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4.1 ABSTRACT 
In this work, we introduce a number of models for human circadian phase 
estimation in ambulatory conditions using various sensor modalities. Machine 
learning techniques have been applied to ambulatory recordings of wrist actigraphy, 
light exposure, electrocardiograms (ECG), and distal and proximal skin temperature 
to develop ARMAX models capturing the main signal dependencies on circadian 
phase and evaluating them versus melatonin onset times. The most accurate models 
extracted heart rate variability features from an ECG coupled with wrist activity 
information to produce phase estimations with prediction errors of ~30 minutes. 
Replacing the ECG features with skin temperature from the upper leg led to a slight 
degradation, while less accurate results, in the order of 1 hour, were obtained from 
wrist activity and light measurements. The trade-off between highest precision and 
least obtrusive configuration is discussed for applications to sleep and mood 
disorders caused by a misalignment of the internal phase with the external solar and 
social times.  

4.2 INTRODUCTION 
Human beings possess a biological clock which influences most, if not all, 
physiological processes and some behavioral processes. Environmental cues, known 
as zeitgebers, provide input to the circadian system enabling it to entrain to the solar 
cycle. The most influential of these zeitgebers is light [1,2]. The master circadian 
clock is located in the suprachiasmatic nuclei (SCN) of the brain. Because the state 
of the circadian clock cannot be assessed directly in humans, one must rely on 
indirect measures that are closely coupled to the activity of the clock itself. Core 
body temperature (CBT) and melatonin levels are two well-established markers of 
the phase of the SCN [3], each affected by different masking effects. CBT is prone to 
non-circadian variations caused by activity, food intake, sleep, and other 
environmental or behavioral influences, while melatonin concentrations are 
affected by exposure to bright light [4]. Given its relative resilience to masking 
effects, the dim light melatonin onset (DLMO) is the most practical indicator of 
circadian phase which can be measured from saliva samples taken, either at home 
or in a clinic, in the evening with a typical accuracy of 15 minutes [3]. DLMO is 
defined as the time at which the concentration of melatonin (released by the pineal 
gland) reaches a certain threshold, in this case 3pg/ml from saliva samples [5]. With 
at least 10% of all insomnias caused by circadian rhythm misalignments [6], 
determining circadian phase is a valuable tool in diagnosing and scheduling of 
treatment of sleep disorders, mood disorders such as seasonal affective disorder 
(SAD), as well as for fatigue and alertness monitoring. 

Recent circadian phase estimation models have revolved around non-invasive 
physiological signal modalities such as heart rate and skin temperature. The types 
of models have ranged from simple feature-based heuristic decision to more 
complex mathematical algorithms. New circadian phase features, have been 



 
 

69 
 

4 

proposed by Ortiz-Tudela et al. and Bonmati-Carrion et al., consisting of either a 
combination of skin temperature, activity, and posture (TAP) [7], or derived solely 
from wrist skin temperature (WTiO) [8], respectively. Two mathematical models 
have also been recently proposed by Kolodyazhniy in 2011 and 2012, using not only 
six skin temperature locations but also light exposure and motion. The first model 
used linear regressions [9] while the second one incorporated a neural network and 
made no use of motion [10]. Concerning the heart rate signal, in 2013 we presented 
a compact autoregressive moving average with exogenous inputs (ARMAX) model 
which uses inter-beat intervals and light exposure to estimate circadian phase [11]. 
We searched for further improvements of this ARMAX model by using different 
heart rate derived features, skin temperature, and different model structures. In 
some cases we also tried expanding upon previously presented models, and 
applying it to different signal modalities. This has resulted in an array of possible 
models with varying levels of complexity and differing accuracy when compared to 
the gold standard of DLMO. 

4.3 METHODS 

4.3.1 Subjects and Protocol 
Ambulatory ECG, actigraphy, and skin temperature recordings from 16 subjects 
were processed and used in various models to estimate circadian phase. Subjects 
were healthy without pulmonary, cardiac or sleep disorders, not taking medication, 
non-smokers, consumed less than 3 units of alcohol per week, less than 350mg of 
caffeine per day, and had not taken part in shift work or travel across time zones in 
the three months prior to the study. Actigraphy was collected over two weeks, while 
ECG and skin temperature were recorded continuously over 30 hours each week. 
Evening saliva samples were collected in the evenings corresponding to the 
ECG/skin temperature recording periods. See Figure 4.1 for the study protocol. The 
accuracy of the model outputs were compared to DLMO values calculated from 
salivary melatonin levels.  
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Figure 4.1 Study protocol. Two consecutive weeks of actigraphy, two ECG and skin temperature 
recordings for 30 hours each week, and salivary melatonin levels during each of those recording 

periods. 

