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Abstract Stem cells maintain homeostasis in all regener-

ating tissues during the lifespan of an organism. Thus, age-

related functional decline of such tissues is likely to be at

least partially explained by molecular events occurring in

the stem cell compartment. Some of these events involve

epigenetic changes, which may dictate how an aging gen-

ome can lead to differential gene expression programs.

Recent technological advances have made it now possible

to assess the genome-wide distribution of an ever-in-

creasing number of epigenetic marks. As a result, the

hypothesis that there may be a causal role for an altered

epigenome contributing to the functional decline of cells,

tissues, and organs in aging organisms can now be

explored. In this paper, we review recent developments in

the field of epigenetic regulation of stem cells, and how this

may contribute to aging.

Introduction

Aging is associated with a progressive decline in function

of adult tissues and organs observed in all mammals. Adult

stem cells have now been characterized in almost all

mammalian tissues, including blood, skeletal muscle,

intestine, skin, and brain. These tissue-specific stem cells

possess self-renewal potential and the ability to generate

mature cells: characteristics they need in order to maintain

tissue homeostasis and regeneration of the tissue after

stress or cell loss. Within many aged tissues, a loss of the

regenerative capacity of adult stem cells has been docu-

mented. Therefore, impaired stem cell function, more than

intrinsic changes in differentiated cells, has been consid-

ered as a driver of the aging process of multiple regener-

ating tissues, and as such may contribute to organismal

aging. Such stem cell-intrinsic events could theoretically

involve either genetic or epigenetic changes. Whereas the

role of an accumulation of genetic lesions in stem cell

functioning during aging has been recently reviewed else-

where (Behrens et al. 2014), in the current manuscript we

focus on the role of age-associated epigenetic changes.

‘‘Epigenetics’’ is a term used to classify heritable changes

of gene expression that are not attributed to changes in the

DNA sequence (Goldberg et al. 2007). Due to the funda-

mental role of epigenetics in the regulation of gene

expression and the putative reversibility of such epigenetic

marks, there is an increasing interest in the role of epige-

netic processes as mediators of the aging process of stem

cells. In this review, we discuss the biology of stem cell

aging with a particular focus on the epigenetic contribution

to the aging process. We briefly explain current methods to

evaluate epigenetic marks in the context of biological aging

and discuss to what extent these have revealed a common

epigenetic pattern in stem cell aging.

Do aging stem cells contribute to the functional
decline of organs?

As individuals age, there is a gradual loss of homeostasis of

most tissues and, as a consequence, a decline in organ

function. A large body of data suggests that in many tissues

age-associated loss of homeostasis is caused by an age-
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related decline in the ability of stem cells to replace

damaged cells, (reviewed in Rando 2006; Drummond-

Barbosa 2008; Liu and Rando 2011). For example, skeletal

muscle possesses remarkable regenerative ability upon

injury, a process that is mediated by the resident muscle

stem cells. However, muscle stem cells isolated from aged

animals have a higher propensity to undergo fibrogenic

differentiation (Brack et al. 2007). As a result, upon aging

there is an increase in tissue fibrosis and the subsequent

aged-related reduction in the mass of muscle tissue con-

tributes to an impaired motor activity in the elderly. Sim-

ilarly, aging in the nervous system leads to the loss of

neuronal stem cells (NSCs) (Molofsky et al. 2006). NSCs

in the adult brain give rise to new granule layer neurons

that integrate into functional neuronal circuits (Song et al.

2002), supporting processes such as learning and memory

formation (Clelland et al. 2009), which are often impaired

as individuals age. Also in the skin, melanocyte stem cells

that pigment new hair drop in number upon aging (Maslov

et al. 2004), leading to the very common phenotype

observed in the elderly, hair loss and graying (Nishimura

et al. 2005). However, in mammals, not every organ is

directly dependent on stem cell activity. Aging-related

alterations in organs like eyes, inner ears, or bones are

more difficult to attribute to impaired stem cell activity.

