
 

 

 University of Groningen

Robust Synchronization and Model Reduction of Multi-Agent Systems
Jongsma, Hidde-Jan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Jongsma, H-J. (2017). Robust Synchronization and Model Reduction of Multi-Agent Systems.
Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://research.rug.nl/en/publications/c8614605-e90c-4590-9e41-19170c9819d5


1
I N T R O D U C T I O N

Ever since the advent of the Internet and of the world wide web in the
1980’s, and more recently with the upswing of the Internet of Things
(IoT), one thing has become exceedingly clear: the world in which we
live is becoming an increasingly interconnected place. Our phone talks to
our watch, our washing machine talks to our refrigerator, and our solar
panels talk to those of our neighbor. While only one of these examples
is currently commonplace, people in the control community are actively
working on making the other two a reality.

Interconnecting different systems creates a larger, more complex sys-
tem which we call a network. Such networks occur when, for instance,
modeling systems from physics (connected oscillators), artificial intelli-
gence (uav’s), biological chemistry (gene regulatory networks), or energy
systems (smart-grids). The behavior and properties of these networks are
determined not only by the properties of the individual subsystems, but
also by the specific structure with which these subsystems are intercon-
nected. In this setup of multiple interconnected system, we speak of com-
plex networks or networked multi-agent systems. In the theory of networked
multi-agent systems, the subsystems are dynamical systems called the
agents. These agents exchange information according to a certain com-
munication topology. In general this topology is modeled using a graph
called the network graph. In this graph, the nodes represent the agents
of the network, while the communication links are represented by the
edges. Depending on the context, the agents can have either identical
dynamics in which case we talk about homogeneous networks, or distinct
dynamics, in which case the network is called heterogeneous. Likewise,
the network graph can be directed or undirected and weighted or un-
weighted. In this thesis we will consider many of the different types of
networks. The manner in which the agents in the network exchange lo-
cal information is called a communication protocol. An important object in



2 introduction

the theory of multi-agent systems is the Laplacian matrix of the network
graph. Many of the properties of a multi-agent system can be expressed
in terms of the eigenvalues of the Laplacian, see e.g. [39, 68].

For many different problems in the context of networked systems, the
aim is to design a protocol that achieves a certain goal. One such prob-
lem is the well-known problem of synchronization. Other important sub-
jects in networked systems include flocking, formation control, sensor
placement, and controllability of networks, see e.g. [10, 13, 15, 18, 41, 47,
48].

1.1 synchronization

One of the first problems to be researched in the theory of networked
systems is the problem of synchronization of interconnected systems. In
the synchronization problem the agents can be models of similar or iden-
tical physical systems, such as vehicles or oscillators, and the goal is to
find conditions on the communication protocols under which the states
of all the agents in the network converge to a single common trajectory.
If the protocol achieves this goal, then the network is said to be synchro-
nized. Already in 1665, the Dutch mathematician Christiaan Huygens
observed that two identical pendulum clocks that have been mounted
on a common wall will tend to synchronize in some sense: over time
their pendulums will swing either in phase or in anti-phase [63]. Since
those early beginnings in the 17th century, it has taken a few years for
synchronization to really capture the attention of the control commu-
nity. Starting at the end of the 20th century however, it has gathered a
substantial amount of interest and research, see e.g. [34, 40, 58, 62, 70].

Closely related to the synchronization problem, and as well-known, is
is the problem of consensus. Within the problem of consensus the agents
in the network, perhaps modeling a network of sensors, again exchange
local information with their neighbors only. The goal of this information
exchange is for the whole network to reach agreement on certain quanti-
ties of interest depending on the states of all the agents. A protocol that
achieves this aim is said to achieve consensus. Important work on the
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consensus problem can be found if for instance [49, 50, 54, 55, 66], with
some more recent work in e.g. [37, 38].

At first, the literature on synchronization and consensus considered
mostly networks of simple systems such as scalar systems with single or
double integrator agent dynamics. More recent work has diverted its at-
tention to networks with higher order agent dynamics. In these networks
the agent dynamics is a general finite dimensional linear input-output
system, see [15, 37, 38]. For networks with scalar agent dynamics or net-
works with higher dimensional agent dynamics where the relative state
is available, it is often possible to achieve synchronization or consen-
sus with static communication protocols. However, when working with
higher dimensional systems, the agents are not always able to exchange
their entire relative state. In these cases dynamic observer-based protocols,
using the measured relative output of the agents, can be used to achieve
the desired goal of consensus or synchronization. Using a dynamic pro-
tocol allows us to first create an estimate the relative state of each agent,
which we then feed back into the network.

