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Social insects are known for their unusual life histories with

fecund, long-lived queens and sterile, short-lived workers.

We review ultimate factors underlying variation in life history

strategies in female social insects, whose social life

reshapes common trade-offs, such as the one between

fecundity and longevity. Interspecific life history variation is

associated with colony size, mediated by changes in division

of labour and extrinsic mortality. In addition to the ratio of

juvenile to adult mortality, social factors such as queen

number influence life history trajectories. We discuss two

hypotheses explaining why queen fecundity and lifespan is

higher in single-queen societies and suggest further

research directions on the evolution of life history variation in

social insects.
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Introduction
At a time at which deeper insights into the proximate

basis of life history trade-offs are gained, including those

in social insects [1,2], we take a fresh look at the evolu-

tionary basis of life history traits in this group. Due to their

social lifestyle, ants, termites, social bees and wasps

exhibit not only extraordinary life histories [3–5], but

also strong variation in these traits both within and

between species [6��]. As this is in the social Hymenop-

tera especially true for queens and workers, we will focus

here on female social insects.
www.sciencedirect.com 
Eusociality represents the latest of the major evolutionary

transitions towards higher complexity [7,8]. In eusocial

groups selection not only acts on individuals, though

individual selection is an important selective force in

many social insects [9], but on entire colonies as well,

which represent the reproductive units here [10]. There-

fore, life history traits of social insects include not only

individual traits such as queen lifespan, but also colony-

level traits, such as colony size or queen number [11��].
Like multicellular organisms, insect societies grow — in

worker number instead of body size — and mature when

colonies start to produce sexuals. However, in contrast to

solitary individuals, they do not necessarily senesce

[12��]. Polygynous colonies that re-adopt daughter

queens, are potentially immortal [13], though their ge-

netic composition changes over time in contrast to that of

multicellular organisms. Interestingly in lower termites,

the replacement of reproductives by neotenics can also

lead to immortal colonies without with the link to polyg-

yny [9]. Yet, in most single-queen, that is, monogynous

societies, the colony’s lifespan hinges on that of the queen

and therefore selection on longevity led to extremely long

queen lifespans [3,4]. Ant and termite queens can live for

several decades, and their fertility may remain constant or

even increase throughout their life [14,15]. A positive

association between longevity and fecundity is apparent

in queens and defies the predictions of life history theory

[16], as both traits are usually traded-off against each

other. The opposite is true for workers that show reduced

lifespan and no or low fertility [15,17]. Evolutionary

theories explain lifespan evolution by the declining force

of selection with age with extrinsic mortality as the main

driver. Colony life leads to low external mortality for

queens, as the security of the nest shields her from

predators and parasites and the care of the workers

protects her from other environmental hazards such as

starvation or desiccation [4]. In the following, we high-

light the impact of colony size, reproductive strategies

and social structure on the evolution of life history traits in

social insects and emphasize the need to take these

factors into account when studying life history evolution

in eusocial societies.

The effect of colony size on life history evolution in

social insects

Just as body size in solitary organisms, colony size in

eusocial societies has important consequences, but in

social insects individual as well as colony-level life history
Current Opinion in Insect Science 2016, 16:51–57
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traits are affected [11��,18]. Species with larger colonies

exhibit increased social complexity, communication skills

and resource holding potential and intraspecific compar-

isons show that larger colonies benefit from improved

colony survival and reproductive output [Figure 1]; [19–
23]. Division of labour and task specialization mainly

explain these fitness-relevant traits of colonies and lead-

ing to caste differentiation and the evolution of divergent

ageing phenotypes [24,25��,26]. In species with larger

colonies, life history traits of queens and workers, such

as body size, fecundity, and longevity increasingly di-

verge [Figure 1]; [6��,24,25��]. According to the evolu-

tionary theory of ageing, differences in lifespan between

queen and workers, may be explained by colony size-

associated changes in extrinsic mortality [2,27–29]. In

larger colonies, queens are better protected from extrinsic
Figure 1
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sources of mortality and benefit from higher survival due

to improved colony defence, homeostasis and resilience

[Figure 1]; [6��,23,30–32]. Yet, how the relationship be-

tween worker lifespan and extrinsic mortality shifts with

colony size both within and between species is less clear.

Increasing colony size causes a rise in resource demand,

which in turn leads to increased foraging distances with

higher risks of desiccation, predator and parasite encoun-

ters. Species with larger colonies also have a higher

potential to control resources and are more likely to

engage in intra-specific or interspecific fights

[Figure 1]; [32,33]. As a consequence an increase in

extrinsic worker mortality could result in relaxed selec-

tion for worker longevity [Figure 1]; [29]. Alternatively,

the overall fitness benefits of increased colony size could

select for increased longevity in workers [Figure 1]; [34�].
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To resolve this issue, more empirical data comparing

colony size-related changes in extrinsic mortality and

worker lifespan both within and between species are

needed.

