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Abstract. This paper is concerned with so-called generic properties of general linear
conic programs. Many results have been obtained on this subject during the last two
decades. For example, it is known that uniqueness, strict complementarity, and nonde-
generacy of optimal solutions hold for almost all problem instances. Strong duality holds
generically in a stronger sense, i.e., it holds for a generic subset of problem instances.

In this paper, we survey known results and present new ones. In particular we give an
easy proof of the fact that Slater’s condition holds generically in linear conic program-
ming. We further discuss the problem of stability of uniqueness, nondegeneracy, and
strict complementarity. We also comment on the fact that in general, a conic program
cannot be treated as a smooth problem and that techniques from nonsmooth geometric
measure theory are needed.

Funding: Finally, they gratefully acknowledge support of the Netherlands Organisation for Scientific
Research [Vici Grant 639.033.907].

Keywords: conic optimization • generic properties • Slater’s condition • uniqueness and nondegeneracy of optimal solutions • strict
complementarity • stability

1. Introduction
Linear conic programs (CPs) can be given in different equivalent forms. In this paper, we consider the pair of
primal-dual linear conic programs

max cT x s.t. B −Ax ∈K, (P)

min〈B,Y〉 s.t. ATY � c , Y ∈K∗ , (D)

with given vectors c ∈�n and B ∈�m , a matrix A ∈�m×n , and variables x ∈�n andY ∈�m . We assume that K⊆�m

is a pointed full-dimensional closed convex cone and K∗ is the dual cone of K with respect to the Euclidean
inner product 〈 · , · 〉 in �m ; i.e., K∗ :� {Y ∈ �m | 〈Y,X〉 ≥ 0 for all X ∈K}.
Often, for example in semidefinite and copositive programming, the elements Y,B and the columns Ai of A

are matrices from the set Sk of real symmetric k × k matrices. We therefore write the vectors x , c ∈ �n in lower
case but the vectors (matrices) Y,B,Ai ∈ �m in capital letters. Note that we can simply identify Sk ≡�m , where
m :� 1

2 k(k + 1).
Linear conic programming represents an important class of convex problems with a multitude of applications.

It contains linear programming (LP), semidefinite programming (SDP), and copositive programming as special
cases. We refer, e.g., to Nemirovski [25], Shapiro [35], and Pataki [27] for surveys on this topic.
In this paper, we study genericity results for such programs; i.e., we wish to show that certain “nice” regularity

conditions hold generically. Let P be (a subset of) a Euclidean space �N . In what follows, we say that a subset
Pr ⊆P is a weakly generic subset of P if P\Pr has Lebesgue measure zero. We call Pr a generic subset of P if Pr is
open in P and P\Pr has Lebesgue measure zero. So the weakly generic sets Pr need not be open. A property is
said to be (weakly) generic in the problem set P if it holds for a (weakly) generic subset Pr of P. Hence, genericity
implies both density and stability of the nice problem instances, whereas weak genericity only assures density.
Note that from a numerical viewpoint, stability (i.e., openness of Pr) is crucial, so genericity is the desirable
property.

Remark 1. Genericity can be defined in different ways. In Alizadeh et al. [2] and Bolte et al. [4] (weak) genericity
results have been formulated with respect to the Lebesque measure, in Pataki and Tunçel [28] with respect to
the Hausdorff measure, and in Borwein and Moors [5] in terms of σ-porosity (cf. Lemma 2). It is well known
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that in �N the N-dimensional Lebesgue and Hausdorff measures coincide (see, e.g., Morgan [24, Corollary 2.8])
and that a σ-porous set has Lebesque measure zero (the converse does not hold). In Schurr et al. [33], weak
genericity is called metric genericity and some genericity results are given in terms of open and dense sets
(see Schurr et al. [33, Theorems 4.6 and 4.7]). Note, however, that openness and density of a set A ⊂ �N does
not imply that the complement �N\A has Lebesque measure zero. So our concept of genericity is stronger and
we think that for our purpose (i.e., for problem sets in �N), our definition of genericity is appropriate and
meaningful.

Genericity of properties like strong duality, nondegeneracy, strict complementarity, and uniqueness of solu-
tions of linear conic programs have been discussed before. Alizadeh et al. [2] and Shapiro [34] specifically
discuss generic properties of semidefinite programs. Pataki and Tunçel [28] derive weak genericity results on
strict complementarity, uniqueness, and nondegeneracy for general linear conic programs. Note, however, that
the results in Alizadeh et al. [2] have been proven under the assumption that the Slater condition is satisfied,
and in Pataki and Tunçel [28], the genericity results are restricted to so-called gap-free problems (i.e., prob-
lems with finite optimal value and zero duality gap). The possibility that these assumptions generically fail has
not been excluded, so strictly speaking these genericity results were lacking some foundation. Merely for the
SDP case, it is indicated in Shapiro [34, p. 310] that the Slater condition (Mangasarian-Fromovitz condition) is
generic. Recently Bolte et al. [4] gave special full genericity results with respect to uniqueness of solutions under
the extra assumption that the cone K is a semialgebraic set.

While we were working on an earlier version of this article, other results were brought to our attention, e.g.,
the paper by Schurr et al. [33] and the one by Borwein and Moors [5]. This led to a complete revision of our
earlier paper and resulted in the present article, which has the following aims: to survey the known genericity
results, to add new ones, and to discuss the relations between the different genericity statements.

We start with some general remarks. Usually, genericity results in smooth optimization are proven by applying
transversality theory from differential topology. We refer to Jongen et al. [22] for such genericity results in
smooth nonlinear finite programming and to Alizadeh et al. [2] for results in SDP. We also refer the reader to
Section 5 for the special case of LP and SDP.

However, a general conic program is not a completely smooth problem. Indeed, a part of the problem is
given by the specific cone K (or its dual K∗), and boundaries of convex cones are generally described by convex
and hence Lipschitz-continuous functions rather than by smooth functions. So, to obtain genericity results in
general linear conic programming, we have to use techniques from nonsmooth convex analysis. Fortunately,
in the field of geometric measure theory many results of differential geometry for C1-functions have been
generalized to similar results for Lipschitz functions. Founding work for this theory goes back to Federer and
others (see Federer [11], Morgan [24], Schneider [31] for an overview). The results in Pataki and Tunçel [28],
Schurr et al. [33], and Bolte et al. [4] are based on this theory, and we also will use techniques from geometric
measure theory.
In this paper, we try to prove our genericity results with techniques that are as basic as possible. Genericity

of strong duality will be proven (based on Lemma 1) by purely topological arguments. More structure is
needed for weak genericity of uniqueness. As we shall see, the classical result that Lipschitz functions (convex
functions) are differentiable almost everywhere will do the job. For weak genericity of nondegeneracy and strict
complementarity, more sophisticated techniques from geometric measure theory are needed (see Pataki and
Tunçel [28]).

The paper is organized as follows. Section 2 introduces some notation and presents two equivalent formula-
tions for the conic programs (P) and (D). In Section 3 we show that the Slater condition holds generically in conic
programming. By using well-known techniques, this leads to genericity results for strong duality similar to the
results in Schurr et al. [33]. We compare the statements in Schurr et al. [33] with our result and discuss related
work. Section 4 deals with weak genericity results concerning uniqueness, nondegeneracy, and strict comple-
mentarity in CP. In Section 4.1, we give an independent proof of the fact that uniqueness is weakly generic.
This approach was brought to our attention by Alexander Shapiro (personal communication). The proof does
not rely on deeper results from geometric measure theory as used in Pataki and Tunçel [28, Theorem 3]. Sec-
tion 4.2 summarizes the weak genericity results for nondegeneracy and strict complementarity from Pataki and
Tunçel [28]. Section 4.3 comments on the fact that nondegeneracy implies Slater’s condition. It further explains
why most genericity results from linear semi-infinite optimization (SIP) cannot be directly applied to CP.

In Section 5 we discuss stability of properties like uniqueness, nondegeneracy, and strict complementarity.
For some special classes of CP, such as LP and SDP, full genericity can be shown. For general conic programs
it is still open whether the stability for these properties holds generically.
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2. Preliminaries
We next discuss two other formulations for CP. Many authors (e.g., Pataki and Tunçel [28]) consider conic
programs in
Self-dual formulation:

max{〈C,B〉 − 〈C,X〉} s.t. X ∈ (B +L) ∩K (P0)
min〈B,Y〉 s.t. Y ∈ (L⊥ +C) ∩K∗ , (D0)

where C,B ∈ �m , L � span{A1 , . . . ,An} ⊂ �m is the linear subspace spanned by Ai ∈ �m , i � 1, . . . , n, and K is a
cone in �m , as above.
It is easy to see that the problems (P0) and (D0) are equivalent to (P) and (D), respectively. Indeed, let Ai

denote the columns of A and choose some C ∈ �m satisfying 〈Ai ,C〉 � ci for i � 1, . . . , n. Then the feasible sets
of (P0) and (P) are directly related via the affine mapping X � B −Ax. If the Ais are linearly independent, the
map is bĳective. Also their objective function values are the same, since for X � B −∑n

i�1 xiAi we obtain

〈C,B〉 − 〈C,X〉 � 〈C,B −X〉 �
〈
C,

n∑
i�1

xiAi

〉
�

n∑
i�1

xi 〈C,Ai〉 � cT x.

