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a b s t r a c t 

Public library organizations often utilize depots for carrying out shipments to libraries in case of stock- 

outs and for storing low demand rental items at low cost. Similar systems may be employed by rental 

companies for other rental products such as tools, DVDs, and jewelry. Since shipments deplete the depot’s 

inventory, stock must be taken back from the libraries in order to deal with future shipment requests. 

These shipment and take-back operations are carried out periodically, e.g. daily or weekly. This work 

focuses on optimizing the decisions for shipments and take-backs. We model the system by means of a 

Markov decision process and investigate its optimal policy for various problem instances. For the take- 

back decision, we distinguish between so-called threshold, reactive, and preventive take-backs. We use 

the insights from the MDP to develop a three-phase take-back heuristic. In experiments, our heuristic 

performs within 1% on average from the optimal solution. For settings with a large number of libraries, it 

is shown that an acceptable performance can be achieved by setting a base-stock level at the depot and 

taking back sufficient stock from the libraries to achieve this level. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In recent years, the Dutch public library system is increasingly

adopting concepts derived from e-commerce. As of 2016, clients

can access and order items online from a nationwide catalog show-

ing all the items and their availability at each library in the coun-

try. The fulfillment of these online orders is a challenging task, in

particular when clients request items for pickup from a library that

does not have the item in stock. In order to satisfy such requests,

libraries often introduce a joint depot dedicated to shipment of lo-

cally unavailable items. 

Currently, public libraries in many countries ship directly be-

tween libraries in response to stock-outs. However, the number of

items in a shipment is typically small, leading to ineffective us-

age of transportation devices. This fact has become increasingly

pressing, since demand for physical books has significantly de-

creased over time after the introduction of internet and e-books.

A depot allows to consolidate these small shipment streams into

larger streams. This is easier to coordinate and creates significant

economies of scale, since items can be shipped using fewer trans-

portation devices and handled in one dedicated place. In addition,

a depot can serve as a low cost storage location for items that are
∗ Corresponding author. 
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urrently not needed. For this reason library organizations are in-

reasingly adopting a system with shipments from a depot. 

The above motivation applies not only to public libraries but

lso to rental systems in general. For example, tool rental compa-

ies store rare and expensive tools in a depot so that they can be

hared effectively between rental locations. Other possible rental

roducts for which a depot may be utilized are jewelry and DVDs.

hile the focus application of this article is public libraries, in-

ights and heuristics carry over analogously to those other rental

ystems. 

In library systems with a depot, various operational decisions

re carried out periodically. When locally unavailable items are re-

uested at a library, these are shipped from the depot. In contrast

o sales-driven companies, where stock is bought and sold, stock

n library systems is often fixed and all rented items are returned

y the client. The depot will thus have to be resupplied by carry-

ng out a take-back operation of items from the individual libraries.

he main difficulty lies in deciding how many items to take back

n total and from which libraries. Since due to budget cuts the gov-

rnment funding for public libraries has significantly decreased in

he last several years, it is important to carry out these operations

fficiently. 

An often encountered practical problem for public libraries is

hat a large part of the collection consists of low-demand items.

uckstadt and Thomas (1980) conclude that two-echelon systems

re important for low-demand items. Hence, storage of such items

n a low-cost depot may be an effective strategy to reduce holding

osts and free up space at the libraries for other items or activi-

http://dx.doi.org/10.1016/j.cor.2017.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.02.005&domain=pdf
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Fig. 1. A library system with n libraries and depot. 
ies. An important problem is deciding which low-demand items

o store in the depot. 

In this paper we simultaneously optimize the decisions for re-

upplying the depot and dealing with low-demand items at the li-

raries. We consider a periodic review model where demands and

eturns at the libraries occur between reviews. At the review, stock

s observed and there is an option to carry out shipments and

ake-backs. By first solving an MDP for a problem with a single

ibrary and single depot, we obtain the main insights for storing

ow-demand items at the depot. Subsequently, we solve MDPs for

roblems with multiple libraries. By analyzing the optimal policy

or several example configurations, we obtain insights into optimal

hipment and take-back operations. Based on the insights we for-

ulate a near-optimal heuristic for larger problem instances and

n various experiments we compare it to the optimal policy and

everal other simple heuristics. 

The research on multilocation rental systems has mainly fo-

used on vehicle rentals systems ( Ernst et al., 2011; Li and Tao,

010 ). For vehicle rentals, the common option for dealing with

tock-outs is to provide substitute vehicles, whereas for library

ooks shipments can be a practical option because the items are

asily shipped and clients are typically willing to wait for a ship-

ent. In vehicle rentals, shipments from another location in re-

ponse to demand are typically only considered in deterministic

roblems. For example, Ernst et al. (2011) determine an optimal

chedule for a finite planning horizon where bookings are known

n advance. For a bike sharing system, Dell’Amico et al. (2016) solve

 single period rebalancing problem. Such deterministic methods

o not match the multiperiod stochastic setting that we consider. 