The ECG recordings were collected with a Nexus-10 (Mind Media BV, Herten, The 
Netherlands) at 256Hz using a standard 3-lead configuration. Activity levels and light 
exposure were measured using an Actiwatch Spectrum (Philips Respironics, 
Pittsburgh, USA). Skin temperature was measured at nine body locations using 
iButtons (Maxim Integrated, San Jose, USA) and shielded from external temperature 
by means of reflective isolating adhesive disks. See Figure 4.2 for sensor placement. 
Saliva was collected using Salivettes (Sarstedt AG&Co, Nuembrecht, Germany) 
under dim light conditions at home, assisted by blue light filtering glasses 
(LowBlueLights, Photonic Development LLC, Walton Hills, USA). The saliva samples 
were analyzed using the Buehlmann Direct Saliva Melatonin RIA (Buehlmann 
Laboratories AG, Schoenenbuch, Switzerland).  

 

Figure 4.2 Sensor placement. Nine iButtons were placed as shown here by solid circles. The ECG was 
measured using the standard configuration shown by striped circles. Activity and light were measured 

at the wrist. 

4.3.2 Model Training and Testing 
For training the prediction models, the inputs consisting of various signal modality 
combinations, have been median-filtered, and normalized. More detailed 
information on the processing of the signals and examples of the time series can be 
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found in [11]. For each subject, the output signal was a cosine wave coded with the 
DLMO as the phase shift, as shown in equation 1.  

 𝑦(𝑡) = cos(2𝜋𝑓𝑡 − 𝜑𝐷𝐿𝑀𝑂)   (1) 

As an extension of the previously proposed ARMAX model which used RR intervals 
and light exposure to obtain the person’s circadian phase [11], spectral and 
temporal heart rate variability (HRV) features calculated in 5 minute windows were 
used as input signals. New ARMAX models were trained and evaluated using the 
HRV signals as replacement signals of the RR intervals. The data was randomly split 
into a training subset and a validation subset.  

To obtain one model for each signal modality combination with a single set of 
coefficients, the best model configuration was found using the leave-one-out-cross-
validation technique on the training subset. The performance of each model was 
then tested using the validation subset consisting of seven subjects. The ARMAX 
model has the following structure: 

 A(q)y(t) = B(q) [

u1(t-nk)

u2(t-nk)
⋯

ui(t-nk)

] + C(q)e(t).   (2) 

Where u(t-nk) are the delayed inputs, y(t) is the output, e(t) is the noise model, and 
the A-C variables are the model coefficients as defined in equations 3-5 below. 

  

 A(q) = 1 + a1q
-1 + a2q

-2 + ⋯+ ana
q-na    (3) 

 B(q) =

[
 
 
 
 
b11 + b12q

-1 + ⋯ + b1nb
q-nb+1

b21 + b22q
-1 + ⋯ + b2nb

q-nb+1

⋯
bi1 + bi2q

-1 + ⋯+ binb
q-nb+1

]
 
 
 
 

   (4) 

 C(q) = 1 + c1q
-1 + c2q

-2 + ⋯+ cnc
q-nc    (5) 

The spectral HRV features explored were the low frequency component (LF, 0.04-
0.15Hz), high frequency component (HF, 0.15-0.4Hz), and the ratio of the two 
(LF/HF). The temporal features of interest were the standard deviation of the normal 
beats (SDNN), the root mean square of successive differences (RMSSD), and the 
proportion of the number of pairs of successive normal beats greater than 50ms to 
the total number of normal beats (pNN50). In addition to the spectral and temporal 
HRV features, new processing schemes of the activity have been implemented that 
emphasize the sleep/wake schedule of the subject.  

To explore alternative signal modalities which can be measured in ambulatory 
conditions, skin temperature from the 9 previously mentioned body locations was 



72 
 

considered. Not only were individual skin temperature locations used, but also the 
distal-proximal gradient (DPG) [12]. These signals were used to train and evaluate 
new ARMAX models of similar structure as the model presented with RR intervals 
and light.  

