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A B S T R A C T
Background: The validation of health economic (HE) model outcomes
against empirical data is of key importance. Although statistical
testing seems applicable, guidelines for the validation of HE models
lack guidance on statistical validation, and actual validation efforts
often present subjective judgment of graphs and point estimates.
Objectives: To discuss the applicability of existing validation techni-
ques and to present a new method for quantifying the degrees of
validity statistically, which is useful for decision makers. Methods:
A new Bayesian method is proposed to determine how well HE model
outcomes compare with empirical data. Validity is based on a pre-
established accuracy interval in which the model outcomes should
fall. The method uses the outcomes of a probabilistic sensitivity
analysis and results in a posterior distribution around the probability
that HE model outcomes can be regarded as valid. Results: We use a
published diabetes model (Modelling Integrated Care for Diabetes
based on Observational data) to validate the outcome “number of
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patients who are on dialysis or with end-stage renal disease.” Results
indicate that a high probability of a valid outcome is associated with
relatively wide accuracy intervals. In particular, 25% deviation from
the observed outcome implied approximately 60% expected validity.
Conclusions: Current practice in HE model validation can be
improved by using an alternative method based on assessing whether
the model outcomes fit to empirical data at a predefined level of
accuracy. This method has the advantage of assessing both model bias
and parameter uncertainty and resulting in a quantitative measure of
the degree of validity that penalizes models predicting the mean of an
outcome correctly but with overly wide credible intervals.
Keywords: decision making, health economics methods, statistics,
validation.

Copyright & 2017, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.
Introduction

The decision making around the reimbursement of newly devel-
oped drugs often involves cost-effectiveness analyses under-
pinned by health economic (HE) decision models [1,2]. HE
decision models, like all simulation models, require validation
to ensure the credibility of their outcomes [3]. Validation may be
described as “the act of evaluating whether a model is a proper
and sufficient representation of the system it is intended to
represent, in view of a specific application” [4]. A model that is
in accordance with what is known about the system is said to be
“proper,” and a model whose results can serve as a solid basis for
decision making is said to be “sufficient.” Models that have not
been properly validated could deliver invalid results, and hence
lead to biased decisions in drug reimbursement or other areas of
health policy applying the results of HE decision models.

Different guidelines for the validation of HE models can be
found in the literature, but these are not very specific about the
operationalization of validation efforts [3,5]. The validation
assessment tool AdViSHE adds to these guidelines by being a
tool for structured reporting on all relevant aspects of validation
(conceptual model, input data, implemented software program,
and model outcomes) but does not indicate any particular
methodology [4]. In this article, we provide further details on
one of these aspects: the validation of HE model outcomes
against empirical data. When the empirical data are not used to
estimate the input parameters of the model, this is often called
independent or external validation. Otherwise, the validation is
called dependent or internal [5]. Although statistical testing
seems applicable to assess the validity of HE model outcomes
in a setting of uncertain observations of possibly variable out-
comes, actual applications often present comparisons in an
informal way involving subjective judgment of graphs and point
estimates [6–9].

In statistics, accuracy is defined as the combination of (lack of)
bias and variance [10]. Bias is the difference between the
expected value of the outcome predicted by a model and its
actual empirical value. Variance is any measure of variability of a
ociety for Pharmacoeconomics and Outcomes Research (ISPOR).
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model outcome. This is a broader concept and does not neces-
sarily refer to the statistical variance of a set of data or a random
variable. In prediction modeling, it is common to talk about bias-
variance trade-off when discussing prediction errors [10]. In
general, bias is reduced and variance is increased as more
parameters are added to a model. Large variance means that
relatively large differences are observed in the model outcomes
with little additional input data. The “classical” trade-off problem
consists of exploring different levels of model complexity and
choosing the one minimizing the overall prediction error [10].
Nevertheless, in the setting of HE model validation and in this
article, the assumption is made that the simulation model is a
given and it is investigated whether the current levels of bias and
variance are acceptable for decision-making purposes.