In stochastic settings, the main focus in vehicle rental literature

s on optimizing the fleet size and the fleet redistribution policy,

ften by applying queuing theory ( George and Xia, 2011 ). Li and

ao (2010) use dynamic programming to optimize the redistribu-

ion policy. The authors consider a two-location system where ve-

icles rented from one location can be returned to the other lo-

ation in the same period. While we do not consider returns to

ther locations, we add a depot, more than two locations, and

onsider stochastic rental times. Our MDP therefore has a signif-

cantly larger state space than the dynamic program in Li and Tao

2010) and requires an efficient implementation. For a multiloca-

ion library system with lateral transshipments, Van der Heide and

oodbergen (2013) apply dynamic programming to optimize lat-

ral shipments and stock redistribution policies. They show that a

ynamic redistribution policy, accounting for current on-hand and

ented stock at each library, significantly outperforms the standard

olicy in practice of sending back each item to its owner location.

o the best of our knowledge, no authors have considered the re-

istribution of stock in a library system with a depot. 

Shipments from a depot in response to stock-outs have been

tudied recently in spare parts inventory control. In a case study

or the spare parts division of a car manufacturer, Axsäter et al.

2013) demonstrate that significant cost savings can be achieved

y introducing the shipment option. Van Wijk et al. (2013) derive

tructure results for the optimal operational decisions of assign-

ng shipment requests from the depot to local stock points. In the

bove papers, stock is transferred from the depot to local stock

oints, but no attention is paid to the transfer of returned stock

rom local stock points to the depot, which is an important feature

f library systems. 

Hub-and-spoke systems are also characterized by exchanges of

ehicles between locations and a depot. In a hub-and-spoke sys-

em, vehicles rented at the hub return at the spoke, and vice

ersa, while in the library system items are typically rented from

nd returned to the same location. These essentially different dy-

amics demand different strategies for repositioning stock. Köchel

2007) and Song and Carter (2008) consider repositioning of empty
ars in hub-and-spoke systems. Both authors start by considering

epositioning policies for systems with a hub and a single spoke.

he resulting policies are used to formulate heuristics for systems

ith multiple spokes. We follow a similar approach by basing part

f our heuristic on the optimal policy of the single library problem.

The outline of the article is as follows. Section 2 introduces

he model for the library system with a depot. In Section 3 MDPs

re solved for base scenarios with one, two, and three libraries to

ain insight into the relevant trade-offs. In Sections 4 and 5 ship-

ent and take-back heuristics are developed, which are compared

o the optimal policy and to each other in Section 6 . Finally,

ection 7 concludes. 

. Problem formulation 

In this section we formulate the problem of shipping and taking

ack stock for a library system with n libraries and one depot. The

epot is indexed by i = 0 and the libraries by i = 1 , . . . , n . The sys-

em is depicted schematically in Fig. 1 . A downstream movement

f stock from the depot to the libraries is called a shipment . An up-

tream movement from a library to the depot is called a take-back .

We consider the inventory control for a single item type, e.g., a

pecific book title. It seems reasonable to assume that in settings

ith low demand and quick shipments of back-up stock from a

epot, the effect of substitution in case of stock-outs is negligible.

herefore, we can repeat our analysis for every item type in case

here are multiple item types. It is straightforward to extend the

athematical model with substitution by including multiple item

ypes, however, given that the problem without substitution is al-

eady of significant interest, we believe such an extension is be-

ond the scope of this paper. 

The total number of copies of this item is fixed and given by

 . Libraries in practice typically allow a limited number of back-

rders per library in order to reduce administrative inconvenience

nd waiting times. We let B > 0 be the maximum number of back-

rders per library; any additional demand is lost. In case there is

ull backordering, which could be the case for other rental compa-

ies, we could set B large enough to approximate full backorder-

ng situations. In Fig. 1 , x 0 t ≥ 0 is the on-hand inventory at the

epot in period t . The on-hand inventory at library i, i = 1 , . . . , n

s given by x it ≥ −B . Similarly, y it ≥ 0 is the number of items

ented from library i, i = 1 , . . . , n . The state S t of the system in pe-

iod t is represented as S t = (x 0 t , x t , y t ) , with x t = (x 1 t , . . . , x nt ) and

 t = (y 1 t , . . . , y nt ) . 

The library system employs a periodic review policy. In typical

ibrary systems, these reviews are executed on a daily, biweekly,

r weekly basis. The time line of events is summarized in Fig. 2 ,

here the state after demands/returns, shipments, and take-backs

re indexed with zero, one, and two primes, respectively. For ex-

mple, the on-hand inventory levels after these respective phases

re given by x t , x 
′ 
t and x ′′ t . 

Period t starts with clients demanding D t new items and return-

ng R t previously rented items at the libraries. The demand and

eturn processes are as follows. Library i faces demand D it dur-

ng period t . We use the common Poisson process for modeling

ustomer arrivals, hence D it ∼ Poisson( λi ) with λi a library spe-
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Fig. 2. Time line of events. The cloud shows the actions at the review of period t 

and the states after carrying out the actions. 
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cific demand rate. Library i faces R it returns during period t . While

in principle any return distribution can be modeled by keeping

track of the rental time of each rented item in the state variable,

we focus on a geometric return distribution for tractability and

ease of exposition. The rental time of each rented item is Geomet-

ric( p ) distributed. With y it items rented at library i , we have that

R it ∼ Binomial( y it , p ). For related library systems, Van der Heide

(2015) shows that policies obtained under geometric returns typ-

ically perform well even if the actual returns are empirically dis-

tributed. 

