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Abstract In this study, the mycosphere isolate Burkholderia
terraeBS001 was confronted with the soil fungus Lyophyllum
sp. strain Karsten on soil extract agar plates in order to exam-
ine its transcriptional responses over time. At the initial stages
of the experiment (T1—day 3; T2—day 5), contact between
both partner organisms was absent, whereas in the final stage
(T3—day 8), the two populations made intimate physical con-
tact. Overall, a strong modulation of the strain BS001 gene
expression patterns was found. First, the stationary-phase sig-
ma factor RpoS, and numerous genes under its control, were
strongly expressed as a response to the soil extract agar, and
this extended over the whole temporal regime. In the system,
B. terrae BS001 apparently perceived the presence of the fun-
gal hyphae already at the early experimental stages (T1, T2),
by strongly upregulating a suite of chemotaxis and flagellar
motility genes. With respect to specific metabolism and ener-
gy generation, a picture of differential involvement in different
metabolic routes was obtained. Initial (T1, T2) up- or down-
regulation of ethanolamine and mandelate uptake and utiliza-
tion pathways was substituted by a strong investment, in the
presence of the fungus, in the expression of putative metabolic
gene clusters (T3). Specifically at T3, five clustered genes that
are potentially involved in energy generation coupled to an
oxidative stress response, and two genes encoding short-

chain dehydrogenases/oxidoreductases (SDR), were highly
upregulated. In contrast, the dnaE2 gene (related to general
stress response; encoding error-prone DNA polymerase) was
transcriptionally downregulated at this stage. This study re-
vealed that B. terrae BS001, from a stress-induced state,
resulting from the soil extract agar milieu, responds positively
to fungal hyphae that encroach upon it, in a temporally dy-
namic manner. The response is characterized by phases in
which the modulation of (1) chemotaxis, (2) metabolic activ-
ity, and (3) oxidative stress responses are key mechanisms.

Keywords Chemotaxis . Short-chain dehydrogenases .

Oxidative stress .Metabolic potential . Bacterial-fungal
interactions

Introduction

The soil bacterium Burkholderia terrae BS001 was originally
isolated on the basis of its capacity to interact with the basid-
iomycetous soil fungus Lyophyllum sp. strain Karsten [1].
There is mounting evidence for the contention that this
interacting pair forms an ecologically relevant mutualism,
which we previously have coined the B. terrae BS001-
Lyophyllum sp. strain Karsten interactome [2]. A plethora of
functions is presumed to be important in the processes that
underlie the interactions between the two organisms [3].
Briefly, B. terrae BS001 was found to successfully migrate
through the soil matrix along with the growing hyphae of
Lyophyllum sp. strain Karsten [4]. Moreover, this bacterium
has the capacity to induce the release of glycerol by the fungus
and efficiently utilize it as a carbon and energy source [5].
Finally, strain BS001—upon confrontation with Lyophyllum
sp. strain Karsten and several other fungi—established
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agglomerates of cells, i.e., Bprimitive^ biofilms, around the
mycelia of these fungi [1].

To shed light on the interaction between B. terrae
BS001 and Lyophyllum sp. strain Karsten, the recently
sequenced 11.5-Mb strain BS001 genome [3, 6] was in-
vestigated with respect to the presence of genetic systems
that are potentially involved in the interaction. Indeed, a
suite of potential Binteractome^ genetic systems was pres-
ent in the B. terrae BS001 genome, whereas other systems
were suggested to be relevant for the Bfree-living^ modus
[3]. On the basis of these findings, we hypothesized that
strain BS001 might exhibit a lifestyle in soil that involves
two phases: one characterized by survival as a Bloner^ and
a second one in which perceiving the presence of (fungal)
hosts, and responding to these, constitutes the key ecolog-
ical strategy. Nazir et al. [1] recently indicated that
B. terrae BS001 is a Bgeneralist^ mycosphere colonizer
rather than a specialist organism, as it could associate with
a suite of different soil fungi. Given this facet of the life-
style of strain BS001, particular genetic systems may have
arisen that allow it to efficiently interact with diverse fun-
gal types [1]. Interestingly, Pion et al. [7] recently found
that the fungus Morchella crassipes apparently Bfarms^ a
Pseudomonas putida strain, allowing it to disperse and
concomitantly use fungal-released compounds. The bacte-
rium, in return, increased the resistance to stress of the
fungal mycelium [7]. Thus, soil-exploring saprotrophic
fungi might indeed constitute hot spots for the activity
and growth of bacteria that are endowed with systems that
allow to explore the fungal-created novel niches [4].
However, such fungi may also bring about conditions of
stress (in particular oxidative stress), like suggested for the
fungi Alternaria alternata and Fusarium solani in their
interactions with the soil bacterium Burkholderia glathei
[8]. On another notice, Collimonas fungivorans Ter331,
upon confrontation with Aspergillus niger N400, did not
only utilize compounds provided by the fungus but also
expressed genes responsible for the production of antifun-
gal agents [9]. Finally, the ectomycorrhizal fungus
Laccaria bicolor S238N was found to respond in different
and quite complex ways to antagonistic, neutral and ben-
eficial soil bacteria [10]. Notwithstanding this growing
body of knowledge on bacterial-fungal interactions in soil
settings, none of the aforementioned studies assessed the
behavior of bacteria with well-characterized genomes that
contain—next to a core genome—a very large accessory
part (such as B. terrae BS001) [3].

Here, we examined the transcriptional responses of
B. terrae BS001 to the fungus Lyophyllum sp. strain
Karsten. We hypothesized that time-dependent and dynamic
responses might occur of the genetic systems that are of im-
mediate interest to the ecological fitness of the bacterial part-
ner of soil-exploring fungi upon confrontation with the

fungus. Thus, to understand the responses that take place in
the (largely carbon-limited) soil, we interrogated the transcrip-
tional Bnull^ status of the bacterium under such conditions.
We then specifically investigated the transcriptional response
of strain BS001 cell populations to the developing mycelium
of Lyophyllum sp. strain Karsten in dual-culture systems on
soil extract agar plates, using as controls fungus-less systems.

Materials and Methods

Strains, Culture Conditions, and Bacterial-Fungal
Interactome

Burkholderia terrae BS001 maintained in the −80 °C culture
collection was grown overnight in Luria-Bertani (LB) medi-
um in a shaking incubator at 28 °C. The overnight culture was
centrifuged, and the bacterial pellet washed twice with 0.85 %
NaCl solution. Cultures yielding an estimated 4 ×
108 CFU mL−1 were thus used for the bacterial-fungal con-
frontation assay on soil extract agar (see below). For the B
treatment, aliquots of 25 μL were streaked in five handlings in
a straight 4 mm wide line using a sterile inoculation loop onto
soil extract agar plates, establishing populations of around 1 ×
107 cells. For the B + F treatment, four plugs of Lyophyllum
sp. strain Karsten grown on oat flake agar (OFA) medium
were placed next to the bacterial streak line in parallel, sepa-
rating both by a distance of 15 mm. For both treatments B and
B + F, triplicates were used.

Soil Extract Agar

We used soil extract agar (SEA) to establish the in vitro inter-
actome. To prepare the soil extract, we used a loamy sand soil
(organic matter 5 % and pH 5) [11] sampled in a field in
Buinen, The Netherlands. For making the extract, 500 g of
soil was taken up in 1 L of sterilized MilliQ water and vigor-
ously shaken for 24 h (room temperature). Soil particles were
removed by centrifugation at maximum speed (5430R
Eppendorf centrifuge, Hamburg, Germany), after which the
supernatant was filtered using folded qualitative filter paper
(VWR European) and stored at 4 °C. To prepare 1 L of medi-
um, 500mL of soil extract, 0.5 g of yeast extract and 15 g of agar
weremixedwith 500mLofMilliQwater. The pHof themedium
was adjusted to 6.8 and the medium autoclaved. The SEA plates
were prepared with ca. 22 mL of molten medium per plate.

