each of the two bodies was divided into three layers: rigid, 

                                                      

* This appendix has been originally published in conference abstracts of “TriboUK 
2015 (England, April 2015)”, and “The international conference on understanding and 
controlling nano and mesoscale friction (COSTnanoTribo), (Turkey, June 2015)”. 
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thermostatic, and free deformable. Moreover, different numbers of n-
hexadecane molecules, i.e. 0, 192, 576, and 960, formed a lubricant film. The 
molecules were modeled through the TraPPE potential energy, while the 
embedded-atom method potential database developed by Zhou et al. was used 
for governing the nickel atoms. Also, the Lennard-Jones (LJ) potential was 
used for calculating the interactions between the non-bonded atoms of the 
lubricant molecules, as well as the molecules and the substrates. It should be 
noted that the LJ parameters for nickel were collected from the Shu and Davies 
database. 

The equations of motion were solved using the velocity-Verlet algorithm 
[38]. Periodic boundary conditions were applied to the lateral directions. The 
weak coupling thermostat [39] was applied to the thermostat layers to keep 
the temperature at 300 K. 

A.2.2 Procedure 

First, the case of normal contact was studied: the rigid layer of a block was 
fixed, and the other was moved to apply a pressure of 0.5 kPa. This process 
was performed for a total simulation time of 3 ns, which was found to be long 
enough for the potential energy to reach a steady-state. Following normal 
contact, the rigid layer was moved with a constant velocity of 25 m/s along the 
𝑥 axis for 3 ns. 

 
Figure A1 The atomistic system setup with 960 n-Hexadecane chains, and the 

details of the contact parameters. It should be noted that the process started with a 
normal contact, and the sliding contact was simulated only after the potential 

energy of the system reached a steady-state. In this figure, the atoms of the alkane 
chains and of the fixed, thermostatic, and Newtonian groups are colored as yellow, 

blue, red, and green, respectively. 

}

}
V = 25 m/s
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 Identifying the solid/solid contacting atoms A.3

In lubricated systems, the dry contact may form at different spots if the 
substrates are not fully covered with the lubricant molecules. These contacting 
atoms can be identified through defining a contact distance as described 
in ‎Chapter 3. This method, however, is applicable only for the normal contact 
phase, in which none of the atoms would leave their original block due to the 
contact. On the other hand, as soon as the sliding process starts, a number of 
atoms from each block would stick to the other block, and the system may 
experience a huge amount of atom transfer. Consequently, the contact distance 
loses its reliability, because each atom would be recognized as a member of its 
original substrate, whether it has transferred away from it or not. In order to 
solve this problem, different approaches can be used based on the mean 
velocity of atoms [9] or the detection of atom transfer [8], as discussed in 
Chapter 3. Following the method described therein, a potential cutoff of 
𝑃𝐸c = −3.965 eV was defined to identify solid/solid contacting atoms in 
boundary lubrication. This method needs less computational resources than 
the method proposed by Spijker et al. [8], and also suffers less from 
fluctuations compared to the proposed method of Eder et al. [9]. However, 
there is a main and important limitation in this method: if the system contains 
different elements, it is highly possible that the method will fail. Chapter 3 
provides a detailed review of this method. 

 Results and discussion A.4

Changing the lubricants’ volume affected the shearing force as well as the 
stability of the system. The corresponding results are summarized in Figure 
A2. Moreover, as illustrated in Table A1, it was found that larger volumes of 
lubricant localized the dry interactions, and lowered the area of the dry 
contacting spots, where the atom transfer process occurs. By applying the 
potential energy cutoff, the non-contacting atoms were identified with ease 
(see Table A2). The results show that the contacting spots decreased by using 
larger amounts of lubricant, whether the contact was normal or frictional. 
Furthermore, the non-contacting area shrunk significantly due to the 
movement of atoms induced by friction. 
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Figure A2 The effects of the amount of applied lubricant on (left) shearing force, 

and (right) simulation box thickness. 