The dual problems (D0) and (D) have the same objective function, and in view of the relation

Y −C ∈L⊥ ⇔ 〈Y −C,Ai〉 � 0 for all i ⇔ 〈Y, Ai〉 � ci for all i ⇔ ATY � c

the feasible sets coincide, so (D0) and (D) are equivalent as well.
Remark 2. Important special cases of CP are linear programs, where K �K∗ ��m

+
, and semidefinite programs,

where the columns Ai of A (i.e., the basis of L) as well as B and C are elements of the space Sk of symmetric
k × k matrices and K �K∗ equals the set S+

k of positive semidefinite matrices in Sk . Note that we can identify
Sk ≡�m with m �

1
2 k(k + 1).

Another example is given by the class of copositive programs (COP), where K is the cone of copositive
matrices with dual K∗, the cone of completely positive matrices (see, e.g., Burer [6] for details).
In the sequel, the feasible sets and optimal values of these conic programs will be denoted by FP0

and FD0
, and

vP0
and vD0

, respectively. As usual, we say that strong duality holds for a pair of primal, dual programs (P0), (D0)
if the relation vP0

� vD0
holds.

SIP formulation: Linear conic programs can also be seen as a special case of linear semi-infinite programs (SIP)
of the form

max
x∈�n

cT x s.t. b(Y) − a(Y)T x ≥ 0 for all Y ∈ Z, (SIPP)

with a possibly infinite index set Z ⊂ �m and functions a: Z→�n and b: Z→�. The (Haar-) dual reads

min
∑
Yj∈Z

y j b(Yj) s.t.
∑
Yj∈Z

y j a(Yj)� c , y j ≥ 0, (SIPD)

where the min is taken over all finite sums. For an introduction to (linear) SIP, we refer, e.g., to Goberna and
López [13]. Note that the condition X ∈K can be equivalently expressed as

〈X,Y〉 ≥ 0 for all Y ∈K∗.
In view of this relation the primal program (P) can be written as (SIPP), with

a(Y) :� ATY, b(Y) :� 〈B,Y〉, and Z :�K∗. (1)

The feasibility condition for (SIPD) then becomes

c �
∑

j
y jA

TYj , y j ≥ 0

and by putting Y :�∑
j y jYj ∈K∗, this coincides with the feasibility condition c � ATY of (D). Moreover, in view

of ∑
j y j b(Yj) �

∑
j y j 〈Yj ,B〉 � 〈Y,B〉, the dual (SIPD) is equivalent to (D), and we simply denote both versions

by (D).
For the genericity results in this article, we always assume that the cone K (and thus K∗) and n and m are

arbitrarily fixed. Then the set of problem instances of (P) and (D) is given by

P :� {(A,B, c) ∈ �m×n ×�m ×�n} ≡�m·n+m+n

endowed with some norm.
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Often we prove results of the sort that for arbitrarily fixed A ∈ �m×n a property holds for all (B, c) from a
generic set S � S(A) ⊂ �m+n . We emphasize that this implies that the property holds for almost all problem
instances in the whole space P� {(A,B, c)}. Indeed, under this assumption, for any fixed A ∈�m×n the property
holds on the whole �m+n , except for the set S(A)c :� �m+n\S(A) of Lebesgue measure µ(S(A)c) � 0 in �m+n .
But then by Fubini’s theorem the property holds for (A,B, c) ∈ �m×n × �m × �n , except for a set of measure∫
�m×n µ(S(A)c) dA � 0.
Concerning openness, however, we have to be careful: If for any fixed A a property holds for any (B, c) from

an open set S ⊂ �m+n , then this property need not hold for an open set in P. A counterexample is given in
Example 1.
Throughout the paper we assume that n ≤ m holds. For the case n > m the genericity results can be summa-

rized by the following statement: Generically for the case n > m
• the dual (D) is infeasible and
• the primal program (P) is unbounded.
So in this case strong duality with vP � vD �+∞ holds generically. To prove this, we use the well-known fact

that (see, e.g., Jongen et al. [22, Example 7.3.23])

a matrix U ∈ �N×M with N ≥M generically has full rank M. (2)

We first show that generically with respect to (A, c), the system

c � ATY has no solution Y ∈ �m . (3)

Indeed, by (2) the matrix U :� [AT c] ∈�n×(m+1) generically has rank m + 1 which is why Uz � 0 does not allow a
nonzero solution. This means that generically the system in (3) and hence problem (D) are infeasible.
To show that (P) is generically unbounded, we consider the system Ax � B, cT x � τ, any solution of which

yields a primal feasible x with objective value τ. Again, using (2), generically, the matrix U :�
[A

cT

]
∈�(m+1)×n has

full rank m + 1, so Ax � B, cT x � τ is solvable for any τ and B.

3. Genericity of Slater’s Condition and Strong Duality
It is well known that strong duality always holds in linear programming (unless both programs are infeasible),
but strong duality need not hold in general conic programming. However, as we shall see, strong duality is a
generic property.
In this section we give an independent easy proof of the fact that in conic programming the Slater condition

holds generically. To do so we only make use of the result that the boundary of a convex set has measure zero.
By applying well-known duality theorems, this leads to an alternative proof of the genericity result for strong
duality in Schurr et al. [33]. We also summarize other related results from Borwein and Moors [5] and Schurr
et al. [33].

3.1. Genericity of Slater’s Condition
In this section we provide a purely topological proof of the genericity of Slater’s condition.

Definition 1. We say that Slater’s condition holds for (P) if there exists a feasible x such that X :� B−Ax ∈ intK.
Analogously, we say that Slater’s condition holds for (D) if there exists a feasible Y, i.e., ATY � c, such that
Y ∈ intK∗.

Roughly speaking, Slater’s condition says that the feasible set of the problem is not entirely contained in the
boundary of the convex cone. For this reason, it is intuitive that the proof of a genericity result should be based
on properties of this boundary. More specifically, we will use the fact that the boundary of a convex set has
measure zero.

Lemma 1. Let T be a full-dimensional closed convex set in �s . Then the boundary of T has s-dimensional Lebesgue
measure zero.

Proof. For the sake of completeness we repeat here the elegant proof of Lang [23]. Consider an open ball Bε(p)
with center p ∈ bdT and radius ε > 0. Since there exists a hyperplane supporting the convex set T at p, at least
half of the ball does not contain points of T. Therefore,

lim sup
ε↓0

µ(T∩Bε(p))
µ(Bε(p))

≤ 1
2 .
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On the other hand, Lebesgue’s density theorem (see, e.g., Faure [10]) says that for almost all points p of the
Lebesgue measurable set T we have that

lim
ε↓0

µ(T∩Bε(p))
µ(Bε(p))

� 1.

This immediately implies that bdT has measure zero. �
The next theorem shows that Slater’s condition is indeed generic.

Theorem 1. Let A ∈ �m×n be given arbitrarily. Then there exists a generic subset S1 ⊂ �n (open with complement of
measure zero) such that for any c ∈ S1 precisely one of the following alternatives holds for the corresponding problem
instance of (D):
(1) either the feasible set of (D) is empty, i.e., {Y ∈K∗ | ATY � c} ��, or
(2) Slater’s condition holds for (D), i.e., {Y ∈ intK∗ | ATY � c} ,�.