Soil Extract Analyses

Soil extract analyses were performed at NIOZ, Yerseke,
The Netherlands, using a set of standard techniques
(Nutrient Analyzers - Skalar and Seal, Southampton, UK).
The soil extract contained 0.46 mM N-NH4, 0.00575 mM
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N-NO2, 1.67 mMN-NO3 and 1.67 mMN-NOx. The amounts
of P-PO4 and Si-SiO2 in the extract were 0.09 and 0.15 mM,
respectively. The extract also contained ca. 0.01 % of soil-
extracted total organic carbon.

Bacterial RNA Extraction and Sequencing

At each sampling time, the entire bacterial biomass was re-
trieved (using a sterilized spatula) from the SEA plates and
resuspended in TRIzol-chloroform (900:150 μL), after which
the mixture was bead-beaten for 40 s. Total RNA was then
extracted using the TRIzol Reagent (Life Technologies,
Carlsbad, CA, USA) according to the manufacturer’s instruc-
tion. Residual DNA was digested and removed using the
TURBO DNA-free Kit (Life Technologies, Carlsbad, CA,
USA) according to the instructions of the manufacturer. To
remove ribosomal RNA, the MICROBExpress Kit (Life
Technologies, Carlsbad, CA, USA) was used according to
the manufacturer’s instructions. Complementary DNA
(cDNA)-based library preparation and sequencing using the
Illumina MiSeq (250 bp paired-end sequencing run) platform
were performed at Macrogen Inc., Seoul, South Korea.

Transcriptome Sequence Analysis

We employed the bioinformatics pipeline implemented in the
MicroScope interface [12], to analyze the raw sequence data
and to perform the mapping and statistical analyses. The pipe-
line is a BMaster^ shell script composed of different parts
(collection of Shell/Perl/R scripts). The quality of the se-
quence data was assessed by quality checks and read trimming
was applied. The reads were then mapped onto the genome of
B. terrae BS001 (hosted at MicroScope: http://www.
genoscope.cns.fr/agc/microscope/home/) using the
BSSAHA2^ package [13]. This package identifies regions of
high similarity using the SSAHA searching algorithm and
aligns these by implementing cross-match sequence align-
ment [14] based on the banded Smith-Waterman-Gotoh algo-
rithm [15]. For a hit to be retained, an alignment score equal to
half of the read (at least) was required. The risk of false pos-
itives was reduced by extracting reliable alignments from
SAM-formatted files using SAMtools (v.0.1.8) [16]. The
BBioconductor-Genomic features^ package [17] was imple-
mented to calculate the number of reads matching coding
sequences [genomic objects] of the B. terrae BS001 genome.
Differential gene expression between treatments was assessed
using the Bioconductor-DESeq package [18] with default pa-
rameters. The DESeq normalized values of genes across rep-
licates were Z-score standardized and visualized as heatmaps.
All sequences are available in the short read archive (SRA) of
the National Center for Biotechnology Information (NCBI),
under the accession number SRP056279 and project number
PRJNA278110.

As a criterion for our conclusions, with respect to differ-
ences in gene expression levels (reflected in the major conclu-
sions of this study), we used the criterion of having ≥10 read
counts, on average, per messenger type, with presence in all
replicates. However, lower read counts were also considered
in cases where the temporal development of gene expression
was followed. We flagged these in the figures and placed a
note of caution in the text, where needed. Care must thus be
taken in the interpretation of the section concerning the de-
tailed view of differentially expressed genes at T1, T2, and T3,
because of incidental low read counts.

Reverse Transcription Quantitative Polymerase Chain
Reaction (RT-qPCR)

First Strand cDNA Synthesis

For cDNA synthesis, the SuperScript III first-strand synthesis
systemwas used. Briefly, in a 0.5-μL tube, 150 ng of total RNA
was placed (1.2 μL) and 1 μL random hexamers and dNTPs
(10 mM) each were added to it. The volume was brought to
10 μL by adding RNase free water. It was incubated for 5 min
at 65 °C and was subsequently placed on ice for at least 1 min.
A cDNA synthesis mix was prepared by combining 2 μL 10×
RT buffer, 4 μL 25 mM MgCl2, 2 μL 0.1 mM DTT, 1 μL
RNase OUT (40 U/μL), and 1 μL SuperSript III RT (200
U/μL). To each RNA/primer mixture, 10 μL of cDNA synthe-
sis mix was added and the final mixture was incubated for
10 min at 25 °C followed by 50 min at 50 °C. F inally, the
reaction was terminated by incubation at 85 °C for 5 min. One
microliter of RNase H was added to each reaction and incubat-
ed at 37 °C for 20 min. The cDNAwas stored at −20 °C.

Primer Design and Quantitative Real-Time PCR

Using Clone Manager Suite (Sci-Ed software, Durham, NC,
USA) with default parameters, gene-specific primers were de-
signed to amplify regions of genes that had come up in the
transcriptome analyses as being key to several aspects of the
bacterial behavior in the system (selected genes:
AKAUv1_790006 [cheA; chemotaxis], AKAUv1_2490031
[SDR; metabolism], AKAUv1_2490033 [NAD-dependent
sugar epimerase/dehydra tase ; metabol i sm] , and
AKAUv1_2870060 (conserved exported protein, proxy of
five-gene cluster; putative energy generation), ranging from
127 to 199 bp. The specificity of the primers for their respective
targets was first tested using conventional gradient PCR and
subsequent gel electrophoresis of the amplicons. The efficiency
of the primers was then tested by real-time qPCR using purified
PCR fragments as templates. Using 10-fold dilution series,
standard curves were generated for each gene. The efficiency
of each primer and the coefficient of determination (r2) were
calculated from the slopes of their respective standard curves.
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All quantitative RT-qPCR reactions were performed on an ABI
Prism 7300 Cycler (Applied Biosystems, Frankfurt, Germany)
using Power SYBRR Green PCR Master Mix (Applied
Biosystems). For each biological replicate, 10 μL of Power
SYBR Green Master mix, 1 μL each of forward and reverse
primer, and 2 μL of 1:3 diluted cDNA in a final reaction vol-
ume of 20 μL were used. The amplification was carried out in
the following steps: 50 °C for 2min, 95 °C for 10min, 40 cycles
of 95 °C for 15 s, 60 °C for 20 s, and 72 °C for 30 s. Each
reaction was carried out in triplicate for each of the three bio-
logical replicates of each sample at each time point (day 3, day
5, and day 8). Based on our RNA-sequencing data, the rpoA
gene was chosen for normalization of the quantitative RT-PCR
data. Relative expression values of each gene were determined
using the comparative CT method 2−ΔΔCT [19].

T tests were carried out using RStudio Version 0.99.893 –
© 2009-2016 RStudio, Inc.

Results

Biomass Development of Burkholderia terrae BS)001
and Lyophyllum sp. strain Karsten on Soil Extract Agar
(SEA) Plates

As from its introduction onto the SEA plates, B. terrae strain
BS001 progressively developed biomass over the time of the
experiment in both systems (B—bacterial strain alone and B +
F—bacterial strain plus fungal inoculum). In the B + F system,
fungal biomass slowly and progressively encroached upon the
bacterial stripes, establishing strong physical contact at day 8.
At three time points (T1—day 3, T2—day 5, and T3—day 8),
the total bacterial biomasses from the B and B + F systemswere
sampled and subjected to bacterial RNA extraction, cDNA
synthesis and high-throughput sequencing. This yielded a
one-sided analysis of the transcriptional responses of B. terrae
BS001–when under a (soil-relevant) Bnull^ condition—to the
presence of the fungal partner organism under two conditions:
physically separated (T1, T2) or in contact (T3).

