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a b s t r a c t

Social relations are multiplex by nature: actors in a group are tied together by various types of rela-
tionships. To understand and explain group processes it is, therefore, important to study multiple
social networks simultaneously in a given group. However, with multiplexity the complexity of data
also increases. Although some multivariate network methods (e.g. Exponential Random Graph Models,
Stochastic Actor-oriented Models) allow to jointly analyze multiple networks, modeling becomes compli-
cated when it focuses on more than a few (2–4) network dimensions. In such cases, dimension reduction
methods are called for to obtain a manageable set of variables. Drawing on existing statistical methods
and measures, we propose a procedure to reduce the dimensions of multiplex network data measured in
multiple groups. We achieve this by clustering the networks using their pairwise similarities, and con-
structing composite network measures as combinations of the networks in each resulting cluster. The

procedure is demonstrated on a dataset of 21 interpersonal network dimensions in 18 Hungarian high-
school classrooms. The results indicate that the network items organize into three well-interpretable
clusters: positive, negative, and social role attributions. We show that the composite networks defined
on these three relationship groups overlap but do not fully coincide with the network measures most
often used in adolescent research, such as friendship and dislike.
. Introduction

In a classic study of U.S. high schools in the late 1950s, Coleman
nd his colleagues asked students to name both their peers from
chool whom they considered as friends and those whom they
ost wished to be like (Coleman, 1961). The distinction between

riend and role model relations led the researchers to discover
hat every school had a distinct group of “local leaders” (students
opular as friends) and “system leaders” (students popular as role
odels), and that it was the latter group which had a larger impact

n the school community as a whole (Coleman, 1961, Chapter 4).
his phenomenon, important as it is in understanding the value

ystem of adolescents, would not have been revealed had the
tudy focused solely on friendships between students. The work
f Coleman and colleagues demonstrates that without taking into
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account the multiplexity of relations, the social forces shaping
communities cannot be fully understood.

The importance of multiplexity has long been recognized
in the research tradition of Social Network Analysis (Kadushin,
2012; Prell, 2011; Borgatti et al., 2009), but its potential for aiding
explanations is far from being fully exploited. The collection of rich
multiplex network datasets has begun already several decades
ago (e.g. Sampson, 1969; Coleman, 1961; Homans, 1950).1 Addi-
tionally, one can also witness the early development of methods
appropriate for analyzing this kind of data (e.g. Davis, 1968;
Fienberg et al., 1985). However, most multiplex studies and meth-
ods focus on only two or three types of relations at most. Common

sense tells us that social ties, may they connect people, firms, or
countries, are more heterogeneous than that. Yet, even nowadays
we rarely see network studies that measure a large number, say

1 The popular software packages for network analysis contain a variety of clas-
sic multiplex datasets. For example, networks among Sampson’s monks and the
bank wiring room data (Roethlisberger and Dickson, 1939) studied by Homans are
available in UCINET (Borgatti et al., 2002).
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employed, we can mention the Peer Nomination Inventory
(Wiggins and Winder, 1961), the Class Play Method (Bower, 1960;
Masten et al., 1985), the Pupil Evaluation Inventory (Pekarik et al.,
4 A. Vörös, T.A.B. Snijders / So

ozens, of relational dimensions in a given social context. This
eems surprising especially in times when network data, even on
large scale, are becoming easier to collect and computational

apacity is sufficient for analyzing complex data structures.
Studying a small set of relations can be a good practice as

ong as we have well-grounded knowledge about, and valid meas-
res of, the most important types of social ties in a given context.
owever, this seems usually not to be the case, and simplicity of
easurement tends to outweigh validity and thoroughness. For

xample, affective relations are quite often studied by friendship
ies. Friendship is a complex relationship, yet it is mostly mea-
ured by the single question “Whom do you consider a friend?”.
s a price, additional work is needed to find out what people actu-
lly mean when they answer this simple question. And we do
now, for instance, that they mean a lot of different things (Fischer,
982), that what they mean changes with age (Berndt, 1982:1449),
nd that friendship is multidimensional (Marsden and Campbell,
984). Consequently, it seems to be a better practice to complement
ur analyses of friendship networks with several related network
imensions.

Measuring a large number of relational dimensions, maybe
ozens, makes it possible to define each of them very specifi-
ally, and thereby to obtain valid measures of various concrete
ocial relations between actors (rhyming with the old wisdom of
ociometricians). Even more importantly, however, by exploring
he interrelations between these measures, one may be able to
onstruct aggregated networks that represent some latent dimen-
ions of social relations – just as in the case of psychological
cale construction, but now tailored to networks. This approach
o multiplexity can help us define more valid measures of complex
elationships, such as friendship, and potentially new measures of
o far unexplored relational concepts. The present paper attempts
o contribute to a step in this direction by outlining a suitable
nalytical procedure and demonstrating its value on a real-world
xample.

.1. Multiplexity as a challenge

The complexity of multiplex network data with many relational
imensions presents two general challenges compared to studying
nly one or a few networks at once. First, from a substantive point of
iew, with more network dimensions studied, the number of poten-
ial mechanisms involved in a social phenomenon increases rapidly.
or example, in the context of Coleman’s high-school study we may
e interested in why certain students become popular in their com-
unity. The potential answers to this question become numerous

s soon as we recognize that there are two distinct pathways to
opularity: e.g., making friends and becoming a role model. How
an students become role models outside of their local group? How
an role models become popular in their local friendship groups?
o students tend to see their friends as role models? Or do they
ant to befriend those they look up to? These examples highlight

he need for a series of theoretically and empirically grounded ideas
bout how multiple types of relationships are interlinked in a given
ontext. Taking into account the multitude of possible interdepen-
encies between several network dimensions, hypotheses about
umerous social mechanisms may be necessary. These are bound
o be ad hoc unless a strong theoretical framework is available.

The second, and related, challenge posed by the complexity
f multiplex data is of a technical nature. It becomes necessary
o use statistical tools which are able to efficiently and compre-
ensibly model the complex interdependencies of network ties

ithin and between the types of social relations in question. Some

f the recent multivariate statistical methods in the field allow
he analysis of multiplex networks. For example, the structure of
dependent network can be explained by other networks using
etworks 49 (2017) 93–112

MRQAP (Krackhardt, 1988; Dekker et al., 2007), ERGMs (Lusher
et al., 2012), or SAOMs (Snijders et al., 2010). Furthermore, the
mutually dependent modeling of multiple network dimensions is
also an option in case of the latter two methods (Lusher et al., 2012,
Chapter 10; Snijders et al., 2013). These two techniques are flex-
ible enough to model various specific forms of interdependencies
between multiple networks, including actor-level, dyadic, and tri-
adic interrelations. However, the same flexibility makes working
with these techniques a daunting task already in case of three or
four networks, let alone more.

1.2. Dimension reduction to the rescue

Dimension reduction is one of the successful methodological
strategies to tackle both the substantive and the technical chal-
lenges that come with “too much” data. The general approach
represented by Cluster Analysis, Factor Analysis, or other methods
for dimension reduction of non-network, monadic data has been
frequently applied to different problems in the analysis of social
networks. It is enough to think about blockmodeling (Doreian et al.,
2005; White et al., 1976) which aims to identify subsets of actors
based on their position in the network. In some cases, the classifica-
tion of actors may be based on their position in multiplex relational
structures (e.g. Dabkowski et al., 2015; Lazega, 2001).

Of the classic techniques of scaling, we can find applications
of Correspondence Analysis for the simultaneous clustering of tie
senders and receivers in one-mode and two-mode networks (Faust,
2005; Wasserman et al., 1990; Wasserman and Faust, 1989), or
for the comparison of structural features of networks measured
in multiple groups (Faust and Skvoretz, 2002; Skvoretz and Faust,
2002). Cluster Analysis also appears as a method to classify groups
based on their network structure (Brandes et al., 2011). Further,
Multi-dimensional Scaling is used to visualize similarities between
network actors (e.g., Hanneman and Riddle, 2005), or to assess
the presence of a relational hierarchy in certain types of networks
(Borgatti, 1994).2

Many more applications of dimension reduction methods to
social networks could be mentioned. What seems to be miss-
ing from the literature, however, are studies that aim to analyze
the multivariate similarities between multiple relational measures.
Analogous to the approach of scale construction in the case of psy-
chological tests, we could consider defining aggregated networks
based on a large set of relational variables found to be similar in
some respect.

1.3. A precursor in psychology: peer ratings of behavior in school

The first steps in constructing scale-type, aggregated network
measures were actually taken in the discipline of psychology
several decades ago. Starting from the middle of the 20th cen-
tury, psychologists concerned with social adjustment problems of
children and adolescents have studied the relationships between
sociometric status and behavior in peer groups (for a review of this
research stream, see Asher and Coie, 1990). To find the behavioral
correlates of sociometric status in school, researchers developed
tests in which students had to evaluate their peers on several
(30–50) items which described various social behaviors.

As examples for the rich collection of tests that have been
2 Although a linear model, we can also mention Canonical Correlation Analysis
which some authors have applied to study and summarize the dyadic interrelations
between a few types of relations in multiplex datasets (Carroll, 2006; Wasserman
and Faust, 1989).
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network models, and it can also result in composite networks that
meaningfully complement analyses based on more conventional
network measures in the studied context.3
A. Vörös, T.A.B. Snijders / So

976), and the Adjustment Scales for Sociometric Evaluation of
econdary-School Students or ASSESS (Prinz et al., 1978).

In all of these cases, peer nominations are aggregated within the
lassroom or group to individual scores that represent the num-
er of nominations students received in each item. The individual
cores are then usually studied by Factor Analysis to identify the
atent dimensions underlying the pool of behavior items. Finally,
he relationships between the factor variables and sociometric
tatus, which is based on nominations received in independent
ike-dislike items, are explored.

Although the mentioned peer assessment methods vary in
he selection procedure and final list of behavioral items, their
ndings point in the same general direction. In all age groups,
ociometric status of children appears to be associated with the
ociable/cooperative and the aggressive/disruptive dimensions of
ehavior. The peer evaluation approach outlined here has con-
ributed greatly to the study of social processes related to rejection
Newcomb et al., 1993; Asher and Coie, 1990; Coie et al., 1982) and
opularity (Cillessen et al., 2011) among children and adolescents.

An important strength of the above described studies is that
hey follow a multiplex network approach to the identification of
he main behavioral dimensions in peer groups. The researchers
tart with a large set of network measures and arrive at a small
umber of aggregated variables which are easier to handle and
hich retain a significant part of the information in the original
ata. The networks of interest are interpersonal perceptions about
arious forms of social behavior among children. The classification
f perception items depend on the pairwise similarities (inter-item
orrelations) between students’ indegree centrality in each net-
ork: two perceived behavior networks will be more likely to end
p on the same factor if students who receive many (few) nomi-
ations on one item, also receive many (few) on the other. Such a
onceptualization suits the aim of the psychologists of the area as
hey investigate the differences in the behavioral profile of children
n distinct sociometric status positions (e.g. rejected, popular).

In these studies, dyadic perceptions are aggregated to
ndividual-level indegrees. This step discards network structure
ntirely and creates a risk of ecological fallacy: tie-level and
ndividual-level, or even group-level, processes will be confounded
y this aggregation. The case of sociometric status and aggression
an serve as an example. Different studies found that aggression
s related to popular (Cillessen and Rose, 2005:104), controversial
Coie et al., 1982:565), and rejected status (Coie et al., 1990:20). This
ariation in results may be due to differences between the stud-
ed groups with respect to dyadic and group-level social processes:
he tendency of children to like or dislike those who they think are
ggressive, and the tendency of the group to agree on which peers
re aggressive or likeable. It is hard to tell the two apart. Reduc-
ng perceptional data to indegree scores obscures heterogeneities
n the network, such as the existence of subgroups with different
erceptions.