Furthermore, in HE decision modeling the term uncertainty is
frequently used instead of variance. Uncertainty can also be used
in a wide sense to refer to any measure of variability of HE model
outcomes. According to Briggs et al. [11], four different types of
uncertainty can be distinguished in HE modeling. Although all
these types of uncertainty are important, in this article we focus
on parameter uncertainty (the uncertainty in model outcomes
resulting from uncertainty in the estimation process of the input
parameters of an HE model). In HE models, parameter uncer-
tainty is represented in different ways, usually by an uncertainty
range containing the predicted model point estimate, a cost-
effectiveness plane showing the results of a probabilistic sensi-
tivity analysis (PSA), or a cost-effectiveness acceptability curve
[12,13]. Although value of information methods are widely
applied to determine whether the uncertainty in HE model
outcomes is acceptable for proper decision making [14], model
bias can be assessed only by comparing HE model outcomes with
empirical data.

The aim of this article was twofold. First, the applicability of
several existing validation techniques for comparing HE model
outcomes with empirical data is discussed, with special focus on
statistical testing. After that, a new method for operational
validation is proposed which is aimed at establishing how well
HE model outcomes compare with empirical data. In this new
method, a level of accuracy that the HE model outcomes should
meet is set in advance. The basic idea behind it is rather
straightforward: If the model result falls within the limits deter-
mined by the required accuracy, then the model result is consid-
ered valid. The proportion of valid results obtained in a PSA
defines a quantitative measure of the validity of the HE model.
Our method is embodied in a Bayesian framework, which allows
defining such a validity measure as a probability distribution.
Methods

Using the Statistical Methods Right

Researchers should define statistical metrics to assess consis-
tency of HE model results and empirical data [3,5]. Although there
is no “gold standard” criterion [15–24], according to the system-
atic review by Goldhaber-Fiebert et al. [25], the most frequently
used metrics of consistency in HE are the relative or absolute
difference in model and study point estimates, the overlap of
model outcomes with study uncertainty ranges, and formal
statistical tests.

Testing the hypothesis of equal means in HE model outcomes
and empirical data is often done by calculating a confidence
interval for the difference in means. It is also common to present
two confidence intervals separately and check whether they
overlap. This should be equivalent to a hypothesis testing about
equal means. If the required significance level is 5%, then 95%
confidence intervals should not be used, but 83% to 84% confidence
intervals should [26,27]. Quite often HE articles do present 95%
confidence intervals, applying too wide intervals to formally test
the hypothesis of equal means at a 5% significance level.

A third approach is to check whether the model’s expected
value is within the confidence interval on the basis of empirical
data [23,28] or whether a single empirical point estimate is within
the model uncertainty range [29,30]. Presently, no guidance is
given on which of these two approaches should be chosen and in
which circumstances.

Using the Right Statistical Methods

Law and McComas [31] raise a more philosophical question.
Given the fact that a model is always an approximation to the
real system, testing the hypothesis whether model and system
are the same would automatically result in rejecting the null
hypothesis. Therefore, they question whether hypothesis testing
is in fact the appropriate statistical approach.

It should also be emphasized that the terms study “confidence
intervals” and model “uncertainty ranges” are used [25,30]. This
was done to reflect that HE models rarely can result in confidence
intervals in the frequentist sense. This raises the question
whether we can formally compare these two types of intervals.

Finally, operational validation is defined as a way to deter-
mine that the model output has the “accuracy required for the
model intended purpose over the domain of its intended applic-
ability” [32–34]. Therefore, the accuracy required from the model
will “depend on its intended use and the utility function of the
decision-maker” [31]. Thus, it is the task of the decision maker to
establish in advance a level of accuracy for the study and model
outcomes to be compared, so that the model results can be
regarded as valid.

Formalizing Concepts: Defining a Quantitative Measure for
Operational Validity

To structure the subsequent discussion, it is helpful to further
formalize issues. This section represents an example for illus-
trative purposes; other options, including the use of nonpara-
metric approaches, are also possible.