Table A1 Side view of the contacting system: the explanation of the colors can be 

found from the caption of Figure A1. The black strip shows the position of a 
number of selected atoms before and after the sliding process. Note that the 

thickness of the system increases for larger amounts of lubricant; the lubricant’s 
chains are not shown. 
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Table A2 Top view of the non-contacting surface atoms (black dots) via their 

potential energies. Note that the white area indicates the contacting area. 
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Appendix B. Contacts with limited adhesion* 

 Introduction B.1

The difficulties in defining the atomic contact distance for, both, adhesive 
and non-adhesive contacts were discussed in detail in Chapters 2, 3 and 4. It 
was shown that non-adhesive contacts can be calibrated with the Hertz 
formula (‎Chapter 4). On the other hand, adhesive contacts do not need to be 
calibrated through continuum mechanics solutions: the normalized radial 
distribution function (RDF) can be used for defining the contact distance; the 
results would be in agreement with the continuum mechanics solutions, as 
long as the contact does not deviate from some of the continuum mechanics 
assumptions, namely that the system is homogenous and that plastic 
deformation has not been initiated. It should be noted that, in this method, i.e. 
defining contact distance using RDF, there is one assumption: the atoms of the 
contacting surfaces are the same as the ones used for calculating the RDF. In 
other words, if the RDF describes a system composed of a pure element, the 
contacting surfaces should be pure as well. In real contacts, however, it is 
unlikely to have fully clean surfaces, for example, due to oxidation. This issue 
can greatly affect the adhesive forces: in case of oxidation, the adhesion would 
be lowered. This issue can be addressed differently in the simulations by: 

 
1- Introducing different elements into the system. As a result, the 

contacting surfaces would interact following their potential energies, 
and the contact distance could be defined using the corresponding 
RDFs. 

 
2- Changing the potential energy values only between the interacting 

surfaces, in order to artificially incorporate this effect. Using this 
method, the interacting forces between the contacting surfaces would 
be different from the forces between the atoms of the substrates. In 
other words, the contact behaves differently from what the calculated 
RDFs would suggest. 

 
 

                                                      

* This appendix has not been presented/published elsewhere yet. 
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The second method is more favorable for MD simulations, e.g. see [8, 70, 78, 
79, 102], mainly because it would be computationally less expensive than 
method 1. The incapability of using RDFs for this case, however, makes the 
analysis of contacts no longer straightforward. In this appendix, the sphere-
on-flat elastic contact problem was addressed for the case of limited adhesion. 
The results were then compared with the JKR theory. 

 A short review of the JKR theory B.2

The JKR theory, among others, was briefly reviewed in Chapter 2. It was 
developed by incorporating the effect of adhesion in the Hertz theory via an 
additional pressure distribution [14]: 

𝑝(𝑙) = 𝑝0 (1 − (
𝑙

𝑟
)

2

)

1 2⁄

− 𝑝́0 (1 − (
𝑙

𝑟
)

2

)

−1 2⁄

, (B.1) 

where 𝑟 is the contact radius, and 𝑙 is the radial distance from the center of the 
contact, ranging between 0 and 𝑟. The first term of the right hand side is the 
Hertzian repulsive pressure distribution, and the second term is the pressure 
distribution responsible for adhesion inside the contact area. For contact 
between two spheres, the values of 𝑝0 and 𝑝́0 would be 2𝑟𝐸∗ 𝜋𝑅⁄ and 

√2𝛤𝐸∗ 𝜋𝑟⁄ , respectively. 
Johnson et al. [14] solved the pressure distribution for the case of two 

contacting spheres, and showed that the effectively acting loading force (𝐹JKR) 

is larger than the normal applied load (𝐹⊥): 

𝐹JKR = 𝐹⊥ + 𝐹𝛤 ± (2𝐹𝛤𝐹⊥ + 𝐹𝛤
2)1 2⁄ , (B.2) 

with 𝐹𝛤 = 3𝛤𝜋𝑅. Furthermore, they discussed that the positive sign should be 
considered for a stable solution. Using this theory, the radius of the contact 
area can be described as: 

𝑟 = ((4𝑅 3𝐸∗⁄ )(𝐹⊥ + 𝐹𝛤 ± (2𝐹𝛤𝐹⊥ + 𝐹𝛤
2)1 2⁄ ))

1 3⁄

, (B.3) 

which results in a pull-off force of 𝐹po = − 3 2⁄ 𝛤𝜋𝑅. Comparing 𝐹po and 𝐹𝛤 , it 

can be shown that 𝐹𝛤 = −2𝐹po. Therefore, (B.2) can be rewritten as: 

𝑟 = ((4𝑅 3𝐸∗⁄ ) (𝐹⊥ + −2𝐹po ± 2(−𝐹po𝐹⊥ + 𝐹po
2 )