.4. Multiplexity as an opportunity: the cluster analysis of
ultiplex networks

The argument discussed so far does not hold only for peer per-
eptions and sociometric status among children but points to a
ore general approach of dimension reduction in multiplex net-
ork data. In such data, the several network dimensions will be

eferred to as network items, because we regard them similarly as
tems in a psychological test: questions that are intended to mea-
ure an aspect of social reality – in this case a relational, not an

ndividual aspect.

When the focus is on relations, similarity on the level of dyads is
f more crucial importance than similarity between individuals. If
ctors tend to nominate the same peers in one network dimension
etworks 49 (2017) 93–112 95

as in another, then the two network items may capture different
sides of the same relationship. For example, sharing secrets and
willingness to borrow money may be thought of as constituents of
trust. The classification of multiplex networks based on their dyadic
similarities allows us to aggregate information on the level of net-
work ties. That is, we could say that if two actors share their secrets
and are willing to borrow money to each other, then they can be
considered to have a trust relationship. This way we may be able
to reduce a large multiplex dataset to a few composite networks,
representing the main underlying relational dimensions emergent
from the dyadic patterns of ties across the several measured items.
Naturally, the same logic can be followed in the analysis of weighted
networks (e.g. how much time people spend together, how much
money they lend to each other). However, this paper focuses on the
case of binary networks, as these are used most often in the study
of children and adolescent communities.

Classifying network items in a single group, like a classroom or
a workplace, can be meaningful for describing a particular social
environment. However, the findings from one group are unlikely
to be generalizable to a larger population, which has to do with
the social interactions that occur in different groups. For example,
dominant individuals might be found to be agreeable in one group,
while disliked in another, merely because of the different person-
alities of the dominant individuals, or because of the occurrence of
a conflict in one group and the role taken by the dominant informal
group leaders. A greater degree of generalizability may be obtained
when associations between relations are studied in multiple groups
at the same time.

Similar to the approach represented by Factor and Cluster Anal-
ysis of monadic variables, here we present an analytical procedure
for dimension reduction in multiplex network data measured in
multiple groups. A network dimension, or network item, we define
operationally by the question posed or the measurement instru-
ment used; sometimes we refer to this just as the ‘network’ or
‘relation’. The data structure is a crossed structure of network items
by groups. By exploring the multivariate similarities between the
measured network dimensions, the procedure aims at finding clus-
ters of relations that are similar for each of the groups. For this
purpose we apply Cluster Analysis to the similarity structure in
every group. In doing so, we assume throughout that the studied
groups are homogeneous in the sense that the measured network
dimensions are related in more or less the same way in each of
them, while allowing for some differences between the groups –
related perhaps to their peculiar composition.

Based on a cluster solution that is reasonable for all of the stud-
ied groups, we define composite network measures. In some cases
there may be straightforward ways for doing this, such as taking
the union or the intersection of all networks that belong to a given
cluster (see some examples in De Domenico et al., 2013). Instead of
choosing either of these two extremes, we propose to explore sev-
eral possibilities, with a tie in at least t (where t may range from 1 to
the number of networks in a cluster) of the networks required to be
present between two actors to qualify as a tie in the composed net-
work. Exploring the properties of the resulting composite networks
at different thresholds t, and also their relations with each other
and with other basic network measures (such as friendship), can
inform the specification of composite networks. We demonstrate
that this procedure is capable of reducing the number of studied
networks to a level that can be analyzed with existing multiplex
3 Although the approach we take here produces binary networks (with dichoto-
mous tie values) in the first place, we show how the resulting measures can be easily
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6 A. Vörös, T.A.B. Snijders / So

The proposed procedure is explorative. It would perhaps be
nteresting to derive a procedure from an explicit model such as
model with latent networks that are measured with error or with

tem-specific contributions, like in Factor Analysis or other latent
ariable models. However, we fear that such a procedure would
e quite cumbersome and subject to a variety of assumptions that
re difficult to test, and therefore we restrict ourselves to what we
hink is a sensible explorative step-by-step approach.

In the following sections, we first describe the procedure in gen-
ral terms, and then provide an example about the dimensions of
eer perception in Hungarian high schools. We arrive at a clustering
hat represents the similarity between the networks in all groups
o a reasonable extent. We highlight a number of decisions that
eed to be made by the researcher during the analysis, taking into
ccount the context of the study. Some practical considerations and
ssues regarding future developments are discussed in the last sec-
ion. We hope that the proposed analytical strategy may be useful
or researchers in finding the main dimensions of relationships in a
iven social context, as a preliminary step for analyzing highly mul-
iplex network data with existing statistical models, and that it may
lso provide clues for the construction of valid and rich multiplex
etwork measures.

. Defining composite network measures: an empirical
rocedure

When analyzing social processes within a group, we may be
nterested in a multitude of networks – relations, perceptions,
ommon activities, etc. – among its members. Having measured a
ariety of network dimensions, we face data of high complexity that
s difficult to analyze, even with the most advanced network meth-
ds. This is further complicated when we would like to investigate
nd compare processes across several groups. Below we propose
nd demonstrate a procedure, utilizing a set of existing statistical
ethods, that can aid researchers in reducing the number of stud-

ed networks by the construction of composite network measures
n multiple groups.

.1. The problem

We assume that we have conducted a network study in G dis-
oint groups (communities, firms, schools, etc.) where the gth group
as ng actors.4 In each of the groups, we have measured the same
et of K networks representing various types of relations between
he actors. The observed groups are likely to be heterogeneous in
erms of network structure and the interrelations between net-
ork dimensions. However, we assume that there are inherent

imilarities between them, so that it is meaningful to look for con-
istent patterns across groups. We further assume that the number
f measured network dimensions, K, is large enough so that the
ata cannot be analyzed with the multivariate methods mentioned
bove (practically, much larger than four).

We propose a procedure to reduce the complexity of such

etwork datasets by identifying clusters of networks such that
etworks in the same cluster are similar and networks in different
lusters are dissimilar; therefore it may be called a cluster analy-
is of networks in a multiplex network data structure with multiple

nd meaningfully combined to form weighted (ordered) networks. Other, perhaps
ore elaborate ways of weighting are not discussed in this paper but may be possible

nd useful.
4 The paper focuses on studying multiple groups, where G > 1. A single case study,
= 1, is also meaningful, but it renders most of the non-trivial steps (Steps 2–4)

xplained in this paper unnecessary. We also present substantive arguments for
tudying multiple groups at the same time whenever possible in Section 5.
etworks 49 (2017) 93–112

groups. The procedure serves a similar purpose as Factor or Clus-
ter Analysis of monadic variables: starting with a relatively large
number of network items in a sample of groups, it results in a
smaller number of composite networks which may capture the
latent relational dimensions underlying the data better than the
original items. (While here we focus on the case of binary networks,
the procedure can be applied equally well to weighted networks.)

The five (plus one) steps of the procedure represent a strategy
that is natural for Cluster Analysis in general. Here we briefly go
through the steps and then elaborate on them in the following sec-
tions. Throughout the paper the terms “network”, “network item”,
“item”, or “network dimension” are used interchangeably to refer
to a specific instance of the K measured networks.

• Step 0. Before starting the analysis, it is worthwhile to think and
state explicitly the aim of the application, initial hypotheses about
the clustering of the K network items, etc. This step can help in
making decisions later in the procedure. A few basic questions
are collected below.

• Step 1. The set of K networks in G groups in our case have the same
role as objects in a Cluster Analysis or items in a Scale Analysis.
Accordingly, we choose a measure of pairwise similarity between
the observed networks in each group – some suitable measures
are presented below. For each of the G groups, this step results in
a K × K similarity matrix.

• Step 2. The consistency of similarities across the groups are
assessed, and network dimensions with highly inconsistent rela-
tions to the rest of the networks are dropped from further
analysis. This is in line with the assumption that the observed
groups are similar with respect to the network dimensions that
are used for the clustering, and with the aim of finding similarities
that are generalizable across groups.

• Step 3. Network dimensions are clustered using their pairwise
similarities, with the aim of finding a classification that is appro-
priate for all G groups. The procedure proposed here is ordinal: it
is based on only the rank order of the similarities.

• Step 4. The fit of the global solution is tested in each group.
• Step 5. Assuming that a well-fitting clustering solution has been

found, it is used to combine the network dimensions belonging
to the same clusters to create composite network measures.

2.2. Step 0: Thinking

Prior to the analysis, it is advisable to consider questions such as
the following, as they may assist in making some of the decisions
in later steps of the procedure. The answers should be based on
theoretical considerations and prior empirical evidence. First of all,
what is the aim of the study? What do we want to use the composite
networks for? What should their ties represent? Given the aims,
what are the best candidate measures of the similarities between
the network items? Then, does it seem meaningful to compare all of
our items? Are there some which are substantively not comparable
with the rest? If the comparison seems appropriate, can we come up
with an a priori intuitively acceptable grouping of the items? Are the
groups themselves comparable, or are there systematic differences
between them? Do they represent similar social settings? Finally,
have others found something of relevance about the association
between these or similar network items in similar groups?

2.3. Step 1: Measuring network similarity

The first step is to decide on how to measure similarity. This

choice primarily depends on the level of analysis that is the focus
of study: dyads or actors. The Jaccard index (Jaccard, 1908; Batagelj
and Bren, 1995) and the simple matching coefficient (Sokal and
Michener, 1958, Wasserman and Faust, 1994:370) can be used to
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uantify similarities between two networks on the level of dyads.
n- or outdegree correlations are simple measures of actor-level
imilarity between two networks, as we have seen in the examples
rom adolescent research (for a more recent application, see Szell
t al., 2010).

Depending on the researcher’s interest, further measures may
e defined and used, e.g., measures of similarity between block
tructures. However, note that not all measures are equally appro-
riate for every research question, and the chosen measure has to
t to the aim of the application. This issue is discussed further in
ections 1.3, 2.2, and 5.

As our present aim is to combine information from several net-
ork items on the level of ties, we use a dyadic similarity measure,

he Jaccard index. The Jaccard index between networks k and m (k,
∈ {1, . . ., K}) in a given group can be formulated as

km = nkm,11

nkm,11 + nkm,10 + nkm,01
, (1)

here

km,ab =
∑

i,j

I{xkij = a, xmij = b} (a, b ∈ {0, 1}; k, m ∈ {1, . . ., K}),

(2)

here I{A} is the indicator function of set A and xk and xm are the
djacency matrices of the two networks. E.g., nkm,11 is the number
f ties present in network k as well as m. The value of the Jaccard
ndex ranges between 0 and 1, with 0 showing that there are no
verlapping ties and 1 that exactly the same pairs of actors are tied
n the two networks. By calculating the Jaccard index for each pair
f the K networks, we get a K × K matrix of pairwise similarities for
ach of the G groups in our dataset.5

.3.1. Projecting and visualizing the similarity structure
Before starting any further analysis, it is advisable to visualize

he similarity structure of the networks in each group. A good repre-
entation may give a preliminary idea about the main dimensions of
elations between the network dimensions. In addition, comparing
mages from each group can inform us about between-group dif-
erences that should be taken into account in the later steps. Since
he starting point was that we have measured more than just a few
etworks, a comprehensible visualization should be preceded by
he projection of the pairwise similarities into a few dimensions.

A method suitable for such a problem is Ordinal Multidimen-
ional Scaling (Ordinal MDS). The aim of MDS in general is to place
tems (in our case, networks) in a low-dimensional, preferably 2D
r 3D, space so that the pairwise similarity matrix reproduced from
he location of items in this space represents the original similarity

atrix as well as possible. In Ordinal (or non-metric) MDS the aim
s to produce a solution in which the rank order of similarities opti-

ally matches the rank order of the Euclidean distances between
he items; the numerical value of the reproduced similarity mea-
ure is not important. The result of the MDS, the coordinates of
tems in the projection, can be used to visualize pairwise similari-
ies. For more detailed descriptions of MDS see Bartholomew et al.
2008), Chapter 3 and Cox and Cox (2010).