At the end of period t , the inventory levels at the libraries and

the depot are reviewed. Accordingly, shipment and take-back ac-

tions are carried out. Both actions are carried out at the same time

because the transportation device of the depot visits the libraries

once per period. The lead time for shipments and take-backs is as-

sumed to be negligible. The rationale is similar to Axsäter et al.

(2013) : these actions can be carried out overnight while the li-

braries are closed, so the actions will be executed before any fol-

lowing events can occur. In accordance with current practice, stock

taken back from one library cannot be shipped to another library

in the same period, however, it is possible to store stock at the

depot for one period and ship it in the next period. 

After the shipment and take-back actions in period t , inventory

costs are incurred and a new period starts. We have the following

cost parameters. The depot has holding cost h 0 and the libraries

holding cost h per unit of on-hand stock per period. We assume

h 0 < h since the depot is dedicated to storage whereas libraries

are dedicated to demand fulfillment. The cost per backorder per

time unit is b and the cost per lost demand is � . The lost demand

cost could measure losses in municipal subsidies and subscription

fees due to customers canceling subscriptions or the dissatisfaction

from not meeting the goal of providing maximum service. Since

shipments and take-backs require manual picking of books from

shelves, there is a handling cost c for each unit shipped and each

unit taken back. To avoid trivial situations where all stock is parked

at the depot at all times, we assume 2 c > h − h 0 . 

In the remainder of this section we describe, by means of sev-

eral recursive equations, the dynamics of our model for its three

phases: demands and returns, the shipment decision, and the take-

back decision. After that we formulate the costs and a Markov De-

cision Process (MDP) for optimizing the shipment and take-back

decisions. 

2.1. Demands and returns 

Suppose that the state is S ′′ 
t−1 

= (x ′′ 
0 ,t−1 

, x ′′ 
t−1 

, y ′′ 
t−1 

) after the re-

view of previous period t − 1 . The depot faces no demand, hence 

x 0 t = x ′′ 0 ,t−1 . 

Let D t and R t be the vectors of demands and returns. At the li-

braries returning items are added to the stock and demanded
tems are taken by clients. Backorders that exceed B are cut off.

ence, we take the pairwise maximum of the new stock after de-

ands/returns and −B, i.e., 

 t = max { x ′′ t−1 + R t − D t , −B } . (1)

or the rented items, note that the difference in on-hand inventory

efore and after demands and returns is given by (x ′′ 
t−1 

) + − (x t ) 
+ ,

ith (x ) + = max { x, 0 } . If the on-hand inventory decreases, clients

ented (x ′′ t−1 ) 
+ − (x t ) 

+ more items than they returned and if the

n-hand inventory increases, clients returned (x ′′ 
t−1 

) + − (x t ) 
+ more

tems than they rented. The rented items after demands and re-

urns are therefore 

 t = y ′′ t−1 + (x ′′ t−1 ) 
+ − (x t ) 

+ . 

he new state after demands and returns is S t = (x 0 t , x t , y t ) . 

.2. Shipment decision 

At the end of period t the stock levels of state S t are reviewed

nd a decision has to be made regarding how many items to ship.

ince libraries aim to maximize service to their clients, the depot

lways ships an item from its on-hand stock if there are unmet

emands at some library. Proactive shipments from the depot to

he libraries are not used since service is considered adequate if

n item is shipped in the same period as it is ordered. 

Let the decision variable z ′ t ≥ 0 be the vector with amounts

hipped from the depot to the libraries. For example, if n = 3 and

 

′ 
t = (1 , 0 , 0) , one unit is shipped to the first library. The backo-

dered demand in the system at time t is given by 
∑ n 

i =1 (x it ) 
−

ith (x it ) 
− = − min { x it , 0 } . If the backordered demand exceeds

he stock at the depot, whatever stock available at the depot

s shipped downstream. Otherwise, all backordered demand is

hipped. Hence, the number of shipped items is 

 

′ 
t = min 

{ 

x 0 t , 

n ∑ 

i =1 

(x it ) 
−

} 

. 

he following restrictions on z ′ t ensure that the Z ′ t items in total

re shipped only to libraries with backorders: 

 ≤ z ′ t ≤ (x t ) 
− (2)

n ∑ 

i =1 

z ′ it = Z ′ t . 

n case Z ′ t = 

∑ n 
i =1 (x it ) 

−, it is easy to see that the only feasible

hoice is z ′ t = (x t ) 
−, which means all backorders are dealt with. In

ase Z ′ t < 

∑ n 
i =1 (x it ) 

−, some libraries cannot receive shipments, re-

uiring a choice between libraries. This choice influences not only

ackorders in the current period, but also on-hand stock at the li-

rary several periods later due to the future return of the item. 