An analogous result holds for the primal program (P); i.e., there is a generic subset S̃1 of �m such that for any B ∈ S̃1
either the corresponding program (P) is infeasible or (P) satisfies the Slater condition.
Proof. For the case of program (D), note that the set S :� {c � ATY | Y ∈K∗} ⊂ �n is a convex set with dim S �:
k ≤ n. We define S1 :� int S ∪ (�n\ cl S) and show that this is the generic set we are looking for. As a union of
two open sets, S1 is clearly open. Note that for c ∈ �n\ cl S the alternative (1) holds; i.e., the feasible set of (D)
is empty. If k < n, i.e., A does not have full rank n, then the statement is true with int S ��. So we can assume
dim S � n, and since by Lemma 1 the set bd S ��n\S1 has measure zero, it is sufficient to show that for c ∈ int S
the Slater condition holds (alternative (2)).
So let c ∈ int S be given. By assumption, there exists some Y0 ∈ K∗ for which ATY0 � c holds. Consider the

affine space Y0 +ker AT . If Y0 +ker AT ∩ intK∗ ,�, then Slater’s condition holds and we are done.
So assume by contradiction that Y0 + ker AT ∩ intK∗ ��. This implies in particular that Y0 ∈ bdK∗, and since

intK∗ , �, there exists a separating hyperplane with normal vector N such that (see Rockafellar [29, Theo-
rem 11.2])

〈N,Y〉 ≥ 〈N,Y0〉 for all Y ∈K∗ and N ⊥ ker AT . (4)
Since c ∈ int S, there exists an open neighborhood �,Nε(c) ⊂ int S of c, and by continuity of the mapping ATY
there exists an open neighborhood � , Nδ(Y0) of Y0 such that ATNδ(Y0) ⊂ Nε(c). The separating hyperplane
divides Nδ(Y0) into two parts. Take a point Y1 ∈ Nδ(Y0) such that 〈N,Y1〉 < 〈N,Y0〉. By construction, c1 :� ATY1 ∈
Nε(c) ⊂ int S. So there must exist a pre-image Ỹ1 ∈K∗ with AT Ỹ1 � c1, i.e., Ỹ1 � Y1 + Ỹ0 with Ỹ0 ∈ ker AT . Putting
it all together using 〈N, Ỹ0〉 � 0 and (4), we obtain

〈N,Y0〉 ≤ 〈N, Ỹ1〉 � 〈N,Y1 + Ỹ0〉 � 〈N,Y1〉 < 〈N,Y0〉,

a contradiction. So the assumption Y0 + ker AT ∩ intK∗ � � must be false. This concludes the proof for
problem (D).
For the primal program we proceed as follows. We note that �m allows an orthogonal decomposition

�m
� im A ⊕ ker AT , B � B1 ⊕ B2 for B ∈ �m ,

where B2 is the projection projker AT B of B ∈ �m onto the linear space ker AT . Let Q ∈ �m×m be the matrix
representation of this projection; i.e., B2 �projker AT B �QB. We now consider the convex cone R :�QK. As before,
we have

QB ∈ ker AT\ cl R ⇒ {B −Ax | x ∈ �n} ∩K��
and we can show (with int R relative to ker AT)

QB ∈ int R ⇒ {B −Ax | x ∈ �n} ∩ intK,�.

Here again bd R has measure zero and thus R1 :� int R∪(ker AT\ cl R) is relatively open in ker AT with ker AT\R1
of measure zero in ker AT . Consequently, the set S̃1 :� im A ⊕ R1 is open in �m with �m\S̃1 of measure zero
in �m . By construction, for B ∈ S̃1, precisely one of the two alternatives holds. �
Remark 3. The Slater conditions for (P) and (P0) are clearly equivalent. The genericity result for (D) in Theorem 1
with respect to parameter c can also be translated to the following corresponding result for (D0): Let L be given.
Then there exists a generic subset Q1 ⊂ �m such that for any C ∈ Q1 precisely one of the following alternatives
holds for the corresponding problem instance of (D0):
(1′) either the feasible set of (D0) is empty, or
(2′) Slater’s condition holds for (D0), i.e., {Y | Y ∈ (L⊥ +C) ∩ intK∗} ,�.
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To see this, we proceed as in the second part of the proof of Theorem 1: consider the orthogonal decomposition

�m
�L⊥ ⊕L, C � C1 ⊕ C2 for C ∈ �m .

Let P ∈ �m×m be the matrix representation of the projection projL onto L, and let C2 � PC � projL C. Then as in
the proof of Theorem 1 above, we consider the convex cone S :� PK∗ ⊂L and the set

S1 � int S∪ (L\ cl S),

which is relatively open in L and for which L\S1 has measure zero. Note that for PC ∈ int S the alternative (2′)
holds, whereas for PC ∈ L\ cl S the condition (1′) is true. So the set Q1 � L⊥ ⊕ S1 is the required generic set
in �m .

It is well known (see Rockafellar [30], Schurr et al. [33, Lemma 3.2], Goberna and López [13, Theorem 8.1])
that if for some A,B the problem (P) satisfies the Slater condition, then for all c the strong duality relation
vP � vD holds and, in case vP � vD is finite, the optimal value of (D) is attained. So the genericity of Slater’s
condition in Theorem 1 leads to the following genericity result for strong duality (similar to Schurr et al. [33]):

Corollary 1. Let A ∈�m×n be given arbitrarily. Then with the generic subset S̃1 ⊂�m from Theorem 1 one of the following
holds for B ∈ S̃1:

• either the feasible set of (P) is empty,
• or (P) is strictly feasible and for any c ∈ �n we have vP � vD , meaning that if (D) is infeasible, then vP �

vD �+∞, and if (D) is feasible, then vP � vD is finite and the minimum value of (D) is attained.
An analogous result holds for the dual program (D) with respect to c ∈ S1 ⊂ �n (with S1 from Theorem 1).

By combining the results for the primal and dual programs we obtain:

Corollary 2. Let A ∈�m×n be given arbitrarily. Then with the generic subsets S1 ⊂ �n , S̃1 ⊂ �m from Theorem 1, for any
(B, c) ∈ S̃1 × S1 precisely one of the following alternatives holds:

(1) Both feasible sets of (P) and (D) are empty.
(2) Precisely one of the feasible sets of (P) or (D) is empty and vP � vD �±∞.
(3) Both (P) and (D) are feasible and for both problems the optimal value is attained with vP � vD .

A corresponding result holds for (P0), (D0) with respect to to a generic set S̃1 × Q1 ⊂ �m × �m of parameters (B,C)
(cf. Remark 3).

The statement in Corollary 2 could be called genericity of universal strong duality with respect to parameters
(B, c) for any fixed A.

We next compare our result with that in Schurr et al. [33], where the authors take A as a parameter, and they
define: For given A, universal duality is said to hold (with respect to A), if for any (B, c) the equality vP � vD
holds for (P) and (D) (see also Section 3.2). They prove the following:

Theorem 2 (see Schurr et al. [33, Theorem 4.5, Theorem 4.7]). There is a generic subset S ⊂ �m×n such that for any
A ∈ S universal duality holds.

The main difference between this statement and ours above is that by taking A as a parameter in the generic
set S of Theorem 2, the case that both primal and dual are infeasible is excluded. In our approach, for fixed
A we cannot exclude generically in (B, c) the infeasibility of both programs (P) and (D) simultaneously. We
illustrate this difference between our result in Corollary 2 and the result from Schurr et al. [33] as stated in
Theorem 2 by an example.

Example 1. Consider the LP:

(P) max cT x s.t. B −Ax ≥ 0 with c �
(
−1
1

)
, B �

©«
0
−1
0

ª®¬ , A �
©«

0 1
0 −1
1 0

ª®¬ .
(D) min BTY s.t. ATY � c , Y � (y1 , y2 , y3) ≥ 0.

The primal (resp. dual) feasibility conditions are

x2 ≤ 0, x2 ≥ 1, x1 ≤ 0 resp. y1

(
0
1

)
+ y2

(
0
−1

)
+ y3

(
1
0

)
�

(
−1
1

)
, yi ≥ 0.
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Both programs are infeasible, and for fixed A this property is stable with respect to small perturbations of
(B, c). So in Corollary 2, the alternative (1) cannot be excluded generically. Recall, however, that according to
the genericity concept in Theorem 2 (where A is the parameter) a generic perturbation of the matrix A above
makes either (P) or (D) feasible.

Moreover, note that in Corollary 2 (in contrast to Theorem 2) also the existence of solutions is assured in
case (3). We also emphasize that the proof of our genericity statement is more elementary than the proof in
Schurr et al. [33], which is based on a deep result (see Schurr et al. [33, Lemma A.1]) from geometric measure
theory.

The notion of universal duality goes back to Duffin et al. [9]. His results allow another approach to genericity
of strong duality, which is briefly discussed in the next section.

3.2. Genericity Results Based on Generic Closedness of the Image MK
It was brought to our attention by Warren Moors that an approach from Borwein and Moors [5] allows another
way to prove genericity of strong duality for conic programs. We briefly outline this alternative: It is well known
that for M ∈ �k×m the linear image MK :� {MY | Y ∈K} of a polyhedral closed convex cone K ⊂ �m is closed.
This is not generally true for nonpolyhedral cones (see, e.g., Rockafellar [29, pp. 73–74] for a counterexample).
In Borwein and Moors [5] the following genericity statement has been shown.

Lemma 2 (see Borwein and Moors [5, Theorem 2]). Let k ∈ � and let K ⊂ �m be a closed convex cone. Then the set

S1 :��k×m\ int{M ∈ �k×m |MK is closed}

is σ-porous.