.4. Step 2: Checking the consistency of similarities across groups
For the set of network items to be clusterable, their similar-
ty matrices across the various groups should show a consistent

5 Some of the statistical techniques applied below take distances rather than sim-
larities as an input. For sake of clarity, we only use “similarity” throughout the
rguments, but note that the two concepts carry the same information. For instance,
he Jaccard distance can be expressed simply as 1 − Jaccard index.
etworks 49 (2017) 93–112 97

pattern. This means that, roughly, in different groups, the same
pairs of items should be similar and the same should be dissim-
ilar. Items having an erratic pattern in their similarities to other
items would disturb the clustering process and should be left out.
How to assess the consistency of this pattern? If an item is identi-
cally related to the other items across all groups, the rank order of
similarities between this item and the other items will be the same
across groups. Thus, for item k, we are considering row k of the sim-
ilarity matrices for all groups, and we require the rank order of the
cells in this row to be similar across the groups. In other words, if
rgkm denotes the rank of network m in the order of similarities to k
for group g, then the rows (rgk1, . . ., rgkK) should be approximately
equal in all groups g.

To quantify the consistency of network similarities across the
groups, we apply a nonparametric measure, Kendall’s coefficient of
concordance, or Kendall’s W (Kendall and Babington Smith, 1939;
Legendre, 2005). The level of concordance of a network k is cal-
culated by comparing the rank orders of the similarities of the
remaining K − 1 networks to k in the G groups. If a network item
is perfectly consistent in its relation to the rest of the items, that
is, the order of items based on their similarity to the network in
question is the same in all groups, Kendall’s W takes the value of
1. Smaller values indicate lower consistency with the index being
close to 0 if the order of similarities is basically random across the
groups.

Formally, we can write Kendall’s W for a given network k in G
groups as

Wk =
12
∑K

m /= k(Rm − R̄)
2

G2((K − 1)3 − (K − 1))
, (3)

where G denotes the number of groups across which we compare
the rank order of similarities, K is the number of network items
(including k), Rkm is the sum of the ranks of the similarity between
network k and another network m over all G groups,

Rkm =
G∑

g=1

rgkm, (4)

and R̄ is the average sum of ranks given the number of groups and
networks (note again that K includes k),

R̄ = 1
2

GK. (5)

For each network item k, we calculate Kendall’s Wk and inspect
their values. We use these values not to test a null hypothesis, but to
assess descriptively the homogeneity of the groups with respect to
how this item relates to the other items. If many items have a very
small Wk (though there is no strict rule for what counts as “small”),
then the G groups are very heterogeneous in how the networks
relate to each other, and chances for finding a clustering that would
work well in all groups are low. However, it may be possible to make
similarities more consistent by dropping from the analysis network
items with low W; but this will affect the Wk values between the
remaining networks. Therefore we do it in a recursive fashion: in
each step drop the network with the lowest W, then recalculate the
coefficients, now without the excluded network. After dropping a
small number of items, it may be possible to obtain a restricted
set of networks, all of which have a sufficiently high consistency
measure.

Deciding on a stopping rule in this procedure is a qualitative
decision that does not only depend on the values and the distri-

bution of Kendall’s W, but also on judgment about item content.
The conclusion of this step in the analysis might be that finding a
clustering of networks that is valid in all groups is not feasible. In
such a case, a different strategy might be necessary (for example,
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networks representing these latent dimensions, and show that they
significantly complement the information obtained from standard
measures of affective relations, such as friendship or dislike.7
8 A. Vörös, T.A.B. Snijders / So

nvolving the classification of the groups based on the clustering
f the items in each of them), which we do not treat in the present
aper. We assume that at the end of Step 2, a set of items was
btained with sufficient homogeneity.

.5. Step 3: Finding group-level and global clusters in multiple
roups

As a result of the previous steps, we now have similarity
atrices, raw and reproduced from Ordinal MDS, between a poten-

ially reduced number of K′ networks in all G groups. Although
he similarity structures will usually still differ between groups,
hese differences were reduced in Step 2 so that the groups may
e regarded as being more homogeneous. In the current step,
e explore the cluster structures of the network items in each

roup separately. For doing so, we can apply a suitable method
f Cluster Analysis on the similarity matrices. Here we use Ward
ierarchical clustering which has been found to produce well-

nterpretable solutions in various situations (Bartholomew et al.,
008:24). Ward’s minimum variance method is an agglomerative
ierarchical clustering procedure. In our example the method starts
ith K′ clusters (each network item individually) and groups them

ne by one so that in each step the two clusters having the lowest
etween-cluster variance are merged.

In this step, we also attempt to define a cluster structure that
ill be a candidate for a global grouping. There may be several ways

or doing this, but we have found it useful to simply calculate the
ean similarity matrix from the group-wise similarity matrices,

nd use the clusters obtained from that as a potential global solu-
ion. Note that this is justifiable only if the group-level clusterings
ere relatively similar to each other – which we have promoted

y dropping inconsistent network items in Step 2.6 In the next sec-
ion we provide an option for assessing how well the global cluster
tructure fits the group-level ones.

.6. Step 4: Checking the fit of the global solution

Our aim is to find a single clustering of network items that rea-
onably represents the similarity structure in all groups. Therefore,
efore we use the global clustering as a basis for creating composite
etworks, we need to assess how well it fits the cluster solution of
ach group separately. First, a visual inspection is presented com-
aring the group-wise similarities within clusters to those between
lusters; ideally, for all groups the former should be high and the
atter should be low. Second, we use the Rand index, a measure for
omparing two cluster solutions based on whether they group each
air of items similarly (Rand, 1971; Hubert and Arabie, 1985). The
and index for comparing a global clustering with the clustering
btained individually from group g can be formulated as

g = no. of agreements
all pairs of networks

= a + b(
K ′

2

) , (6)

here a and b are the number of agreements, that is, the pairs of

etwork items that belong to the same cluster (a) or to different

lusters (b) in both solutions and

(
K ′

2

)
is the number of pairs that

6 One could think about weighting the groups based on, for example, their size.
hen group sizes are different, however, one must address if (and why) the new

nformation added by each group is proportional to group size. We think this is a
uestion by itself. When groups do not vastly differ in size (which is the case in the
nalyzed sample), it may be better not to weight them, but honor the contribution
f each group equally.
etworks 49 (2017) 93–112

can be made of our K′ network items. The Rand index takes the
value 1 if cluster memberships in the two compared solutions are
identical, and 0 if there is no pair of items that are grouped the
same way in both clusterings. The Rand index thus can be used to
measure how similar the group-level clusterings are to the global
structure we consider imposing on them. If the fit is satisfactory,
we may define the same set of composite network measures in all
of our groups. If not, we might drop some of the groups or some of
the network items, and restart the whole procedure.

2.7. Step 5: Defining composite networks

The final step in the procedure is to construct a small number
of binary networks as a combination of network items that were
grouped together by our analysis. There may be several ways of
doing so, but here we apply an approach that can be regarded as
taking a “relaxed” union of ties in networks that belong to the same
cluster. We say a tie exists in a composite network belonging to a
cluster of items if the given tie is present in at least t of the con-
stituent networks. If t = 1, this defines the union; if t is equal to the
cluster size, it is the intersection of the networks in the cluster; but t
could also be in between the extremes. There may be more than one
good solutions of this step, and it is up to researchers to determine
the value of t that best fits their substantive interest. The choice may
be based on the number of items in each cluster, prior knowledge
about the density of the composite network dimension, expecta-
tions about its similarity (e.g., as measured by the Jaccard index)
to other networks external to the ones that were used to obtain
the clusterings, etc. The defined composite networks then can be
used as separate network dimensions in the analyses of substantive
questions. An overview of the whole procedure suggested here is
presented in Fig. 1.

3. An application: peer-perception dimensions in
Hungarian high schools

To demonstrate the procedure proposed above, we exam-
ine two waves of multiplex social network data from first-grade
high-school classrooms in Hungary. The full dataset contains self-
reported information about affective relations (friendship, liking,
dislike, hate), shared activities, attribute, behavior and role per-
ceptions, and bully-victim relations between the members of 43
classrooms. Here we use 21 interpersonal perception networks
from a random subset of 18 school classes (see Appendix B), for the
possibility of future cross-validation. To these 21 network dimen-
sions in 18 groups, we apply the five-step procedure outlined above.
The analysis identifies three main relational dimensions in the data:
positive attributions, social role attributions and negative attri-
butions. We use these three clusters to construct four composite
7 The data analyzed here, along with the R scripts which help to reproduce
the study (or apply the procedure to different datasets) is publicly available
at https://www.stats.ox.ac.uk/∼snijders/CAMN scripts data.rar [anonymized for
review, materials provided along with the manuscript]. The analysis was carried
out in version 3.2.0 of the R environment. For calculating Kendall’s W we used the
kendall function in the irr package (v0.84). Multidimensional Scaling was done by
the isoMDS function in package MASS (v7.3-40). Hierarchical Cluster Analysis results
are from the hclust function with Ward’s method of package MASS, applied to Jaccard
distances. The Rand index was calculated by the randIndex function in the flexclust
package (v1.3-4). In addition to the base R functions for plotting, we relied on the
functionalities of the packages ape (v3.2) (for cluster trees), vioplot (v0.2) (for vio-
lin plots), venneuler (v1.1-0) (for Venn diagrams) lattice (v0.20-31), and gridExtra
(v0.9.1) (for heatmaps).

https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
https://www.stats.ox.ac.uk/~snijders/CAMN_scripts_data.rar
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we focus on the measurement of networks and not of individuals.
This leads to important differences in interpretation. For example,
let us assume that the items teacher’s pet and organize have a high

9 In the Hungarian public education system, secondary schools often run class-
rooms with different training programs in a single grade.

10 The analysis was also replicated with the two positive and two negative affec-
ig. 1. An overview of the procedure for the cluster analysis of multiplex networks.

.1. Data

The data we analyze is from a longitudinal network survey
onducted in Hungarian high-school classrooms in the period of
010–13. The data was collected as part of the “Wired into each
ther” network study by the Research Center for Educational and
etwork Studies (RECENS).8 In the current study, we use the first

wo waves of the RECENS dataset. These observations frame an
ntense six-month period from the first year in high school when
lassroom members become familiar with their new environment,
et to know each other, and start to develop shared views about
hich behaviors or opinions are acceptable in the class and which

re to be rejected.
The evolution of the value systems (as used in Coleman, 1961) of

lassrooms goes hand in hand with changes in adolescents’ percep-
ions about their classmates, and may also affect the relationships
etween the different dimensions of peer perceptions in the com-
unity. As a consequence, the comparison of our results from the

wo waves may highlight certain general tendencies in the ongoing

ocial dynamics.

For our exploratory analysis, we selected a random subsample
f 18 classrooms so that each school, classroom training program

8 The survey was supported by the Hungarian Research Funds (ref. no. K81336).
etworks 49 (2017) 93–112 99

(vocational, technical, or grammar),9 and town size (capital, large
town and small town) is independently represented by at least
2 classes (see Appendix B). These contextual variables capture
regional and school-level differences and the systematic variation
in students’ background between training programs (Dobos et al.,
2011), which may all be related to the structure of perceptual
dimensions in the classrooms.

The size of the studied classrooms varies between 26 and 38
students, with an average of 32 over the two waves. Girls are in a
majority in most of the classes (14 out of 18), their average pro-
portion is 63%. This is higher than the country-level gender ratio
in high-schools at the time of the study (KSH, 2011). The mean
age of students was 15.3 years at the time of wave 1 (with an
average within-class standard deviation of 0.57 years). The aver-
age response rate per classroom is 90% in wave 1 and 85% in wave
2. Further background information about the RECENS high-school
dataset is provided in Appendix A; for a more detailed description
of the analyzed subsample, see Appendix B.