1 2⁄
))

1 3⁄

. (B.4) 

For the case of 𝐹⊥ = 𝐹po, the radius of the contact area would be  
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𝑟𝐹⊥=𝐹po
= ((4𝑅 3𝐸∗⁄ )(−𝐹po))

1 3⁄

. (B.5) 

Furthermore, the indentation depth 𝑑 would be obtained as 

𝑑 =
𝑟2

𝑅
− (2

𝜋𝛤𝑟

𝐸∗
)

1 2⁄

, (B.6) 

which can be rewritten by inserting 𝐹poin it as follows: 

𝑑 =
𝑟2

𝑅
− 2 (−

𝑟𝐹po

3𝐸∗
)

1 2⁄

. (B.7) 

Moreover, it can be shown that, for the case of 𝐹⊥ = 𝐹po, the following holds: 

𝑑𝐹⊥=𝐹po
= −

1

3
(−

3𝐹po

4𝐸∗√𝑅
)

2 3⁄

. (B.8) 

 

 Simulation Methodology B.3

Two sets of simulations were performed: one for the single asperity 
contact, and one for the calculation of the work of adhesion. The schematics of 
the systems are depicted in Figure B1. 

The systems were generated from fcc-calcium with a lattice constant of 

a0 = 5.5884 Å [91]. The movements of the deformable atoms were governed 
by the EAM potential database developed by Sheng et al. for calcium [91]. For 
the contacting surfaces, the standard LJ potential was used, with 𝜀 =

0.21445 eV and 𝜎 = 3.5927 Å [71]; in order to simulate the limited adhesion, 
however, the depth of the potential well was modified to be 𝑐𝜀, with 
𝑐 ∈ {0, 0.1, 0.2, … , 1}. Moreover, a cutoff radius of 𝑟cutoff = 2.5𝜎 was applied to 
the potential, with the standard GROMACS shift function [121] between a 
distance of 𝑟shift = 2σ and 𝑟cutoff; this shift function assures that there is no 
jump of energy and force at the cutoff 

The equations of motion were solved via the velocity-Verlet algorithm [38]. 
The temperature of the assigned layers was set to 300 K using Berendsen’s 
thermostat [39]. The crystalline direction of [111] was defined as the 𝑧 
coordinate direction, and periodic boundary conditions were applied along the 
lateral directions. 
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Figure B1 Side view of (left) the sphere-on-flat contacting system, and (right) the 

system used for calculating the work of adhesion. In both figures, the colors blue, 
red, green, and purple indicate the rigid, thermostatic, Newtonian, and surface 
layers (from bottom to top in the flat body). Also, P1 and P2 indicate the two 

different parts that were placed side by side as needed for the calculation of 𝛤 
(see ‎Chapter 2). 

B.3.1 Single asperity contact 

The contact was simulated by moving an atomistic rigid spherical cap with 

a radius of 𝑅 = 100 Å toward an atomically flat substrate with a constant 
velocity of 1 m/s. The initial clearance was set to 3𝜎. Following a relaxation 

time of 0.5 ns, the indenter was moved down (toward the substrate) for 9 Å, 

and 5 Å away from the substrate afterwards. 

B.3.2 Work of adhesion 

The method described in Chapter 2 was used for calculating the work of 
adhesion. It should be noted that, by setting the value of 𝑐 = 0, a system is 
replicated for which the two sections are far from each other. 

P2 

P1 
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 Results and discussion B.4

B.4.1 Work of adhesion 

Figure B2 shows the work of adhesion as a linear function of 𝑐. Aside from 
this value, the interacting energy between the surface layers of the contacting 
parts (𝐸L1) was also measured (the purple layers of Figure B1 (b)). 

  
Figure B2 (a) The work of adhesion, and (b) the interacting energy per atom of 

the contacting surface layers. 

B.4.2 Overview of the contact results 

Figure B3 shows the 𝐹 − 𝑑 curve of the contacting systems with 𝑐 = 0.5 
and 𝑐 = 0.6. The results show that the contacting systems with 𝑐 ≥ 0.6 exhibit 
plastic deformation; therefore, the analyses were limited to the systems with 
0.1 ≤ 𝑐 ≤ 0.5; these did not show any plastic deformation or adhesion 
hysteresis. Table B1 summarizes the measured values of the pull-off forces for 
each system. By calculating the values of 𝜒 = − 𝐹po 𝜋𝑅Γ⁄ , it can be shown that 

the systems’ contacting behavior tends to the JKR limit (see Figure B4). 
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Figure B3 The normal applied force of the contacting systems with (a) 𝑐 = 0.5 

(for the whole course of loading and unloading), and (b) 𝑐 = 0.6 (for the 
movement of the indenter toward the substrate) as functions of displacement. It 

should be noted that 𝑑 = 0 Å points to the initial position of the indenter. 