Establishment of the B. terrae BS001 Transcriptome

Overall, 31,831,926 cDNA sequences were produced
across all replicate samples (Table S1). Following se-
quence quality trimming and selection of the strain
BS001 transcripts, a total of 5,972,111 cleaned reads was
obtained (representing predicted CDSs only). This was tak-
en as the initial dataset that was used for all downstream
analyses. The raw read counts of the genes across all treat-
ments (B and B + F) at all time points (day 3, day 5 and day
8) are provided in Table S2. At the level of COG (clusters
of orthologous genes) classes, representatives of all broad
functional categories were found at T1, T2 and T3, in

both treatments. The distribution of reads across the COG
classes is provided in Fig. S1A and S1B. Moreover, a
global visualization of the differentially expressed genes
of B. terrae BS001 upon confrontation with Lyophyllum
sp. strain Karsten is shown in Fig. S2.

The collective data revealed a very dynamic global tran-
scriptional response of strain BS001 as a response to the SEA
medium, over the whole temporal regime, and this dynamism
was also found in the systems with Lyophyllum sp. strain
Karsten. The transcriptional landscape was typified by: (1) a
generic response to the SEA conditions and (2) limited sets of
genes being responsive to the fungus. Both types of responses
were different between the physical-contact (T3) versus no-
contact (T1 and T2) stages, which is explored in greater detail
in the following.

Analysis of the Transcriptome of Strain BS001 Reveals
a (Generic) Stress Response on SEA and Modulation
of the Response by the Presence of Lyophyllum sp. Strain
Karsten

A first key observation was that the cells of strain BS001were,
apparently, in a state of (starvation) stress on the SEA medi-
um, from T1 through T3 (Fig. 1). Hence, the predicted (alter-
native sigma factor) RpoS-encoding gene AKAUv1_1370011
was dynamically expressed in both treatments, with a trend
(albeit not significant, P > 0.05) of raised expression at the
fungus (Fig. 1). Moreover, homologs of (as per the
Escherichia coli annotation) the RpoS-regulated genes [20]
katG and otsA (cellular Bprocesses^) were expressed similarly
across all three time points (Fig. 1). Other transcripts for stress
response-relevant proteins produced in both treatments were
those of groEL, dnaK, recA, ftsZ, mutL and mutS homologs.
They were likely expressed in all conditions because they
represent a set of housekeeping genes. Similarly, transcripts
of homologs of narZ (nitrate reductase Z; energymetabolism),
aldB and treA (carbon compound metabolism), talA (central
intermediary metabolism), and aidB (DNA replication/repair)
and homologs of yeaG, yjbJ, yjiN and yphA (producing as-yet-
uncharacterized proteins) were detected in both treatments.
Moreover, a gene phoH homolog, which was predicted to
encode the phosphate starvation-inducible PhoH protein, had
a similar expression pattern (Fig. 1).

Interestingly, gene sspA, which was predicted to encode the
Bstringent starvation protein^ SspA, revealed a differential
upregulation at T1 (log2 fold change 1.01; P < 0.05)
(Fig. 1), whereas at later stages (T2: B, 29, B + F, 28; T3: B:
21, B + F: 18), its expression remained similar across treat-
ments. Supporting the notion that the cells were under carbon
starvation stress, gene cstA (AKAUv1_3020008; encoding
Bcarbon starvation protein A^) also revealed initially high
expression, which gradually subsided (Fig. 1).
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Partial Alleviation of Stress at Later Stages
of the Interaction

A small set of genes was found to be expressed to somewhat
similar levels at T1, with subsequent different expression levels
in B + F at T2 and T3. Some of these genes were upregulated as
a result of a potential oxidative stress response while others
were downregulated (albeit based on low read counts for some
of the genes; Fig. 2). These genes, which were all predicted to
be involved in cellular responses under stress, included homo-
logs of rsbR and rsbS, which encode Bactivator of sigma-B
(RsbR) and anti-RsbT (RsbS),^ respectively. The RsbR and
RsbS proteins may play roles in the response of B. terrae
BS001 to nutritional/environmental stresses such as salt, heat,
acid or ethanol [21]. Surprisingly, a gene, AKAUv1_1020002,
encoding error-prone DNA polymerase dnaE2 (log2 fold
change −2.03; Fig. 2), was expressed throughout and then
downregulated at the physical-contact stage with the fungus.
Given that error-prone polymerases enhancemutagenesis under
starvation stress [22, 23], this might suggest partial alleviation
of s ta rva t ion (or o ther ) s t ress . S imi la r ly, gene
AKAUv1_3010006 (encoding a metallo-beta lactamase do-
main protein; function unknown) was also downregulated

(log2 fold change −1.73). Interestingly, at T2, another gene,
AKAUv1_1070012 (encoding a homolog of a DNA-binding
transcription antiterminator with a cold shock domain), was
downregulated (log2 fold change −1.63) (Fig. 2). The gene
product may regulate chromosome condensation and
antitermination of transcription [24, 25], cold shock response
[26], and even modulate RpoS [27]. Notably, gene
AKAUv1_1700025 (encoding a DNA cytosine methylase)
was also downregulated (log2 fold change −1.68) at T2. In
E. coli, such a gene modulates (limits) the expression of ribo-
somal protein genes during stationary phase [28] and the ex-
pression of the rpoS gene [29]. Genes AKAUv1_790379
(encoding adenine specific DNA methylase; log2 fold change
−2.09; low read counts) and AKAUv1_2020008 (encoding
GreA/GreB elongation factor; log2 fold change −2.40) were
also downregulated (low read counts; Fig. 2). The latter protein
is known to have chaperone activity and resolve the undesirable
aggregation of proteins [30].

However, the ohr gene (AKAUv1_1140012; log2 fold
change 2.05), which encodes an Borganic hydroperoxide
resistance^ protein—a key organic peroxide scavenger [31]—
was upregulated (Fig. 2). In Shewanella oneidensis, a similar
protein scavenges organic peroxides (tertiary butyl

aidB  - Isovaleryl CoA dehydrogenase      (AKAUv1_120050)

relA  - GTP pyrophosphokinase       (AKAUv1_1230029)

tig  - Peptidyl-prolyl cis/trans isomerase (trigger factor)     (AKAUv1_1270048)

clpP  - Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases  (AKAUv1_1270049)

clpX  - ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease   (AKAUv1_1270051)

lon  - DNA-binding ATP-dependent protease La     (AKAUv1_1270052)

otsA  - Trehalose-6-phosphate synthase      (AKAUv1_1270094)

recA  - DNA strand exchange and recombination protein with protease and nuclease activity  (AKAUv1_1300005)

rpoS  - RNA polymerase. sigma S (sigma 38) factor     (AKAUv1_1370011)

trxA  - Thioredoxin 1       (AKAUv1_1370023)

phoH  - PhoH family protein       (AKAUv1_1370065)

yeaG  - Putative nucleoside triphosphate hydrolase domain     (AKAUv1_1440004)

yphA  - Inner membrane protein YphA      (AKAUv1_1600017)

groL  - Cpn60 chaperonin GroEL. large subunit of GroESL     (AKAUv1_1930140)