3.2. Step 0: The network items and their expected grouping

Our analysis focuses on those network items from the RECENS
dataset which are related to students’ perceptions about their
classmates. Specifically, we examine the similarities between 21
networks measuring different perceived attributes, behaviors, and
social roles in the 18 classrooms.10 Table 1 lists the network items
we use in the current study: the translation of their original formu-
lation in the questionnaire and the short labels by which we refer
to them in the following. Further, it indicates if items identical or
similar to ours can be found in the psychological tests we discussed
in Section 1.3, namely PNI (Wiggins and Winder, 1961), RCP – the
Revised Class Play (Masten et al., 1985), PEI (Pekarik et al., 1976),
or ASSESS (Prinz et al., 1978).

As can be seen in Table 1, many of the perceptual dimensions
we study here show up in some form in the earlier sociometric
measures. Some of our network items are related to the Socia-
bility/Likeability (funny, clever, kind), Withdrawal (shy), Hostility
(smug), Aggression (gossipy, fights), and Social Competence (argues,
protects, dispute, decides, organize) factors of the mentioned tests.

However, there are also quite a few items which do not have a
precedent in these studies. The differences can be explained by the
sociological focus of the RECENS dataset: perceptions connected
to dyadic trust, social roles/leadership, social status, and physical
attractiveness were important network dimensions in this study.
Based on these earlier findings and the substantive content of the
items, we can propose an a priori classification for the 21 analyzed
items. The expected grouping may or may not be confirmed by the
data, but it provides guidance in the decisions we need to make
during the investigation.

When thinking about clusters among our network items, we
have to keep in mind that unlike the cited psychological studies,
tion networks included. The positions of the friendship and liking network items
were ambiguous in the similarity structure depending on whether the clustering
was based on raw similarities or those reproduced from the MDS projection. This
suggests that the overlaps between friendship, liking, and the rest of the networks
should be examined separately, and so these two items were dropped from the
procedure. The inclusion or exclusion of the dislike and hate items did not alter the
rest of the results, and for consistency, these were also omitted from the analysis
reported in the paper.
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Table 1
Description of the analyzed perception network items.

Label Item description Expected grouping Test with similar item

1. funny He/She is funny Positive attributes PEI, PNI, RCP
2. clever He/She is clever Positive attributes PEI, PNI
3. kind He/She is kind Positive attributes PEI, PNI
4. shy He/She is shy, reserved Negative attributes PEI, PNI, ASSESS
5. smug He/She is stuck-up, smug Negative attributes PEI, RCP
6. gossipy He/She is gossipy Negative attributes PEI, PNI, ASSESS
7. fights He/She often gets involved in fights Negative attributes PEI, PNI, ASSESS
8. nerd He/She is a nerd Negative attributes –
9. t. pet He/She is a teacher’s pet Negative attributes –
10. look down I look down on him/her Negative attributes –
11. argues He/She dares to argue with teachers Leadership ASSESS
12. protects He/She protects the weak Leadership ASSESS, RCP
13. dispute He/She would be able to solve disputes Leadership ASSESS, RCP
14. decides He/She decides what we do after school Leadership ASSESS, RCP
15. organize He/She could organize a class trip Leadership ASSESS
16. look up I look up to him/her Leadership –
17. trust I trust my secrets with him/her Trust –
18. help I could ask him/her for help Trust –
19. pretty He/She is handsome/pretty Attractiveness –
20. would date I would date him/her Attractiveness –
21. money He/She has a lot of money Social status –
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bbreviations: PNI – Peer Nomination Inventory; RCP – Revised Class Play; PEI –
econdary-School Students.

ndegree correlation but a low Jaccard index in one of the class-
ooms. From the former fact only, we would conclude that students
ho are despised for trying to have too good relations with teachers

re nonetheless appreciated by their peers as efficient organizers –
erhaps because it is easier to get things done in school for people
ho are recognized by teachers – and we might be led to a con-

lusion about ambiguous dyadic perceptions, negative on the one
and and positive on the other. However, the low Jaccard similar-

ty between these items would alter the interpretation by showing
hat the perceptions of teacher’s pet and good organizers are held by
ifferent sets of classmates, differentiated perhaps by their school
ttitudes.

Thus, we can say that dyadic similarity measures, by retain-
ng more information available in the networks than degree-level

easures, take into account the structure of the studied groups, the
act that communities can contain subgroups that may have quite
ifferent opinions about certain peers. This further underlines that
nlike the earlier studies, we are not trying to identify typical stu-
ent profiles based on received nominations, but rather types of
erceptions that usually go together. Such an approach will present
natural way for constructing aggregated network measures.

Based on earlier findings and intuition, we can assign our net-
ork items into a few groups. The first three networks (funny,

lever, kind) clearly represent perceptions about general positive
haracteristics of social behavior. We may call this group posi-
ive attributions. The following seven items in Table 1 capture
egative perceptions about peers (shy, smug, gossipy, fights, nerd,
eacher’s pet, and look down), hence we label them as negative
ttributions.11

The third, larger group, titled leadership, contains perceptions

hat are related to being active, independent, a leader in social situ-
tions (argues, protects, dispute, decides, organize, and look up). The
etwork items trust and help form the fourth group, and they may

11 It is to be noted here that the classification of items, just as in any application
f Cluster Analysis, is based on multivariate similarities. This means that it is not
ecessary for all pairwise similarities within groups to be equally high, only higher
han between groups. As an example, shy and fights being in the same group is not a
ontradiction, neither substantively nor technically. Choosing an appropriately high
ombination threshold (see Section 2.7) ensures that the interpretation of ties in the
omposite networks will not be ambiguous.
Evaluation Inventory; ASSESS – Adjustment Scales for Sociometric Evaluation of

be understood as two specific dimensions of general trust in dyadic
relations. As a fifth category, there are two more items (pretty and
would date) which represent the dimension of romantic attractive-
ness. The last perception network, money, is not similar to any of the
other items as it represents impressions about the social standing
or status of peers.

3.3. Step 1: The similarity structure of peer-perception networks

First we calculate the Jaccard index between each pair of the 21
networks in every classroom using the formula from Section 2.3.
The values observed in the 18 classes range from 0 (wave 1–2) to
0.53 (wave 1) and 0.66 (wave 2), with a mean of 0.11 and 0.12. These
numbers tell us that the pairwise overlap between the items in the
sample is typically low, but varies greatly depending on the class-
room and the items compared. In the second step of the procedure,
we will aim exactly to identify those network items that contribute
most to the variability between classrooms, and only then we shall
turn to examine the patterns in between-item similarities. Here we
do not further describe the raw Jaccard index values between our
networks.

Before we proceed, however, it is worthwhile to visualize the
average similarities using ordinal MDS, as described in Section 2.3.
Fig. 2 presents the 2-dimensional projection at the two time points.
Stress in both cases was below 15% which suggests the two dimen-
sions provide a reasonable representation of the mean similarities
(Bartholomew et al., 2008:65). Items are identified in the figure by
their labels from Table 1 (and their colors represent their a priori
grouping).

It is visible that most of our items categorized as negative
attributes (labels in red) are well separated from the rest, with
the sole exception of the fights item. On the other hand, positive
attributes (green), leadership-related attributions (blue), and trust
(light blue) are all generally close to one another, suggesting signif-
icant overlap between these networks. Only the argues and decides
items are distant from their group in both waves.

The two items we associated with attractiveness are placed far

from each other: pretty is close to the just described “busy area”,
while would date is on the periphery at both observations. The last
item, money, is closest to fights, argues and would date in wave 1,
but more distant from all items in wave 2.
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ig. 2. Visual representation of average similarities between the 21 network item
ean Jaccard index values.)

The inspection of the figure shows that our prior expectations for
he grouping of networks are roughly correct, and suggests that we

ight find confirmation for the existence of at least two groups: one
f negative attributes and one of positive and leadership attribu-
ions and trust. However, this first impression may not be entirely
orrect if the classrooms are highly heterogeneous with regard to
he similarities between items – we shall turn to this issue in the
ollowing.

.4. Step 2: The consistency of the similarity structure across
lassrooms

As described in Section 2.4, we use Kendall’s W to assess how
onsistently each of the network items are related to the rest of the
tems across the classes.12 Fig. 3a and b presents the distribution
f W for all of the 21 networks in wave 1 and 2, respectively. The
tems on the left side of each plot have the lowest, those on the right
he highest concordance coefficients. The vertical positioning of the
abels serves only to emphasize the rank order of the W values. Label
izes are proportional to the average density of items in the classes
the class-wise densities of the networks are reported in Appendix
).

W ranges between 0.2 and 0.85 in both waves. The figures also
how that most dense networks typically have higher W values.
he correlation between average density and W is 0.65 in wave 1
p < 0.01) and 0.53 in wave 2 (p = 0.01). A simple explanation for
his tendency is that in case of sparse networks, chance may have
larger impact on the relative frequency of ties overlapping with
ther networks. However, we also see some sparse network items
ith larger coefficients (e.g. trust, dispute, organize, protects), which
ighlights that our choices of excluding items should not be solely
etermined by their density.

An acceptable distribution of concordance coefficients can be
eached after dropping four network items: fights, money, argues,
nd would date. The distribution of Kendall’s W after stepwise
xcluding these networks is shown in Fig. 3c and d. At this step,

ll W values are larger than 0.4, which is a notable increase from
.2. Some remaining items have a higher W in the reduced item set
han in the initial set.

12 The W values reported here are corrected for ties in rank orders. However, this
akes little difference, since exactly equal Jaccard indices are rare.
ave 1 (a) and 2 (b). (Coordinates obtained from the 2-dimensional MDS projection of

Note that the stepwise nature of the procedure redefined the
position of argues in wave 2 with respect to the other items: initially
it had the fifth smallest W value (Fig. 3b), but in the fourth step it
was removed (and shy retained). Further, the correlation between
average density and Kendall’s W in the reduced item set is 0.60
in wave 1 (p < 0.01) and 0.43 in wave 2 (p = 0.08), smaller than in
the case of all 21 networks. This shows that the removal affected
the networks with the lowest density, those most prone to chance
overlap with the other networks.

Dropping more than four networks generates worse solutions
than the ones presented here. The items we classified as negative
attributions are next on the list for potential exclusion, but exclud-
ing some of them largely decreases the consistency measures of
the rest. The next natural stopping point in the procedure is where
all networks from the negative attribute group are removed. We
find this an unnecessary loss of substantial information. Finally, we
draw attention to the fact that the four removed network items are
the same which were placed far from the others and which were
positioned quite differently for waves 1 and 2 in Fig. 2. Based on the
presented results, we continue the analysis with the remaining 17
networks.

3.5. Step 3: Three dimensions of peer perceptions: the global
solution

We apply Ward Hierarchical Cluster Analysis to study the
structure of similarities among the remaining network items (see
Section 2.5). This is done for each classroom separately and then for
a similarity matrix containing the average Jaccard index for each
pair of items. Fig. 4 presents the cluster trees based on the mean
similarities at the two observations. The colors highlight the clus-
ter membership of items in well-fitting solutions for wave 1 (a) and
wave 2 (b).

Three clusters seem appropriate in the former case, five in the
latter. However, it is apparent that the groupings are almost identi-
cal at the two time points. At the top of the figures, four items form
a group in both waves: pretty, funny, clever, and kind. This clus-
ter is similar to the group of positive perceptions from Section 3.2,
with the addition of the pretty/handsome item. We shall refer to this

cluster of network items as positive attributions.

At the bottom of the plots, five items are grouped together
in wave 1: nerd, shy, teacher’s pet, gossipy, look down, and smug.
This cluster may be labeled as the group of negative attributions.