After shipments at time t , the depot’s inventory has decreased

y Z ′ t : 

 

′ 
0 t = x 0 t − Z ′ t . 

ince libraries with backorders receive z ′ t shipments, their number

f backorders decreases by z ′ t : 

 

′ 
t = x t + z ′ t . 

inally, all shipped items are given to waiting clients. Hence, the

ew number of rented items is 

 

′ 
t = y t + z ′ t . 

he updated state after the shipment decisions is given by S ′ t =
(x ′ , x ′ t , y ′ t ) . 
0 t 
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.3. Take-back decision 

The second part of the review at time t concerns take-backs of

tock from the libraries to the depot. The state after shipments, S ′ t ,
s first observed. Then a decision is made regarding which items,

f any, are taken back from the libraries. These items are stored at

he depot and can be used for shipments in the next period. 

Let the decision variable z ′′ t ≥ 0 be the vector with the amounts

aken back from libraries to the depot. Clearly, the following re-

triction on z ′′ t holds: 

 ≤ z ′′ t ≤ (x t ) 
+ , (3)

.e., no more items can be taken back than are in stock. Note that

2) and (3) imply that the sets of libraries which are eligible for 

hipments and for take-backs are mutually exclusive, since by def-

nition (x it ) 
+ · (x it ) 

− = 0 . 

The state after take-backs updates straightforwardly. The depot

eceives 
∑ n 

i =1 z 
′′ 
it 

units, hence 

 

′′ 
0 t = x ′ 0 t + 

n ∑ 

i =1 

z ′′ it . 

he local stock levels reduce by the amounts taken back 

 

′′ 
t = x ′ t − z ′′ t . 

he rented items remain at the clients: 

 

′′ 
t = y ′ t . 

he new state is then S ′′ t = (x ′′ 
0 t 

, x ′′ t , y 
′′ 
t ) . Any remaining unmet de-

and carries over as a backorder into the next period. 

.4. Costs 

The costs are incurred after carrying out shipments and take-

acks. Let z t = (z ′ t , z ′′ t ) be the decisions in period t . Excluding lost

emand costs, the costs in period t with starting state S t and deci-

ions z t are given by 

 t (S t , z t ) = h 0 x 
′′ 
0 t + 

n ∑ 

i =1 

(
h (x ′′ it ) 

+ + b(x ′′ it ) 
− + cz ′ it + cz ′′ it 

)
. (4)

ere, the first part gives holding cost at the depot after the peri-

dic review. The summation includes the holding, backorder, ship-

ent, and take-back costs for each library. 

In order to calculate the lost demand costs we need to know

he number of items cut off in (1) . Keeping track of this informa-

ion in the state variable comes at a significant computational cost.

herefore, we use the following insight. Given the state S t and de-

ision z t , we can calculate the expected lost demands in the next

emand/returns phase. The expected lost demand costs are then

imply the unit lost demand cost multiplied by the total expected

umber of lost demands, i.e., 

 t (S t , z t ) = � 

n ∑ 

i =1 

E[(x ′′ it + R i,t+1 − D i,t+1 + B ) −] . (5)

he insight is that we can include these expected costs already in

he current period. The costs for state S t and decision z t then be-

ome C t (S t , z t ) + L t (S t , z t ) . Under an average cost criterion, these

odified costs do not change the average cost nor the optimal pol-

cy. 

.5. Markov decision process 

Now we can model a Markov Decision Process with an average

ost criterion. Let S be the state space and let V (S) = 0 be the
0 
erminal costs for all S ∈ S . The value function in state S ∈ S is then

 t (S) = min 

z t 
{ C t (S, z t ) + L t (S, z t ) + E[ V t−1 (S)] } . (6)

his is simply the sum of the direct costs for decision z t , the ex-

ected lost demand costs made during the transition after decision

 t , and the expected value of the states reached after demands and

eturns. 

Under an average cost criterion we want to minimize for each

 ∈ S

lim 

→∞ 

1 

t 
V t (S) . 

e use value iteration to obtain an ε-optimal policy, with ε a

mall positive number. Letting M t = max 
S∈S 

{ V t (S) − V t−1 (S) } and m t =
in 

S∈S 
{ V t (S) − V t−1 (S) } , we apply the convergence criterion 

M t − m t 

m t 
< ε. (7) 

or the optimal average cost g it is known that m t < g < M t ( Tijms,

003 ). Since we consider average cost optimal policies, we drop

he time index t in the remainder of the paper. 

. Examples of optimal shipment and take-back decisions 

We solve the MDP for a base scenario in order to obtain insights

nto optimal shipment and take-back decisions. We use the value

teration algorithm from Section 2.5 to obtain the optimal policies.

hile this is not a conclusive analysis, we use these insights to

evelop our heuristic. Considering the very good performance of

he heuristics (see Section 6 ) we deem the examples as presented

n this section to be representative of common behaviour of the

roblem at hand. 