Dps  - Ferritin Dps family protein      (AKAUv1_1930183)

yjbJ  - Putative stress response protein      (AKAUv1_2840059)

ppk  - Polyphosphate kinase       (AKAUv1_2840104)

ppx  - Exopolyphosphatase       (AKAUv1_2840106)

ftsZ  - GTP-binding tubulin-like cell division protein     (AKAUv1_2940022)

cstA  - Carbon starvation protein      (AKAUv1_3020008)

sspA  - Stringent starvation protein A      (AKAUv1_3140059)

katG  - Catalase/hydroperoxidase HPI(I)      (AKAUv1_3190070)

spoT  - Bifunctional (p)ppGpp synthetase II /     (AKAUv1_360046)

dnaK  - Chaperone Hsp70. co-chaperone with DnaJ     (AKAUv1_460003)

mutL  - DNA mismatch repair protein MutL      (AKAUv1_470011)

treA  - Periplasmic trehalase       (AKAUv1_710015)

yjiN  - Conserved hypothetical protein; putative inner membrane protein    (AKAUv1_710050)

mutS  - Methyl-directed mismatch repair protein     (AKAUv1_720060)

trxB  - Thioredoxin reductase. FAD/NAD(P)-binding     (AKAUv1_730011)

aldB  - Aldehyde dehydrogenase B      (AKAUv1_790159)

dksA  - RNA polymerase-binding transcription factor DksA     (AKAUv1_790216)

talB  - Transaldolase B       (AKAUv1_970011)

narZ  - Nitrate reductase 2 (NRZ). alpha subunit     (AKAUv1_990001)

 Treatment    Control  Treatment    Control   Treatment     Control

T1 T2 T3

Row z-score

 3    2    1    0   -1   -2  -3

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
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Fig. 1 Heat map showing the expression level of selected stress response-
related genes. The selected stress-related genes refer to the B (B. terrae
BS001) and B + F (B. terraeBS001 + Lyophyllum sp. strain Karsten) treat-
ments at time points T1 (day 3), T2 (day 5), and T3 (day 8). *Statistically
significant changes (statistical analysis was performed using DESeq;

P < 0.05) between B and B + F treatments. The heat map was constructed
based on normalized read counts. The standardized normalized read count,
denoted as the row Z-score, is plotted in color scale (red indicates higher
expression and blue indicates lower expression). The putative gene prod-
ucts are given in front of each gene with their respective locus tags
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hydroperoxide) [32], thus being a key element in the oxidative
stress response.

Chemotaxis is a Prime Response of B. terrae BS001
on SEA to the Presence of Lyophyllum sp. Strain Karsten

At both Bno-physical-contact^ phases T1 and T2, the expres-
sion of a suite of genes, classed to COG class N (encompassing
genes for cell motility and flagellar movement, next to secretion
systems of types 2 and 3), was significantly enhanced in the
B + F as compared to the B treatment. In particular, the expres-
sion of the cheA gene (AKAUv1_790006; histidine autokinase,
assisting in the onset of chemotaxis) was significantly
(P< 0.05) raised (Fig. 3). Similarly, fungal-incited upregulation
of other chemotaxis-related genes, i.e., cheW, cheC, motA,
mo t B , a n d Bc h emo t a x i s - r e l a t e d ^ ( t s r ) g e n e s
AKAUv1_1760105 and AKAUv1_790004 (both encoding
Bmethyl-accepting chemotaxis protein I^) was observed, most
strongly at the no-physical-contact stages (Fig. 3; significance
at P< 0.05 indicated by *). Concurrent with this upregulation,
homologs of the flagellar biosynthesis genes flhD, fliS, fliM,
fliG, fliH, flil and ycgR were also significantly upregulated
(P< 0.05).

In the light of the potential importance of protein secretion
systems [2, 3] in the bacterial-fungal interactome, we then
examined the expression levels of type-2, type-3 and type-6

secretion systems (T2SS, T3SS, T6SS). Only low expression
levels were found for the genes in these systems across both
treatments. However, the genes in the whole T6SS cluster 1
[3] (log2 fold increase 0.40–0.74) were upregulated at T1,
with the differences for ten genes being statistically significant
(P < 0.05) (Table S3). Moreover, gene AKAUv1_2840083
(encoding a lytic transglycosylase) was also expressed in both
treatments over the whole, with a slight upregulation in the
B + F treatment at T1 (log2 fold change 0.51; Table S3).

Metabolic Responses of B. terrae BS001 Occur
Dynamically and Differentially at Lyophyllum sp. Strain
Karsten

With respect to putative metabolic up- and/or downshifts in
B. terrae BS001, a dynamic picture of gene expression was
obtained that pointed to a time-dependent metabolic response
to (1) the SEA and (2) the presence of fungal hyphae (Fig. 4).

Probably as a response to a small metabolite secreted by
Lyophyllum sp. strain Karsten into the SEA at T1, we observed
a s t rong upregula t ion of three c lus te red genes
( A KAU v 1 _ 7 9 0 1 5 5 , A KAU v 1 _ 7 9 0 1 5 6 a n d
AKAUv1_790157) that are predicted to encode an ethanolamine
transporter and the large and small subunits of ethanolamine
ammonia lyase, respectively, and are possibly involved in the
transport and metabolism of compounds like ethanolamine

−3−2−10123
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Fig. 2 Heat map showing the expression levels of genes possibly related
to stress alleviation. The data refer to genes in the B (B. terraeBS001) and
B + F (B. terrae BS001 + Lyophyllum sp. strain Karsten) treatments at
time points T1 (day 3), T2 (day 5), and T3 (day 8). The heat map was
constructed based on normalized read counts. The standardized
normalized read count, denoted as the row Z-score, is plotted in color

scale (higher expression is indicated by red color and lower expression by
blue). The putative gene products are given in front of each gene with
their respective locus tags. *Statistical significance (statistical analysis
was performed using DESeq; P < 0.05) between the control and
treatment. #Genes with low read counts (see the BMaterials and
Methods^ section)
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(Fig. 4). However, this differential response evened out quite
dramatically at T2 and T3. In contrast, three contiguous genes,
AKAUv 1 _ 3 1 9 0 1 3 7 , AKAUv 1 _ 3 1 9 0 1 3 8 a n d
AKAUv1_3190139, predicted to encode proteins involved in
the metabolism of the aromatic soil compound mandelate were
highly expressed at T1 in the B, but less so in the B + F treatment
(Fig. 4), whereas at T2 and T3, this response diminished signif-
icantly (low count data; Fig. 4). Interestingly, gene
AKAUv1_1010100, which is predicted to encode a putative
tartrate transporter, was downregulated at T1 and upregulated at
T2 (low count data; Fig. 4), indicating the potential utilization of
a tartrate-like compound initially from the SEA and later from the
fungus.

Several other genes, collectively belonging to two different
clusters and possibly involved in metabolic routes for energy
generation, were upregulated at T2 and T3, but not at T1
(Fig. 4). Notably, these clusters each contained at least one
gene that was predicted to encode a short-chain dehydroge-
nase (SDR), which suggested they were part of energy gener-
ation modules. SDRs are known to catalyze the oxidation (or
reduction) of sugars, alcohols, steroids, diverse xenobi-
otics and aromatic compounds in an NADP(H)-dependent
fashion [33]. One such gene, AKAUv1_2490031 (also vali-
dated by RT-qPCR; see later), was upregulated at T2 and more
strongly so (log2 fold change 4.64) at T3 (Fig. 4). The down-
stream gene AKAUv1_2490033 (encoding an NAD-
dependent sugar epimerase/dehydratase, probably involved
in the conversion of UDP-α-D-glucose to UDP-α-D-galactose;
log2 fold change 2.84; also validated by RT-qPCR) was also
upregulated (low read counts; Fig. 4), whereas the intervening

gene (AKAUv1_2490032) encoding a conserved hypothetical
protein, as well as the up- and downstream genes did not show
differential expression. In a second cluster, two SDR-encoding
genes (AKAUv1_2440023; AKAUv1_2440024), next to one
encoding a transcriptional regulator (AKAUv1_2440025),
were also upregulated. Interestingly, gene AKAUv1_2440024
(log2 fold change 2.69) had a keto reductase domain. A third
c lus te r encompassed genes AKAUv1_3190155,
AKAUv1_3190156 and AKAUv1_3190157 (encoding a puta-
tive FAD-dependent pyridine nucleotide-disulfide oxidoreduc-
tase (log2 fold change 3.22), a putative phosphatidylethanol-
amine binding protein, and a short-chain dehydrogenase/reduc-
tase, respectively, was found to be expressed throughout, albeit
at low read counts (Fig. 4).