102 A. Vörös, T.A.B. Snijders / Social Networks 49 (2017) 93–112

F nd wa
K propo

A
a

f
r
(

F
a

ig. 3. Distribution of Kendall’s W for the full and reduced item set in wave 1 (a, c) a
endall’s W, while the items are similarly ordered along the vertical axis; label sizes are

lthough nerd and shy emerge as a separate cluster in wave 2, they
re still clearly close to the other negative items.
Based on the first observation, the remaining seven networks
orm a single cluster. This group contains most of the items we
eferred to earlier as attributions of some kind of social leadership
protects, decides, dispute, organize, look up), but also those related

ig. 4. Cluster trees from the average similarities in wave 1 (a) and 2 (b). (The colors
nd numbers represent the resulting clusters.)
ve 2 (b, d). (W values were calculated based on 18 classes; the horizontal axis measures
rtional to the average density of items in the classrooms.)

to dyadic trust (trust, help). We may thus use the more general term
of social role attributions for the items in this cluster.13

In wave 2, protects and decides are together, like in wave 1, but
form a separate cluster. We treat this discrepancy between the
waves as a nuance for two reasons. First, protects and decides are the
sparsest networks in our sample (see Figs. 3 and 11) so that their
similarities to other items may be more affected by small changes
in network ties. Second, the two items still belong clearly to the
groups of positive and role attributions.

It has to be emphasized that the overall similarity structure

among our items is remarkably stable at the two ends of a six-
month period, while the networks themselves do change to an
appreciable extent (see Fig. 12 in the Appendix). Some ties are

13 Note that the roles in our reduced item set all seem to bear a positive value
for the community. Of course, social roles can be negative or ambivalent, as well.
Consider the case of fights or ‘argues with the teacher’, items which we dropped
due to their inconsistent position among the other items in the studied classrooms.
Here we use the term “social roles” to indicate positive social roles, but different
item pools may allow further distinctions between various types of roles.
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Fig. 5. The group-wise minimum, median, and maximum Jaccard index values among the 17 clustered items in wave 1 (a) and 2 (b). (The diagonal values were set to the
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ff-diagonal maximum of the six matrices. Note that in the six plots, the items are held
he studied classrooms.)

reated, some are dropped between the waves, and the Jaccard
imilarities also increase and decrease. Our key finding is that the
tudied networks change in a way that their relative similarities
emain essentially unchanged, leading to almost the same cluster-
ng solution.14

We use the three-cluster result from the first wave for both
bservations, in order to have a consistent basis for the defini-
ion of aggregated networks. However, before we proceed to define
ew network measures, we need to check if the clusters obtained

rom the mean similarities at the first time point are acceptable
lassifications for all of the classrooms in both waves.
14 On the full sample of 43 classrooms, the resulting clusters at the two time points
re identical.
ant, and so they provide an intuition about the distribution of the Jaccard index across

3.6. Step 4: The fit of the global solution across classes

In this section, we assess how well the proposed three-cluster
solution fits the individual classrooms. Note that in Step 2 of the
procedure some network items were dropped in order to increase
the homogeneity of classrooms. This means that we already did
some work ahead to increase the chances for finding a well-fitting
solution. There are numerous ways to measure the fit of a clustering
solution. We present results from just a few simple tests.

First of all, we inspect the distribution of the pairwise similarities
between the networks in the studied classrooms. If the proposed
clustering is indeed reasonable for all or most of the groups, similar-
ities should be high within clusters and low between clusters. The

distribution of the Jaccard indices is represented in Fig. 5. The six
heatmaps show the minimum, median, and maximum of the values
observed between the items across the 18 classes at the two time
points. Brighter cells refer to higher levels of similarity. The colors
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Fig. 6. Comparison of class-level clusterings to the global solution in wave 1 (a) and 2 (b). (Classroom-level three-cluster solutions are compared with the clustering in Fig. 4a.
The colors of the bars represent the three classroom training programs.)
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index values from the previous figure (the top row of data points),
along with null distributions based on 10,000 random permuta-
tions of the clusterings in each classroom. It is clear that even in
the worst cases, the observed values are higher than the 95% critical
ig. 7. A permutation test for the comparison of class-level and global clustering
lustering in Fig. 4a. Null-distributions are generated by 10,000 random permutations of
alues, the lower gray circles the means of the simulated distributions, and black rectan

re comparable across the six images in that the same color refers
o the same degree of similarity in all of them. The minimum simi-
arity gives the most unfavorable, the maximum the most favorable
ase for the comparison. The ideal pattern would be bright diagonal
locks and dark off-diagonal blocks.15

We can see in the figure that the three diagonal block areas
arking our three clusters are generally brighter than the sur-

ounding cells. Although there is considerable overlap between
tems in the positive and social role attribution clusters, the dis-
inction between the two groups is clear (although trust and help

ight belong to either cluster). This provides some confirmation
hat the proposed clustering is a reasonable representation of the
imilarities in the 18 classrooms.

Next we compare he three-cluster solutions obtained per class-
oom with the three-cluster global solution proposed in the
revious section. Fig. 6 shows the distribution of the Rand index
see Section 2.6) in the studied classrooms at the two observa-
ions. The results show that the global classification of networks is
easonably similar to those we can obtain directly from the class-
evel data. In all cases, more than two thirds of all pairs of items
re similarly classified in the compared clusterings, and this is
bove 75% for more than half of the classrooms in both waves. The

hade of the bars in the figure signal the training program of class-
ooms: light gray – vocational, medium gray – technical, dark gray
grammar. There is no significant tendency for classrooms of any

15 The diagonal elements of the similarity matrices, that is the similarity of an item
o itself, are obviously 1. However, for the purpose of this presentation they were
eplaced by the value of 0.7 which is the highest off-diagonal similarity, observed
n the second wave (see the bottom right image).
ave 1 (a) and 2 (b). (Classroom-level three-cluster solutions are compared with the
uster membership vectors in each case. Dots at the top represent the observed similarity
e 95% critical values for one-sided t-tests.)

training program to have a more “prototypical” clustering than the
others.

The agreement expressed by the Rand indices can be tested by
comparing the values found with those that would be found for ran-
dom partitions with the same cluster sizes. Fig. 7 displays the Rand
Fig. 8. Median values of the Jaccard index between the composite networks and the
original and affective items in wave 1 (a) and 2 (b).
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Fig. 9. Average overlap between the composite networks and the affective items in
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used in the cluster analysis and with the four affective networks
available in the dataset. The brightness of the cells in the figures is
based on the median Jaccard index values between each row and
ave 1 (a) and 2 (b). (Cell values represent the proportion of overlapping ties relative
o the row networks density.)

alues of the null distributions (black rectangles). This means that
ur global solution performs better in all classrooms than similar
ut random clusterings.16

One can think of plenty of other ways for testing fit, especially
onsidering the challenges of clustering in multiple groups. How-
ver, the focus of this paper lies elsewhere, so for the moment we
re satisfied with the demonstrated evidence which suggests that
ur three-cluster solution is reasonable for the studied set of class-

ooms. We will return to certain issues of goodness of fit in the
iscussion.

16 We also assessed in the same way whether the five-cluster solution from the
ean Jaccard values in wave 2 (Fig. 4b) is a better proposal for the classrooms in

oth waves. The overall levels of fit are approximately equal in both cases, but there
re significant classroom-level differences. This is expected as the two solutions
resented in Fig. 4 are very similar; but this simple test provides further support
hat the three-cluster structure we impose on every classroom is close to a (locally)
ptimal solution given the data at hand.
etworks 49 (2017) 93–112 105

3.7. Step 5: Defining positive, negative, and social role
attributions

Now that we have established that the proposed three-cluster
grouping is a reasonable representation of the similarities between
the network items in the studied classrooms, we can turn to the
definition of composite network measures. As described in Sec-
tion 2.7, we use a simple “at-least-t-ties” rule to combine the
tie-level information present in the networks of a given cluster.
A practical question here is the choice of the threshold t. A too low
value of t may lead to a too general interpretation of ties in the
resulting aggregated network. For example, if we take the union
of ties (t = 1) from the networks in our negative attribution clus-
ter, then a tie in our composed network could mean a perception
that the receiver is either shy or smug – clearly very different attri-
butions. Increasing t reduces the prevalence of these problems.
However, with a t too high the definition of a tie may become too
strict, and the density of the composed network too low. The pos-
sibility of measurement errors also advises against extreme values
of t. Clearly, there is no universal recipe for choosing a combination
threshold, and it is up to the researcher to decide on its appropriate
value.

For the present dataset, we propose the definition of four com-
posite networks: one of positive, one of social role attributions, and
two variants for negative attributions. In case of the first two item
groups, we choose the combination threshold t = 2. For reasons dis-
cussed below, two networks are defined for the cluster of negative
attributions, one at a threshold of 2 and another at 3. Thus the latter
network contains only a subset of the ties in the former, and rep-
resents stronger negative attributions. The definitions of our four
composed networks are summarized in Table 2. The two negative
networks could also be transformed to one weighted network, of
weak and strong negative attributions.

To have a first impression about the new measures and to
be reassured that the clustering procedure was successful, Fig. 8
presents two heatmaps similar to those used above. Here, how-
ever, the four composite networks are compared with the 17 items
Fig. 10. The structure of relations between the aggregated and affective network
measures. (The sets were placed algorithmically to best represent the overlaps observed
between the networks; the area of each set part is proportional to the frequency of ties
that fall within; the overlaps between the four positive and four negative networks were
disregarded; calculations are based on the average distribution of network ties across
the 18 classrooms in wave 1.)
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Table 2
The definition of the four composite networks.

Composite network Combination rule Group of original
networks

Positive attributions At least 2 ties from pretty, funny, clever, kind
Social role attributions At least 2 ties from trust, help, dispute,

organize, look up,
protects, decides

Weak negative
attributions

At least 2 ties from look down, gossipy,
smug, nerd, t.pet, shy

c
f

e

Strong negative
attributions

At least 3 ties from look down, gossipy,
smug, nerd, t.pet, shy
olumn item over the groups. The main results discussed here are
ound in every studied classroom.

The figures confirm that the composed networks have the high-
st overlap with the network items based on which they were

Fig. 11. The density of all used networks in the su
etworks 49 (2017) 93–112

defined – this shows that the success of the clustering procedure.
Further, one cannot miss the minimal overlap between positive
and negative items. Finally, it has to be highlighted that positive
and social role attributions tend to coincide with positive affec-
tions (friendship and liking), while to some extent this is true for
negative attributions and negative affections (dislike and hate). We
study these connections in more detail in the following section.

3.8. Comparing the aggregated attribution networks with
affective relations

How are the defined composite networks related to the more

common relational measures in the field? This question needs to be
answered in order to assess how the inclusion of these (or similar)
new network dimensions in future studies could expand our under-
standing of social dynamics in adolescence. Now we examine how

bsample classrooms at wave 1 (a) and 2 (b).
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dimensions. Indeed, with a lower cut point at t = 1, we would see
more positive attributions without positive affection (we do not
present these results here).
ig. 12. The stability of ties in all used networks between wave 1 and 2. (Stability i
tem; larger values represent greater stability; e.g. 0.5 means that the number of stable

ur composite networks are related to four basic networks of affec-
ion that are more regularly studied in the context of adolescent
esearch: friendship, liking, dislike, and hate.17

Fig. 9 provides a more detailed picture of the overlaps between
he eight networks at the two time points. Unlike the ones above,
hese heatmaps show the asymmetric relations between the items:
ach cell represents the amount of overlapping ties between the
ow and column networks, relative to the total number of ties in
he row network (compare with Section 2.3). The figures are based
n the mean values of this overlap index across the 18 classes.