Note that σ-porosity of S1 implies that S1 has Lebesgue measure zero and is the countable union of nowhere
dense sets (see Borwein and Moors [5]).
The following result for SIP, by Duffin et al. [9], provides the connection between strong duality and closedness

of images MK. We formulate these statements in terms of our problems (P) and (D).
Under the assumption that (P) is feasible, in Duffin et al. [9] the data (A,B) ∈ �m×n × �m are said to yield

primal uniform LP duality for (P) and (D), if for any c ∈ �n either FD �� and vP � vD �∞ or vP � vD <∞ and
a solution of (D) exists.

Lemma 3 (See Duffin et al. [9, Theorem 3.2] and Hettich and Kortanek [19, Theorem 6.14]). Let (A,B) ∈ �m×n × �m be
such that (P) is feasible. Then the data (A,B) yield primal uniform LP duality if and only if the cone

C :� cone
({(

AT

BT

)
Y

���� Y ∈K∗
}
∪ em+1

)
is closed. Here, em+1 :� (0, . . . , 0, 1)T is a unit vector in �m+1.

Under the assumption that (P) is feasible, it is easy to show that

if the cone C1 :�
{(

AT

BT

)
Y

���� Y ∈K∗
}
is closed, then C is closed. (5)

To see this, we note that the cone C2 :� cone(em+1) is closed and apply a well-known result, e.g., in the form
Goberna and López [13, Theorem A4]:

Let C1 ,C2 be closed cones with C1 ∩−C2 � {0}. Then C1 +C2 is closed.

To show that under the assumption FP ,� the relation C1∩−C2 � {0} holds, let us assume to the contrary that
there exists an element 0, Z ∈C1∩−C2. This means that there exists some Ỹ ∈K∗ such that Z :�

(AT

BT

)
Ỹ �−αem+1

with α > 0; i.e., AT Ỹ � 0 and BT Ỹ � −α < 0. But for any x̄ ∈ �n we then obtain (B −Ax̄)T Ỹ � BT Ỹ < 0, i.e., (P) is
not feasible, a contradiction.
By combining Lemma 3 and (5) with Lemma 2 we obtain:

Theorem 3. The set of parameters (A,B) ∈ �m×n ×�m with nonempty primal feasible set FP where the (primal) uniform
LP-duality fails is σ-porous in �m×n ×�m . So, in particular, uniform LP duality as defined above is weakly generic in the
space of parameters (A,B) ∈ �m×n ×�m .

A corresponding dual genericity result holds with respect to parameters (AT , c).
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4. Genericity Analysis for Other Properties
In this section we analyze the generic behavior of conic programs with respect to the uniqueness, nondegeneracy,
and strict complementarity of solutions. Note that even for linear programs, these properties are not always
fulfilled. But it appears that these properties hold for almost all instances of conic programs. We emphasize that
the stability (openness of the “set of nice instances”) cannot be answered generally without extra assumptions
on the cone. This aspect will be addressed in Section 5.
Trying to derive the genericity results using techniques that are as basic as possible, we show in the next

section how the analysis of uniqueness can be based on the classical result that a convex function is differentiable
almost everywhere. The weak genericity results for nondegeneracy and strict complementarity in Section 4.2
require deeper results from geometric measure theory.

4.1. Analysis of Uniqueness of Solutions
We now study the uniqueness of solutions of conic programs. Weak genericity of uniqueness can be proven, as
in Pataki and Tunçel [28], by using a result from geometric measure theory for convex bodies (Schneider [31,
Theorem 2.2.9]). Alternatively, we will derive this result by using the fact that convex functions are differentiable
almost everywhere. This approach was brought to our attention by Alexander Shapiro (personal communica-
tion). It is based on a duality theory developed in Rockafellar [30]. Similar results have been proven for SIP
programs in Goberna and López [12]. We will make use of these results, directly formulated in terms of conic
programs.

In this section we consider for fixed A,B our primal problem P� P(c), as the linear SIP (see Section 2)

(P(c)) max cT x s.t. (B −Ax)TY ≥ 0 for all Y ∈ Z :�K∗ ,

depending on c as a parameter, with optimal value function vP(c), feasible set FP(c) (not depending on c), and
the set S∗P(c) :� {x ∈ FP(c) | cT x � vP(c)} of optimal solutions. The dual (D(c)) has corresponding optimal value vD(c)
and feasible set FD(c) , etc.
We introduce the cone M :� {a(Y)� ATY | Y ∈K∗}, which will play a crucial role.

Remark 4. In semi-infinite optimization, the condition c ∈ intM is just the standard Slater condition for (SIPD),
and it is not difficult to see that this condition is equivalent to the Slater condition for (D) in Definition 1 (see
Ahmed et al. [1, Lemma 3.1]).

In the following, DP :� {c ∈ �n | vP(c) < ∞} denotes the effective domain of the function vP(c) and ∂vP(c) its
subdifferential with respect to c.

Lemma 4 (see Goberna and López [12]). Let B and A be such that FP(c) ,�. Then the following holds:
(1) vP(c) is a proper closed convex function of c on its effective domain DP.
(2) ∂vP(c) �S∗P(c).
(3) S∗P(c) is nonempty and compact if and only if c ∈ intM.

Proof. See Goberna and López [12, p. 262] for (1) and Goberna and López [12, Theorem 2.1] for (2) and (3). �

Using Lemma 4 and Rademacher’s theorem for convex functions we can now prove the weak genericity of
uniqueness in CP and obtain at the same time an alternative proof for the genericity of the Slater condition.

Theorem 4. Let A and B be such that FP(c) ,�. Then for almost all c ∈�n , one of the following alternatives holds:
• either FD(c) ��,
• or the Slater condition holds for (D(c)) and the optimal solution of (P(c)) is unique.

A corresponding dual result holds with respect to parameter B (for fixed A, c).

Proof. Let A,B be such that FP(c) , �. Let DP, with boundary bdDP, be the convex effective domain of the
convex function vP(c) from Lemma 4. We distinguish the following three cases for c ∈ �n :

(i) c ∈ bdDP , (ii) c < clDP , (iii) c ∈ intDP.

By Lemma 1, case (i) occurs on a set of measure zero in �n . To prove the theorem, we show that in case (ii)
(resp. (iii)), the first (resp. second) alternative of the theorem holds. Indeed for case (ii), in view of the relation

FD(c) ,� ⇒ c ∈DP ,

we get FD(c) �� and the first alternative holds.



Dür, Jargalsaikhan, and Still: Genericity Results in Linear Conic Programming—A Tour d’Horizon
Mathematics of Operations Research, 2017, vol. 42, no. 1, pp. 77–94, ©2016 INFORMS 85

In case (iii), we use the fact that the convex function vP(c) defined on the open set intDP is differentiable for
almost all c ∈ intDP (see, e.g., Rockafellar [29, Theorem 25.5]). Using Lemma 4(2), this means that for these
values of c the subgradient ∂vP(c) � S∗P(c) � {∇vP(c)} is a singleton. Moreover, in this case, by Lemma 4(3) the
Slater condition holds for FD(c) (cf. Remark 4).
The proof of the dual statement is similar. �
A uniqueness result similar to the uniqueness statement in Theorem 4 can also be found in Bolte et al. [4],

even for more general convex programs.
By combining the statements of Theorem 4 for the primal and dual we obtain:

Corollary 3. Let A ∈ �m×n be given arbitrarily. Then for almost all (B, c) ∈ �m × �n the following holds: If both (P)
and (D) are feasible, then both satisfy the Slater condition and both have unique optimal solutions X̄ and Ȳ.
A corresponding result holds for (P0), (D0) with respect to almost all (B,C) ∈ �m ×�m .

4.2. Nondegeneracy and Strict Complementarity
We now discuss nondegeneracy and strict complementarity of optimal solutions in conic programming. It
has been shown by Pataki and Tunçel [28] that both properties hold for almost all problem instances. For
completeness we summarize their results, which are formulated in terms of the conic programs in self-dual
form (P0), (D0), as described in Section 2. Note that in Pataki and Tunçel [28] these results have been proven
under the assumption that the problems are gap free. We emphasize that their arguments are completed by the
results in Section 3, which assure (weak) genericity of gap freeness.

We now introduce some notation. Let us denote the minimal face of K containing X and the minimal face
of K∗ containing Y, respectively, by

J(X)� face(X,K) and G(Y)� face(Y,K∗).

Observe that for each feasible X, we have X ∈ rint J(X). For a face F of K, we define the complementary face as
F4 :� {Q ∈ K∗ | 〈Q , S〉 � 0 for all S ∈ F}. Clearly, F4 is a closed convex cone. Moreover, it is not difficult to see
that if X ∈ rint F, then F4 � {Q ∈K∗ | 〈Q , X〉 � 0}. This immediately implies that the complementary face of J(X)
is equivalently given by

J4(X)� {Q ∈K∗ | 〈Q , X〉 � 0}. (6)
Analogous definitions and results apply to G4(Y), the complementary face of G(Y).
Definition 2. The extreme points of FP0

(resp. FD0
) are called primal (resp. dual) basic feasible solutions.