Bonmati-Carrion et al. have presented a skin temperature feature measured at the 
wrist called the WTiO [8]. We have adapted this feature and applied it to RR 
intervals. When adapting this feature to RR intervals, the 35% threshold proposed 
by Bonmati-Carrion et al. was modified to fit with the rise in the onset of RR 
intervals, which can be expected to be different than for wrist temperature. Through 
statistical learning, the threshold of 40% was found to be the corresponding increase 
onset for RR intervals. Given this threshold and the same methodology presented 
by Bonmati-Carrion et al., the new feature was used to predict the DLMO directly.  

Furthermore, an ARMAX model was derived which used only activity levels and light 
exposure as measured from an Actiwatch Spectrum. Due to the design of the 
protocol, we were able to estimate circadian phase daily over a period of two weeks. 
However, since DLMO was only collected at the beginning of each week, the 
accuracy of the estimates could only be assessed for the days of the saliva sampling.  

Due to signal quality, only 14 of the 16 recordings could be used for extracting the 
temporal and spectral HRV features, as well as the skin temperature signals. The RR 
intervals, activity, and light signals from all 16 recordings could be used for the rest 
of the modeling approaches. 

4.4 RESULTS 
Prediction errors have been defined as the difference between the measured DLMO 
value and the model output, and presented as the mean±standard deviation (SD) in 
minutes. Note that in this case, the mean is a bias or calibration factor, while the SD 
is the real measure of precision which can be expected from each model. A summary 
of all models can be found in Table 4.1. The models are sorted in decreasing order 
of accuracy as defined by the standard deviation of the error.  

Table 4.1 Summary of results 

Input Signals Error Mean±SD (minutes) Pearson’s R P Value 

Activity+HRVHF 17±28 0.847 0.016 

Activity+HRVSDNN 13±32 0.758 0.048 

RR intervals+activity 4±34 0.771 <0.01 

Upper leg+activity 73±38 0.790 0.034 

RR intervals+light 2±39 0.712 <0.01 

Activity+light 21±59 0.525 0.022 

Activity+DPG 19±70 0.839 0.018 

RR intervals onset 98±72 0.511 0.072 
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The use of spectral and temporal HRV features in conjunction with the processed 
activity signal resulted in the most accurate circadian phase estimates. In the 
spectral domain, the high frequency (HF) feature was the most accurate with an 
error of 17±28 minutes (R=0.847, p=0.016), while in the temporal domain the 
standard deviation of normal beats (SDNN) produced the most accurate results with 
an error of 13±32 minutes (R=0.758, p=0.048). Using the modified activity 
processing and RR intervals, the accuracy of the phase estimates presented an error 
of 4±34 minutes (R=0.771, p<0.01).  

The single skin temperature location that produced the most accurate results when 
paired with other modalities such as activity or light, was the temperature at the 
upper leg with an accuracy of 73±38 minutes (R=0.79, p=0.034). Furthermore, the 
DPG signal was used in the same manner and produced estimates with an error of 
19±70 minutes (R=0.839, p=0.018).  

Using only the activity and light inputs with the ARMAX model structure produced 
errors of 21±59 minutes (R=0.525, p=0.022). Lastly, the increase onset feature of RR 
intervals led to prediction errors of 98±72 minutes (R=0.511, p=0.072). This was the 
only model which made no use of the ARMAX structure, as it was directly calculated 
and evaluated in reference to the DLMO.  

4.5 DISCUSSION 
Taking the model with RR intervals and light as the baseline, all newly trained models 
were compared to it in terms of accuracy and invasiveness. All signal modalities 
mentioned here were used both individually and coupled with other modalities. In 
general, it was found that the use of a processed activity trace which emphasizes 
the sleep/wake cycle is a better complimentary signal than light when used in 
conjunction with either heart rate features or skin temperature features. The reason 
for this could be in the way the light data is collected. Combining the fact that the 
light sensor is located at the wrist and that the data was collected during the winter, 
the “sleeve effect” (i.e. shielding of light sensor by clothing) was a common issue. 
The information that is found in a person’s sleep/wake cycle can give a good 
indication of the state of the circadian clock. However, this is mostly true for healthy 
people that are well-entrained. It would be interesting to determine whether the 
combination of a signal modality such as heart rate or skin temperature, coupled 
with the sleep timing information, would still result in accurate phase estimates in 
a pathological population with circadian disruptions.  