Life history theory predicts a trade-off between offspring

quality and quantity [35], which appears to shift in insect

societies with colony size [36]. Within a species, larger

colonies produce fewer alates, but the body size of new

males and queens increases (Figure 1; [11��,23]). Queen

body size is associated with better independent founding

success and faster colony growth within ant and bee

species [37–39]. Hence, smaller colonies focus on pro-

ducing more queens of lower quality and aim for quantity,

whereas larger colonies invest more in offspring quality,

which can lead to an increased founding success [23,37].

Similarly, worker quality and quantity could be traded-off

[Figure 1]; [29,40,41], albeit it is less clear what charac-

terizes worker quality. As workers do not normally repro-

duce, the quality of a worker can be regarded as its

contribution to the reproductive output of a colony. As

in most social insects, per-worker productivity decreases

with colony size [42,43], is worker quality thus lower in

larger colonies? A facet of worker quality could be size,

but there is little evidence that worker size decreases with

colony size [6��]. A comparison of non-invasive and inva-

sive species revealed that the supercolonial invasive ants

have smaller workers [44]. Yet, they differ in so many

traits from non-invasive species that it remains unclear

whether colony size differences alone explain this pat-

tern. Variation in worker body size clearly increases with

colony size both during colony ontogeny and in interspe-

cies comparisons and is associated with higher degree of

specialization and task efficiency in larger colonies

[Figure 1]; [21,25��]. Species with polymorphic workers

exhibit diverging worker morphologies as their colonies

grow adding the highly specialized larger worker castes

(majors) only later in colony development [45]. An ex-

ception is fungus-growing termites, in which the early

production of soldiers decreases the growth of incipient

colonies [46]. As reduced investment into each worker

may help colonies to grow faster, many species with

monomorphic workers increase worker size over early

colony ontogeny [47].

Fecundity is another life history trait that can be affected

by colony size. Although the likelihood of worker repro-

duction is reduced in highly eusocial species, queen

reproductive output is associated with colony size

especially among monogynous species [Figure 1];

[11��,31,48�]. Furthermore, increased fecundity is associ-

ated with physiogastry in army ant and termite queens

with colonies of several million of individuals [45,49,50].

In monoandrous social Hymenoptera, a queens’ total life-

time production of diploid offspring may be limited by

the amount of sperm she receives from a male during her

only mating flight. Evolution of large colony size may thus
www.sciencedirect.com 
favour polyandry or several mating events during a

queens’ social life [Figure 1]; [51–55]. Alternatively,

fecundity constraints of body size and sperm availability

and the strong fitness dependence on the queens’ life-

span, are overcome by multiplying the number of repro-

ductives in secondary polygynous species [Figure 1];

[3,56�].

Social structure and reproductive strategies

Social insects exhibit a diversity of reproductive strate-

gies, often associated with the social organization of their

colonies. Whereas ants and termites invariably form long-

lived societies, many social bees and wasps are shorter

lived and often exhibit an annual semelparous lifestyle

[44,57]. Life history theory predicts that a species should

reproduce only once in life, if adult mortality exceeds

juvenile mortality [58]. The semelparity of bees and

wasps in temperate climates [44,57], could thus be an

evolutionary consequence of high overwintering mortali-

ty of established nests. If however, juvenile mortality is

higher than adult mortality, several reproductive events

are selected for. Albeit a semelparous lifestyle is hard to

abandon [Cole’s paradox; [59��]], there are several transi-

tions to perennial iteroparous life, for example in the

ancestors of the ants, termites, honey and stingless bees

[3,28]. Reproductives of these taxa benefit from a lower

adult mortality due to well-developed nest defences

against predators and parasites [32], but suffer from a

high juvenile mortality due to a dangerous mating flight

and colony foundation phase [31,60].

Obligate eusociality is believed to have evolved under

lifetime monogamy [61,62,63�,64], yet many eusocial

lineages have secondarily developed multi-queen breed-

ing (i.e. polygyny; [30,31,65,66]). Monogyny and polygy-

ny are associated with distinct life-history syndromes [65],

as queens of polygynous species are typically shorter-

lived, less fecund and smaller compared to queens from

monogynous ones. According to classical life history the-

ory, these differences in queen lifespan can be explained

by the higher juvenile to adult mortality in monogynous

queens (Figure 2a), which disperse over longer distances

and found new colonies independently [30,31,67,68].

Contrastingly, queens from polygynous colonies suffer

lower juvenile to adult mortality because they often mate

in or near their natal nests and start to reproduce either in

the mother colony or establish new nests with the help of

workers. This relaxes selection for longevity thus favour-

ing early reproduction (i.e. production of sexuals;

Figure 2c). That queen number is less important than

the founding mode becomes apparent when looking at

the monogynous honeybees, where young queens return

to the mother nest and show fast reproduction and rela-

tively short lifespans.