We consider a base scenario with up to n = 3 libraries. We

alculated the optimal policy for multitudes of other scenarios

nd we believe that this base scenario is representative. The base

cenario has the following parameter setting: K = 4 , B = 2 , p =
 . 3 , h 0 = 0 . 7 , h = 1 , c = 5 , b = 10 , � = 20 . The demand rates of li-

rary 1, 2, and 3 are λ1 = 0 . 3 , λ2 = 0 . 2 , and λ3 = 0 . 1 . 

We start with take-back decisions for n = 1 , n = 2 , and n = 3

ibraries. For n = 1 , the only reason to carry out take-backs is to

educe holding costs. For n = 2 , take-backs from a library can also

e carried out to deal with current or future stock-outs at the other

ibrary. In the n = 2 case only one library can supply items in case

f a backorder, hence we also consider the choice of supplying li-

raries in the n = 3 case. Finally, we pay attention to the shipment

ecisions by showing an example for the n = 3 case. 

.1. Take-backs in the single library case 

Now we consider the base scenario with one library and one

epot. All shipment decisions are fixed in this setting, because the

epot ships its available stock whenever the library has a backo-

der. Therefore, we only have to consider the take-back policy. 

Fig. 3 graphically shows the take-back policy with the base sce-

ario in the left graph. For each combination of on-hand stock x 1 
nd rented stock y 1 , the graphs shows the optimal stock levels af-

er the take-back. The solid line can be regarded as a threshold

n the on-hand stock. If, for a given value of y 1 , x 1 exceeds the

hreshold, then all items above the threshold are taken back to the

epot. If, for a given value of y 1 , x 1 is below the threshold, then

he optimal decision is to do nothing. The right graph shows the

hreshold line for higher values of y 1 , obtained by setting K = 9 .

he threshold decreases in y 1 and ultimately becomes 0. 

The structure in Fig. 3 seems intuitive. Taking back an item in-

urs a cost c , and shipping it when it is demanded, incurs an ad-

itional cost c . As long as an item remains at the depot after a
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Fig. 3. Optimal stock levels after the take-back in a single library problem, for the base scenario and a modified scenario with K = 9 . 

Fig. 4. Take-back policy at library 1 for the base scenario with two libraries. 
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take-back, the reduction in holding costs is h − h 0 per period. For

take-backs to be economically viable, the expected number of pe-

riods that an item remains at the depot needs to be large enough

to cover the transportation costs 2 c . This expected number of peri-

ods clearly increases in x 1 , motivating a threshold on the on-hand

stock. The threshold decreases in y 1 because rented items count

as additional on-hand items when they return in the future. From

now on we refer to the items taken back with the purpose of sav-

ing holding costs as threshold take-backs . 

3.2. Take-backs in the two library case 

For the two library case we also graphically show the take-back

decisions in order to observe trade-offs in the optimal policy. It

is useful to introduce K = (x ) + + y as the total number of items
i i i 
t library i, i = 1 , 2 . Fig. 4 depicts the optimal take-backs at library

 for the base scenario. In order to reduce the dimensions of the

raph, the figure depicts only the decisions for states with x 0 = 0

t the depot. Four graphs are shown with K 1 = 4, 3, 2, 1 items

edicated to library 1 and K 2 = 0, 1, 2, 3 to library 2. 

For each value of y 1 , the height of the bars represent the to-

al available stock x 1 at library 1 before the take-back. The thresh-

ld lines represent the stock after the take-back, and these thresh-

lds may vary with the state ( x 2 , y 2 ) at library 2. For exam-

le, for K 1 = 4 , K 2 = 0 with x 1 = 3 , y 1 = 1 , we take-back 1 item if

(x 2 , y 2 ) = (0 , 0) , but 2 items if (x 2 , y 2 ) = (−1 , 0) or (−2 , 0) . The

hresholds in all graphs decrease in y 1 . The thresholds also seem to

ecrease in the on-hand stock at library 2, so that relatively more

tock from library 1 is taken back to the depot if stock at library 2

s relatively scarce. 
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Table 1 

A selection of preventive take-back decisions 

for the base scenario with three libraries. 

state x 0 x y z ′ ′ 

1 0 (2 ,1,1) (0 ,0,0) (0 ,0,0) 

2 0 (1 ,2,1) (0 ,0,0) (0 ,1,0) 

3 0 (1 ,1,2) (0 ,0,0) (0 ,0,1) 

4 0 (1 ,1,1) (0 ,1,0) (0 ,0,0) 

5 0 (1 ,1,1) (0 ,0,1) (0 ,0,1) 

6 0 (2 ,1,0) (0 ,1,0) (1 ,0,0) 

7 0 (2 ,0,1) (0 ,0,1) (0 ,0,1) 
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Fig. 5. Difference in expected cost for different take-back decisions. 
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It is interesting to compare the take-back policy of the K 1 = 4 ,

 2 = 0 case with the single library take-back policy for K = 4 in

ig. 3 . For any y 1 , we carry out at least the threshold take-backs

rom the single library case and possibly more than that. The rea-

on for this is that, in addition to a reduction in holding costs, a

ake-back can prevent backorder costs at the other library. 