First of all, we have to note that plots from wave 1 and 2 look-
ng strikingly similar, suggesting that the structure of the relations
etween these networks remained remarkably stable over the six-
onth period, despite the considerable changes in network ties

see Fig. 12 in Appendix B). Second, we can see in the figure that
ositive and social role attributions are asymmetrically related, as
hown by the 2-by-2 cell block in the top left corner. Most social
ole ties are coupled with positive attributions, but many positive
ttribution ties exist without social role attributions. This is true for
ll classrooms in both waves.

Further, the two positive composite networks have interesting
onnections to friendship and liking. Looking at the third 2-by-2
ell block from the left in the first row, we can see social role attri-
utions more often run parallel with friendship than do positive
erceptions. On the contrary, more of the positive attribution ties
oincide with liking than do social role attributions. These findings
old for 16 out of the 18 classes in both waves. Comparing to the
umber of friendship and liking ties (first block in the third row)
ells us that a larger proportion of friendship ties are also social
ole or positive attributions than liking ties. This is again true in 16
lassrooms at both observations.

Results for the negative networks vary more strongly between
lassrooms. Still, it seems that more strong negative attributions
re also hate ties than weak negative attributions (see the last 2-

y-2 block in row 2). We find this tendency in 11 and 12 classes in
ave 1 and 2, respectively. This means that by choosing a higher

hreshold for negative attributions, we retain a disproportionate

17 See Appendix A for the measurement of these relations in this specific study.
sured by the Jaccard index between the wave 1 and wave 2 instances of each network
uals the number of changing ties in a network.)

amount of ties which are associated with hate. The same difference
between strong and weak negative attributions is not so prevalent
in the case of dislike: only in case of 6 (wave 1) and 3 (wave 2)
classes can we observe a similar pattern.

Somewhat on the contrary, it is typical that a larger propor-
tion of dislike and hate ties are paired with weaker rather than
stronger negative attributions (see the second block in the bottom
row). In general, hate more often comes with the two other forms
of negativity than does dislike. These findings are true in 12 and 14
classrooms in wave 1 and 2, respectively.

We provide a concise overview of the results discussed so far
in Fig. 10. The circles represent ties in the eight networks; their
sizes are proportional to their average density in the 18 classrooms.
Moreover, the size of each intersection area (pairwise and three-
way) is approximately proportional to the average amount of ties
in the given category.18 We only present one figure as the results
from the two waves are almost identical (see Fig. 9).

For the sake of the illustration, we disregarded the overlap
between the “two worlds” of negative and positive networks. This
helped to make the visual representation of the remaining over-
laps more realistic. We have seen in Fig. 9 that positive–negative
overlaps are very scarce: only a little ambivalence is captured by
the eight measures (although the affective networks are mutually
exclusive, there were no constraints on the other 17 items used to
construct the new network measures).

It is clear that positive and social role attributions are coupled
with friendship or liking in the vast majority of cases. This may be
somewhat surprising for positive attributions, but remember that
we used a threshold of 2 when constructing this measure, which
means that a tie requires positive perceptions in at least two specific
18 Approximately, because Venn diagrams of more than two sets cannot exactly
represent the relative areas of cell parts in most cases. However, we used the algo-
rithm programmed in the venneuler R-package for placing the sets to ensure the
image is as close to the observed values as possible. A stress-type measure (see Sec-
tion 3.3) shows that this two-dimensional figure represents the relative size of the
set parts very well (p < 0.05).
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Social role attributions are typically strongly embedded in
riendships in the studied sample. Although they sometimes also
ccur in liking relations, it is very rare that social roles are attributed
ithout the presence of any positive affection. On the contrary,
eak and strong negative attributions quite often exist without
islike or hate – though there is a significant level of overlap.

. Conclusions from the example

In this paper, we presented an analytical strategy for reducing
he number of network dimensions in highly multiplex network
ata. Applying statistical methods that are already well estab-

ished for monadic variables, we demonstrated that different types
f social relations may be classified based on their pairwise sim-
larities. The resulting clustering may reveal important latent
imensions of relationships in a given context. We also showed a
imple yet flexible approach to construct composite network meas-
res. This is primarily meaningful when the items are clustered
ased on their similarity on the level of network ties. Statistical
odels for multiplex networks can be more easily applied to the

ggregated networks compared to the original, large set of dimen-
ions.

The application of the presented procedure to our observation of
1 interpersonal networks from 18 high-school classrooms at two
ime points resulted in the identification of three well-interpretable
roups of perceptions. These we labeled as positive, negative, and
ocial role attributions. Whilst there was substantial change in peer
ominations, the global similarity structure among the relational
imensions remained remarkably stable between the two waves.

The stability of the overall clustering points to two interesting
henomena. First, it provides evidence that attributions in the same
luster are connected also dynamically: the ties change but the clus-
er structure of attributions remains stable. Second, although the
roup-level cluster solution changes between the waves for many
lasses, these changes seem to cancel out when we average over all
lasses. This proves that it is indeed a promising direction to look
or the latent structures connecting several network items, and that
hen doing this it is helpful to consider a set of groups rather than

ne particular group.
Based on some simple tests, we concluded that the proposed

lobal clustering of items fits the similarity structure of the individ-
al classrooms reasonably well, independent of the academic level
s indicated by the classroom training program, which is known to
e strongly associated with the socio-economic background, aca-
emic achievement, and aspirations of students. Apparently, the
lustering found for the network items taps underlying dimensions
hat are stronger than variations between classrooms in subcul-
ures and value systems.

Relying on the identified three-cluster solution for the items,
e created four aggregated network measures. A combination

hreshold of 2 was applied to compose a positive and a social role
ttribution network. We found that these two composite networks
re asymmetrically related in the studied classrooms: positive attri-
utions seem to represent general perceptions which often exist
ithout role attributions, while the assignment social roles almost

lways coincides positive perceptions. Further, social role attribu-
ions also appear to be closely linked to friendship, which highlights
he functional features of positive relations at school. Finally, our
esults suggest that positive attributions (or similar measures)
ay not only be instrumental in explaining how positive affec-

ions develop but also in studying how affective relations become

tronger, e.g. how liking evolves into friendship.

In the case of negative attributions, we defined two composite
etworks at the thresholds of 2 and 3. Thus we acquired networks
epresenting “weaker” and a “stronger” negative perceptions. We
etworks 49 (2017) 93–112

found in many of the classrooms that strong negative attributions
more often coincide with strong negative affections than do weaker
attributions. However, it is notable that many negative attribu-
tions, both weak and strong, exist between students who did not
report any negative feelings (dislike or hate) about each other.
These results exemplify that defining a set of ordered composite
network measures, or in more general terms, defining weighted
networks as a result of the procedure is also a viable option.

5. Discussion

The proposed procedure for the cluster analysis of multiplex
networks opens novel possibilities and also presents new chal-
lenges for social network research. While statistical methods of
dimension reduction have proven useful for the construction of
reliable monadic measures in the social sciences, they have hardly
been applied to dyadic data with the aim to define aggregated net-
work measures. The main intended contribution this paper is the
combination of a set of already available methods and measures
to create composite networks. We believe that this is an innova-
tive application which requires some new practices and rules of
thumb further to be developed. Therefore, here we give a detailed
account of some critical decisions and questions brought up by the
procedure.

First, we have to note that the choice between similarity meas-
ures obviously affects the results and interpretations greatly. The
use of the Jaccard index, a dyadic measure, fits well to the aim of
combining information from several networks on the level of social
ties. As explained in Section 1.3, actor-level similarity, expressed for
instance by indegree correlation, can also be a meaningful basis for
classifying the networks. However, comparisons based on actor-
level measures do not take into account the dyadic essence of
network structure. Therefore, actor-level similarity measures may
be useful primarily when the ultimate goal is the classification of
actors based on their position in a group, and not the construction
of aggregated networks.

On the side, we may note that perhaps a more common appli-
cation of Cluster Analysis to networks would be the classification
of networks based a set of aggregate structural measures, such
as density, hierarchy, centralization, and so on. However, such an
approach seems more valuable for descriptive studies about the
structural similarities between different types of networks than for
the aim of finding common dimensions for networks measured in
the same groups in highly multiplex datasets.

As a second and related point, we have to mention that for
assessing network similarities, different rules of thumb should be
used than for inter-item correlations of monadic variables in scale
construction or Factor Analysis. For instance, a correlation of.5
between scale items may be labeled as rather low, but a Jaccard
index of the same magnitude means that there are exactly as many
overlapping ties in two networks as ties that are present in only one
of the two – which is definitely a high level of similarity. In light of
this, it is important to keep in mind that what counts as low or high
similarity depends on the measure we use.

Third, plenty of available options were deliberately left unex-
plored in case of goodness of fit assessment. On the one hand,
further tests can include the application of additional measures,
such as the cophenetic correlation coefficient (Rohlf and Sokal,
1981). On the other, the main challenge here is empirical and the-
oretical: the general problem of finding a single clustering that fits
the data from multiple groups (in our case, classrooms). There is no

simple general solution to this issue, and it deserves separate and
more thorough treatment.

A few words need to be said, however, about one related issue.
Obviously, the chances for finding a well-fitting global clustering



cial N

d
i
a
t
W
g
o
c

t
m
t
t
m
d
t
q

o
t
t
o
w
w
t
w
i
o
p

t
a
p
n
g
s
t
d
T
i
i
w
a
t

c
r
n
c
l
c
r
f
t
n
u

b
T
b
r
i
t
d
m
f

A. Vörös, T.A.B. Snijders / So

epend on the homogeneity of the groups with regard to the inter-
tem similarities. The second step of the procedure (see Section 2.4)
ims at increasing this homogeneity. Yet, it still is possible that
he studied groups are systematically different from each other.

ith many groups it may thus be a viable approach to classify the
roups themselves based on the results from the cluster analysis
f the network dimensions, and so identify the general types of
ommunities in our sample.

By following the same approach, we may not only learn about
he studied groups, but also about the network items which cause

ost of the differences (like argues, money, would date, and fights in
he presented analysis). Why are these networks heterogeneous in
heir relations to the other items? Do they have a certain consistent

eaning in some groups and a different one in others? Are the
ifferences related to sociologically relevant factors? Is it possible
hat the heterogeneities are due to omitted network items? The last
uestion leads us to the next point.

Fourth, in any multiplex network study, the results will depend
n the set of network items being considered, and we cannot be sure
hat we measured all of the important items connected to the rela-
ional dimensions of interest. We may be unaware of the number
f latent relational dimensions in a given social context. In which
ays are the results of the procedure affected by the item pool that
e use? At this point, it is difficult to give conclusive answers to

his question. We can only say that since the classification of net-
ork items in our approach is based on relative similarity (i.e., two

tems are more similar to each other than to the other items), the
mission of a set of networks measuring something different would
robably not affect the results strongly.

It is likely, however, that the relative number of items belonging
o each category has an impact on both the results in each group
nd the similarity of clusters across multiple groups. In the exam-
le presented, there were fewer negative than positive items, and
etworks in the former group showed lower consistency across
roups. This may also be related to density: if the networks mea-
uring a relational dimension are sparse, we may need more of them
o acquire robust results. However, it is important to note that low
ensity in itself is not a cause of low consistency across groups.
he reason for an item to be dropped at this step of the procedure
s that it does not belong to any of the clusters. This suggests that
n order to arrive at good measures for rare social relations (i.e.,

ith low average degrees), researchers should look for and employ
larger number of specific items than in cases of more common

ies.
The measurement of bullying is a good example here. Spe-

ific questions may facilitate a better identification of bully-victim
elations than more general ones, but they may yield very sparse
etworks. However, with a sufficiently large number of items
hances are better for the identification of a separate cluster of bul-
ying relations across groups. This cluster then might be used to
onstruct more valid, and perhaps multiple, measures of bullying
elations. The conclusion of this exercise might also be that specific
orms of bullying cannot be separated from other social relations
hat have their own specificity, such as teasing, rivalry, or domi-
ance. In any case, however, the results would contribute to our
nderstanding of bullying among children.