Suppose we have a study sample of 100 patients representa-
tive for the study population at hand, where X1, …, X100 denote
the observations of a certain outcome (e.g., hospital length of stay
in weeks). The mean, SD, and standard error (SE) of the outcome
can be estimated from these 100 observations (e.g., X̅=0.479,
SDX¼0:149, SEX¼0:0149), and thus a 95% confidence interval for
the mean is CIX ¼ 0.450 to 0.508. A cohort HE model, for which a
PSA has been run to address parametric uncertainty, results in
say 250 means (Y̅1,Y̅2,...,Y̅250) and an estimate of the sample mean
that is obtained from these 250 replications (e.g., Y̅=0.478). The SD
obtained from the 250 replications is in fact the SE of the mean
(SEY̅) and a 95% uncertainty range for the mean of the outcome,
usually given by the simulated 2.5% and 97.5% percentiles, is
0:446 to 0:505. Although the empirical confidence interval and
the model uncertainty range are usually compared for overlap, it
is important to emphasize that comparing (as in a formal t test)
observed outcomes X1, …, X100 with means of the PSA samples
Y̅1,Y̅2,...,Y̅250 is technically incorrect. The 100 values for X repre-
sent individual observations, whereas the values for Y represent
250 means that might have been obtained if input values had
been slightly different. An extended version of this section can be
found in Appendix A, in which the concepts introduced here are
discussed for both cohort and patient-level models.

A better way to compare such empirical data with HE model
PSA results is as follows. Because the empirical confidence
interval has, say, a 0.95 probability of containing the true value,
for cohort HE models, we can set this confidence interval as a
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“target” and count how many times, out of the 250, the simulated
point estimate Y̅ is within CIX. The number of times (or propor-
tion) that the simulated value is within the target confidence
interval would give a quantitative measure of the validity of the
model outcome. This notion is the basis for our new method
presented in the next section.

An Alternative Bayesian Method for Validating HE Model
Outcomes

Suppose that empirical data could be collected from k 4 1
patients. The outcome of interest is denoted by X1, X2, …, Xk.
The average over k patients is then X¼ 1

k∑
k
j¼1Xj. Suppose also

that, on the basis of the same empirical data, an interval
containing this average and reflecting the required level of
accuracy for the HE model results can be set, for example, by
the person evaluating the validation status of the model (such as
a decision maker). Such an interval will be referred to as accuracy
interval, and will be denoted by AIX. When empirical data are
collected from a clinical trial, the confidence interval for the
empirical data is a reasonable choice for the accuracy interval.
Nevertheless, such a confidence interval may not always be
available, for example, when input data are derived from the
combination of several published sources that did not report
empirical confidence intervals. In that situation, an alternative
accuracy interval has to be provided. A simple “what if” situation
allowing a certain deviation (e.g., 1%, 5%, or 10%) from the
empirical average X̅ could be applied.

To predict the outcome of interest we assume that an HE
cohort model is used (or alternatively that the results from a
patient-level model have been aggregated). Furthermore, we
assume that the model outcome was obtained n times (n 4 1)
from a PSA, so that Y̅1,Y̅2,...Y̅n denote the n simulated mean
values for our outcome of interest. The validation rule proposed
is that a decision maker would regard a model result as valid only
if a realization of the model outcome yiði¼1,…,nÞ is in the
interval AIX. We will denote this as Ai¼ I yi∈AIXf g, where I denotes
the indicator function, so that Ai¼1 if yi∈AIX and Ai¼0 otherwise.
Assuming that a realization of Ai can be considered as the result
of a Bernoulli trial, we can write:

P Ai¼a½ �¼pa 1−p
� �1−a,a¼0,1,

where p is the probability that the HE model outcome will be
regarded as valid by the decision maker. We assume then that p
is a random variable following a prior beta distribution with
parameters α and β. If we assume that the result of a full PSA can
be regarded as a binomial process of size n where we will observe
s successes (s times the model result will be considered valid) and
n − s failures, the posterior distribution of p is then also beta but
with updated parameters α þ s and β þ n – s [35].