Retinal stem cells can potentially account for age-related

diseases like macular degeneration, but not for the changes

in corneal curvature or in the condensation of the vitreous

gel that cause alteration in refraction and decreased sight

capacity in elderly. Similarly, ear sensory cells do not

regenerate if lost (Groves 2010); therefore, aged-associated

loss of hearing has so far not been associated to stem cell

exhaustion.

Understanding the basic properties of the various types

of tissue-specific stem cells and cataloguing the molecular

changes that accumulate in these cells as they age is of

great interest. In particular, insight into molecular changes

that could potentially be reversible, such as epigenetic

alterations, may open options to develop therapeutic

approaches for age-related diseases based on interventions

to delay or prevent stem cell aging.

Functional and molecular manifestations of stem
cell aging

In the section above, we introduced the aged-associated

decline of function at the level of tissues and organs. In the

following sections, we discuss the main functional mani-

festation and molecular changes that occur in several

regenerating tissues as stem cells age. In particular, we will

focus on age-related changes that appear to occur com-

monly versus changes that are tissue specific.

Stem cell pool size

In almost all mammalian tissues that are capable to

regenerate, the number of adult stem cells is affected by

aging. However, the directionality of this change is vari-

able. Stem cells in the hematopoietic tissue have been

reported to increase in number (de Haan and Van Zant

1999), and this age-dependent expansion of HSCs is a

transplantable, cell-intrinsic aspect of hematopoietic stem

cells. On the contrary, skin and muscle stem cells display

an age-dependent decrease in number (Nishimura et al.

2005; Renault et al. 2002). In brain, changes in the neu-

ronal stem cell pool appear to be region-specific (Kuhn

et al. 1996; Maslov et al. 2004; Hattiangady and Shetty

2008). Currently, we know very little about how stem cell

pool size in these various tissues is actually regulated.

However, despite the diverse directionality of the change in

stem cell pool size, alterations in the numbers of stem cells

during aging suggest that deregulation of self-renewal and

cell fate programs, i.e., a loss of control of stem cell pool

size, might be a common molecular event occurring during

aging. It is worth considering, however, that measurements

of stem cell compartment size is confounded by the current

inability to purify stem cells to homogeneity, as well as the

lack of adequate models to test the function of many stem

cell types.

Impaired functionality and altered lineage

commitment

The decline in stem cell functionality is a shared feature

among the majority of adult stem cell compartments.

Defects of aged HSCs in long-term reconstitution of the

immune system have been demonstrated in competitive

transplantation assays (Kamminga et al. 2005; Rossi et al.

2005). Neurogenesis potential of neuronal stem cells in the

nervous system declines with age (Bondolfi et al. 2004;

Enwere et al. 2004). Similarly, aged muscle satellite cells

display impaired muscle regeneration after injury (Conboy

et al. 2003; Carlson and Conboy 2007). The loss of func-

tionality in a stem cell compartment directly translates into

a decline in the function of progenitors cells and ultimately

into an altered differentiation program. Thus, an aging-

associated feature shared among many adult stem cell

compartments is the aberrant lineage specification of stem

cell progeny. Within the hematopoietic system, stem cells

from both old humans and old mice show an increased

propensity to differentiate along the myeloid, rather than

the lymphoid lineage (Sudo et al. 2000; Rossi et al. 2005;

Dykstra et al. 2007; Cho et al. 2008). In the brain, there is

an increased production of astrocytes (astroglial lineage

skewing) (Peinado et al. 1998). Aged muscles are charac-

terized by the increased tendency of satellite cells to
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convert from myogenic to fibroblastic and adipogenic lin-

eages (Taylor-Jones et al. 2002; Brack et al. 2007). The

accumulation of abnormal progenies in all the tissues

reported above critically contributes to the gradual deteri-

oration of tissue structure and function associated with

aging.