Alternatively, differences in queen lifespan between

monogynous and polygynous social Hymenoptera that
Current Opinion in Insect Science 2016, 16:51–57
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Figure 2
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Conceptual model of social insect life history traits according to classical (left) and kin-selected life history theory (right). Queen age is represented

by three phases, the dispersal phase, the ergonomic phase and the reproductive phase (from left to right), separated by the grey dashed lines.

Blue lines represent queens from monogynous species, green lines queens from polygynous species and red lines inquiline social parasites.
adopt mated queens may be driven by kin selection

[59��,69–71]. Central to this kin selected life history theory,

is that worker loyalty erodes over the lifetime of a queen in

polygynous colonies, driven by the replacement of workers

from older queens by workers from newly adopted ones

[72,73]. A decrease in worker loyalty may result from a

switch from worker to sexual production over the repro-

ductive life of a queen. Worker daughters from resident

queens are expected to raise eggs of newly adopted queens
Current Opinion in Insect Science 2016, 16:51–57 
into workers (Figure 2b). These workers will contribute to

the future reproductive success of their mother, corroding

the loyalty of the workforce to the older queens with

negative consequences on their reproductive success

(Figure 2d). Hence, kin selected life history theory predicts

a reduction in queen reproductive success over time and

thus relaxed selection for longevity once species have

evolved obligate polygyny (Figure 2f). This hypothesis

thus depends on workers behaving altruistically depending
www.sciencedirect.com
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on the degree of relatedness, hence nepotistic. Yet, evi-

dence for true kin recognition and nepotistic behaviour in

social insect colonies remains scant [63�].

Although both classical and kin selected life history theory

predict lower queen longevity in polygynous versus mo-

nogynous species, the key mechanisms hampering the

evolution of queen lifespan in polygynous species marked-

ly differ (Figure 2). One promising avenue to distinguish

between these two alternatives is to focus on species where

the predictions of classical and kin selected life history

theory diverge. In particular, kin selected influences on life

history evolution are entirely negated in socially parasitic

species (e.g. inquilines), which exploit the workforce of

another species to raise their often exclusive sexual brood

[31,74,75]. Thus, (most) inquiline social parasites do not

produce workers and can instead maximally invest in

sexual offspring (Figure 2c,d). In inquilines that disperse

and usurp host colonies, the extrinsic mortality risk during

early life phases may resembles that of independently

founding, non-parasitic queens. However, early mortality

risk of inquilines that circumvent risky dispersal and colony

usurpation by intranidal mating may be comparable to the

polygynous strategy. In the latter, theory thus predicts that

the age-dependent extrinsic mortality resembles that of

polygynous species, in the absence, but not in the presence

of kin-selected life history evolution (Figure 2e,f).

Conclusions
The social lifestyle reshapes common life history trade-

offs, such as the one between longevity and fecundity, but

it is less clear what exactly allows queens to be both highly

fecund and long-lived. Although the field currently

focusses on revealing how genetic pathways were reset

in social insects [1], it is worth investigating the impact of

ultimate factors such as resource availability or extrinsic

mortality as well. We have revisited some of the evolu-

tionary drivers of the remarkable life histories of female

social insects and highlight four future research areas:

1. Colony size is a colony-level trait tightly connected to

intraspecific and interspecific variation in life histories.

However, the relative importance of possible underly-

ing factors, such as division of labour, resource holding

potential and foraging strategies including commu-

nication skills are still unclear. We suggest to study

how and why queen and worker mortality, lifespan and

body size change with colony size both within and

between species. In this context, we consider division

of labour of particular importance.

2. As predicted by life history theory in general, the

relationship between juvenile and adult mortality

should also affect social insect reproductive strategies.

However, reliable field data on extrinsic mortalities for

social insect queens during mating flight, colony

foundation and adult life are scarce. Trapping sexuals,

mapping and tracking colonies combined with genetic
www.sciencedirect.com 
methods [76,77] allows to obtain these data that will

lead to a better understanding of life history evolution.

3. The dependency of colony survival on queen survival

is loosened in polygynous social Hymenoptera and in

the lower termites, which can replace queens by their

daughters. Although this is linked in Hymenoptera to

polygyny, this is not necessarily the case in the lower

termites, which allows to test whether social structure

itself or the possibility to replace the mother queen is

associated with relaxed selection and shorter lifespans

in social insects.

4. Polygyny-associated shifts in queen life history traits

may be imposed by their social rather than their

physical environment. The conflict of interest be-

tween queens and workers in polygynous species

paves the way for intraspecific exploitation, and

ultimately inquiline social parasitism [59��,64,75,

78,79]. Although the role of life history strategies in

the evolution of inquilinism has received considerable

attention, social parasites are generally excluded from

comparative life history studies. Our conceptual model

however emphasises that inquiline life history data

could be particularly instrumental to test the predic-

tions of kin selected life history theory.
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