Case Study

Our method is demonstrated with the help of a case study based on
a published diabetes model (Modelling Integrated Care for Diabetes
Table 1 – Example of the new method with 10 PSA outco

Prior beta
(α ¼ 1, β ¼ 1)

PSA replication (Ai¼1 if yi∈AIX a

P[A ¼1] ¼ α/(α þ β) ¼ 0.5 y1 y2 y3 y4 y5 y6
95% CI ¼ 0.025–0.975 1 1 1 0 0 1

Notes. A ¼ 1 when the outcome is considered valid.
AIX, accuracy interval; CI, credible interval; PSA, probabilistic sensitivity
based on Observational data) [29]. MICADO is a dynamic population
model following overlapping cohorts of diabetic patients aging over
time. Incidence and prevalence of diabetes-related complications
and mortality are estimated from Dutch registries and systematic
literature reviews. A complete description of the model can be
found in the study by Van der Heijden et al. [29]. In this case study,
we validate the outcome “number of patients with diabetes who are
on dialysis or with end-stage renal disease (ESRD).”
Results

New Method in Practice

The example presented in Table 1 illustrates how the method
could be used in practice. The results from the PSA iterations 1, 2,
3, 6, 8, and 9 would be regarded as valid. With this information,
the prior probability that the model outcome will be regarded as
valid by the decision maker is updated. In the example from
Table 1, the prior beta distribution is set at parameters α ¼ 1 and
β ¼ 1, which means that our previous belief is that the probability
that the model outcome is valid for the decision maker is 0.5 with
high uncertainty, represented by the 95% credible interval 0.025
to 0.975). After a PSA is run, the probability that the model
outcome is valid is updated to 0.58 and the uncertainty is reduced
because the posterior 95% credible interval is 0.308 to 0.833),
which is much narrower than the previous one.

Case Study

Simulated data were obtained as the results of 300 PSA runs in
MICADO. Because MICADO is a cohort model, each PSA outcome
can be interpreted as a mean over an unspecified number of
simulated individual patients. Empirical data were obtained from
the countrywide registration of diabetic patients with ESRD per
year [36]. Figure 1 shows the histogram of the 300 PSA outcomes
simulated in MICADO. The vertical dashed line is the number of
new diabetic patients with ESRD per year from the empirical data
(277) and the vertical dotted line is the number of new diabetic
patients with ESRD per year predicted by the model (245). The
difference between these two represents the prediction error due
to bias. The width of the histogram represents a measure of the
prediction error due to parameter uncertainty.

The question now is how much deviation from the observed
value are decision makers willing to accept as a valid result. To
assess this question we consider several possible accuracy
intervals that are defined by considering a certain percentage of
deviation from the observed number of patients. We have chosen
these symmetric accuracy intervals for simplicity but other
options are also possible. Note, however, that for this particular
outcome (the number of new diabetic patients with ESRD
per year), the lower bound of the accuracy interval must always
be non-negative, whereas for the upper bound there is in
principle no prespecified upper limit (e.g., it can go beyond a
100% deviation). The limits of some of these accuracy intervals
mes.

nd Ai¼0 otherwise) Posterior beta
(α' ¼ 7, β' ¼ 5)

y7 y8 y9 y10 P[A ¼ 1 | S ¼ 6] ¼ α'/(α' þ β') ¼ 0.58

0 1 1 0 95% CI ¼ 0.308–0.833

analysis; S, number of valid PSA outcomes; yi, PSA outcome.