Table B1 The measured pull-off forces of the simulated contacting systems. 

𝑐  0.1 0.2 0.3 0.4 0.5 

𝐹po (nN) -3.98 -8.71 -12.64 -16.16 -19.56 

 

 
Figure B4 The comparison between the simulated systems with the limiting 

cases of JKR and DMT. 

 

-30

-25

-20

-15

-10

-5

0

5

0 5 10

F
o

rc
e 

(n
N

) 

Displacement (Å) 

(a) 

𝑐 = 0.5 

-30

-25

-20

-15

-10

-5

0

5

0 5 10

F
o

rc
e 

(n
N

) 

Displacement (Å) 

(b) 

𝑐 = 0.6 

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

DMT 

JKR 

𝐹 𝑐
𝜋

𝑅
Γ

⁄
 

𝑐 



142 Appendix B: Contacts with limited adhesion 

 

 

B.4.3 𝑭 − 𝒅 curves 

The 𝐹 − 𝑑 curves were calibrated by means of the JKR solution for 𝑑𝐹⊥=𝐹po
 

using (B.8). This method can calibrate the indentation depth, which is the 
same as the penetration depth in the continuum mechanics theories: these two 
parameters are the same, mainly because, in continuum mechanics theories, 
the contact is defined to start from the moment that the distance between two 
contacting bodies is zero. At the atomic scale, however, there is always a 
minimum distance between the centers of atoms. Therefore, these two 
parameters, namely indentation depth and penetration depth, should be 
distinguished: the indentation depth is related to the position of the indenter, 
and the penetration depth is related to the displacement of the deformed 
substrate. While this value might be inaccessible in experimental setups, it can 
be easily measured from the simulation. 

Figure B5 shows the results for the indentation depths calibrated with the 
JKR solution for 𝑑𝐹⊥=𝐹po

, the penetration depths measured directly from the 

simulations, and the JKR solutions calculated from (B.7). The results confirm 
the applicability of the proposed calibrating method. Moreover, the results 
show that, while the indentation depth deviates from the JKR solution for 
distances larger than 𝑑𝐹⊥=𝐹po

, the behavior of the substrate, which was 

reflected in the penetration depth, was close to the JKR solution. 

  
Figure B5 The force of the systems with (a) 𝑐 = 0.1, and (b) 𝑐 = 0.5 as functions 

of the calibrated indentation depth (I: red dashed lines) and penetration depth (P: 
blue dots). The continuous black lines represent the JKR solutions for the 

contacting systems. It should be noted that the penetration depth values were 
smoothened using a moving average filter with a span of 5% of the data points. 

Also note that the force axes ranges are different. 
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B.4.4 The radius of the contact area 

In order to calculate the contact radius, the contact area should first be 
estimated, which can be done with, either, method B (counting the contacting 
atoms), or method C (measuring the contact energy), discussed in detail in 
Chapter 3. It should be noted that the projection of the non-contacting atoms 
(method A) would be inapplicable, due to the limited changes in the potential 
energy of the contacting atoms. Also, in both methods, the number of the 
contacting atoms and the contact area were translated via the contact area of 

an individual calcium atom, which is 𝐴𝑎 ≅ 12.19 Å2 (see Chapter 4). 
In order to use method B, first, a contact distance 𝑑c should be defined for 

identifying the contacting atoms. Therefore, as the first step, 𝑑c needs to be 
defined and calibrated. This can be done using the JKR theory, or the contact 
energy. 

B.4.4.1 Method B1: calibration of the contact distance 
using the JKR theory 

The value of 𝑑c can be calibrated by comparing the simulation results with 
the JKR theory at pull-off, where the contact radius can be obtained from (B.5). 
Then, the contact area can be calculated as 𝐴JKR = 𝜋𝑟JKR

2 . Dividing this value by 

𝐴𝑎 , the reference number of contacting atoms at the pull-off (𝑁c𝑎,B1) can be 

estimated. Comparing this value with the simulation results at the pull-off, the 
contact distance can be defined such that the number of the contacting atoms 
matches the calibrating value of 𝑁c𝑎,JKR. 