Molecular alterations underling stem cell aging

Several molecular changes, including perturbation of sig-

naling pathways, mitochondrial dysfunction, metabolic and

cell energetic deregulation, have been implicated in tissue-

specific aging patterns and have been extensively reviewed

elsewhere (Lopez-Otin et al. 2013). In general, cell-in-

trinsic changes can be broadly grouped into two classes:

those that are genetic, and therefore typically irreversible,

versus those that are epigenetic. The extent to which

mostly irreversible genomic changes (including nuclear

and mitochondrial DNA damage and telomere shortening)

contribute to stem cell aging is an active area of investi-

gation and has been extensively reviewed elsewhere

(Adams et al. 2015). Mouse models involving DNA repair

proteins have shown that an aging-like phenotype is

accelerated in the presence of increased DNA damage

(reviewed in Garinis et al. 2008). However, so far no

experimental evidence has been provided which demon-

strates that repressing the occurrence of DNA mutations

leads to an extension of life span.

DNA mutations can also occur in genes coding for

epigenetic modifiers, leading to an altered epigenetic reg-

ulation and possibly altered fate programs. Interestingly,

common DNMT3A mutations have been recently descri-

bed to arise early in the development of acute myeloid

leukemia, a type of leukemia that preferentially occurs in

the elderly. DNMT3a mutations appear to lead to a clonally

expanded pool of pre-leukemic stem cells from which

AML evolves (Shlush et al. 2014).

Whereas most genetic changes that occur in somatic

stem cells are believed to be irreversible, molecular chan-

ges that affect epigenetic moieties are potentially rever-

sible. What are the indications that such epigenetic changes

are associated with stem cell aging?

Epigenetic control of stem cell regulation

Epigenetics is the study of phenotypes or gene expression

patterns that are heritable through cell divisions, but remain

independent of DNA sequence (Berger et al. 2009; Gold-

berg et al. 2007; reviewed in Bonasio et al. 2010). Epige-

netic regulation is required for the establishment and

maintenance of biological states (Grewal and Klar 1996;

Cavalli and Paro 1998; Martin and Zhang 2007). Thus,

while in differentiated-end stage-cells epigenetic regulation

is mainly used to regulate ongoing cellular processes, in

stem cells the implications of the epigenome are wider.

During a self-renewing division, a stem cell must not only

replicate its genome flawlessly but also must copy all the

relevant epigenetic markers, deposited by a large number

of writers and erasers, to at least one of the two daughter

cells, in the timeframe of a single cell division. Epigenetic

regulation in adult stem cells must ensure the co-occur-

rence of self-renewal programs together with instructions

for differentiation into cells with distinct potentials and, in

some instances, into a large set of mature cells of different

lineages with vast functional heterogeneity. Thus, epige-

netic alterations that arise in stem cells can be amplified

through self-renewal programs and propagated to the pro-

geny upon differentiation. Infidelity in the epigenetic stem

cell machinery in stem cells could result in detrimental

losses or gains of a plethora of marks during aging (Fig. 1).

DNA methylation

Epigenetic regulation can occur at different levels. At the

DNA level, epigenetic modification is shaped by the

addition or removal of a methyl group or hydroxymethyl

group at the 5th carbon atom of cytosine. DNA methyl-

transferase enzymes are responsible for both the estab-

lishment (DNMT3A and DNMT3B) and maintenance

(DNMT1) of methylated nucleotides. Many studies have

documented a role for these enzymes in balancing self-

renewal and differentiation in multiple adult stem cell

compartments (reviewed in Beerman and Rossi 2015). The

aberrant stem cell functioning caused by dysregulation of

DNA methylation leads to phenotypes frequently mirroring

those observed with aging. Loss of Dnmt1 in HSCs leads to

dysregulation of lineage output, with a skewing towards

myelopoiesis (Broske et al. 2009), a phenotype largely

associated with HSCs aging. Similarly, Dnmt3a ablation in

HSCs predisposes mice to develop a spectrum of myeloid

and lymphoid malignancies, and Dnmt3a-KO-derived

myeloid malignancies and T cell acute lymphocytic

leukemia/lymphoma show distinct methylation aberrations

(Mayle et al. 2015). Interestingly, Dnmt3a has been found

to be slightly but significantly downregulated with age

(Sun et al. 2014).