Besides threshold take-backs, we can distinguish between two

ther types of take-backs. The first type is a reactive take-back , car-

ied out in response to current backorders at library 2. The backo-

der cost b each time unit provides a clear incentive for doing this.

e see for the cases K 1 = 4 , K 2 = 0 and K 1 = 3 , K 2 = 1 that the

umber of items taken back is always sufficient to meet all back-

rders at library 2. For the case K 1 = 2 , K 2 = 2 , only one item is

aken-back in case x 1 = 2 and x 2 = −2 . For the case K 1 = 1 , K 2 = 3

ake-backs from library 1 are never carried out. Since library 2 has

everal rented items, backorders can be dealt with by waiting for

eturns. Another reason not to take back the last item of library 1

re potential future backorder costs at library 1 itself. 

The second type is a preventive take-back , carried out to prevent

uture backorders. In the graphs for K 1 = 4 , K 2 = 0 and K 1 = 3 ,

 2 = 1 there are several states with x 2 ≥ 0 for which the number

f items taken back exceeds the number of threshold take-backs

hat we would expect from the single library case. The probabil-

ty that stock-outs occur at library 2 is quite high in these states,

otivating the decision to carry out preventive take-backs. For the

tates with K 1 ≤ 1, no preventive take-backs are carried out, be-

ause typically the stock-out probability of library 2 is low. More-

ver, taking back the last item of library 1 leads to unnecessary

ransportation costs when there is a significant probability of de-

and at library 1 in the next period. Even in states with x 0 > 0,

ot shown here, preventive take-backs are occasionally carried out.

.3. Take-backs in the three library case 

Most aspects of the optimal take-back policy have been covered

n the discussion of the single and two library case. There is one

nteresting additional aspect with n > 2 libraries, namely, if a pre-

entive or reactive take-back is required, we must decide which

ibrary supplies the item. Table 1 below shows a selection of pre-

entive take-back decisions for several states in the base scenario.

n case of reactive take-backs, the location to take back from is

imilar. Recall that the demand rates are λ1 = 0 . 3 , λ2 = 0 . 2 , and

3 = 0 . 1 . 

In states 1, 2, and 3 in Table 1 , all stock is on-hand. When x =
(2 , 1 , 1) no items are taken back. However, when x = (1 , 2 , 1) and

1,1,2), the second item at library 2 and library 3 is taken back.

he take-back prevents potential backorders at library 1, because it

as a higher demand rate than the other libraries. States 4 and 5

ave in common that x = (1 , 1 , 1) . A take-back of the last on-hand

tem is carried out if library 3 has a rented item, but not when

ibrary 2 does. Library 2 has a reasonable probability that its on-

and item is required in the next period. In states 6 and 7, library

 has stock x 1 = 2 and one of the other libraries has x i = 1 and

 = 1 . If this is the case at library 2, one item is taken back from
i 
ibrary 1. However, if this is the case at library 3, then one item is

aken back from library 3 since it has the lowest demand rate. In

ost cases items are taken back from the library with the lowest

tock-out probability in the next period. 

.4. Shape of the value function 

In order to see whether the value function has usable proper-

ies, we plotted it for various scenarios. Li and Tao (2010) , for ex-

mple, showed that the value function for the last period is con-

ave in the decision variable when there are backorders and non-

oncave when there are lost sales. Here, we have a mixture of

ackorders and lost sales. While for some states the value func-

ion is unimodal in the decision variables, various situations exist

here this does not hold. One such situation is shown in Fig. 5 , for

he same setting as in Section 3.3 , except that λ1 = λ2 = λ3 = 1 .

he state is x 0 = 0 , x = (4 , −1 , −1) , and y = (0 , 0 , 0) . The graph

hows the increase in the expected cost C(S, z) + L (S, z) + E[ V (S)]

hen taking take-back decision z ′′ 
1 

= 0 , 1 , . . . , 4 compared to the

ptimal decision z ′′ 
1 

= 2 . The fact that the value function is not uni-

odal even in one dimension emphasizes the challenge to obtain

nalytical results. 

.5. Shipments in the three library case 

In many situations the shipment decision is easy since the de-

ot meets all unmet demand to the extent possible. This is the

ase if x 0 ≥
∑ n 

i =1 (x i ) 
−. A choice between libraries is required only

f x 0 < 

∑ n 
i =1 (x i ) 

− and (x i ) 
− > 0 for at least two libraries. 

In Table 2 we show the optimal shipment decisions in various

tates in the base scenario. All states are such that x 0 = 1 , x 1 < 0,

 2 < 0, x 3 = 0 , and y 3 ≥ 0. We vary y 3 so that we can see decisions

or all possible combinations of rented items at library 1 and 2. The

eason to consider these specific states is that, since we have only

ne item at the depot, it is easy to see which of the two libraries

eceives the shipment. We prevent irregular behavior at the border

f the state space, later explained, by changing the lost demand

ost to � = 60 . 