The following characterization of basic solutions is given in Pataki and Tunçel [28, Theorem 1]:
Lemma 5. Let X be feasible for (P0). Then X is a basic feasible solution if and only if

span(J(X)) ∩L� {0}.

A similar condition for the dual program leads to the concept of (primal) nondegeneracy:
Definition 3. A primal feasible solution X is called nondegenerate if

span(J4(X)) ∩L⊥ � {0}. (7)

Nondegeneracy of a dual feasible solution Y is defined analogously.
Definition 4. Optimal solutions X̄ of (P0) and Ȳ of (D0) are called complementary if 〈X̄ , Ȳ〉 � 0, i.e., if Ȳ ∈ J4(X̄).
The solutions X̄ and Ȳ are called strictly complementary, if we have

Ȳ ∈ rint J4(X̄). (8)

Recall that X̄ ∈ rint J(X̄) holds by definition.
The following lemma shows some relations between nondegeneracy, strict complementarity, basic solutions

and uniqueness.
Lemma 6 (see Pataki [27], Pataki and Tunçel [28, Theorem 2]). Let X be an optimal solution of (P0). Then the following
hold.
(a) If X is a unique optimal solution, then X is a basic solution.
(b) If X is nondegenerate, then any complementary solution Y of (D0) must be basic. Moreover, if there is a comple-

mentary solution Y, it must be unique.
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(c) Suppose that Y is a dual feasible solution and X and Y are strictly complementary. Then Y is basic if and only if X
is nondegenerate.

Remark 5. In Pataki and Tunçel [28], a slightly different definition of strict complementarity is given: the optimal
solutions X̄ and Ȳ are called strictly complementary if

X̄ ∈ rint F and Ȳ ∈ rint F4 holds for some face F of K. (9)

It is clear that (8) implies (9). Conversely, let (9) be satisfied. We always have X̄ ∈ rint J(X̄). So X̄ ∈ rint F implies
F4 � J4(X̄) by (6). Therefore, (8) and (9) are equivalent.
In Pataki [27], strict complementarity for X̄ , Ȳ is defined by J4(X̄)� G(Ȳ). It can be shown that this condition

and (8) are equivalent; see the proof of Pataki and Tunçel [28, Theorem 2]. By considering the dual problem,
strict complementarity can similarly be defined as (again, Ȳ ∈ rint G(Ȳ) holds by definition)

X̄ ∈ rint G4(Ȳ). (10)

Neither condition (8) nor (10) implies the other unless K or K∗ is facially exposed, as noted in
Pataki [27, Remark 3.3.2]. For an example of these “asymmetric” definitions of strict complementarity, see Davi
and Jarre [7, Example 1].
Note that not all cones appearing in conic programming are facially exposed: it is well known that the

cone of semidefinite matrices is facially exposed, but the cone of copositive matrices is not (see Dickinson [8,
Theorem 8.22]).

We now sketch the weak genericity result for nondegeneracy and strict complementarity of Pataki and
Tunçel [28]. To prove their result, they consider for fixed L the sets (see Pataki and Tunçel [28, p. 455 and
Proposition 1])

D̄(L) :� {(B,C) | the corresponding problems (P0) and (D0) are feasible with vP0
� vD0

}

and
D(L) :� {(B,C) ∈ D̄(L) | some optimal solutions X̄ , Ȳ of (P0), (D0) are strictly complementary}.

Using a deep result from geometric measure theory, Pataki and Tunçel [28, Theorem 3] derive the following
result.

Lemma 7 (see Pataki and Tunçel [28, Proposition 2]). For fixed L, the set D̄(L)\D(L) has dim(D̄(L))-dimensional
Hausdorff measure zero.

Combining Pataki and Tunçel [28, Theorem 4] with Corollary 2, the result of Pataki and Tunçel can be
formulated as follows:

Theorem 5. Let L be given arbitrarily. Then for almost all (B,C) ∈ �2m the following is true: If the corresponding
programs (P0) and (D0) are both feasible, then there exist unique optimal solutions X̄ of (P0) and Ȳ of (D0). These solutions
are nondegenerate and satisfy the strict complementarity condition.

Proof. Similar to the arguments in Pataki and Tunçel [28, p. 456], we combine several results. For fixed L we
consider the set P0 of instances (B,C) such that the primal and dual are feasible. Note that this set P0 is of full
dimension by Corollary 2. Corollary 3 and Lemma 7 guarantee that for almost all instances in P0 the primal and
dual optimal solutions are unique and strictly complementary (as defined in (8)). Let P0

sc denote this weakly
generic subset of P0. In view of Lemma 6(a), which is also valid for the optimal solution Y of (D0), the dual
optimal solutions of instances in P0

sc are basic, and by Lemma 6(c) the primal maximizers X are nondegenerate.
Note that Lemma 6(c) does not hold for X and Y interchanged unless K is facially exposed (cf. Remark 5).

However, if we define strict complementarity as in (10), then Lemma 6(c) holds for X and Y interchanged. Anal-
ogous to (8) following Pataki and Tunçel [28], one can show that (10) is a weakly generic property. Thus, using
the same arguments, weakly generically at optimal solutions of (D0) the nondegeneracy condition holds. �

Remark 6. With the same projection trick as in Remark 3, the genericity result of Theorem 5 for (P0) and (D0)
can directly be translated to the following statement for the programs in the form (P), (D): Let A ∈ �m×n be
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arbitrary. Then for almost all (B, c) ∈ �n × �m we have that if (P) and (D) are both feasible, then there exist
unique optimal solutions X̄ of (P) and Ȳ of (D). Moreover, X̄ and Ȳ are both nondegenerate and satisfy the
strict complementarity condition.
Note that to assure uniqueness of the solution of (P) in terms of the variable x ∈�n , we have to assume that A

has full rank n. However, recall from (2) that for m ≥ n a matrix A ∈ �m×n generically has full rank n.

4.3. Connection Between Nondegeneracy and Slater’s Condition
We briefly comment on the fact that nondegeneracy implies the Slater condition. We again analyze this for conic
programs of the form (P0). The following is true.

Theorem 6. Let X be a nondegenerate feasible solution of (P0). Then Slater’s condition holds for (P0). An analogous
result is true for the problems (D0), (P), and (D).

Proof. To prove the statement, we will construct an element L ∈ L such that with small α > 0 we have that
X + αL ∈ intK and X + αL is feasible for (P0). To do so, we first note that the nondegeneracy condition L⊥ ∩
span(J4(X))� {0} is equivalent to L+ [span(J4(X))]⊥ ��m . So for X0 ∈ intK there is a representation

X0 � L +Z with L ∈L and Z ∈ [span(J4(X))]⊥.

Fix such an element X0 � L +Z ∈ intK and let S ∈ J4(X)\{0}. Then 〈S,Z〉 � 0, and since X0 ∈ intK, we get

0 < 〈S,X0〉 � 〈S,X0〉 − 〈S,Z〉 � 〈S, L〉.

Let B1 :� {S | ‖S‖ � 1} be the unit sphere in �m . By compactness of B1 and continuity of the linear function 〈L, ·〉,
there exists some ε > 0 such that L satisfies

〈L, S〉 ≥ 2ε for all S ∈ J4(X) ∩B1. (11)

We will show now that for α > 0 small enough we have (X + αL) ∈ (B +L) ∩ intK; i.e., Slater’s condition holds
for (P0). Clearly (X + αL) ∈ B +L since X ∈ B +L and L ∈L. To prove (X + αL) ∈ intK, we have to show that

〈X + αL, S〉 > 0 for all S ∈K∗ ∩B1. (12)

To do so, in view of (11), a continuity argument shows that there exists some δ > 0 such that

〈L, S〉 ≥ ε for all S ∈ J4δ (X) ∩B1 , (13)

where J4δ (X) :� {S ∈K∗ | ‖S − S̄‖ < δ for some S̄ ∈ J4(X)}. Since X ∈K, we have 〈X, S〉 ≥ 0 for all S ∈K∗, and by
the definition of J4(X) in (6) we have that 〈X, S〉 > 0 for all S ∈ (K∗\ J4δ (X))∩B1. By compactness of this set, there
exists some τ such that

〈X, S〉 ≥ τ > 0 for all S ∈ (K∗\ J4δ (X)) ∩B1.

Let µ :�min{〈L, S〉 | S ∈ (K∗\ J4δ (X))∩B1}. We claim that X+αL ∈ intK for all 0< α < τ/|µ|. We have the following
two cases:
If S ∈ (K∗\ J4δ (X)) ∩B1: then 〈X + αL, S〉 � 〈X, S〉 + 〈αL, S〉 ≥ τ+ αµ > 0.
If S ∈ J4δ (X) ∩B1: using 〈X, S〉 ≥ 0 and (13), we have 〈X + αL, S〉 � 〈X, S〉 + 〈αL, S〉 ≥ αε > 0.