The gold standard for direct analysis of DNA methyla-

tion is the sequencing-based quantification of cytosine

methylation following bisulfite conversion, which allows

identification and quantification of DNA methylation at

single nucleotide resolution. A description of current

techniques and methods used for analysis of DNA

methylation has been recently reported (Plongthongkum

et al. 2014). An ever-increasing effort has been made

towards the application of assays aimed to quantify DNA
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methylation in a limited amount of input material

(Table 1), such as highly purified populations of stem cells.

Experiments that use low numbers of cells are predicted to

reduce bias originating from cell-to-cell variability, even

within a relatively homogeneous cell population. Early

studies examined global DNA methylation patterns in aged

tissues, and largely demonstrate age-associated hypo-

methylation (Wilson and Jones 1983; Wilson et al. 1987;

Heyn et al. 2012; Florath et al. 2014; Jung and Pfeifer

2015). Nonetheless, global DNA hypo-methylation does

not exclude the possibility that individual loci become

hypermethylated during aging. Indeed, along with a

Fig. 1 Epigenetic alterations in aging of stem cells. Upon multiple

cell divisions that occur as a function of time, infidelity in exact

replication of the epigenome to daughter cells might occur. Both

detrimental losses and gains of epigenetic modifications can thus be

amplified within the stem cell pool and propagated to the progeny

upon differentiation

Table 1 Analysis of the epigenome: recent methods for single cell or ultra-low-input assays

Assay Developer Input material

Nano-ChIP-seq Adli and Bernstein

2011

10,000 cells for H3k4me3 histone mark

Linear DNA amplification (LinDA) Shankaranarayanan

et al. 2011

For transcription factors using 5000 cells and for the H3K4me3

histone modification using 10,000 cells

Ultra-low-input micrococcal nuclease-based native

ChIP (ULI-NChIP)

Brind’Amour et al.

2015

10,000 for histone marks

ChIPmentation Schmidl et al. 2015 For several histone marks 10,000 cells per IP, and 100,000 cells

for transcription factors

Single-cell ChIP-seq Rotem et al. 2015 One cell. ChIP-seq for H3k4me3 and H3k4me2

Single-cell reduced-representation bisulfite

sequencing scRRBS

Guo et al. 2015 One cell. Non-targeted enrichment DNA methylation analysis

Low-input and single-cell whole-genome bisulfite

sequencing (lWGBS, scWGBS)

Farlik et al. 2015 High-throughput bisulfite sequencing assay for low-input and

single-cell samples

Single-cell bisulfite sequencing scBS-seq Smallwood et al.

2014

One cell. Targeted enrichment DNA methylation analysis
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genome-wide analysis of the global DNA methylation

landscape, several studies report have uncovered locus-

specific DNA hyper-methylation associated with aging

tissues (Maegawa et al. 2010; Rakyan et al. 2010; Zyko-

vich et al. 2014). Interestingly, DNA methylation of a

limited set of specific loci has been hypothesized to provide

biomarkers for the aging process (Horvath 2013; Weidner

et al. 2014). It is worth noticing that studies in neuronal,

hematopoietic, and skin stem cells in which the DNA

methylome was correlated with the transcriptome revealed

that altered DNA methylation profiles not always directly

correlated with altered transcription in stem cells (Guo

et al. 2011; Bock et al. 2012; Beerman et al. 2013; Sun

et al. 2014).

Histone variants, histone modifications, and higher

order chromatin structure

Core histones proteins within a nucleosome can be sub-

stituted by several variants. Each variant histone contains

specific physical properties, which differentially regulate

expression of nearby DNA sequences. Very little is known

about the contribution of different histone variants to the

aging process. Beyond different histone variants, a next

layer of epigenetic regulation occurs at histone tails that

can be modified by an array of post-translational modifi-

cations, including acetylation, methylation, ubiquitylation,

phosphorylation, sumoylation, ribosylation, and citrullina-

tion. These post-translational histone modifications affect

transcription both directly, through changes in higher order

chromatin structures, and indirectly, by recruitment of

downstream effectors. Current techniques to analyze the

modification of the histone tails and their implication in the

aging process will be discussed into more detail in the next

section. The combined effect of all these epigenetic

mechanisms ultimately alters the higher order structure of

the chromatin itself and the position of chromatin in the

cell nucleus, allowing the recruitment or dismissal of

transcription factors.