A Five-Gene Cluster with Relevance for Energy
Generation Unveiled

With respect to metabolism and energy generation, five clustered
genes, AKAUv1_2870056 through AKAUv1_2870060, were
dynamically modulated and significantly upregulated at T3.
BLAST-N searches of thewhole region revealed nucleotide iden-
tities of 95 % (coverage of 91 %) to a similar region of the
B. caribiensisMBA4 2,555,069 bp replicon. The first four genes
of the cluster are located on the same strand and represent an
operon (Fig. 5a), as predicted using Rockhopper [34, 35]. Of this
operon, the first gene encodes a predicted alkyl hydroperoxidase
(AHP) (log2 fold change 4.51) (Fig. 5b) and the second one
(log2 fold change 3.81) a protein that belongs to the cupin super-
family. These two gene products might reflect a combination of
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Fig. 3 Heat map showing the expression patterns of chemotaxis and
flagellar motility related genes. The data refer to genes in the control
(B. terrae BS001) and treatment (B. terrae BS001 + Lyophyllum sp.
strain Karsten) at time points T1 (day 3), T2 (day 5) and T3 (day 8).
*Statistical significance (statistical analysis was performed using
DESeq: P < 0.05) between control and treatment. The heat map was

constructed based on normalized read counts. The standardized
normalized read count, denoted as the row Z-score, is plotted in color
scale (red indicates higher expression and blue indicates lower
expression). The putative products are given in front of each gene with
their respective locus tags
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energy generation, e.g. from a smallmolecule such as oxalic acid,
and a concomitant oxidative stress response, as has been found in
the interaction of Brachypodium distachyon with Fusarium
graminearum [36, 37]. The response is possibly regulated by a
LysR family transcriptional regulator encoded by gene
AKAUv1_2870058, which was also upregulated (log2fold
c h a n g e 4 . 1 0 ) . T h e f o u r t h u p r e gu l a t e d g e n e ,
AKAUv1_2870059, was predicted to encode a putative
nucleoside-diphosphate sugar epimerase (log2 fold change
4.28). Finally, the fifth gene of the cluster, AKAUv1_2870060,
possibly encodes a conserved (exported) Balpha/beta hydrolase
fold^ protein. Using BLAST-P against the ESTHER database,
we found that the predicted protein was ca. 60 % similar to a
poly(aspartate) hydrolase from B. glumae.

Oxalate Metabolism and Energy Generation

Several gene clusters with putative relevance for the uptake and
utilization of oxalate were found to be dynamically modulated
over time, in the B + F treatment. First, a cluster of genes con-
taining an oxalate/formate antiporter (AKAUv1_1160010),

oxalyl-CoA decarboxylase (AKAUv1_1160013) and two
fo rmy l -CoA t r an s f e r a s e s (AKAUv1_1160014 ;
AKAUv1_1160019) was upregulated at T1 and T2 (Fig. S3).
Moreover, two genes in another cluster, encoding an oxalate/
formate antiporter (AKAUv1_2660032) and a formyl-CoA
transferase (AKAUv1_2660028), were also upregulated at T1.
Strain BS001 further showed the upregulation of genes of the
glycerate pathway [38], encoding tartronic semialdehyde reduc-
tase (AKAUv1_2390002) and glyoxylate carboligase
(AKAUv1_2390004), indicating further processing of oxalate.

Glycerol Uptake and Utilization

Given its presumed importance as an accelerator of metabo-
lism, we examined the expression of the glycerol uptake
(GUP) gene AKAUv1_1930108 [3] across all treatments.
Our analyses did not reveal any differential response, indicat-
ing the GUP trait had a minor impact, if any at all. Concerning
the utilization of glycerol, we investigated the expression of
gene AKAUv1_1300029 encoding glycerol kinase across
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Fig. 4 Heat map showing the expression patterns of gene clusters
involved in diverse metabolic and energy generation pathways. The
data refer to genes in the control (B. terrae BS001) and treatment
(B. terrae BS001 + Lyophyllum sp. strain Karsten) at time points T1
(day 3), T2 (day 5), and T3 (day 8). *Statistical significance (statistical
analysis was performed using DESeq; P < 0.05) between control and

treatment. The heat map was constructed based on normalized read
counts. The standardized normalized read count, denoted as the row Z-
score, is plotted in color scale (red indicates higher expression and blue
indicates lower expression). The putative products are given in front of
each gene with their respective locus tags. #Genes with low read counts
(see the BMaterials and Methods^ section)
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treatments; however, we did not find any differential
responses.

RT-qPCR Validation of Expression of Selected Genes

To validate our major conclusions drawn from the whole tran-
scriptome analysis, relative expression analyses of four genes
of B. terrae BS001 were performed using quantitative RT-
qPCR at three time points (day 3, day 5 and day 8). The RT-
qPCR generated results that validated the respective tran-
scriptome data showed a similar trend at all time points (Fig. 6).

We observed that cheAwas upregulated (fold change 1.83;
P< 0.05) in the presence of Lyophyllum sp. strain Karsten at
day 5. Similarly, at day 8, we noted upregulation (fold change
1.43; P > 0.05) of the cheA gene, in the B+F treatment
(B. terrae BS001 and Lyophyllum sp. strain Karsten) com-
pared to the B treatment, with B. terraeBS001 growing alone.

The expression of the short-chain dehydrogenase encoding
gene (AKAUv1_2490031) had previously shown a pattern of
upregulation at the physical-contact stage of the interaction. Our
quantitative PCR data showed correlation with our initial obser-
vation, as we noted an upregulation (fold change: 1.54, P> 0.05
and 1.65, P< 0.05) in the expression of the gene at day 5 and
day 8, respectively, in the presence of fungal mycelium.

The quantitative PCR data also revealed that the expres
sion of NAD-dependent epimerase encoding gene

AKAUv1_2490033 followed a similar trend as in the tran-
scriptome analysis, with an upregulation at day 5 (fold change:
1.59, P> 0.05) and day 8 (1.86; P< 0.05) in the presence of
fungal mycelium.

The gene AKAUv1_2870060 that presumably encodes a
conserved hypothetical protein also showed a similar trend of
upregulation at the physical-contact stage, as found in the
transcriptome analyses. It was significantly upregulated by
strain BS001 growing in the presence of the fungus, at the
physical-contact stage (day 8; 1.65; P < 0.05). However, at
day 5, it was only slightly upregulated (1.24; P> 0.05).

Detailed View of Differentially Expressed Genes at T1, T2
and T3

We here provide a brief account of other differentially
expressed genes at each time point, which were for the most
part not discussed in the foregoing.