B.4.4.2 Method B2: calibration of the contact distance 
using the contact energy 

The calibration of 𝑑c at the pull-off can be done by considering the 
interacting energy of the surface atoms of the contacting systems (𝐸L1,C), 

which was calculated from surface layer (purple) atoms in Figure B1. The 
reference value of 𝑁c𝑎,𝐸  would be 𝑁c𝑎,B2 = 𝐸L1,C × 𝐸L1 at the pull-off, with 𝐸L1 

reported in Figure B2(b). The rest of the procedure would be the same as 
described in section ‎B.4.4.1. 
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B.4.4.3 Method C: measuring the contact radius using 
the contact energy 

This method can be directly applied via 𝑁c𝑎,C = 𝐸L1,C × 𝐸L1 through all the 

simulation, and not only at the pull-off. 

B.4.4.4 Comparison between the utilized methods 

The results of the three described methods are shown in Figure B6. These 
show that, by calibrating the contact distance with the JKR solution at the pull-
off, the system can be well described by the JKR theory for contact above the 
pull-off. This stability was investigated, and reported below; however, first, it 
is interesting to compare the results of method B1 with methods B2 and C. As 
Figure B6 (a) shows, the JKR theory underestimated the contact area for the 
whole range of the contact; however, Figure B6 (b) shows that, as 𝑐 increases, 
the contact area tends toward the JKR solution. When analyzing all systems, it 
was found the simulation results were in a good agreement with the JKR 
solution for 0.3 ≤ 𝑐 ≤ 0.5. 

  
Figure B6 The calculated contact radii for the systems with (a) 𝑐 = 0.1, and (b) 

𝑐 = 0.5 using the three described methods, in comparison to the JKR solution. Note 
that the force axes ranges are different. 

Another important result, presented in Figure B6, is the difference between 
the contact radius for contact beyond the pull-off: methods B1 and B2 
measured contact radii of zero for the initial/ending stages of the contact, 
while method C and the JKR solution yield non-zero contact radii for any non-
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zero force. Considering method C to be the correct solution for the simulated 
systems, the contact distance was estimated for the whole simulation using the 
reference number of contacting atoms 𝑁c𝑎,C. The results for two of the systems 

with 𝑐 = 0.1 and 𝑐 = 0.5 are shown in Figure B7. As the results indicate, the 
contact distance changes for the initial/ending stages of the contact, i.e. the 
contact beyond the pull-off. The contact distance, however, would be constant 
away from the pull-in/pull-off stages. This indicates that the pull-off is an 
appropriate position for the calibration of the contact distance, because the 
value of 𝑑c would not change for larger normal loads. This behavior is true 
whether the calibration was done using the JKR theory (method B1), or the 
contact energy (method B2). This is the reason for the stability of the 
simulation results with the JKR solution. 

  
Figure B7 The calculated contact distances for the systems with (a) 𝑐 = 0.1, and 

(b) 𝑐 = 0.5 using the reference number of contacting atoms measured from 
method C (𝑁c𝑎,C). Point A indicates the inception of contact. Then, the force 

decreases due to the adhesion, until the system reaches point P. Following this 
point, the repulsive force results in an increase in the total force, up to point F for 
the simulated system. The results show that the contact distance does not change 

while the system is between points P and F. 
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Appendix C. Contact pressure dependence on 
the interacting potential* 

The pressure distribution of a contact between a rigid indenter and a 
deformable substrate depends on the applied interacting potential energy. In 
Chapter 4, the non-adhesive interactions were modelled by applying the non-
adhesive part of the LJ potential; however, this was not the only solution. One 
can model short-range repulsion via the standard LJ potential, by cutting the 
potential at its minimum, and adding a constant to assure that the interacting 
force and energy go smoothly to zero at the cutoff. Figure C1 shows the contact 
pressure distribution for two cases of interacting potentials. Moreover, the 
interacting potential energy affects the indenter’s responses; these effects are 
summarized in Table C1 and Figure C2. 

The results show that, as the interacting potential energy approximates a 
hard-wall interaction, the fitted values of 𝐸∗ increase to the bulk value of 
𝐸∗ = 28.57 GPa with a higher rate; however, for larger indentation depths, i.e. 