By combining these two cases, we have shown that (12) holds, and the result follows. �

For the case of semidefinite programming, it has been shown implicitly in Alizadeh et al. [2, Proof of Theo-
rem 14] that, given L, for almost all B all feasible points of FP are nondegenerate. Note that in Alizadeh et al. [2]
a definition of nondegeneracy is used that is different but equivalent to (7): nondegeneracy is defined in terms
of tranversality conditions for certain tangent spaces. Hence, by applying Theorem 6, it follows for the SDP
case that, given L, for almost all B we have: if FP ,�, then FP has Slater points. This was also established in
Shapiro [34, p. 310].
We wish to mention that in geometric measure theory, transversality results have been proven that—roughly

speaking—assert that weakly generically all intersection points of two convex sets are nondegenerate. For exam-
ple, the following result has been shown in Hug and Schätzle [20].
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Lemma 8 (see Hug and Schätzle [20, Lemma 3.1]). Let K, L ⊂�m be compact convex sets with nonempty interiors. Then
for almost all B ∈ �m (with respect to the Hausdorff measure) the sets K and LB :� B + L intersect almost transversally;
i.e., for all X ∈ bd K ∩ bd LB we have

N(K,X) ∩N(LB ,X)� {0} and N(K,X) ∩−N(LB ,X)� {0}

where N(K,X) denotes the normal cone of K at X.

A similar result is given in Schneider [32, Theorem 2]. In combination with Theorem 6, these results could
also be used to show that nondegeneracy and Slater’s condition hold weakly generically in CP.

4.4. Genericity Results in Linear Semi-Infinite Optimization
In the preceding discussions we have made use of the fact that a conic program can be seen as a special case
of a linear SIP (cf. Sections 3.2 and 4.1). There are many papers dealing with generic properties (in the sense
of density and stability) of semi-infinite problems in the form (SIPP), (SIPD). We refer to Jongen and Zwier [21],
Goberna et al. [17], Goberna and Todorov [15, 16], Goberna et al. [18], and Ochoa and de Serio [26]. In Goberna
and López [14, Chapter 5] readers can find an overview of stability and genericity results for linear semi-infinite
problems.
One might expect that these genericity results for SIP can directly be transferred to CPs, but unfortunately

this is not the case for the following reason.
In the above articles, SIP programs are considered in the form (SIPP) with an infinite, compact index

set Z ⊂ �m . In Jongen and Zwier [21] the problem data (a(Y), b(Y), c) are elements of the space C2(Z)n ×
C2(Z)×�n . In Goberna et al. [17], [18] and Goberna and Todorov [15, 16], the data (a(Y), b(Y), c) are taken from
C(Z)n ×C(Z) ×�n endowed with the norm of uniform convergence

‖(a , b , c)‖ � max
{

max
Y∈Z
‖(a(Y), b(Y))‖∞ , ‖c‖∞

}
.

But if we write CP in the form (SIPP) using (1), then the data (a(Y), b(Y)) are of the special form

a(Y)� ATY, b(Y)� 〈B,Y〉,

which is linear in Y. So the set of conic programs represents only a small subset of the set of all SIP instances,
which is given, e.g., by (a(Y), b(Y), c) ∈ C(Z)n × C(Z) × �n . This subset of conic problems allows much less
freedom for perturbations, so roughly speaking we can say:

• Density results cannot be transferred from the general SIP theory to the special case of CPs.
• Openness results remain valid in the following sense: the sufficient conditions for stability in SIP remain

valid for CPs, but the necessary conditions do not. Typically, the conditions for stability in SIP are too strong
in CPs.
We just note that Goberna and Todorov [16, Theorem 1] gives genericity results (density and openness) for

the special case of finite linear programs.

5. Stability Issues
The results so far do not present full genericity statements; i.e., the results so far do not guarantee stability
with respect to perturbation of the whole set of parameters (A,B, c). As we will show, in general CP, the Slater
condition and strong duality are fully generic properties (in the sense of density and openness). For the other
desirable properties—namely, uniqueness, nondegeneracy, and strict complementarity of solutions—only weak
genericity results (density without openness) have been established.
In smooth finite optimization (see Jongen et al. [22]), the stability of such properties is typically proven by

applying the (smooth) Implicit Function Theorem to an appropriate system of optimality conditions. As we
shall see, this approach can be applied to the special case of LP and SDP. For the latter, we make use of the
fact (shown in Alizadeh et al. [2]) that the set of positive semidefinite matrices of a given rank can locally be
described by smooth manifolds. Similar techniques can be used if the cones K and K∗ are so-called semialgebraic
sets: it is well known that a semialgebraic set allows a complete partition (stratification) of the set into smooth
manifolds (see, e.g., Benedetti and Risler [3, Proposition 2.5.1]). For the sake of completeness we recall that a
set A ⊂ �N is called semialgebraic if A is given as a finite union of sets of the form

{x ∈ �N | pi(x)� 0, i � 1, . . . , k , and q j(x) > 0, j � 1, . . . , s}

with k , s ∈ �, and polynomial functions pi , q j ∈ �[x1 , . . . , xN].
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The theory of semialgebraic sets has been used in Bolte et al. [4] to prove a genericity result for primal unique-
ness. However, the stability is shown only with respect to the objective vector c as parameter. We formulate one
of their results in terms of our conic program (see Bolte et al. [4, Theorem 5.1]):

Let K be a semialgebraic cone, and let A,B be given such that FP is compact. Then there exists a generic set S ⊂ �n

such that for all c ∈ S the corresponding program (P) has a unique maximizer.

It is not difficult to see that the cones of semidefinite, copositive and completely positive matrices are semi-
algebraic.
However, general cones K may have a much more complicated, nonsmooth structure. So whether in general

CP the properties of uniqueness, nondegeneracy, and strict complementarity are stable (in a generic subset of
the problem set) remains an open problem.
We now establish some full genericity results. By using the stability of Slater’s condition we first prove that

generically strong duality holds in general CP. To that end, we restrict ourselves to the following subset P1 of
CP instances (with fixed K, m ≥ n)

P1 :� {(A,B, c) | the corresponding programs (P), (D) are both feasible}.

Note that this set is of full dimension m · n + m + n. Using results from Section 3 we can prove the following.

Theorem 7. There is a generic subset P1
reg of P1 such that for any (A,B, c) ∈ P1

reg the Slater condition holds for (P)
and (D) and both programs have optimal solutions with vP � vD .

Proof. By Corollary 2 there is a weakly generic subset P1
1 of P1 such that for any (A,B, c) ∈ P1

1 the Slater
condition holds for the corresponding programs (P) and (D). In view of (2), there also exists a generic subset PA
of �m×n such that for any A ∈ PA we have rank A � n (recall m ≥ n). We define the weakly generic subset P1

reg
of P1 by

P1
reg :�P1

1 ∩ (PA ×�m ×�n),

and we show that P1
reg is open. To this end, suppose (Ā, b̄ , c̄) ∈P1

reg. We show that if (A, b , c) is close to (Ā, b̄ , c̄),
then (A, b , c) ∈ P1

reg. By definition, for any (Ā, B̄, c̄) ∈ P1
reg the Slater condition holds for the corresponding pro-

grams (P̄) and (D̄); i.e., there exist x̄ ∈ FP̄ and Ȳ ∈ FD̄ , such that

B̄ − Āx̄ ∈ intK, ĀT Ȳ � c̄ , Ȳ ∈ intK∗ , (14)

and Ā has full rank n. Both Slater conditions in (14) are stable with respect to small perturbations of (Ā, B̄, c̄).
Indeed, for (A,B, c) near (Ā, B̄, c̄) the point x̄ still satisfies the primal Slater condition. Moreover, if we define
Y � Y(A, c) as the unique solution of

min ‖Y − Ȳ‖ s.t. ATY � c ,

then using rank Ā � n it is not difficult to see that Y(A, c) depends continuously on A and c and satisfies
Y(A, c)→ Ȳ for (A, c)→ (Ā, c̄). Thus, for (A, c) close to (Ā, c̄), the vector Y(A, c) lies in the interior of K∗. So the
set P1

reg is an (open) generic subset of P1.
Moreover, by the arguments before Corollary 1, for any (A,B, c) ∈P1

reg both programs (P) and (D) have optimal
solutions and the strong duality relation vP � vD holds. �

Before we give a full stability analysis for the case of SDP, we consider linear programs as an example.
Stability analysis for LP: Consider the pair of primal-dual LP’s