Differentially Expressed Genes at T1

A total of 651 genes was found to be differentially expressed
between treatments B + F and B at T1 (Table S4), 584 of
these differences were statistically significant (P < 0.05).
Only 33 genes were upregulated, with the remainder (618)
being downregulated.
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Fig. 5 Heat map showing the genetic organization and expression
pattern of a gene cluster of B. terrae BS001 involved in presumed
metabolism and energy generation. a The genetic organization of the
cluster of genes that significantly upregulated at T3 (day 8). b Heat map
of the expression patterns of the genes in the control (B. terrae BS001)
and treatment (B. terrae BS001 + Lyophyllum sp. strain Karsten) at time
points T1 (day 3), T2 (day 5) and T3 (day 8). *Statistical significance

(statistical analysis was performed using DESeq; P < 0.05) between
control and treatment. The heat map was constructed based on
normalized read counts. The standardized normalized read count,
denoted as the row Z-score, is plotted in color scale (red indicates
higher expression and blue indicates lower expression). The putative
products are given in front of each gene with their respective locus tags
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Upregulated Genes

Thirteen of the 33 upregulated genes were assigned to COG
classes R (3 genes), S (2), P (2) andM, N, T, L, E, and CHR (1
each), whereas the remaining (20) could not be assigned to
any class (Table S4). As indicated in the foregoing, the che-
motaxis regulatory gene (cheA; belonging to class BN^) was
strongly upregulated. Furthermore, the COG class M gene
AKAUv1_220060, which is predicted to encode a D-hep-
tose-1-phosphate adenylyltransferase (DHPA), was upregulat-
ed (log2 fold change of 1.82; Table S4). DHPA is involved in
the biosynthesis of the lipopolysaccharide (LPS) precursor
ADP-heptose, potentially of the inner core LPS [39]. Then,
gene AKAUv1_710037, which is predicted to encode a pro-
tein involved in the biosynthesis of pyrroloquinoline quinone
(PQQ), was upregulated (log2 fold change 1.82; Table S4).
PQQ is a cofactor involved in cellular processes such as phos-
phate solubilization and the scavenging of reactive oxygen
species, as well as in stress responses, in Pseudomonas [40,

41]. Furthermore, genes for iron acquisition and storage, no-
t a b l y AKAUv1_2280031 , AKAUv1_2280033 ,
AKAUv1_2440020 and AKAUv1_2280030 (encoding re-
spectively bacterioferritins and a TonB family protein), were
upregulated (log2 fold changes 0.52, 0.64 and 0.74; P < 0.05;
Table S3). Bacterioferritins sequester iron that may be toxic to
cells and release it when iron becomes limiting [42]. Finally,
gene AKAUv1_690018 and three other genes, which were
predicted to encode peptidases involved in the maturation
and processing of a peptide antibiotic (like microcin B17 in
E. coli [43]) were upregulated (log2 fold change 0.89;
Table S3).

Downregulated Genes

Table S4 lists the main downregulated genes. About 20 % of
these (that is, 125 of 618) were predicted to encode conserved
proteins of unknown function, whereas about 40 % (260
genes) represented various Bcore metabolism^ enzymes. In
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Fig. 6 Bar charts representing
the fold changes of selected genes
at T1 (day 3), T2 (day 5) and T3
(day 8) in the treatment (B + F)
relative to the control (B),
obtained through RT-qPCR.
*Statistical significance
(P < 0.05; t test). The error bars
represent the standard error of the
mean
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addition, about 78 genes encoded various membrane-bound
transporters and another 36 transcriptional regulators. With
respect to the transporters, ATP-binding cassette (ABC) (23)
and major facilitator superfamily (MFS) (11) class trans-
porters were downregulated (Table S5). Notably, the cusA
gene (log2 fold change −3.51), which encodes a metal (cop-
per/silver) membrane efflux system, was strongly downregu-
lated (Table S5). CusA is a member of the resistance-
nodulation-cell division (RND) proton-driven cation
antiporter/symporter family that is involved in the efflux of
heavy metals [44]. Another 70 downregulated genes encoded
proteins that make part of various KEGGmetabolic pathways
(Table S6). These pathways encompass the transformation of
carbohydrates, amino acids and fatty acids. Here, glycolysis/
gluconeogenesis, citrate cycling and pyruvate and amino acid
metabolic processes stood out. In addition, several genes
(Table S6) involved in methane, nitrogen and aromatic hydro-
carbon transformation pathways were also downregulated.

Interestingly, downregulation (log2 fold change −1.61) of a
hybrid polyketide synthase/nonribosomal peptide synthetase
(PKS/NRPS; AKAUv1_1710056) gene [3] was found, sug-
gesting that modulation of this specific bacterial function
might be key to interaction with the fungal host (Fig. 4).

Differentially Expressed Genes at T2

A total of 155 genes was found to be differentially expressed
at T2 (threshold, >1.5 log2 fold change). Of these, 66 were
statistically significant (P < 0.05). Fifteen of the latter genes
were upregulated and 51 downregulated in the B + F as com-
pared to the B treatment (Fig. S4). These are described
hereunder.

Upregulated Genes

As discussed above, the chemotaxis regulator cheA contin-
ued to be upregulated at T2, indicating a persisting response
to stimuli from the fungus. However, the expression of other
genes related to flagellar motility was not differential
(Fig. 3). Interestingly, gene AKAUv1_1000027, which was
predicted to encode a BSuppressor of variegation-Enhancer
of zeste-Trithorax (SET)-domain containing protein^ (log2
fold change 1.68; Fig. S4) was upregulated. This may sug-
gest that the predicted 16.46-kDa SET domain protein, a
potential T3SS-secreted effector, might be Bearly^ induced,
to serve as a potential modulator of fungal gene expression
[45]. Notably, transcription of a gene for a putative oxidore-
ductase, AKAUv1_530022, was upregulated (log2 fold
change 1.93), next to that of a gene for a putative cyto-
chrome c552 (log2 fold change 2.83; AKAUv1_2920083)
(Fig. S4). Another upregulated gene, AKAUv1_540146,
encoding a predicted alcohol dehydrogenase (log2 fold
change 1.91), indicated (diverse) metabolic processes were

active. Moreover, a gene encoding lactoylglutathione lyase
(glyoxalase I, possibly detoxifying the metabolic by-product
methylglyoxal) , AKAUv1_540002, next to gene
AKAUv1_540003 (log2 fold change 1.35; P < 0.05), was
also upregulated.

With respect to potential metabolism, two genes predicted
to be involved in purine and valine/leucine metabolic path-
ways were upregulated (≥1.5 log2 fold change; Table S7).
Gene AKAUv1_1780022 is predicted to encode an
allantoicase with a potential role in the transformation of pu-
rines or the nitrogen-rich derivative allantoin [46], releasing
nitrogen for anabolism [47, 48]. Moreover, the upregulated
gene AKAUv1_3070011, that was predicted to encode 3-
hydroxy isobutyrate dehydrogenase, might be involved in
the valine/leucine degradation pathway (Table S7).

Downregulated Genes

Eight of the 51 downregulated genes at T2 were involved in
central metabolic processes, with four being part of one
KEGG pathway each (for glutathione, vitamin B6,
glycerophospholipids and cysteine/methionine, respectively).
The remaining four genes were potentially involved in more
than one pathway, i.e., glycolysis/gluconeogenesis,
glyoxylate/dicarboxylate, galactose and pentose/pyruvate
(Table S7).

Interestingly, gene AKAUv1_2870089, predicted to encode
a glutathione-dependent formaldehyde-activating protein (in-
volved in the detoxification of formaldehyde [49]), was down-
regulated (log2 fold change −2.72), with its upstream gene
AKAUv1_2870088, predicted to encode a methyltransferase,
also being downregulated (log2 fold change −1.83; Fig. S4). In
Saccharomyces cerevisiae, such genes are reported to play roles
in responses to stress [50]. Furthermore, two other (contiguous)
genes, AKAUv1_990014 andAKAUv1_990015 (both predict-
ed to encode conserved proteins of unknown function), were
strongly downregulated (log2 fold changes −2.34 and −2.99;
Fig. S4). Secondary structure prediction of the latter protein
revealed it to resemble a p-amino benzoate N-oxygenase
(AurF) from Streptomyces thioluteus, which has a role in the
oxidation of aromatic hydrocarbons such as aminoarenes to
nitroarenes [51, 52].