In states 1–12 we have y 1 < y 2 and in states 13–24 we have

 2 > y 1 . In all of these states, the shipment decision z ′ 
i 
= 1 for the

ibrary with the lowest y i . Since these libraries have the fewest fu-

ure returns, their expected backorder costs will be high. In addi-

ion, by leaving backorders at the library with the highest num-

er of rented items, we maximize the probability that backorders

re met with returns, potentially reducing future shipment costs. It

eems obvious to ship with priority to a library with y i = 0 , since

ts backorders can never be met by future returns. 

In states 25–32 the number of rented items at both libraries is

qual. The number of backorders and the height of the demand

ate seem to break the tie. Here, the item is always shipped to
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Table 2 

Optimal shipment decisions for the base scenario with n = 3 libraries and lost demand cost 

� = 60 . 

state x 0 x 1 , x 2 y 1 , y 2 z ′ 1 , z ′ 2 state x 0 x 1 , x 2 y 1 , y 2 z ′ 1 , z ′ 2 
1 1 ( −1 , −1) (0 ,1) (1 ,0) 17 1 ( −1 , −1) (2 ,0) (0 ,1) 

2 1 ( −1 , −2) (0 ,1) (1 ,0) 18 1 ( −1 , −2) (2 ,0) (0 ,1) 

3 1 ( −2 , −1) (0 ,1) (1 ,0) 19 1 ( −2 , −1) (2 ,0) (0 ,1) 

4 1 ( −2 , −2) (0 ,1) (1 ,0) 20 1 ( −2 , −2) (2 ,0) (0 ,1) 

5 1 ( −1 , −1) (0 ,2) (1 ,0) 21 1 ( −1 , −1) (2 ,1) (0 ,1) 

6 1 ( −1 , −2) (0 ,2) (1 ,0) 22 1 ( −1 , −2) (2 ,1) (0 ,1) 

7 1 ( −2 , −1) (0 ,2) (1 ,0) 23 1 ( −2 , −1) (2 ,1) (0 ,1) 

8 1 ( −2 , −2) (0 ,2) (1 ,0) 24 1 ( −2 , −2) (2 ,1) (0 ,1) 

9 1 ( −1 , −1) (1 ,2) (1 ,0) 25 1 ( −1 , −1) (0 ,0) (1 ,0) 

10 1 ( −1 , −2) (1 ,2) (1 ,0) 26 1 ( −1 , −2) (0 ,0) (0 ,1) 

11 1 ( −2 , −1) (1 ,2) (1 ,0) 27 1 ( −2 , −1) (0 ,0) (1 ,0) 

12 1 ( −2 , −2) (1 ,2) (1 ,0) 28 1 ( −2 , −2) (0 ,0) (1 ,0) 

13 1 ( −1 , −1) (1 ,0) (0 ,1) 29 1 ( −1 , −1) (1 ,1) (1 ,0) 

14 1 ( −1 , −2) (1 ,0) (0 ,1) 30 1 ( −1 , −2) (1 ,1) (0 ,1) 

15 1 ( −2 , −1) (1 ,0) (0 ,1) 31 1 ( −2 , −1) (1 ,1) (1 ,0) 

16 1 ( −2 , −2) (1 ,0) (0 ,1) 32 1 ( −2 , −2) (1 ,1) (1 ,0) 
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the library with the highest number of backorders. This increase

the probability that an additional backorder is met by the same

shipped item after the client returns it. Finally, if the number of

backorders is equal, i.e., in states 25,28,29, and 32, the highest de-

mand rate is prioritized. By shipping to the library with the highest

demand rate, the item can be used later to meet future demand.

In this example we can thus sort the libraries lexicographically by

lowest number of rented items, highest number of backorders, and

highest demand rate. 

In experiments, we observed that this lexicographical ordering

seems to hold in scenarios with low values of B , i.e., B = 1 or B = 2 ,

which are typical values encountered in practice. For larger values

of B , the highest number of backorders may sometimes be priori-

tized over the least number of rented items, so that backorders can

be dealt with by future returns. 

Now we explain the aforementioned irregular behavior at the

border of the state space. If � is low compared to b , it may be fa-

vorable to avoid shipping to libraries with x i = −B or x i close to

−B . Losing a demand at a one-time cost � may be less costly than

backordering and paying b per time unit for a considerable number

of periods. This effect is most influential when K , the total number

of items, is low compared to demand. In typical settings, K will

be high enough to fulfill most of the demand from on-hand stock.

Hence, we pay no further attention to this effect when we develop

heuristics. 

4. Shipment heuristics 

Since the MDP can only be solved for limited size instances,

we develop heuristics for large instances that are easy to apply in

practice. Here, we formulate two heuristics for the shipment de-

cision: the ordering shipment (SO) heuristic and ship-to-first (SF)

heuristic. The SO heuristic assigns shipment requests to libraries

with backorders by using a lexicographical ordering inspired by ob-

servations from the MDP in Section 3.5 . The SF heuristic assigns

the request to the library with the lowest index, which is a simple

policy sometimes used in practice. 