Substantial efforts have been made to understand the

higher, three-dimensional genome organization within the

nucleus. Chromosome conformation capture allows to

analyze physical contacts between different regions of a

chromosome and between the different chromosomes in

cell populations (Dekker et al. 2002). In the past year, 4C,

5C, and Hi-C techniques have added new layers of infor-

mation to the structure of chromosomes (reviewed in

Cattoni et al. 2015). The development of single-cell

approaches to reach single-cell, high-throughput, and high-

resolution maps will be of great relevance as to what extent

the 3-dimensional chromatin architecture in a nucleus of an

aged (stem) cell is different from a young cell, and if so,

whether or not this contributes to impaired stem cell

functioning.

A third layer of epigenetic information is provided by

nucleosome positioning and nucleosome occupancy.

Recently, data have suggested that the variation in the total

number of histone proteins may be altered during aging.

The expression of core histones has been found to be

reduced during replicative aging in yeast (Feser et al.

2010), as well as in aged muscle stem cells (Liu et al.

2013). Interestingly, increasing the cellular supply of his-

tones increased the replicative lifespan of yeast by up to

50 % (Feser et al. 2010). The molecular mechanisms

underlying this process, the genome-wide consequences of

reduced nuclear histone content, and the mechanisms by

which core histone expression levels are transferred to the

daughter cells are still to be elucidated. Nonetheless, it is

interesting to hypothesize that histone availability may

have direct consequences on the epigenetic landscape of

histone modifications and on transcription factor activity,

as they compete with nucleosomes for binding to DNA.

Epigenetic regulation by histone modifications

We will now focus in more detail on the epigenetic regu-

lation by the spatial–temporal chemical modifications at

the histone tails, and how these change upon aging.

Before the advent of genome-wide techniques to study

the epigenome, research had been mainly focused on

investigating whether specific histone modifications glob-

ally decreased or increased upon aging. These studies

typically used Western blotting or immunostaining in order

to directly quantify the amount of specific histone modifi-

cations in a given cell population. However, with this

approach no information can be retrieved concerning dif-

ferentially affected loci. Chromatin immunoprecipitation

followed by high-throughput sequencing (ChIP-seq) is

nowadays the standard technique for identifying genome-

wide loci and biochemical modifications of chromatin-

bound proteins and histone modifications. Promoters can

feature multiple activating and repressive marks, although

only few are typically assessed in a single experiment.

Together with promoters, distal enhancers refine timing

and extent of gene expression. Active or repressive

enhancers are marked by specific chromatin moieties that

can be identified in ChIP-seq analyses.

Currently, there is great interest in profiling enhancer-

associated chromatin features in order to produce genome-

wide maps of regulatory elements of clusters of genes. An

outstanding contribution to this field has recently been

provided by the Encyclopedia of DNA Elements

(ENCODE), a public research project launched by the US

National Human Genome Research Institute (NHGRI) in

September 2003 (Feinglod Science 2004). As a follow-up
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of the Human Genome Project, ENCODE is ultimately

dedicated to identify all functional elements in the human

genome. In the Roadmap Epigenomics Project, epigenomic

information has now been gathered for 127 cell types from

most human tissues (Farh et al. 2015; Gjoneska et al. 2015;

Leung et al. 2015; Polak et al. 2015; Roadmap Epige-

nomics et al. 2015; Ziller et al. 2015). This has resulted in

the identification of hundreds of thousands of enhancer-like

regions in the mammalian genome that regulate gene

expression at long range. Although at present it is not yet

feasible to determine how many features are required for a

minimal representation of the epigenome, the consortium

has focused so far on DNA methylation, six histone mod-

ifications (H3K4me1, H3K4me3, H3K9me3, H3K9ac,

H3K27me3, and H3K36me3), and chromatin accessibility.

The emerging and may be not too surprising picture is that

combinations of multiple modifications predict gene

activity in ways that a single type of modification does not.