𝑑 > 4 Å in this study, the indenters’ responses were found to be very similar, 
and independent from the interacting potential energy. 

 
Figure C1 The interfacial contact pressure distribution between a rigid indenter 

of 𝑅 = 100 Å and a deformable body. The non-adhesive contact was modeled with 
(A) the repulsion part of the LJ, and (B) cutting and shifting the LJ at its minimum. 

                                                      

* This is an appendix to Chapter 4. 
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Table C1 The values of the contact pressure threshold (𝑃c), contact distance (𝑑c), 

and the corrective shifts of displacement (𝛿𝑑) and force (𝛿𝐹) 

Case 𝑃c (GPa)  𝑑c (Å)  𝛿𝑑 (Å)  𝛿𝐹 (nN)  

A 1.335 4.964 5.721 0.620 

B 1.190 4.826 6.786 0.002 

 

 
Figure C2 (a) The fitted values of 𝐸∗, and (b) the force-indentation depth curves 

for cases A and B. 
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Appendix D. Contact-induced stress fields* 

Applying periodic boundary conditions (PBCs) along the desired directions 
is a classical method in MD simulations used to avoid the edges imposed by the 
finite size of the simulated system. In some systems, however, such as the ones 
investigated in chapter 4, PBCs are not applicable in the directions normal to a 
free surface. Consequently, the system behavior, including its mechanical 
response, could be affected by the finite system size in the directions where 
PBCs are not applied. 

In the study of Chapter 4, an atomistic fixed layer providing the necessary 
mechanical support to the deformable bodies was used along the plane 
parallel to the free surface. As a result, the mechanical response of the systems 
would be affected by that fixed layer if the stress fields crossed the deformable 
body and reached the fixed layer. Allowing for this behavior could be relevant 
for thin layers, but not for bulk materials as was intended in the study. In 
order to remove this boundary effect, one may simulate the system using 
Green’s function MD (GFMD) [11], smartblock MD [12], or by coupling MD 
with other techniques such as the finite element method (FEM), e.g. via the 
Atoms-to-Continuum package of LAMMPS; given sufficient computational 
resources, it is also possible to simulate an extremely large system using 
classical MD [122]. In this work, classical MD was used, and the results were 
collected up to the point before which the stress fields were affected by the 
fixed layer. This condition was tested through the calculation of the contact 
influenced stress values (𝐶𝑆) by subtracting the stress values of each atom at 
the end of the equilibration process (𝑆eq) from their corresponding value at 

each time step (𝑆𝑡), i.e. 𝐶𝑆𝑡 = 𝑆𝑡 − 𝑆eq, where 𝐶𝑆𝑡 indicates the values of 𝐶𝑆 at 

time step 𝑡. Then, the system was meshed along one of the lateral axes, and the 
maximum values of 𝐶𝑆 were collected. By examining these data, it was 
possible to identify the instances at which the stress fields reached the fixed 
layers. Table D1 shows the stress fields of a number of the contacting systems, 
at the last step of data extraction. 

                                                      

* This is an appendix to Chapter 4. 
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Table D1 The representation of the atomic structures of the contacting systems 

(normal to the 𝑥 axis), and their contact-induced stress fields. The atoms are 
represented in the left column as circles with different colors: fixed (blue), 

thermostatic (red), non-constrained (green), and the indenter as white. The right 
column shows the projection of the maximum values of the contact induced stress 

(𝐶𝑆) values on a plane normal to the 𝑥 axis: dark blue indicates the minimum of 
value of 0, and dark red indicates the maximum of the values, which was 0.9 GPa, 

8.5 GPa, and 10.2 GPa, for the cases of single asperity, GW rough surface, and 
random rough surface, respectively. 

 Atomic structure Contact induced stress field 

Single 
asperity 

(1000 Å) 

  

GW-type 
rough 

surface 

  

Randomly 
rough 

surface 

  

 

~10 nm 

~10 nm 

~10 nm 



 

 

Appendix E. The exponent of PSD* 

For self-affine fractal profiles, the slope of the PSD would be [123] 