Fig. 1 – Histogram for simulated number of patients with ESRD. ESRD, end-stage renal disease.
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are presented in Table 2. Note that only for a relatively large
accuracy interval (25% deviation from the observed number of
patients given in Table 2) the expected validity is more than 60%,
which implies that the model may be considered valid only given
relatively low requirements on accuracy for this specific outcome.
It is clear that when all PSA outcomes fall within a certain
accuracy interval the procedure should be stopped. In Table 2
we can observe that this occurs when the percentage of deviation
is 75%. Widening the accuracy interval does not change the
expected posterior validity, which in this case will be at most
0.997 (it will never reach 1 because β ¼ 1 from the prior
distribution). This will also set the upper limit for the x-axis in
Figure 2, in which the posterior probability that the model
outcome is considered valid (with 95% credible intervals) has
been plotted assuming different accuracy intervals ranging from
0% to 80% deviation from the observed value (we have chosen
80% to show that beyond 75% nothing changes). This confirms
that indeed a high probability of a valid outcome is associated
with relatively wide accuracy intervals. Whether this represents a
problem for decision making depends on the implications of the
current outcome (i.e., “number of patients with diabetes who are
on dialysis or with end-stage renal disease [ESRD]”) for the model
main outcome, usually the incremental cost-effectiveness ratio
(ICER). This will, for example, depend on the costs, utility, and
life-years lost associated with this outcome.
Discussion

The validation of HE models involving comparison of HE model
outcomes against empirical observations is of key importance
[4,37]. Actual validation efforts quite often present results in an
informal way, involving subjective judgment of graphs or com-
parison of point estimates. Guidelines for validation of HE models
lack specific guidance for the operationalization of statistical
validation efforts, whereas various quantitative/statistical met-
rics to assess consistency of model outcomes and empirical data
seem to be in use [15–23]. Confidence intervals or hypothesis tests
are the preferred statistical methods to assess validation of HE
models. Nevertheless, several arguments exist against applying
confidence intervals or hypothesis tests as set out in previous
sections [31–34].

The method for operational validation proposed in the present
article departs from classical statistical techniques. It aims at
establishing how well HE model outcomes compare with empirical
data by quantifying the degree of validity statistically. Model
accuracy is defined as the combination of bias and parameter
uncertainty, and our method is concerned with determining
whether the current model bias and parameter uncertainty are
acceptable for decision making. Note that when the model is
biased, reducing parameter uncertainty will reduce the resulting
degree of validity when our method is applied, because less PSA
outcomes may fall within the accuracy interval.

In our method, validity is operationalized in a Bayesian
way. Because in principle a PSA should provide a large
number of observations, the choice of a prior distribution should
hardly have any influence on the posterior distribution. If new
data become available, an HE model could be validated itera-
tively, by re-estimating the expected posterior probability that
the model result will be regarded as valid by the decision maker.
The first consequence of having new data is that the target
accuracy interval may change. To properly fit with the idea of
validation against independent data (i.e., the data used to
validate an HE model preferably should not have been used to
obtain the model estimates), in a first step an independent
validation against the new data could be performed
[15–17,19,38]. In a second step, if the model is deemed invalid,
the new data could be incorporated into the HE model. The
development of an HE model in such a way can also be regarded
as a Bayesian process, in which unknownmodel parameters have
statistical prior distributions. Fitting the model to the new
empirical data implies that these prior distributions would be
updated to posterior distributions that combine the previous
information with the new empirical data, resulting in a refitted
model. Because the input parameters would be updated, the PSA
should be run again (new likelihood). Note that at this point,
only dependent (internal) validation is possible because
all the available data have been included in the model. The
posterior distribution before the new data were available
would be the prior now, and on the basis of the new PSA, a
new posterior would be obtained that would be compared
against the new accuracy interval. This process will increase
the model’s validation status. If new empirical data were avail-
able, then this process of refitting the model and validating
against external data can be repeated until the model is deemed
valid.

Decision makers should establish the required accuracy level
beforehand, ideally in collaboration with stakeholders [39],
because they will judge the validity of the HE model results and
will have to use these results in their decisions. How to define an



Table 2 – Validation results for the outcome “number of diabetic patients with ESRD”.