Although these data provide a massive amount of epi-

genetic information in a large set of human cell types, it is

important to notice that these experiments, and indeed most

studies, are still based on ChIP-seq protocols that require a

large numbers of cells (*10e6) as starting material. This

limitation precludes the analysis of rare primary stem cell

populations. Therefore, in recent past, attempts have been

made to optimize new protocols suitable for low-input

ChIP-seq. Some of the recent methods for single cell or

ultra-low-input assay for the study of histone modifications

and DNA methylation are summarized in Table 1. Chal-

lenges that need to be overcome relate to the fact that PCR

amplification from limited ChIP input material more easily

leads to amplification artifacts and duplicate reads, and to a

reduced complexity of the immunoprecipitated material

recovered. In addition, different bioinformatic approaches

are used to analyze and present data, which ultimately

results in substantial discordance of conclusions between

seemingly similar studies generated from different

laboratories.

Do histone modifications alter during stem cell
aging?

As mentioned in the previous sections, the direct analysis

of histone modification in rare adult stem cell populations

during aging has been challenging for a long time, as most

of chromatin IP protocols require a high number of cells as

a starting material. Consequently, as of to date only two

recent studies have addressed whether an altered epigenetic

regulation of histone modifications in mammalian stem

cells is associated with aging. However, although this

review focuses on epigenetic profiling in stem cell aging in

mammals, it is important to consider that global loss or

gain of histone modifications during aging have been

reported in other model organisms (reviewed in Benayoun

et al. 2015).

Recently, Sun et al. profiled two chromatin marks

associated with active transcription, H3K4me3 and

H3K36me3, and the repressive mark H3k27me3 in young

and old HSCs using low-input ChIP-seq (Sun et al. 2014).

Their analysis revealed that old HSCs exhibited a slight

increase in the genome-wide number of H3K4me3 peaks,

although no differences in expression levels of the various

H3K4 methyltransferases were detected. Also, some

H3K4me3 domains became broader upon aging. Interest-

ingly, broad H3K4me3 domains have been reported to

mark genes that are important for cell identity (Benayoun

et al. 2014). Therefore, spreading of H3K4me3 during

HSCs aging could account for the increase self-renewal

and loss of lineage differentiation observed in aged HSCs.

In contrast to what has been observed in HSCs, examina-

tion of the same H3K4me3 mark in muscle satellite cells

showed few or no differences between cells isolated from

young or aged mice (Liu et al. 2013).

The repressive Polycomb-mediated H3k27me3 mark,

aged HSCs showed a similar number of peaks in aged

compared to young HSCs, but these peaks appeared to

become broader and more intense upon aging (Sun et al.

2014). This same effect was also observed in old muscle

stem cells (Liu et al. 2013), both at the TSS and in inter-

genic regions. It is interesting to note that while the

increase in H3k27me3 in activated versus quiescent muscle

stem cells in young mice correlated with an increase in the

expression of the H3K27 methyltransferase Ezh2, the

accumulation of H3k27me3 in aging did not correlated

with changes in the expression of neither Ezh2 nor with the

H3K27 demethylase Jmjd3. Also, over 30 % of the genes

that acquired H3K27me3 at their TSSs with age were not

expressed in either young or old muscle stem cells, sug-

gesting that the gain of the repressive H3K27me3 mark can

underlie other mechanisms different from transcription

suppression, and might be driven by processes that do not

include canonical methyltransferases or demethylases (for

example, decreased histone turnover and preferential

accumulation of some histone marks).

As pointed out before, it is important to note that at

present it is not trivial to cross-compare ChIP-Seq datasets

generated from different groups, due to the huge variety of

algorithms and custom-made pipelines. While commonly

used peak calling algorithms identify whether a locus is

being covered or not by a specific histone marks, it has

become relevant also to use pipelines capable of identify-

ing the extent to which individual loci are covered by

different histone marks. Due to these issues, and due to the

fact that at present only two studies have reported ChIP-seq

profiles in aged stem cells (Sun et al. 2014; Liu et al. 2013),
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it is premature to conclude whether or not a common

epigenetic stem cell signature exists in aged stem cells

from different tissues.