𝛽 = −(2𝐻 + 𝐷S), (E.1) 

where 𝐻 is the Hurst exponent, and 𝐷S is the spatial dimension of the 
projected fractal, i.e. 𝐷S = 2 for a fractal surface and 𝐷S = 1 for a fractal line. 
The Hurst exponent describes the raggedness of the profile, with a lower value 
leading to a rougher profile. The value of the Hurst exponent is bounded as 
0 < 𝐻 < 1. Considering the range of the Hurst exponent, one may conclude 
that 𝛽 ∈ (−2, −4) for a fractal surface. The definition of the PSD in the form of 
(‎5.2), however, does not apply such a restriction on the values of 𝛽. On the 
other hand, if 𝛽 exceeds the abovementioned limitation, the value of 𝐻 would 
vary outside the range of (0,1); therefore, 𝐻 loses its general meaning of the 
Hurst exponent [124]. This is the main reason why the PSD exponent is not 
expressed in terms of 𝐻 or 𝐷S in the current study. 
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Appendix F. The spectral moments of PSD* 

The spectral moments of the PSD can be calculated from [125] 

𝑚𝑛 = 𝐴𝑛 ∫ 𝑞1+𝑛
+∞

0

𝐶(𝑞)d𝑞, (F.1) 

with 

𝐴𝑛 = ∫ (cos 𝜔)𝑛
2𝜋

0

𝑑𝜔. (F.2) 

For 𝑛 = 0, 2, and 4, 𝐴𝑛 equals 2𝜋, 𝜋, and 3𝜋 4⁄ , respectively. Considering the 
definition of 𝐶(𝑞) for 𝑞L ≤ 𝑞 ≤ 𝑞S based on (‎5.2), (F.1) can be solved and 
reformulated as follows: 

𝑚𝑛 = 𝐴𝑛𝐶0𝑞𝑟
2+𝑛𝐼𝑛, (F.3) 

with 

𝐼𝑛 =
1 − 𝑀L

2+𝑛

2 + 𝑛
−

1 − 𝑀S
2+𝑛+𝛽

2 + 𝑛 + 𝛽
, (F.4) 

where 𝑀L = 𝑞L 𝑞r⁄ , and 𝑀S = 𝑞S 𝑞r⁄ . These formulae are important for the 
generation of rough surfaces; a rough surface can be generated by solving 
(‎5.1), where the values of ℎ(𝐪) should be converted from the values of 𝐶(𝐪) in 
the form of (‎5.2). In order to solve (‎5.2), the values of 𝑞L, 𝑞r, 𝑞S, 𝛽, and 𝐶0 need 
to be defined beforehand. The values of these variables can be assigned 
arbitrarily, provided they do not violate the conditions of 𝑞L < 𝑞r < 𝑞S, 𝛽 < 0, 
and 𝐶0 > 0. The value of 𝐶0, however, can be defined such that the generated 
surface will possess a specific spectral moment. Considering that 𝑚0 = 𝜎rms

2  

[104], and 𝑚2 =
1

2
𝑔

2
 [126], the parameter 𝐶0 can be defined as 𝐶0 =

𝜎rms
2 (𝐴0𝐼0𝑞r

2)−1 and 𝐶0 =
1

2
𝑔

2(𝐴2𝐼2𝑞r
4)−1, respectively. In order to generate a 

surface with given values of 𝜎rms and 𝑔, however, 𝐶0 will need to have a 
unique solution, resulting in a distinctive roll-off wavenumber of 𝑞r =

(𝑔 𝜎rms⁄ )√𝐼0 𝐼2⁄ , which cannot be solved analytically. Therefore, in this study, 

𝐶0 was estimated based on the PSD’s zeroth moment, in order to generate 
rough surfaces with a specific value of 𝜎rms. 

                                                      

* This is an appendix to Chapter 5. 



 

 

Appendix G. The mean gradient for a limiting 

case of nominally flat rough {100} 
planes in an fcc structure* 

For an atomistic nominally flat rough surface, a limiting case would be a 
saw-tooth rough surface, with every other atom removed along each of the 
lateral directions. In the surface analysis methods adapted in this work, the 
atomistic rough surfaces were projected on a uniformly gridded plane. The 
estimated surface for the abovementioned limiting case is shown in Figure G1. 

It can be shown that the local gradient on each grid point is √2. Consequently, 

the mean gradient of this limiting case would be √2. 