Further, quite naturally, with few items one cannot distinguish
etween the possible sub-dimensions in a given set of networks.
hat is, with fewer positive items, we probably would not have
een able to distinguish between positive attributions and social
ole attributions; on the other hand, measuring more negative
tems might have revealed interesting substructures in the nega-

ive attribution cluster. Leaving out key network items in a given
imension is likely to make the identification of all dimensions
ore difficult, as boundaries between clusters may become more

uzzy. However, we need to collect further experience with the
etworks 49 (2017) 93–112 109

structure of network similarities before we can give more specific
answers to the questions raised here.

In spite of the uncertainties due to the lack of experience with
the procedure, the first results seem to be substantively meaningful
and relevant. Based on our findings, studies into the co-evolution
of positive attributions and affections of different strength promise
to clarify how friendships develop in school, and may unveil a so
far omitted variation in adolescents’ friendship relations. The closer
examination of the part that social roles play in friendship may be
important in understanding why (some) friends are more influ-
ential when it comes to academic achievement, aspirations, risky
behaviors, and so on. Our results also showed there is more neg-
ativity in student relations than what is captured by the simple
questions of dislike and hate. This suggests that by using an appro-
priate set of measures for negative perceptions we may be able
to acquire a more complete picture of negative relations in a social
setting. Such data could contribute greatly to studies of social exclu-
sion, status competition, intergroup conflict, and bullying – in or
outside of the school setting.

In summary, this paper proposed an approach for dimension
reduction in highly multiplex network data in multiple groups,
and demonstrated on a real-life example that this approach is
viable and leads to well-interpretable results. Some parts of the
procedure need to be further developed. Also, more examples and
experience are necessary to set up rules of thumb that can guide
researchers when applying this procedure, and explore the effects
of imperfect measurement on the results. Despite these issues,
however, the proposed analytical strategy holds some potential to
help uncovering the latent dimensions of relationships in different
social contexts. Further, elaborating and applying this approach in
research promises to relax the dependence on the measurement of
complex types of relations by a single, often loosely defined item,
as it is usually done for friendship. Studying multiple relational
items with a well-specified meaning may improve the validity of
our interpretations and may help us develop better measures of
social relations.

Appendix A. The RECENS high-school dataset

The data analyzed in the paper come from a 4-wave longitudinal
network survey conducted in 43 Hungarian high-school classrooms
in the period of 2010–13. The data was collected as part of the
“Wired into each other” network study by the Research Center for
Educational and Network Studies (RECENS). The classrooms in the
dataset were distributed in 7 schools from the capital, one large
town, and two smaller towns in Hungary. In each participating
school, all classes in the first-grade cohort (14–15 year-olds) of
2010–11 were followed for the first three of their four years in high
school. Students answered self-administered pen-and-paper ques-
tionnaires four times during this period: twice in the first year (two
months after the start of first grade and six months later), then once
per year in the next two (1.5 and 2.5 years after the first wave).

The questionnaires in each classroom and wave were filled out
in the course of a 45-minute class at school, under the supervision
of at least two trained researchers participating in the study.
Before each wave, students and their parents received information
about the survey and were asked for participation and consent.
Network ties were reported by students using a classroom-level
roster, that is, the number of ties to classmates was not limited, but
ties to people outside one’s own class were not permitted. Affec-
tive relationships were measured on a 5-point scale: friendship,

liking, neutrality, dislike, and hate, where choices were mutually
exclusive. In addition to these items, questions about bullying
and victimization networks, shared activities and perceptions of
peers’ attributes, behavior, social roles, and status were asked in
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he questionnaires. Altogether, the dataset contains information
n various social ties between students along 40 dimensions
n each classroom. In the present study, we used 21 of these
etwork dimensions representing perceptions about a selection of
ttributes, behaviors, and roles (see Section 3.2).

This paper analyzes the first two waves of the RECENS dataset.
ave 1 was collected in October 2010, only about a month after

he start of the first high-school year, and wave 2 in April 2011.
hese observations frame an intense six-month period when class-
oom members become familiar with their new environment, get
o know each other, and start to develop shared views about which
ehaviors or opinions are acceptable in the class and which are to be
ejected. The evolution of the value systems (as used in Coleman,
961) of classrooms goes hand in hand with changes in adoles-
ents’ perceptions about their classmates, and may also affect the
elationships between the different dimensions of peer perceptions
n the community. As a consequence, the comparison of our results
rom the two waves may highlight certain general tendencies of
he ongoing social dynamics.

ppendix B. The analyzed 18-classroom subsample

For our exploratory analysis, we selected a random subsample
f 18 classrooms so that each school, classroom training program
vocational, technical, or grammar),9 and town size (capital, large
own and small town) is independently represented by at least 2
lasses (see Tables 3 and 4 for an overview of the subsample). These
ontextual variables capture regional and school-level differences
nd the systematic variation in students’ background between
raining programs (Dobos et al., 2011), which may all be related
o the structuring of perceptual dimensions in the classrooms.
hus, our subsample retains the variation of the full sample in
ome important contextual aspects, while it remains small enough
o be conveniently explored. The selection of at least two cases

n each category also provides protection against idiosyncrasies
n classroom-level results. Finally, using a subset of classrooms
rom the full dataset leaves open the possibility of future cross-
alidation.

able 3
he distribution of classrooms in schools, locations, and training programs in the
ubsample and the full sample.

School Number of classrooms (in subsample/in full sample)

Grammar Technical Vocational Total

Bigtown 1 2/5 – – 2/5
Bigtown 2 – 2/4 2/6 4/10
SmalltownA 1 1/3 0/1 1/3 2/7
SmalltownB 1 – 2/4 – 2/4
SmalltownB 2 – 1/2 1/3 2/5
Capital 1 2/4 – – 2/4
Capital 2 – 2/4 2/4 4/8

Total
5/12 7/15 6/16 18/43
(42%) (47%) (38%) (42%)

able 4
dentification of classrooms in the analyzed subsample.

School Classroom IDs per training program

Grammar Technical Vocational

Bigtown 1 1100 1500 – – – –
Bigtown 2 – – 2200 2400 2900 2000
SmalltownA 1 3100 – – – 3500 –
SmalltownB 1 – – 4200 4400 – –
SmalltownB 2 – – 5500 – 5100 –
Capital 1 6100 6400 – – – –
Capital 2 – – 7200 7300 7500 7800
etworks 49 (2017) 93–112

Basic descriptive information about the studied classrooms is
presented in Table 5. The subsample we analyze here consists of 5
grammar, 7 technical, and 6 vocational school classes. The size of
the classrooms varies between 26 and 38 students, with an aver-
age of 32 over the two waves. Girls are in a majority in most of
the classes (14 out of 18), and their average proportion is 63%. It
has to be noted that across all three training programs, girls are
over represented in our sample compared to their national share in
the time period of the study: 69%, 62%, 60% against 57%, 49%, 38%
in grammar, technical, and vocational training respectively (KSH,
2011, 2012, 2013). However, our classrooms still show considerable
heterogeneity in gender composition: the lowest observed propor-
tion of girls is 34%, while the highest is 80%. The differences in the
ratio of boys and girls are not associated with training program or
classroom size in our subsample.

The average age of students was 15.3 years at the time of wave
1 (with the mean of within-class standard deviations being 0.57
years). There are significant differences between training programs
with regard to the classroom-level means and variances of age:
vocational school classes have the highest average age and also the
largest within-class variance, then come technical classes, followed
by the grammar training program (p-values of all pairwise tests are
below 0.05). This is in line with the general tendency in Hungarian
education: between 2005–2007, the proportion of students who
failed and had to repeat a grade was more than three times as high
in vocational (5%) and twice as high in technical training (3%) than
in grammar classes (1.5%) (Fehérvári, 2009:7). Later studies report
that the gap further widened since then, leading to a 7%:1% ratio
of fails between vocational and grammar classrooms in 2008/2009,
with one out of every six vocational students failing first grade in
high school (Dobos et al., 2011:171).

It can further be noted that there is some change in classroom
compositions, due to joiners and leavers, between the two waves.
The turnover rate is higher for technical and vocational (mean = 4.2
students) than for grammar classes (mean = 0.8 students, p = 0.01
for the test of zero difference). However, it is likely that most of this
fluctuation is due the swapping of problematic, school-avoiding
students between schools – as suggested by a high positive cor-
relation (0.77, p < 0.01) between the number of changes in the
classroom roster and the number leaving and joining students who
were absent at wave 1 and 2 respectively. Classroom sizes and the
ratio of boys and girls are not altered substantially by the changing
composition.

The differences between training programs are reflected also
in participation rates. While on average 90% and 85% of students
answered the questionnaires in wave 1 and 2 respectively, there
is a large disparity between vocational classes and the two other
types (see Table 6). In grammar and technical classrooms, typically
less than 10% of students were absent from school at the time of the
data collections or chose to opt out from the study, but the same
rate is over 20% in vocational classes on average (the difference is
significant at p < 0.01).

Based on field interviews with the head teachers of the
vocational classrooms, several students who were absent were
notorious for avoiding school, and some even faced to be expelled
from the given institution because of this. Indeed, if we exclude
absent students who left their classroom (and probably their
school) by the third data collection, absence rates drop quite a bit
– as it can be seen in Table 6.

The problem of absent later drop-outs is clearly one about draw-
ing the boundary of the networks. Do these students belong to the
classroom community even though they are mostly not at school?

We decided to keep them for the present analysis, for two reasons.
On the one hand, we argue that students who are absent more often
than not are not active members of their class community. As a con-
sequence, it is not important for us to know how they evaluate their
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Table 5
Classroom-level descriptive statistics for the subsample.

Class Training program Size Girls % Age mean (std. dev.) Size change w1 to w2 Leavers Joiners Girls %�

1100 Grammar 32 66% 15.1 (0.28) −1 1 0 −0.01
1500 Grammar 29 76% 15.1 (0.37) −1 2 1 −0.01
3100 Grammar 29 48% 14.9 (0.37) 0 0 0 0.00
6100 Grammar 33 82% 15.1 (0.37) 0 0 0 0.00
6400 Grammar 36 72% 15.0 (0.34) 0 0 0 0.00
2200 Technical 31 71% 15.2 (0.48) −5 5 0 0.02
2400 Technical 29 62% 15.1 (0.48) 2 2 4 −0.01
4200 Technical 35 54% 15.0 (0.33) 1 0 1 0.01
4400 Technical 38 79% 15.1 (0.47) −1 1 0 −0.01
5500 Technical 35 40% 15.4 (0.51) 0 2 2 −0.06
7200 Technical 31 61% 15.5 (0.72) −3 3 0 −0.01
7300 Technical 31 65% 15.6 (0.76) −2 5 3 0.01
2900 Vocational 32 59% 15.2 (0.48) 3 4 7 0.01
2000 Vocational 30 47% 16.0 (0.92) −3 5 2 0.05
3500 Vocational 37 41% 15.7 (0.67) 1 1 2 −0.01
5100 Vocational 33 79% 15.5 (0.81) 1 1 2 −0.02
7500 Vocational 33 67% 15.6 (1.03) −7 9 2 −0.05
7800 Vocational 35 69% 15.9 (0.96) −6 6 0 −0.03

Table 6
Absence rates among all students and active students in the subsample classrooms.