An important concept in the field of control theory is robustness. In con-
trol theory, we often consider dynamical models representing physical
real world systems. This is especially prevalent in the networked system
problems of synchronization and formation control. When constructing
these mathematical models we make many idealized assumptions about
the dynamics of the physical system, which leads to a close but not com-
pletely accurate description of said physical system. However, it might
not be unreasonable to assume that the precise dynamics of the physical
system lies within a certain (to be appropriately defined) neighborhood
of our idealized mathematical model, which we call the the nominal sys-
tem. If a controller achieves a certain goal for all systems within a spec-
ified neighborhood of the nominal system then the controller is said to
achieve that goal robustly. One of the most well-known robustness prob-
lems is the problem of robust stabilization. In this case, the goal is to
find a controller that stabilizes the nominal system robustly.

Results from H∞ and robust control theory, such as the famous small
gain theorem, have been applied to the problem of robust synchronization
for networks with uncertain agent dynamics. Here the nominal agent dy-
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namics is identical for all the agents in the network, and is given by an
ordinary linear input-output system. For each agent this system is then
interconnected with an unknown system representing the perturbation.
The exact interconnection between the nominal dynamics and the per-
turbation depends on the context. For networks with additively perturbed
agent dynamics, conditions for the existence of observer-based dynamic
protocols achieving robust synchronization and methods to obtain such
protocols were established in [65]. In the second chapter of this thesis, we
consider the problem in which the nominal agent dynamics are instead
perturbed with coprime factor perturbations. We provide methods to con-
struct observer-based protocols that achieve robustly synchronization of
the network for all possible perturbations whose H∞-norm lies within a
certain achievable interval.

1.2 model reduction

Another topic that has gathered a great amount of interest is the problem
of model reduction. Model reduction hinges on the following idea: if we
consider a complex system which is difficult to simulate, analyze, or
control; can we approximate this system by a simplified model? Another
important aspect of the model reduction problem is to guarantee that
certain properties of the original model are preserved in the reduced
model. Furthermore it is important to establish some measure of exactly
how accurate the reduced model approximates the original system. In
the past few decades multiple model reduction techniques have been
developed, each with a different approach to the problem.

In [44] Lyapunov-based balanced truncation was first introduced. The
aim in balanced truncation is to construct a representation of the sys-
tem in which states that are easy to reach are also easy to observe, and
to make those that are difficult to reach difficult to observe as well. In-
formation regarding the difficult to be reached and observed states is
then truncated from the model, leading to a lower dimensional system.
Hankel-norm approximation takes a different approach to model reduc-
tion. Here the goal is to find an approximating system that is optimal
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with respect to a certain norm, see for instance [1, 77]. Finally, Krylov-
subspace based methods, known as moment-matching methods, take
a different direction altogether. In this technique Krylov-subspace pro-
jections are used to obtain a reduced order approximating system, see
e.g. [16, 17, 27].

When working with large scale networks, the dynamical models can
easily become extremely complex and high-dimensional. It is intuitively
understandable that problems for networked systems such as analysis
and controller design can benefit greatly from model reduction. How-
ever, direct application of the model reduction techniques mentioned
above generally leads to a complete loss of a very important property
of the system: the structure of the network itself. Often, it is impossible
to again interpret the reduced system as a network of interconnected
subsystems. This in turn leads to the situation that the tools that are nor-
mally available for dealing with networked systems are no longer usable
after the model reduction step.