Interestingly, gene AKAUv1_110198 (encoding a
Bconserved protein of unknown function^) was downregulat-
ed (log2 fold change −1.59). The predicted gene product was
homologous (34 % amino acid identity) to the purD gene
product (phosphoribosylamine-glycine ligase), which is in-
volved in purine metabolism and is upregulated in response
to butanol and butyrate stress in Clostridium acetobutylicum
[53]. Moreover, the predicted ATP-dependent carboligase-
encoding gene AKAUv1_110221 was also downregulated
(log2 fold change −1.66).
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Differentially Expressed Genes at T3

Upon physical contact of strain BS001 with the fungal hyphae
at T3, a total of 136 bacterial genes was differentially
expressed. Ninety-six of these differences were statistically
significant (P < 0.05). Out of these 96 genes, 62 were upreg-
ulated and 34 downregulated (Fig. S5).

Upregulated Genes

Next to the metabolic genes discussed in the foregoing, three
genes representing three KEGGmetabolic pathwayswere upreg-
ulated at T3 (Table S8). The predicted proteins were likely in-
volved in the transformation of aminoacyl-tRNAand of arginine/
proline. Moreover, gene AKAUv1_2480024, encoding an en-
zyme of the chlorocyclohexane/chlorobenzene and toluene deg-
radation pathway, was also upregulated (log2 fold change 1.57).
Regarding ionic homeostasis, gene AKAUv1_2180021,
encoding chloride channel protein EriC, an H+/Cl− antiporter,
was upregulated (log2 fold change 1.58; Fig. S5). The EriC
protein may be involved in (acid) stress tolerance, as found in
E. coli [54].

Moreover, the aforementioned PKS/NRPS biosynthetic
gene AKAUv1_1710056 was upregulated at T3, albeit at
low read counts (log2 fold change 1.68), indicating potential
modulation of Lyophyllum sp. strain Karsten physiology upon
physical contact. Finally, two genes, AKAUv1_2420001 and
AKAUv1_2490034 (predicted to encode transposases), were
also upregulated (log2 fold change 1.62 and 2.39). A similarly
enhanced expression of the mobility of genetic elements was
reported for C. fungivorans Ter331 in its interaction with
A. niger [9].

Downregulated Genes

With respect to general KEGG metabolic pathways, the
expression of six genes was downregulated (Table S8).
These included two genes each, involved in purine and
aminobenzoate metabolism, and one each in galactose and
tryptophan metabolism. The gene AKAUv1_110190
(encoding coenzyme PQQ synthesis protein C) was down-
regulated (log2 fold change −1.90; P < 0.05; Fig. S5). In
Pseudomonas, the pqqC protein is involved in the response
to stress [41], being that in the rhizosphere of pine, P. putida
KT2440 preferentially activates it [55]. Thus, the downreg-
ulation of the strain BS001 pqqC may relate to the allevia-
tion of stress. Similarly, gene AKAUv1_2820103, predict-
ed to encode a NodT family efflux transporter, was down-
regulated (log2 fold change −1.47). Similarly, the afore-
mentioned (Fig. S5) methyltransferase encoding gene,
AKAUv1_2870088, was also downregulated (log2 fold
change −1.70).

Discussion

So far, only few studies have unraveled the complex nature of
bacterial-fungal interactions at the transcriptional level [8–10,
56, 57]. Recently, C. fungivorans strain 331 was shown to
invest substantial cellular resources into the capacity to utilize
compounds provided by its host fungus A. niger, as well as in
the production of antifungal agents [9]. In the current study,
B. terrae BS001 was interrogated with respect to its response
to the fungus Lyophyllum sp. strain Karsten on SEA plates
mimicking soil conditions. Under the selected conditions, het-
erotrophs such as B. terrae BS001 are expected to express
responses to the scarce resources, in particular sources of car-
bon and energy. We hypothesized that the presence of fungal
hyphae would drive additional responses, resulting in the po-
tential exploration of fungal-derived resources, most likely
along an approximation to, followed by a physical association
with, the fungus. The existence of a physical association of
B. terrae BS001 with Lyophyllum sp. strain Karsten was re-
cently demonstrated using fluorescence microscopy [1].

Gene Expression Patterns of B. terrae BS001 on the SEA
Medium

The observations at T1 and T2 (no physical contact between
partners) versus the physical contact phase T3 enabled the
examination of the bacterial responses to either Bdistant^ or
Bproximate^ fungal hyphae. Thus, effects of highly diffusible
(or even volatile) fungal-released compounds or of changes in
the (nutritional) status of the medium versus those of more
physical types of interaction, were assessed. Overall, upon
introduction, strain BS001 was clearly confronted with
(starvation) stress conditions on the SEA plates, which was
consistent with the reduced amount of total carbon in the me-
dium. Given that the stress-relevant transcript densities in the
B + F treatments at T1 were initially as high as, or higher than,
those in the B treatment, little, if any, relief of the stress by the
fungus occurred at this time. Key to the contention that the
bacterial population was under (generic) stress were the high
expression levels of rpoS and numerous RpoS-driven genes.
We hypothesized that, following initial bacterial growth, het-
erogeneous cell populations emerged on the SEA plates, with
different levels of growth (frontier cells) versus stress (back-
ward cells). Such situations very likely occur in the soil, where
spatial constraints foster the coexistence of both growing and
growth-arrested (starvation-stressed) cell populations. Similar
observations have been reported for other bacterial systems
[58, 59].

The high express ion of genes encoding ly t ic
transglycosylases in both treatments over time was intriguing.
Such enzymes are possibly involved in cell wall recycling/
turnover, cell division and insertion of membrane-spanning
structures (i.e., secretion systems and flagella) [60, 61]. They
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are expressed under elevated stress [62, 63], degrading pepti-
doglycan and remodeling the cell wall [64]. It appears that,
due to this action, strain BS001 probably restructured its cel-
lular make-up, when confronted with the conditions of SEA,
as a result of the nutrient-limited conditions.

Early Gene Expression by B. terrae BS001 as a response
to Lyophyllum sp. strain Karsten

The disproportionate expression of the cheA gene in the pres-
ence of the fungus at T1 as well as T2, highlighted the likely
role of chemotaxis and flagellar motility in the early stages of
interaction of B. terrae BS001 with Lyophyllum sp. strain
Karsten. That these data indeed suggested a chemotactic re-
sponse occurred was supported by the data obtained via RT-
qPCR analysis of the cheA gene (Fig. 6). This analysis was
striking, as at T3 no significant difference in the expression
levels of the respective genes was observed between the treat-
ments. Although migration of bacterial cells on the agar plate
surface did not visibly take place, Lyophyllum sp. strain
Karsten most likely released compounds into the SEA that
acted as chemoattractants for B. terraeBS001. Hence, chemo-
taxis is likely central to the behavior of B. terraeBS001 in soil
when confronted with a (distant) attracting fungus. In
Sinorhizobium meliloti, chemotaxis also drives the movement
of cells towards plant-secreted chemoattractants [65], whereas
a study with Fusarium oxysporum identified fusaric acid as an
attractant for Pseudomonas fluorescensWCS365 [66].

Rather unexpectedly, we also observed an upshift in the
expression of the T6SS at T1. Indeed, the T6SS has been
reported to mediate the bacterial response to oxidative stress
[67], regulating RpoS, modulating general stress response reg-
ulators [68], and playing a role in osmotolerance and pH ho-
meostasis [69, 70]. Thus, a rather early response to SEA-
induced stress conditions was apparent.