Mouse models to unravel the mechanism
of epigenetic regulation

Next to biochemical assays to directly study chromatin

modifications, epigenetic regulation in stem cells can be

investigated using animal models in which enzymes

responsible for the deposition or removal of histone marks

(chromatin modifiers) are disrupted. This review will now

focus on some of the most relevant findings generated from

these studies.

The H3K27 methylation mark is added by the Polycomb

repressive Complex 2 (PRC2), a complex that includes

EED, SUZ12, and the catalytically active subunits EZH2/1.

Alterations in expression enzymes involved in the transfer

or removal of the methyl group on the lysine 27 of histone

H3 have been shown to modulate organismal longevity in

models other than mouse (reviewed in Benayoun et al.

2015; Jin et al. 2011; Maures et al. 2011; Ni et al. 2012;

Siebold et al. 2010). In mammals, no studies have been

reported that show that lifespan can be extended by per-

turbation of expression of epigenetic enzymes, but the

effect of such proteins on (lifespan of) adult stem cells is

well established. Most of our knowledge on the role of the

PcG complexes in stem cells is based on studies in HSCs.

For example, the PRC1 subunit Bmi-1 was shown to play

an essential role in the generation of self-renewing adult

HSCs (Park et al. 2003). Similarly, the Cbx7-PcG subunit

was shown to regulate the balance between self-renewal

and differentiation (Klauke et al. 2013). Overexpression of

Ezh2 in HSCs prevents stem cell exhaustion during serial

transplantation (Kamminga et al. 2006). A similar role of

Ezh2 has been recently described in muscle satellite cell

self-renewal (Woodhouse et al. 2013). Conversely, loss of

Ezh1 induces significant depletion of adult HSCs (Hidalgo

et al. 2012).

Whereas the Polycomb group proteins are predomi-

nantly involved in histone methylation and lead to gene

repression, histone acetylation, which is associated with

transcriptional activation, is controlled by the opposing

activities of histone acetyltransferases (HATs) and histone

deacetylases (HDACs). Although direct manipulation of

HAT, and HDACs in stem cell with regard to age has not

been reported yet, both HATs and HDACs have been

implicated in modulating lifespan in mammals. Recent

studies in transgenic mice overexpressing the histone

deacetylase Sirtuin-1 in the brain showed significant life

span extension, supporting a role for histone acetylation in

health and lifespan (Satoh et al. 2013). Also, a role of the

deacetylase Sirt6 in regulating mammalian longevity has

been demonstrated. Mice carrying a constitutive deletion of

Sirt6 show reduced lifespan and premature aging, while the

overexpression of Sirt6 significantly increased lifespan in

male mice (Mostoslavsky et al. 2006; Kanfi et al. 2012).

The major mechanism of action of the HDACs is the

deacetylation of the histone tails and the consequent tran-

scriptional repression. However, it has also been shown

that HDACs may exert their pro-longevity role by pro-

moting increased genomic stability (Oberdoerffer et al.

2008; Wang et al. 2008; Toiber et al. 2013; Van Meter

et al. 2014). A link between HATs and aging has also been

provided in a progeroid mouse model (HGPS) where the

decreased association of HATs with the nuclear periphery

showed decreased H4K16ac and decreased lifespan

(Krishnan et al. 2011). Interestingly, low H4K16ac levels

have been correlated with aging in mouse hematopoietic

stem cells (Florian et al. 2012). To what extent these

lifespan changes result from stem cell-specific effects

remains to be determined. It would therefore be of great

interest to further investigate the role of HATs and HDACs

during the aging of the multiple types of adult stem cells,

especially as a potential therapeutic intervention aimed to

selectively target these enzymes could contribute to pre-

vention of aging-related stem cell impairment, and possibly

organismal aging.