In the past few years, different model reduction techniques have been
introduced that try to preserve some of the network and subsystem
structure of the original networked system. For example there exist tech-
niques that preserve the Lagrangian structure [35], the second order
structure [4, 36], and the subsystem interconnection structure of the
model [53, 57, 69]. For networked systems, the most important struc-
ture is of course the topology of the network. Recently model reduction
techniques specifically designed for networked systems have been in-
troduced. These techniques fall into roughly two categories: techniques
that reduce the dynamic order of the individual agents, see [42], and
techniques that reduce the complexity of the network topology, for in-
stance by clustering the agents in the network graph, see [8, 24, 25]. In
clustering based techniques the idea is to partition the agents of the net-
work into disjoint sets called clusters, and to associate a single new node
with each of the clusters in the graph of the reduced network. In this way,
the number of agents in the network is reduced, leading to a reduction
of the dynamical order of the entire networked system.

In this thesis we present a clustering based model reduction technique
that employs a special class of graph partitions called almost equitable par-
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titions to cluster networks with arbitrary higher dimensional agent dy-
namics. These techniques extend the results from [43] which considered
networks with single integrator agent dynamics. In these networks, the
agents are divided into two groups: a group of leaders and a group of
followers. The followers can only communicate with other agents in the
graph, but the leaders receive an external output. We provide a priori
upper bounds on the H2 and H∞ approximation errors if the agents
in the graph are clustered according to an almost equitable partition of
the network graph. For some graphs however, it can be either difficult
or impossible to find almost equitable partitions that are actually useful
for clustering. This might be the case if, for instance, the graph only has
trivial almost equitable partitions. If the chosen cluster is not almost eq-
uitable for the given network, one can ask oneself the following question:
is it possible to modify the network graph in such a way that the cho-
sen partition becomes an almost equitable partition of the new network
graph? In the final part of the third chapter, we investigate this prob-
lem and briefly investigate how one might apply the obtained results
for clustering networks according to arbitrary partitions.

Inspired by the results in the third chapter and the difficulty of finding
exact expressions for the approximation error in the case of arbitrary par-
titions, we investigate a related model reduction problem in the fourth
chapter of this thesis. In this chapter, we investigate the H2 approxima-
tion error when certain edges are removed from the network graph. In
a graph, cycles can be considered redundant in a certain sense: for con-
nectedness of a graph the existence of a spanning tree is necessary, and
in the case of single integrator agent dynamics also a sufficient condition
for the network to reach consensus.

In the theory of graph sparsification this idea is further developed and
algorithms are presented to compute a sparse graph, where the number
of edges is of the same order as the number of nodes, approximating a
full graph with many edges, see e.g. [60, 61]. The approximating graphs
are close to the original graphs in a certain sense, for instance in the
sense of cut-similarity [3] or spectral-similarity [61]. If the approximat-
ing graph is spectrally similar to the original graph, then the Laplacian
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eigenvalues of the approximating graph are close to that of the original
graph.

While these algorithms provide an efficient way of obtaining a sparse
approximating graph, they do not take any dynamics on the nodes of
the graph into consideration. For resistor networks with scalar agent dy-
namics, the problem of model reduction by edge-removal was studied
in [56] and [67]. In both papers, the nodes in the resistor networks are
divided into a set of external nodes and one of internal nodes. In [56]
an efficient method (reduceR) was introduced for finding an equivalent
resistor network with the same number of external nodes, but with a
reduced number of internal nodes. In [67] the number of external and
internal nodes is kept the same for the reduced network. However, the
approximations are not exact. The approximation error that is consid-
ered is the worst case relative error between the steady state voltages
over the nodes of the original and reduced network. The upper bound
on the approximation error given in [67] depends on the conductance
matrices of both the original and the reduced network.

We investigate the problem of approximating networks where the
agent dynamics are given by arbitrary symmetric dynamical system by
a reduced network that is obtained by removing precisely those edges
that close the cycles in the network graph. Inspired by the papers above,
we utilize ideas from [73] and [74] on the H2-performance of consensus
networks when adding and removing cycles in the network graph. The
approximation error we consider is the H2-norm of the error system,
comparing the output of the original and reduced networks.

1.3 outline of this thesis

This thesis is divided into two parts. In Part I, Chapter 2 we investigate
the problem of robust synchronization for networks with coprime factor
perturbed agent dynamics. The networks under consideration can be
either directed or undirected unweighted networks. We provide a com-
munication protocol that achieves consensus for all uncertain networks
within a uncertainty interval. Part II provides several perspectives on the
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problem of model reduction for networked multi-agent systems. Chap-
ter 3 considers the problem model reduction of leader-follower networks
by clustering using almost equitable partitions. Finally, in Chapter 4, we
consider the problem of model reduction, or more accurately model sim-
plification, by removing cycles from the network graph. Conclusions on
the main contributions and an outlook on further research opportunities
are detailed in Chapter 5.