(P) max cT x s.t. X :� B −Ax ∈ �m
+

(D) min〈B,Y〉 s.t. ATY � c , Y ∈ �m
+

for instances Q :� (A,B, c) with A of full rank n. Again, let P1 denote the set of LP instances Q such that
the corresponding programs (P) and (D) are both feasible. In view of Theorem 5 and Remark 6, there exists a
weakly generic subset P1

reg ⊂P1 of instances Q such that the primal and dual optimal solutions X̄ , Ȳ of (P), (D)
are unique, nondegenerate, and strictly complementary. To show stability, i.e., openness of P1

reg, let Q̄ :� (Ā, B̄, c̄)
be an element of P1

reg with solutions X̄ , Ȳ. Let us denote the active index set Ī � {i ∈ {1, . . . ,m} | X̄i � 0}, its
complement ĪC � {i ∈ {1, . . . ,m} | X̄i > 0}, and L̄ :� span{Ā j | j � 1, . . . , n}, where Ā j is the jth column of Ā. It
follows that

J(X̄)� cone{ei | i ∈ ĪC} � G4(Ȳ), G(Ȳ)� cone{ei | i ∈ Ī} � J4(X̄).
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The nondegeneracy condition for X̄ resp. Ȳ reads

L̄
⊥ ∩ lin J4(X̄)� {0} resp. L̄∩ lin G4(Ȳ)� {0}. (15)

The strict complementarity condition means that Ȳi � 0 holds if and only if i ∈ ĪC . From (15) we deduce | Ī | ≤ n,
resp. | ĪC | ≤ m − n and thus, using m � | Ī | + | ĪC | ≤ m − n + n � m, we find | Ī | � n. Moreover, the condition
L̄∩ lin G4(Ȳ)� L̄∩ lin{ei | i ∈ ĪC} � {0} implies that the matrix(

ĀT

eT
i , i ∈ ĪC

)
and thus the n × n-matrix Ā Ī :� ([Ā1]Ī , . . . , [Ān]Ī) is nonsingular (where [Ā1]Ī :� ([Ā1] j , j ∈ Ī)T). It finally follows
that for (A,B, c) near (Ā, B̄, c̄) the solutions x (resp. X) of (P) and Y of (D) are given as the solutions of the
systems

BĪ −A Ī x � 0 and AT
Ī YĪ − c � 0, (16)

with Y defined by Yi � [YĪ]i for i ∈ Ī, and Yi � 0 otherwise. These solutions yield unique, nondegenerate, and
strictly complementary optimal solutions X,Y of (P), (D). So we obtain the following (well-known) result.

Theorem 8. There is a generic subset P1
reg ⊂P1 such that for all instances Q � (A,B, c) ∈P1

reg the primal and dual optimal
solutions are unique, nondegenerate, and strictly complementary. Moreover, for any Q̄ ∈P1

reg with primal solution X̄ and
corresponding active index set Ī (with | Ī | � n), there exists a neighborhood N of Q̄ such that for any Q � (A,B, c) ∈ N
the optimal solutions X,Y of the corresponding LP are unique, nondegenerate, strictly complementary, and given as the
solution of the system (16).

Stability analysis for SDP: We now study the stability of uniqueness, nondegeneracy, and strict complemen-
tarity for SDP, i.e., for the case K � S+

k � {X ∈ Sk | X is positive semidefinite} and Ai ∈ Sk ≡ �m with m �
1
2 ·

k(k + 1). Since we will make use of results in Alizadeh et al. [2], we consider SDP in the form

(P0) max〈C,B〉 − 〈C,X〉 s.t. X :� B −
n∑

i�1
xiAi ∈S+

k

(D0) min〈B,Y〉 s.t. Y :�
m−n∑
j�1

y jA
⊥
j +C ∈S+

k

(17)

as problems depending on the parameter Q :� ({Ai}n
i�1 ,B,C) ∈ (Sk)n+2 (with m ≥ n). We can again assume

that the matrices Ai , i � 1, . . . , n, are linearly independent, which is a generic condition according to (2), and
that A⊥j , j � 1, . . . ,m − n is a basis of the orthogonal complement of span{Ai}n

i�1.
For completeness we sketch the proof of the weak genericity results in Alizadeh et al. [2]. However, we present

the arguments in a more explicit form, which will enable us to apply the Implicit Function Theorem to establish
stability, i.e., full genericity.

We start by collecting some well-known facts from differential geometry.
(1) Let f be a function in C1(�q ,�s). Then 0 ∈ �s is called a regular value of f if

∇ f (x) has (full) rank s for all x such that f (x)� 0.

(2) (See, e.g., Jongen et al. [22, Remark 3.1.5].) A set M ⊂ �s is called a Cr-manifold of codimension cd
(resp. dimension s − cd) with 0 ≤ cd ≤ s, if for any x̄ ∈M there exist a neigborhood Nx̄ and a Cr vector function
h: Nx̄→�cd such that ∇h(x) has rank cd for all x ∈ Nx̄ and

x ∈ Nx̄ is in M if and only if h(x)� 0.

(3) Let f : �q → �s be a C1 function and M ⊂ �s a manifold of codimension cd , locally (in N ⊂ �q) defined
by h(y) � 0 with a C1-function h: N→ �cd . Then we say that f is transversal to M (cf. Jongen et al. [22,
Theorem 7.3.4]) if

∇ f (x)[�s]+T f (x)M ��s holds for all x with f (x) ∈M, (18)

where T f (x)M is the tangent space to M at f (x). By Jongen et al. [22, Remark 7.3.5] an equivalent formulation
of (18) is (with the defining equations h(y)� 0 for M)

∇h( f (x)) has full rank cd for all x with f (x) ∈M. (19)
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The following is a useful generalization of the Sard Theorem (see, e.g., Zeidler [36, Proposition 78.10] for a
proof).
Theorem 9 (Parametric Sard Theorem). Let Q ⊂ �q and P ⊂ �p be open sets and let h: Q × P ⊂ �q × �p → �s with
(x , y) 7→ h(x , y) be a Cr mapping with r >max{0, q − s}. If 0 ∈ �s is a regular value of h, then for almost all y ∈ P the
value 0 is a regular value of the function hx(x) :� h(x , y).
We now introduce the relevant functions and manifolds for the genericity results. It is well known (see, e.g.,

Jongen et al. [22, Example 7.3.24]) that for any s with 0 ≤ s ≤ k, the set

Ws :� {X ∈Sk | rank X � s}

is a C∞ manifold in Sk of codimension cd �
1
2 (k +1− s)(k− s). Let this manifold locally be defined by the system

K(X)� 0.
In Alizadeh et al. [2, Lemma 22] it has been proven that for any r, s with 0 ≤ r, s and 0 ≤ r + s ≤ k, the set

Wr, s :� {(X,Y) ∈Sk ×Sk | rank X � s , rank Y � r, 〈X,Y〉 � 0}

is a smooth C∞ submanifold of Sk ×Sk with dim Wr, s � m − 1
2 (k + 1− r − s)(k − r − s) and thus with codimension

cd �m+
1
2 (k+1− r− s)(k− r− s) where, again, m �

1
2 k(k+1). Consider a pair (X̄ , Ȳ) ∈Wr, s such that X̄ ∈S+

s , Ȳ ∈S+

r .
By continuity of the eigenvalues for (X,Y) close to (X̄ , Ȳ), the pair (X,Y) is in Wr, s if and only if (X,Y) ∈W+

r, s
where

W+

r, s :� {(X,Y) ∈S+

k ×S+

k | rank X � s , rank Y � r, 〈X,Y〉 � 0}.
So the set W+

r, s is a manifold of the same codimension cd . This means that with locally defined smooth functions
H (with H(X,Y) ∈�cd ) we have (X,Y) ∈W+

r, s if and only if H(X,Y)� 0. Note also that for (X,Y) ∈W+

r, s the relation
〈X,Y〉 � 0 implies X ·Y � 0. So the condition r + s ≤ k must hold.
Now for x ∈ �n , y ∈ �m−n and an SDP instance Q :� ({Ai}n

i�1 ,B,C) we define the following mappings, which
appear in (17):

F(x ,Q) :� B −
n∑

i�1
xiAi , G(y ,Q) :� C +

m−n∑
j�1

y jA
⊥
j . (20)

For parameters Q � ({Ai}n
i�1 ,B,C) in a sufficiently small neighborhood of Q̄ � ({Āi}n

i�1 , B̄, C̄) we can assume that
the orthogonal complement {A⊥j } j�1,...,m−n depends at least C1 smoothly on the parameters {Ai}n

i�1. Indeed, we
obtain the {A⊥j }’s by a smooth Gram-Schmidt orthogonalization process (to compute {Ā⊥j }m−n

j�1 ). So the functions
F(x ,Q) and G(y ,Q) can be seen as smooth functions of all parameters.
With these preparations we can prove the following full genericity result for SDP.