 
Figure G1. (Left) The uniformly gridded plane for the limiting case of an 

atomistic nominally flat rough surface along the {001} planes of an fcc structure, 
where every other atom is removed along each direction of 𝑥 and 𝑦. Note that no 

grid was assigned for the faced-centered atoms in the surface analysis of the 
current work. (Right) A selected grid of the saw-tooth rough surface. The numbers 
on the edges indicate the calculated slopes along the x and y axes. The numbers on 

the arrows indicate the local gradients at each grid point. 

                                                      

* This is an appendix to Chapter 5. 
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Appendix H. Roughness of molten gold due to 
capillary waves* 

The interface undulation between any two fluids can be described by 
capillary wave theory; see [127] for a short review, and [128] for a deep 
discussion on the applicability of this theory in MD simulations. While this 
theory is most relevant for interfaces between fluids, one may argue that it is 
still applicable for the cases studied in this research, i.e. free surfaces. In 
capillary wave theory, the thermally excited height fluctuation spectrum 
ℎCW(𝑞) of an isotropic crystallographic surface can be expressed by:  

〈|ℎCW(𝑞)|2〉 =
𝑘𝐵𝑇

𝛾𝐿2
𝑞−2, (H.1) 

where 𝑘𝐵  is the Boltzmann constant, and 𝛾 is the surface energy of the free 
surface expressed in the dimensions of energy over area. Considering the 
relation 𝐶(𝑞) = (𝐿 2𝜋⁄ )2〈|ℎ(𝑞)|2〉 (see section ‎5.2), the power spectral 
distribution of the thermally agitated capillary waves can be written as 

𝐶CW(𝑞) =
1

4𝜋2

𝑘𝐵𝑇

𝛾
𝑞−2. (H.2) 

The RMS roughness of the thermally agitated capillary waves can be 
obtained from 𝑚0 (see ‎Appendix F) to be 

𝜎rms,CW = (
1

2𝜋

𝑘𝐵𝑇

𝛾
ln (

𝐿

𝛿
) )

0.5

. (H.3) 

Therefore, the total RMS roughness of the surface can be estimated as 

𝜎rms = √𝜎rms,0
2 + 𝜎rms,CW

2 . (H.4) 

Considering (H.3) and the proportionality of 𝜎rms,CW ∝ √𝑇, one may argue 

that the roughness would be higher as the equilibration temperature 
increases. This would be in accord with the reported results in section ‎5.5.5. 

As the temperature rises, the material softens and cannot withstand the 
local stresses due to the initial surface roughness, as is particularly visible for 
the case of 𝑇 = 𝑇m; however, the generated capillary waves do not allow the 
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surface to have a roughness parameter of 𝜌 = 0. In order to estimate the 
roughness parameter of the free surface at the melting point, one can assume 
that the surface roughness is solely due to capillary waves. Therefore, the RMS 
roughness can be calculated via (H.3). Moreover, the mean gradient can be 
calculated from 𝑚2 (see ‎Appendix F) to be 

𝑔
CW

= (𝜋
𝑘𝐵𝑇

𝛾
(𝛿−2 − 𝐿−2))

0.5

. (H.5) 

Furthermore, the autocovariance function of the power spectral 
distribution in the form of (H.2) can be calculated using the zero-order Hankel 
transform of 𝐶(𝑞), which results in 

var(𝑟) =
1

2𝜋
∫ 𝐶(𝑞)𝐽0(𝑞𝑟)𝑞𝑑𝑞

𝑞𝑆

𝑞𝐿

, (H.6) 

where 𝐽0 is the zero-order Bessel function of the first kind. Then, the 
autocorrelation function can be calculated as 𝑅(𝑟) = var(𝑟) var(𝛿)⁄ . 

For the simulated material, the melting point and the (100) surface energy 
are 1281 K and 1.225 J m2⁄ , respectively [91]. Inserting these values into (H.3), 
(H.5), and (H.6), yields values for the RMS roughness, mean gradient, and 
lateral correlation length of 𝜎rms,CW = 0.6a0, 𝑔

CW
= 0.5, and 𝜁CW = 4.7a0, 

respectively. It should be noted that the lateral correlation length was 
estimated from the numerical solution of (H.6) (see Figure H1). Thus, the 
roughness parameter of the molten system can be calculated as 𝜌CW ≅ 0.07, 
which is very close to the measured value of 𝜌 ≅ 0.05 for the system at the 
melting point (see section ‎5.5.5). 

 
Figure H1 The autocorrelation function of the thermally agitated capillary waves 

on a free surface of a gold substrate at the melting point. 
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