Deviation from
observed
number of patients (%)

AI α' β' Expected
(posterior) validity*

Posterior
validity 95% CI†

Lower limit Upper limit

1 274.23 279.77 8 293 0.027 0.012–0.047
5 263.15 290.85 36 265 0.120 0.085–0.159
10 249.30 304.70 83 218 0.276 0.227–0.328
25 207.75 346.25 203 98 0.674 0.621–0.726
50 138.50 415.50 287 14 0.953 0.927–0.974
75 69.25 484.75 300‡ 1 0.997 0.998–1.000
76 66.48 487.52 300 1 0.997 0.998–1.000
80 55.40 498.60 300 1 0.997 0.998–1.000

AI, accuracy interval; α', number of PSA results within the accuracy interval þ 1 (note that “þ1” is added because as a prior distribution a beta
with parameters α ¼ 1 and β ¼ 1 was chosen, but this is just one possibility); β', number of PSA results outside the accuracy interval þ 1;
CI, credible interval; ESRD, end-stage renal disease; PSA, probabilistic sensitivity analysis.
⁎ Calculated as the expected value of a beta distribution with parameters α' and β'.
† Calculated as the 2.5% and 97.5% percentiles of a beta distribution with parameters α' and β'.
‡ The PSA data from the model are the results of 300 runs. The first run, however, is a deterministic run in which all parameters were set to
their mean estimate. Therefore, it was not included here.

V A L U E I N H E A L T H 2 0 ( 2 0 1 7 ) 1 0 4 1 – 1 0 4 7 1045
accuracy interval might be hard in practice. As a good starting
point, the confidence interval of the empirical data, provided that
it exists, could be used as guidance for decision makers, because
a confidence interval is the most common form of presenting
variability for empirical data, and this reflects common practice,
for example, in prediction modeling. Nevertheless, a range of
accuracy intervals, as shown in our case study, could also be
defined when the empirical data do not directly point at a certain
interval or when the interval is too wide to be informative. Note
also that decision-maker requirements on validation do not need
to be based on empirical studies. In this article, empirical data
have been chosen for defining accuracy interval as an illustrative
example, because it is probably the most straightforward one.
Our method, however, can still be used for other types of
accuracy intervals, for instance, on the basis of the result of
Fig. 2 – Model outcome validity curve—number of patients
with ESRD. ESRD, end-stage renal disease.
indirect comparisons or network meta-analyses. Our approach
results in a posterior distribution around the probability that the
HE model outcome will be regarded as valid by the decision
maker. This can be reported as an expected value with a credible
interval, or graphically plotting this posterior probability for
different accuracy intervals, as shown in Figure 2. This figure
resembles a cost-effectiveness acceptability curve [12,13], but it
reflects the probability that the model is considered valid for this
specific outcome.

Independent validation may raise some practical problems
because it is common practice to build HE models on the basis of
all the best evidence available [40]. Thus, there may be no data to
validate the HE model independently. In that case, the validation
is called dependent. With sufficient data available, cross-valida-
tion techniques exist to keep some of the data for validation
purposes. In practice, different parameters of HE models are often
estimated on the basis of different sets of empirical data or
literature sources. As a result, cross-validation techniques may
be less applicable, because these mainly work when a single data
set is used as the main source for all model parameters.