Theorem 10. There is a generic subset P1
reg of the set

P1
� {({Ai}n

i�1 ,B,C) | the corresponding problems (P0) and (D0) are both feasible} ⊂ (Sk)n+2

of SDP instances such that the following holds. For any Q ∈ P1
reg there exist unique, nondegenerate, and strictly comple-

mentary solutions x , y (or X,Y) of (P0), (D0). Moreover, if Q̄ ∈P1
reg is such that the corresponding (unique, nondegenerate,

strictly complementary) solutions x̄ , ȳ (or X̄ , Ȳ) of (P0), (D0) have rank X̄ � s, rank Ȳ � r with r + s � k, then there exists
a nonempty open neighborhood N of Q̄ such that for any Q ∈ N the corresponding SDP programs (P0) and (D0) have
unique, nondegenerate, strictly complementary solutions x(Q) ≈ x̄ , y(Q) ≈ ȳ (or (X(Q),Y(Q)) ≈ (X̄ , Ȳ)) with the same
ranks; i.e., rank X(Q)� s and rank Y(Q)� r.
Proof. We first sketch the proof of the weak genericity result as in Alizadeh et al. [2]. Let P1

0 denote the weakly
generic subset of P1 such that for all Q ∈ P1

0 optimal solutions X,Y of (P0), (D0) exist with 〈X,Y〉 � 0 (see
Corollary 2).
For fixed r, s with 0 ≤ r + s ≤ k, we now consider the system of cd equations H(X,Y) � 0, which (locally near

some solution x̄ , ȳ of (P0), (D0)) define the manifold W+

r, s of codimension cd � m +
1
2 (k + 1− r − s)(k − r − s). With

F,G as in (20), we introduce the equations

H̃(x , y ,Q) :� H(F(x ,Q),G(y ,Q))� 0.

Let in the sequel ∇z f (z , y) denote the partial derivative of f with respect to the variable z. Since the derivative
∇B,C(F(x ,Q),G(y ,Q)) has full rank 2m, the derivative

∇H̃(x , y ,Q)�∇H(F(x ,Q),G(y ,Q)) · ∇(F(x ,Q),G(y ,Q))
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has full rank cd for all x , y ,Q with (F(x ,Q),G(y ,Q)) ∈W+

r, s . By the parametric Sard Theorem, for almost all Q
and for the function H̃x , y(x , y) :� H̃(x , y ,Q) we have that

∇H̃x , y(x , y)�∇(x , y)[H(F(x ,Q),G(y ,Q))]
has full rank cd for all x , y with (F(x ,Q),G(y ,Q)) ∈W+

r, s .
(21)

Note that r + s < k implies cd > m, and with (x , y) ∈ �m the matrix ∇(x , y)[H(F(x ,Q),G(y ,Q))] cannot have
rank cd . So for r + s < k, the condition (21) means that for almost all Q there is no (x , y) ∈ �m such that
(F(x ,Q),G(y ,Q)) ∈W+

r, s . For r + s � k, strict complementarity holds for all feasible pairs (X,Y) ∈W+

r, s . Taking
into account all finitely many combinations r, s with r + s ≤ k (recall that k is fixed), we have proven that there
is a weakly generic subset P1

1 of P1 such that for all Q ∈P1
1 any complementary solutions X,Y of (P0), (D0) are

strictly complementary.
For the weak genericity of primal nondegeneracy, we also proceed similar to Alizadeh et al. [2, Proof of

Theorem 14]. Given s with 0 ≤ s ≤ k we consider the set Ws above and instances Q with primal feasible X �

F(x ,Q) in Ws . With the linear independent system of cd equations K(X)�0, which locally define the manifold Ws
of codimension cd �

1
2 (k + 1− s)(k − s), we thus consider x ,Q such that

K̃(x ,Q) :� K(F(x ,Q))� 0.

Again, since ∇BF(x ,Q) has full rank m (cf. (20)), the derivative ∇F(x ,Q) has full rank m for all x ,Q and thus
(in view of the definition of a manifold) ∇K(X) has full rank cd �

1
2 (k + 1− s)(k − s) for X ∈Ws . We find

∇K̃(x ,Q)�∇K(F(x ,Q)) · ∇F(x ,Q) has full rank cd for all x ,Q with F(x ,Q) ∈Ws .

The parametric Sard Theorem implies that for almost all Q we have for the function K̃x(x) :� K̃(x ,Q) that

∇K̃x(x)�∇x[K(F(x ,Q))] has full rank cd for all x with F(x ,Q) ∈Ws . (22)

With (18) and (19), this means that for almost all Q the function F(x ,Q) is transversal to the manifold Ws , so
that for almost all Q we have

∇xF(x ,Q)[Rn]+TF(x ,Q)Ws �Sk for all x with F(x ,Q) ∈Ws . (23)

Since ∇xF(x ,Q)[�n] � span{{Ai}n
i�1} this condition is just the primal nondegeneracy condition of Alizadeh

et al. [2, (18)]. (Note that our primal is the dual in Alizadeh et al. [2] and the nondegeneracy condition in
Alizadeh et al. [2] is different but equivalent to the nondegeneracy relation in our paper.) Again by considering
all possible s with 0 ≤ s ≤ k, we obtain a weakly generic subset P1

2 of SDP instances such that for all Q ∈ P1
2,

all primal feasible solutions are nondegenerate. The same can be done for the dual to obtain a set P1
3 of SDP

instances such that for all Q ∈ P1
3, all dual feasible solutions are nondegenerate. Note that if the primal and

dual solutions are nondegenerate, by Lemma 6(b) the optimal solutions must be unique. So by intersecting the
weakly generic sets, P1

reg :� ⋂
i�0, 1, 2, 3 P

1
i , we have constructed a weakly generic subset P1

reg of P1 such that for
any Q ∈P1

reg there exist unique, nondegenerate, and strictly complementary solutions x , y (or X,Y) of (P0), (D0).
We now show the stability of these nice properties, i.e., openness of P1

reg. This will be done by applying the
Implicit Function Theorem to an appropriate system of equations.
To do so, let Q̄ :� ({Āi}n

i�1 , B̄, C̄) be a given instance in P1
reg. So x̄ , ȳ (or X̄ , Ȳ) are unique, nondegenerate, strictly

complementary solutions of the corresponding SDP pair (P0) and (D0) with rank X̄ � s, rank Ȳ � r, r + s � k
and (X̄ , Ȳ) ∈W+

r, s , where X̄ � F(x̄ , Q̄) � B̄ −∑n
i�1 x̄iĀi , and Ȳ � G( ȳ , Q̄) �∑m−n

j�1 ȳ jĀ⊥j + C̄. By the discussion above
(see (21)), the derivative

∇(x , y)[H(F(x̄ , Q̄),G( ȳ , Q̄))] has full rank cd � m (24)

at (F(x̄ , Q̄),G( ȳ , Q̄)) satisfying H(F(x̄ , Q̄),G( ȳ , Q̄)) � 0, a system of m equations. Locally near (x̄ , ȳ , Q̄) we con-
sider again the system

H̃(x , y ,Q) :� H(F(x ,Q),G(y ,Q))� 0 (25)

in the variables (x , y ,Q). By applying the Implicit Function Theorem to (25) and taking into account (24), we
see that for Q ≈ Q̄ there exists a unique C∞-solution function x(Q), y(Q) of the system

H̃(x(Q), y(Q),Q)� 0.
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By construction, these solutions x(Q), y(Q) define strictly complementary optimal solutions of the programs (P0)
and (D0) with respect to the data Q ≈ Q̄ with rank F(x(Q),Q) � s and rank G(y(Q),Q) � r. So we have proven
the stability of strict complementarity.
To see that nondegeneracy of the solutions is stable we take an instance Q̄ ∈P1

reg with primal solution X̄ �X(Q̄)
as above. By the previous discussion (see (22)) with the defining equation K(X) � 0 for the manifold Ws of
codimension cd �

1
2 (k − s + 1)(k − s), we have that

∇x[K(F(x̄ , Q̄))] has full rank cd .

But then, by continuity, for Q ≈ Q̄ and x(Q) ≈ x̄ also ∇x[K(F(x(Q),Q))] has full rank cd and (see (22) and (23))
the primal maximizers x(Q) (X(Q)) are nondegenerate.
The same can be done for the dual. So finally we have established the full genericity result for SDP. �

6. Conclusion
In this paper we survey and complete genericity results for general conic programs. The results show that
Slater’s condition and strong duality are fully generic properties of CP; i.e., they hold for almost all problem
instances and are stable at these instances with respect to small perturbations of all problem data. Other nice
properties such as uniqueness, nondegeneracy, and strict complementarity are weakly generic, i.e., they hold
for almost all problem instances. For the special cases of SDP these properties are also stable at these weakly
generic instances. Whether this stability holds in general CP is still an open question.
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