The ARMAX models making use of heart rate features as inputs have produced the 
most accurate estimates of circadian phase. Heart rate and HRV features, both 
temporal and spectral, are known to follow a circadian pattern [13]. The use of the 
HF feature from the HRV produced the most accurate results overall. Figure 4.3 
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shows a plot of the measured DLMO versus the predicted DLMO for the validation 
data subset. The HF is said to represent the parasympathetic activation of the 
autonomous nervous system, which is circadian modulated [14]. Furthermore, the 
model which uses RR intervals and activity is not only more accurate than the 
baseline, but also does not present the problem of sensor occlusion. Algorithmically, 
the model is a compact third order ARMAX model, making the implementation 
feasible and transparent. For this setup, the main disadvantage is the need for two 
separate devices: one to measure the ECG and one for actigraphy. Having the heart 
rate and activity measured by a single unobtrusive device, would make this model 
superior to any of the models presented here in every respect.   

 

 

Figure 4.3 Linear regression of the best performing model using activity and the high frequency HRV 
feature with an error in minutes of 17±28 (mean±SD) and a Pearson’s R value of 0.847. The heavy 

solid line shows the linear regression of the phase estimates, the heavy dashed line shows the ideal 
line, the secondary dashed lines show the 30 minute and 1 hour errors departing from the ideal line. 

The use of a heart rate monitor over long periods of time has not been favored due 
to the burden of gel electrodes and wires on the patient. Nonetheless, Holter ECG 
monitors have been standard protocol for numerous diagnostic and monitoring 
procedures, often for days or weeks at a time. The fact that only 24 hours are 
required makes the burden on the patient significantly low. From the various data 
collection studies that we have carried out, no patients have had negative 
experiences or complaints. Nevertheless, the monitoring of heart rate or heart rate 
variability features can be done in an even less invasive manner through the use of 
recently developed optical sensors that do not rely on gel electrodes or straps.  

Another model that resulted in more accurate results used skin temperature 
measurements at the upper leg, together with activity and light information from 
an Actiwatch. Even though the nine skin temperature locations were analyzed 
individually with activity alone, light alone, and the combination of activity and light, 
it was only when considering all three signals together that the better results were 
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achieved. In this context, this approach has the disadvantage that it requires at least 
two devices, an iButton and an actimeter, from which three signal modalities are 
used.  

Perhaps the simplest approach is the model that uses only activity and light 
recordings from an Actiwatch device. This algorithm is able to estimate circadian 
phase on a daily basis from one device using a compact ARMAX model. The accuracy 
is one of the lowest with a standard deviation of the error of 59 minutes. Even 
though the accuracy was not very high, the invasiveness of actigraphy 
measurements is very low compared to other signal modalities. One of the problems 
that can be faced with this kind of measurement is the occlusion of the light sensor, 
typically by the person’s sleeve. However, it has the advantage of only requiring a 
single wrist-worn device for data collection.  

Unfortunately, the RR interval increase onset feature was not able to produce phase 
estimate within one hour. For our applications, circadian estimates with errors 
greater than one hour fail to serve a valuable purpose, regardless of their simplicity 
or practicality. A limitation of the current study is the lack of wrist temperature 
measurements, which, given the recent publications, could have been beneficial.  

4.6 CONCLUSION 
Considering the usual trade-off between simplicity and accuracy, we have presented 
a range of solutions for phase estimation models that can be used in different real-
life scenarios. It is worth noting that all these models rely on only 24 hours of data, 
making them already practical alternatives to previously proposed circadian phase 
estimation approaches.  

We define a model as “simple” when a minimum number of sensors or devices are 
required and when the algorithms can be implemented straightforwardly. The 
simplest model, which still yielded phase estimates within one hour, was the ARMAX 
model based on actigraphy signals. Activity and light exposure were measured using 
an Actiwatch Spectrum, making it non-invasive and in line with current 
chronobiology protocols.  

We evaluated the accuracy of the models by comparing the model output to the 
DLMO as reference. The standard deviation of the differences gives an indication of 
the accuracy that can be expected when using the different models. So far, the most 
accurate results have been obtained from HRVHF and activity levels, using two 
distinct signal collection devices. This increases the complexity of the current 
solution and motivates further work towards improved sensor technology and 
algorithmic performance.  
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