Class Training program All absent (%) w1 Active absent (%) w1 All absent (%) w2 Active absent (%) w2

1100 Grammar 6% 6% 3% 3%
1500 Grammar 3% 3% 0% 0%
3100 Grammar 3% 3% 3% 3%
6100 Grammar 6% 6% 3% 3%
6400 Grammar 3% 3% 0% 0%
2200 Technical 6% 3% 8% 4%
2400 Technical 3% 0% 6% 3%
4200 Technical 0% 0% 0% 0%
4400 Technical 0% 0% 0% 0%
5500 Technical 9% 6% 23% 13%
7200 Technical 32% 22% 21% 12%
7300 Technical 3% 0% 14% 4%
2900 Vocational 9% 3% 29% 7%
2000 Vocational 20% 8% 30% 10%
3500 Vocational 27% 10% 45% 9%

13%
28%
16%

c
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r
r
o
r
v
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B

B

B

B

B

B

5100 Vocational 18%
7500 Vocational 36%
7800 Vocational 23%

lassmates (all of whom they might not even know). Additionally,
heir missing responses do not pose a problem for the analysis.

On the other hand, these people, as rarely as they may contact
hem in or outside of school, can still exert significant influence on
heir classmates’ interpersonal evaluations, especially as extreme
ole models. Therefore, taking into account the nominations they
eceive from classmates may help to better identify the structure
f perceptual dimensions among the active members of the class-
ooms. To summarize, we argue that the higher rate of absence in
ocational classes should not lead to biased results regarding the
ctive part of the classes, and so systematic differences between
lassrooms should not arise from this phenomenon.

eferences

sher, S.R., Coie, J.D. (Eds.), 1990. Peer Rejection in Childhood. Cambridge
University Press.

artholomew, D., Steele, F., Galbraith, J., Moustaki, I., 2008. Analysis of Multivariate
Social Science Data. Routledge.

atagelj, V., Bren, M., 1995. Comparing resemblance measures. J. Classif. 12 (1),
73–90.

erndt, T.J., 1982. The features and effects of friendship in early adolescence. Child
Dev. 53, 1447–1460.

orgatti, S.P., 1994. Using MDS to infer relative status from dominance matrices.

Connections 17 (2), 75–77.

orgatti, S.P., Everett, M.G., Freeman, L.C., 2002. UCINET for Windows: Software for
Social Network Analysis.

orgatti, S.P., Mehra, A., Brass, D.J., Labianca, G., 2009. Network analysis in the
social sciences. Science 323 (5916), 892–895.
35% 21%
35% 19%
10% 4%

Bower, E.M., 1960. Early Identification of Emotionally Handicapped Children.
Thomas, Springfield, IL.

Brandes, U., Lerner, J., Nagel, U., 2011. Network ensemble clustering using latent
roles. Adv. Data Anal. Classif. 5 (2), 81–94.

Carroll, C., 2006. Canonical correlation analysis: assessing links between multiplex
networks. Soc. Netw. 28 (4), 310–330.

Cillessen, A.H., Rose, A.J., 2005. Understanding popularity in the peer system. Curr.
Dir. Psychol. Sci. 14 (2), 102–105.

Cillessen, A.H., Schwartz, D., Mayeux, L.,2011. Popularity in the Peer System.
Guilford Press.

Coie, J.D., Dodge, K.A., Coppotelli, H., 1982. Dimensions and types of social status: a
cross-age perspective. Dev. Psychol. 18 (4), 557.

Coie, J.D., Dodge, K.A., Kupersmidt, J.B., 1990. Peer group behavior and social status.
In: Asher, S.R., Coie, J.D. (Eds.), Peer Rejection in Childhood. Cambridge
University Press.

Coleman, J.S., 1961. The Adolescent Society. Free Press, New York.
Cox, T.F., Cox, M.A., 2010. Multidimensional Scaling. CRC Press.
Dabkowski, M., Breiger, R., Szidarovszky, F., 2015. Simultaneous-direct

blockmodeling for multiple relations in Pajek. Soc. Netw. 40, 1–16.
Davis, J.A., 1968. Statistical analysis of pair relationships: symmetry, subjective

consistency and reciprocity. Sociometry 31 (1), 102–119.
De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A.,

Gómez, S., Arenas, A., 2013. Mathematical formulation of multilayer networks.
Phys. Rev. X 3 (4), 041022.

Dekker, D., Krackhardt, D., Snijders, T.A., 2007. Sensitivity of MRQAP tests to
collinearity and autocorrelation conditions. Psychometrika 72 (4),
563–581.

Dobos, K., Gloviczki, Z., Halász, G., Kaposi, J., Kovács, I.V., Lannert, J., Loboda, Z.,
Setényi, J. (Eds.), 2011. Jelentés a magyar közoktatásról – 2010. Oktatáskutató

és Fejlesztö Intézet, Budapest.

Doreian, P., Batagelj, V., Ferligoj, A., 2005. Generalized blockmodeling. In:
Structural Analysis in the Social Sciences, vol. 25. Cambridge University Press.

Faust, K., 2005. Using correspondence analysis for joint displays of affiliation
networks. Models Methods Soc. Netw. Anal. 7, 117–147.



1 cial N

F

F
F

F

H

H
H
J

K

K

K

K
K
K
L

L

L

M

M

N

12 A. Vörös, T.A.B. Snijders / So

aust, K., Skvoretz, J., 2002. Comparing networks across space and time, size and
species. Sociol. Methodol. 32 (1), 267–299.

ehérvári, A., 2009. Kudarcok a szakiskolában. Szakképzési Szemle 25 (1), 23–44.
ienberg, S.E., Meyer, M.M., Wasserman, S.S., 1985. Statistical analysis of multiple

sociometric relations. J. Am. Stat. Assoc. 80 (389), 51–67.
ischer, C.S., 1982. What do we mean by ‘friend’? An inductive study. Soc. Netw. 3

(4), 287–306.
anneman, R.A., Riddle, M., 2005. Introduction to Social Network Methods.

Riverside, University of California.
omans, G.C., 1950. The Human Group. Harcourt, Brace, New York.
ubert, L., Arabie, P., 1985. Comparing partitions. J. Classif. 2 (1), 193–218.

accard, P., 1908. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud.
Sci. Nat. 44, 223–270.

adushin, C., 2012. Understanding Social Networks: Theories, Concepts, and
Findings. Oxford University Press.

endall, M.G., Babington Smith, B., 1939. The problem of m rankings. Ann. Math.
Stat. 10 (3), 275–287.

rackhardt, D., 1988. Predicting with networks: nonparametric multiple
regression analysis of dyadic data. Soc. Netw. 10 (4), 359–381.

SH, 2011. Oktatási adatok – 2010/2011. Stat. Tükör 5 (21), 1–4.
SH, 2012. Oktatási adatok – 2011/2012. Stat. Tükör 6 (23), 1–5.
SH, 2013. Oktatási adatok – 2012/2013. Stat. Tükör 7 (32), 1–5.
azega, E., 2001. The Collegial Phenomenon: The Social Mechanisms of

Cooperation Among Peers in a Corporate Law Partnership. Oxford University
Press, New York, NY.

egendre, P., 2005. Species associations: the Kendall coefficient of concordance
revisited. J. Agric. Biol. Environ. Stat. 10 (2), 226–245.

usher, D., Koskinen, J., Robins, G., 2012. Exponential Random Graph Models for
Social Networks: Theory, Methods, and Applications. Cambridge University
Press.

arsden, P.V., Campbell, K.E., 1984. Measuring tie strength. Soc. Forces 63 (2),
482–501.
asten, A.S., Morison, P., Pellegrini, D.S., 1985. A revised class play method of peer
assessment. Dev. Psychol. 21 (3), 523–533.

ewcomb, A.F., Bukowski, W.M., Pattee, L., 1993. Children’s peer relations: a
meta-analytic review of popular, rejected, neglected, controversial, and
average sociometric status. Psychol. Bull. 113 (1), 99–128.
etworks 49 (2017) 93–112

Pekarik, E.G., Prinz, R.J., Liebert, D.E., Weintraub, S., Neale, J.M., 1976. The pupil
evaluation inventory. J. Abnormal Child Psychol. 4 (1), 83–97.

Prell, C., 2011. Social Network Analysis: History, Theory and Methodology. Sage.
Prinz, R.J., Swan, G., Liebert, D., Weintraub, S., Neale, J.M., 1978. ASSESS:

adjustment scales for sociometric evaluation of secondary-school students. J.
Abnormal Child Psychol. 6 (4), 493–501.

Rand, W.M., 1971. Objective criteria for the evaluation of clustering methods. J.
Am. Stat. Assoc. 66 (336), 846–850.

Roethlisberger, F.J., Dickson, W.J., 1939. Management and the Worker. Cambridge
University Press.

Rohlf, F.J., Sokal, R.R., 1981. Comparing numerical taxonomic studies. Syst. Biol. 30
(4), 459–490.

Sampson, S., 1969. Crisis in a cloister (Unpublished Ph.D. Dissertation). Cornell
University.

Skvoretz, J., Faust, K., 2002. Relations, species, and network structure. J. Soc. Struct.
3 (3), 139–145.

Snijders, T.A., Lomi, A., Torló, V.J., 2013. A model for the multiplex dynamics of
two-mode and one-mode networks, with an application to employment
preference, friendship, and advice. Soc. Netw. 35 (2), 265–276.

Snijders, T.A., Van de Bunt, G.G., Steglich, C.E., 2010. Introduction to stochastic
actor-based models for network dynamics. Soc. Netw. 32 (1), 44–60.

Sokal, R., Michener, C., 1958. A Statistical Method for Evaluating Systematic
Relationships. University of Kansas Science Bulletin, University of Kansas.

Szell, M., Lambiotte, R., Thurner, S., 2010. Multirelational organization of
large-scale social networks in an online world. Proc. Natl. Acad. Sci. 107 (31),
13636–13641.

Wasserman, S., Faust, K., 1989. Canonical analysis of the composition and structure
of social networks. Sociol. Methodol. 19 (1), 1–42.

Wasserman, S., Faust, K., 1994. Social Network Analysis: Methods and
Applications. Cambridge University Press.

Wasserman, S., Faust, K., Galaskiewicz, J., 1990. Correspondence and canonical
analysis of relational data. J. Math. Sociol. 15 (1), 11–64.
White, H.C., Boorman, S.A., Breiger, R.L., 1976. Social structure from multiple
networks. I. Blockmodels of roles and positions. Am. J. Sociol. 81 (4), 730–780.

Wiggins, J.S., Winder, C., 1961. The peer nomination inventory: an empirically
derived sociometric measure of adjustment in preadolescent boys. Psychol.
Rep. 9 (3), 643–677.


	Cluster analysis of multiplex networks: Defining composite network measures
	1 Introduction
	1.1 Multiplexity as a challenge
	1.2 Dimension reduction to the rescue
	1.3 A precursor in psychology: peer ratings of behavior in school
	1.4 Multiplexity as an opportunity: the cluster analysis of multiplex networks

	2 Defining composite network measures: an empirical procedure
	2.1 The problem
	2.2 Step 0: Thinking
	2.3 Step 1: Measuring network similarity
	2.3.1 Projecting and visualizing the similarity structure

	2.4 Step 2: Checking the consistency of similarities across groups
	2.5 Step 3: Finding group-level and global clusters in multiple groups
	2.6 Step 4: Checking the fit of the global solution
	2.7 Step 5: Defining composite networks

	3 An application: peer-perception dimensions in Hungarian high schools
	3.1 Data
	3.2 Step 0: The network items and their expected grouping
	3.3 Step 1: The similarity structure of peer-perception networks
	3.4 Step 2: The consistency of the similarity structure across classrooms
	3.5 Step 3: Three dimensions of peer perceptions: the global solution
	3.6 Step 4: The fit of the global solution across classes
	3.7 Step 5: Defining positive, negative, and social role attributions
	3.8 Comparing the aggregated attribution networks with affective relations

	4 Conclusions from the example
	5 Discussion
	Appendix A The RECENS high-school dataset
	Appendix B The analyzed 18-classroom subsample
	References