Metabolic Response and Energy Generation—Several
Putative Compounds Implicated

The overall metabolic responses of B. terraeBS001 in the B and
B+ F treatments may be characterized by a quick depletion of
the carbonaceous compounds present in the SEA, followed by a
progressively stronger response to the fungus as a potential pro-
vider of such resources. Thus, multiple sets of genes for a suite of
generic energy generation pathways, as well as the specific
mandelate utilization pathway, were suppressed by the fungus.
InPseudomonas, mandelate/mandelic acid (derived from the soil
metabolite amygdalin) can serve as carbon and energy sources
[71, 72]. Next to repressed gene sets, others were highly
expressed, indicating inductive events. For instance, the dynamic
expression pattern of the ethanolamine (eut) utilization operon
over time may indicate that ethanolamine or similar compounds
were being actively captured and metabolized, up to their

depletion from the medium. The molecule, much like ethanol-
amine, may have constituted a metabolic cue in the system, in a
temporally definedmanner [73, 74]. The expression of a putative
tartrate transporter encoding gene was notable, as several
(ectomycorrhizal) fungi have been found to release tartrate and
other low-molecular-weight organic compounds under nutrient-
poor conditions [75]. In Rhizobium leguminosarum biovar
viciae, a similar protein acts in the utilization of tartrate in the
rhizosphere of pea and alfalfa [76].

Glycerol

Nazir et al. [5] previously reported that glycerol is a main com-
pound that is released by Lyophyllum sp. strain Karsten in liquid
systems, constituting a resource for B. terrae BS001. However,
the GUP system, previously hypothesized to serve in the captur-
ing of extracellular glycerol, as well as a glycerol kinase gene,
were not significantly upregulated at the fungus. Although glyc-
erol may have become available, it may have been usurped by
passive diffusion across the membrane. Alternatively, the switch-
on of the gup gene may have only occurred in the frontier cells
that were faced with the highest glycerol levels, so that it did not
stand out as significant in the overall analyses.

Oxalate and Its Putative Transformation

The enhanced expression of several systems that are potentially
involved in oxalate capture and transformation indicates that
strain BS001 may assimilate fungal-released compounds such
as oxalate [77] as sources of carbon and energy. Strain BS001
may exhibit a biphasic response mechanism towards oxalate in
combination with other molecules that are released by the fun-
gus, where genes for degradation are upregulated at earlier or
later stages. A similar trend was reported for C. fungivorans
Ter331 in its interaction with A. niger [9]. We hypothesized that
gene AKAUv1_2870057 (encoding a protein of the cupin super-
family) has a role as an oxidase, potentially of released oxalate,
thus catalyzing its breakdown to carbon dioxide and hydrogen
peroxide. The effects of the resulting hydrogen peroxide may
have been neutralized by a peroxidase encoded by the adjacent
gene (AKAUv1_2870056). Apart from this, the expression of
genes involved in the degradation of oxalate, both at earlier and
later stages of the interaction, likely indicates a complex scenario,
in which strain BS001 may switch on/off the expression of
genes, subject to the availability of oxalate.

Partial Relief of Stress by Lyophyllum sp. strain Karsten
at T3

At the Bphysical-contact^ phase T3, the stress-related genes
dnaE2, rsbR, rsbS, rsbT and pqqC (although the latter at low
read counts) and a gene (AKAUv1_2870088) encoding a
methyltransferase showed a progressive lowering of
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expression, suggesting a—possibly partial—relief of the
stress by the fungus. However, we are careful in our conclu-
sion due to the fact that some of the data were supported by
low read counts (see Fig. 2). This partial relief of stress by the
presence of Lyophyllum sp. strain Karsten may be due to the
delivery of palatable compounds such as glycerol and oxalate.
Many fungi are known to release such compounds [5, 78]. For
instance, a recent study on the interaction of B. glathei with
A. alternata and F. solani reported an attenuation of bacterial
stress due to phosphate and carbon (SspA and CstA) starva-
tion as a result of fungal presence [8]. We surmised that, in
addition to the general SEA-incited (nutrient) stress, competi-
tion for nutrients in the interactome may have been fierce at
T1, whereas the two partners differentiated the niche as the
interaction progressed to physical contact.

AnOxidative BBurst^ or Bacterial Metabolism-Generated
Oxidative Stress

Given that strain BS001 revealed fungal-incited upregulation
of several genes involved in the oxidative stress response, in
particular at T3, either the fungus or the bacterium itself may
have produced H2O2 as a metabolic by-product. The latter is
known to occur in the oxalate oxidative pathway. Possibly, a
partial alleviation of medium-induced stress resulted in me-
tabolism concomitant with an enhancement of oxidative
stress. This effect has also been observed in the interaction
of B. glathei with A. alternata and F. solani [8]. Indeed, met-
abolic activities were clearly enhanced at T3, and the SDRs
expressed match the expectation of their involvement in ener-
gy production by strain BS001 from fungal-released sub-
strates. RT-qPCR analysis of the genes encoding SDR
(AKAUv1_2490031), NAD-dependent epimerase
(AKAUv1_2490033), and conserved hypothetical protein
(AKAUv1_2870060), validated the expression patterns re-
vealed by the whole transcriptome analyses (Fig. 6). In
P. fluorescens BBc6R8, SDR-like proteins were recently
shown to be upregulated in the presence of L. bicolor
S238N [10]. Moreover, SDR mutants of S. meliloti have de-
ficiencies in the catabolism of particular carbonaceous com-
pounds, affecting its symbiosis with Medicago sativa [79].

Potential Role for a B. terrae BS001 SecondaryMetabolite

The downregulation of the hybrid PKS/NRPS gene at T1—in
contrast to T3—in the presence of the funguswas interesting. It is
possible that perception of the fungal hyphae at a distance
allowed subpopulations of the strain BS001 cells to divert energy
into the repression of production of the antifungal compound,
thus allowing the fungus to get physically close to the bacterial
growth. Upon physical contact, upregulation occurred (albeit at
low read counts), bywhich the bacterium possiblymodulated the
fungal mode of growth to its own benefit. However, the nature of

the natural product synthesized by the gene cluster is as yet
unknown. B. rhizoxinica, an endosymbiont of the fungus
Rhizopus microsporus, produces the secondary metabolite
Brhizoxin^ that acts on rice seedling cells, destroying these
[80]. A large PKS/NRPS operon was found to be involved in
rhizoxin biosynthesis [81]. We suggest that B. terrae BS001
expresses the NRPS/PKS gene cluster, under nutrient-limited
conditions, in a different manner according with the relative
Bsphere of influence^ of its fungal associate.

Conclusion

Overall, our analyses reveal that the interplay between
B. terrae BS001 and Lyophyllum sp. strain Karsten under
soil-mimicking conditions is highly complex and dynam-
ic. Clearly, B. terrae BS001 encounters stress conditions
on the SEA medium used early on in the experiment, with
several genetic systems, including chemotaxis and flagel-
lar motility, being responsive to the fungal hyphae, per-
ceived at a distance. The early responses also included
some metabolic up- and downshifts, which is probably in
line with the resources encountered in the system without/
with the fungus. Then, the organism likely entered a dif-
ferent physiological state upon contact with the fungus, in
which limited sets of particular metabolic genes, next to
oxidative stress responsive genes, were activated, at the
expense of other metabolic genes. On the basis of this
observational study, it is clear that a more focused insight
into each of the mechanisms underlying the interaction of
B. terrae BS001 with its host fungus is required. Possibly,
mutational analyses of the key genetic systems unveiled
here should be combined with specific transcriptome and
metabolic profiling approaches.
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