1.4 origin of the chapters

Chapter 2 is based on [31], which appeared in the first special Jan C.
Willems memorial issue of Systems and Control Letters. Preliminary re-
sults were first presented in [28], at the 52nd ieee Conference on Deci-
sion and Control (cdc) in Florence, Italy, and partial results for directed
networks were presented at the 21st International Symposium on Math-
ematical Theory of Networks and Systems in Groningen, The Nether-
lands [29]. Results considering the model reduction problem in Chap-
ter 3 of networks with scalar agent dynamics were partially presented at
the 54th cdc in Osaka, Japan [30], while Chapter 3 itself is based on [33],
which has been submitted for publication. Finally, Chapter 4 constitutes
of [32], which is currently under review.

1.5 notation

Throughout this thesis, we will use fairly standard notation. The most
commonly used definitions will be listed here, while chapter specific
notation can be found in the chapters themselves.

Sets

The field of real numbers is denoted R, and the field of complex num-
bers is denoted C. Let Rn denote the linear space of vectors with n real
components and Rn×m (Cn×m) the space of real (complex) n×m ma-
trices. The set of non-negative real numbers is denoted R+. We denote
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the left open half of the complex plane by C−. The cardinality of a set S
is denoted |S|.

Matrices and vectors

For a set of column vectors or real numbers α1,α2, . . . ,αn, we define

col(α1,α2, . . . ,αn) =


α1

α2
...

αn

 .

The trace of a square matrix A is denoted trA and is the sum of the di-
agonal entries of A. For matrices A, B, and C of appropriate dimensions
such that ABC is square, the trace of ABC satisfies

trABC = trCAB = trBCA.

Given a matrix A ∈ Cn×m, let AT and A∗ denote its transpose and conju-
gate transpose, respectively. For a square matrix M, let σ(M) denote its
spectrum. The spectral radius ofM is denoted ρ(M). The largest singular
value of a matrix P is denoted σ1(P) and satisfies σ1(P) =

√
λmax(PTP).

Let M ∈ Rn×n be a symmetric matrix. We write M > 0 if M is positive
definite, and M < 0 if it is negative definite. If M is positive (negative)
semi-definite, we write M > 0 (M 6 0).

For a rectangular matrix A, let A+ denote its Moore–Penrose pseu-
doinverse. Let B ∈ Rn×m with m < n have full rank. A left annihilator
of B is denoted B⊥ ∈ R(n−m)×n and is any full-rank matrix such that
B⊥B = 0.

In this thesis, the vector of ones in Rn is denoted 1n, and In denotes
the n× n identity matrix. We will sometimes omit the subscript if the
appropriate dimension is clear from the context.
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For given real numbers α1,α2, . . . ,αn, let diag(α1,α2, . . . ,αn) denote
the n×n diagonal matrix with the αi’s on the diagonal:

diag(α1,α2, . . . ,αn) =


α1

α2
. . .

αn

 .

In the case of a collection of square matrices A1,A2, . . . ,An, we use
diag(A1,A2, . . . ,An) to denote the block diagonal matrix with the Ai’s
as diagonal blocks.

The Kronecker product of the matrices A ∈ Rm×n and B ∈ Rp×q
is denoted A ⊗ B ∈ Rmp×nq. The Kronecker product is bilinear and
associative. We list some of the important identities for the Kronecker
product used in this thesis:

A⊗ (B+C) = A⊗B+A⊗C,

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)T = AT ⊗BT .

Transfer matrix norms

The H2-norm of a stable strictly proper real rational matrix G is denoted
‖G‖2 and is defined as

‖G‖2 =

√
1

2π

∫∞
−∞ trG(−iω)TG(iω) dω.

For a stable proper real rational matrix G, its H∞-norm is denoted ‖G‖∞
and is given by

‖G‖∞ := sup
ω∈R

σ1(G(iω)).

The space of square-integrable functions over R+ is denoted L2(R+), see
e.g. [64].
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