In our case study, we have validated the outcome “number of
diabetic patients with ESRD.” In HE models, this type of outcomes
is referred as intermediate, as opposed to a final or main model
outcome, which is usually reported in the form of an ICER. HE
models should calculate and report enough intermediate out-
comes to ensure that the validation process is useful. It is
important to emphasize that each of these intermediate out-
comes may influence the ICER in a different way. Therefore, the
accuracy required for the different intermediate outcomes is not
likely to be the same for all of them. Depending on how sensitive
the ICER is to changes on each intermediate outcome, it may
be reasonable to ask for more or less accuracy for some inter-
mediate outcomes. For example, in our case study, if the outcome
“number of diabetic patients with ESRD” had a small impact on
the ICER, low accuracy can be required. In that case, the accuracy
interval could be wide (e.g., 25% or 50% deviation from the
observed number of patients), and given the expected posterior
probability in Table 2, a decision maker should most likely
consider the model outcome valid. In contrast, with a large
impact on the ICER, and a higher required accuracy, the model
outcome would be considered invalid.
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In this article, we have focused on just one model outcome. In
general there would be more than one, and if we aim to give an
overall measure of validation, all the outcomes should be compared
simultaneously. In a classical frequentist setting, this would require
simultaneous hypothesis testing, which can be difficult in general
because many assumptions (normality, independence, etc.) have to
be checked. In our setting, checking these assumptions is not an
issue. Nevertheless, because accuracy intervals are defined sepa-
rately for each model outcome, to get a high probability of overall
validity may require a very high probability for each outcome,
which might be unrealistic to reach in practice and not required if
their separate effect on the ICER is considered. How to handle this
situation is a topic for further research.

In a cohort model there is often a clear timing over the
disease’s course. Most of these models start with a cohort of
(usually newly diagnosed) patients, for example, of the same age
and with the same duration of disease, which are then updated
after every model cycle. This is not necessarily the case and
cohorts based on real-world data, such as the renal registry used
in our case study, can represent mixtures of patients with various
disease durations and of different ages. In the model used in our
case study, patients represent a cohort of typical Dutch diabetic
patients with average disease duration (10 years). In that sense,
the model deviates from a typical Markov cohort model, because
the starting population is not a cohort of newly diagnosed cases.
Outcomes that are aggregated over time should be validated with
extra caution because a model might result in an overall valid
value while having an invalid distribution over the different
years. The latter could potentially have serious implications for
costs and other outcomes. Nevertheless, it is important to
emphasize that the outcome in our case study represents the
total annual number of new ESRD cases for the entire diabetic
Dutch population but not the total number over the model’s time
horizon. In particular, it was considered that the number of patients
with incident ESRD in 2003 (from the renal registry) could be
compared with the model outcome, because both reflected the
number of new ESRD cases in a year for the total diabetic Dutch
population in 2003. Thus, time dependency is not an issue for the
outcome chosen in our case study (because it was generated using a
model time horizon of only 1 year). To check the validity of time-
dependent outcomes, observations from empirical data over time
(since the disease start and over the disease progression pathway)
are needed. Given that information, in principle our method could
be applied to identify at which time points the model outcome is
deemed valid. How to define the overall validity of the outcome
over the entire time horizon can present similar difficulties to those
discussed when assessing multiple outcomes (e.g., it might be
defined as being valid at all time points, but accuracy requirements
might be different in time too). Therefore, this is also considered a
subject for further research. Nevertheless, as shown earlier, careful
selection of outcomes and matching of empirical data can partly
avoid the problem.
Conclusions

Current practice in HE decision modeling lacks a consistent stand-
ard of reporting on comparisons of model outcomes with empirical
data. Existing methods are diverse and not always applied or
interpreted correctly. It helps to structure these, by paying close
attention to variability in empirical data and uncertainty in model
outcomes, and the correct interpretation of confidence intervals.
Current practice in HE model validation can be improved by using
(in combination with existing correct approaches to assessing
validation performance) an alternative method based on assessing
whether the model outcomes reach a predefined level of accuracy.
The newmethod presented in this article can be used to validate HE
models when the parameter uncertainty is assessed via PSA.
Because PSA is the preferred method to study parameter uncer-
tainty in the HE literature, this new method can be applied to the
vast majority of HEmodels. Furthermore, this newmethod assesses
both model bias and parameter uncertainty; thus, the amount of
uncertainty predicted by the stochastic model is being assessed. It
results in a quantitative measure of the degree of operational
validity (expected value and credible interval), where a model that
predicts the mean of an outcome correctly but with an overly wide
credible interval will be regarded as less valid than a model that
predicts the mean correctly with high certainty. This is an advant-
age over other methods, in which a wide interval may even
contribute to a better result of model validity (such as methods
that assess whether a target value falls within a credible interval).
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