The genetics of epigenetics

It is clear that epigenetic changes occur in cells as they age,

and it appears plausible that such epigenetic changes con-

tribute to the aging process. However, it is also interesting

to notice that the rate of aging is quite distinct between

genetically distinct individuals, or between different strains

of mice (Yuan et al. 2009). Thus, a fascinating question in

the field is whether it is possible that some of the differ-

ences in epigenetic marks that arise during stem cell aging

are in fact controlled by genetic polymorphisms. Such

polymorphisms could, for example, reside in loci encoding

for the many epigenetic writers and erasers (thus affecting

enzymatic activity) or in non-coding regulatory loci.

Studies in humans have contributed to the identification of

quantitative trait loci (QTLs) or polymorphisms that affect

histone modifications or RNA polymerase II occupancy

(McVicker et al. 2013; Grubert et al. 2015). As part of the

Roadmap Epigenomics Consortium, the integrative analy-

sis of 111 reference human epigenomes and the impact of

DNA sequence and genetic variation on epigenomic state

was investigated. From this analysis, it appeared that

indeed histone modifications and DNA methylation can be

predicted by the underlying DNA sequence using DNA

motifs analysis in ES cells. Moreover, allelic bias in both
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transcript levels and epigenomic marks was found for each

epigenome analyzed (Roadmap Epigenomics et al. 2015).

While studies from the ENCODE consortium were

carried out in human cells, other mammalian models can

also be used. For example, the use of genetically diverse

inbred mouse strains with different lifespans allows quan-

titative trait locus analyses to determine the genomic

locations of loci that are associated with the aging process.

Early studies tested a subset of the BXD (C57BL/

6J 9 DBA/2J) recombinant inbred panel of mice for

lifespan (de Haan et al. 1998), and demonstrated that intra-

strain variability of lifespan appeared to be genetically

controlled. This suggested the presence of loci that induce

individual variability among members of an inbred strain

of mouse. Such loci would be predicted to encode for

epigenetic modifiers, where polymorphisms would result in

robust or disorganized epigenetic memory. More recently,

other QTLs associated with aging in mice have been

mapped (Klebanov et al. 2001; Miller et al. 2002).

Therefore, it would be highly interesting to search for and

identify the molecular nature of genetic loci that control the

extent of epigenetic regulation in stem cells as they age.

Perspectives

Aging is a complex process from which no living organism

escapes. Identifying the molecular mechanisms that con-

tribute to, if not cause, aging is a major challenge in aging

research. The possibility that epigenetic alterations in aged

stem cells contribute to aging of specific tissues and thus to

organismal aging has received an ever-increasing attention,

partly due to the appealing potential reversibility of such

epigenetic modifications. A growing body of evidence,

discussed in this review, has shown that epigenetic alter-

ations accumulate as stem cells age, although most of these

observations are often species or tissue specific. Substantial

effort is required in order to identify whether a common

epigenetic signature in aged stem cells exists. This is

gradually becoming feasible due to technological

advancements to screen multiple histone marks genome-

wide. Critical in such analysis will be the use of highly

purified and homogeneous cell populations, to rule out bias

originating from cellular heterogeneity. In most tissues,

purified stem cell populations are only available in limited

quantities and therefore they have been so far excluded

from genome-wide analyses that require high-input proto-

cols. However, this will soon change as technological

advancements will allow highly sensitive analyses using a

low number of (stem) cells. It will be very interesting to

address how the epigenome of a stem cell changed over its

lifespan that is during aging. It will also be very important

to standardize pipelines for the data analysis of genome-

wide epigenetic data. Multiple complementary efforts have

been undertaken by individual laboratories in understand-

ing how the organization of the epigenome varies across

rare cell types and different states, included aging. How-

ever, due to the early stage of low-input ChIP-seq assays

and to the fact that often custom-made pipelines were used

for the analysis of these datasets, the results are still in their

infancy and are very difficult to be cross-compared

between different laboratories. At the moment, it is not

obvious that common epigenetic stem cell aging patterns

can indeed be identified or rather whether aging at the

epigenetic level is a completely random and unpre-

dictable process. Either way, if epigenetic alterations can

be causally linked to stem cell aging, targeting of such

alterations in aged stem cells might be feasible in the near

future. This would open the possibility to reverse, at least

some, aging-associated deleterious epigenetic

modifications.
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