The SO and SF heuristics starts with initial shipment decision

z ′ = 0 . Then iteratively a new receiving library is determined from

the set of libraries with backorders and its z ′ 
i 

is increased by 1.

This is repeated until either the depot is empty or all backorders

are dealt with, i.e., 

x 0 −
n ∑ 

i =1 

z ′ i = 0 or 

n ∑ 

i =1 

(x i + z ′ i ) − = 0 . 
At any step of the SO and SF heuristic, determine I − = { i : x i +
 

′ 
i 
< 0 } as the set of libraries with remaining backorders. The SO

euristic sorts libraries i ∈ I − lexicographically in descending order

ccording to the lowest number of rented items, y i + z ′ 
i 
, the high-

st number of backorders, (x i + z ′ 
i 
) −, the highest demand rate, λi ,

nd the lowest index, i . The receiving library is the first library in

he lexicographical order. For the SF heuristic the index of the re-

eiving library is min 

i ∈ I −
{ i } , i.e., the lowest index in the set of libraries

ith backorders. 

. Take-back heuristics 

In this section we develop a three phase take-back heuristic

TT). This heuristic consists of three separate phases in which we

eal with the threshold, reactive, and preventive take-backs as in-

roduced in Section 3 . For each of these phases we describe in

ections 5.2 –5.4 how to iteratively determine a heuristic take-back

ecision z ′ ′ . Moreover, in Section 5.5 two simpler heuristics are

roposed which may be easier to coordinate in practice: the base-

tock take-back (TB) heuristic and take-back all (TA) heuristic. 

.1. Expected stock-out time 

It is useful to first define the expected stock-out time for a

ibrary, which will be an important criterion in the TT and TB

euristic for selecting candidate libraries for reactive and preven-

ive take-backs. The time until stock-out for library i can be charac-

erized as follows. Let D is denote the demand s periods from now

nd R is (y i,s −1 ) the returns s periods from now, which is a function

f the rented items y i,s −1 in the preceding period s − 1 . Letting y i , 0 
y i , then the stock-out time for library i in state x i , y i is defined

s 

 i (x i , y i ) = min 

{ 

t : 

t ∑ 

s =1 

D is ≥ x i + 

t ∑ 

s =1 

R is (y i,s −1 ) 

} 

, (8)

.e., the first moment that the total demand exceeds the on-hand

tock plus the total returns up to time t . Since T i ( x i , y i ) is a hit-

ing time of a finite Markov chain, its expectation E [ T i ( x i , y i )] can

eadily be obtained ( Kemeny and Snell, 1976 ). 

.2. Phase 1: threshold take-backs 

In the example in Section 3.2 the number of items taken back

n the two library problem is the same or more as in the single

ibrary problem. In the TT heuristic we also take back the same
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r more as in a single library problem. At each library we carry

ut threshold take-backs similar to the example in Section 3.1 . The

hresholds are calculated by solving the MDP for the n = 1 case for

ach library. 

The number of threshold take-backs is then as follows. Let

 

∗
i 
(y i ) denote the single library threshold level for library i with

 i rented items. Starting with inventory x ′ 
i 

and rented items y ′ 
i 
, the

hreshold take-back z ′′ 
i 

for library i is 

 

′′ 
i = (x ′ i − x ∗i (y ′ i )) + . 
his is the starting value for z ′′ 

i 
. We continue with this initial take-

ack decision in the reactive take-back phase. 

.3. Phase 2: reactive take-backs 

In Section 3.2 we see that reactive take-backs are typically car-

ied out when there are backorders, unless libraries with a backo-

der have a significant number of rented items. Therefore we first

etermine for each current backorder whether or not it should be

et by a reactive take-back. The observations in Section 3.3 indi-

ate that libraries with low stock-out probabilities are typically the

est candidates from which to take back stock. We will therefore

hip the items from the library with the longest expected time un-

il stock-out. 

In order to determine whether a reactive take-back is required,

or each current backorder in the system we compare the expected

ackorder costs of no take-back with the transportation costs of a

ake-back. Suppose that library i has a backorder. As a measure of

he expected number of periods until the first item returns, de-

ne 

f i (y i ) = 

{ 

1 

py i 
if y i > 0 

∞ if y i = 0 

, 

hich is the reciprocal of the average number of returns per period

ith y i rented items. If the choice is not to carry out a reactive

ake-back, a cost b would be incurred for an expected duration of

 i ( y i ) periods. Otherwise, a cost 2 c + h 0 − h would be incurred once,

hich includes the holding cost difference from storing an item at

he depot for one period. 

Let I − = { i : x ′ 
i 
< 0 } be the set of libraries with backorders. De-

ne by z r 
i 

the number of backorders at library i ∈ I − requiring re-

ctive take-backs. We calculate this as 

 

r 
i = arg max 

k ∈{ 1 , ... , (x ′ 
i 
) −} 

{ k : 2 c + h 0 − h < b f i (y i + k − 1) } , (9)

r z r 
i 
= 0 if the condition is never satisfied. Here, z r 

i 
gives the max-

mum number of take-backs for which the direct cost of shipping

re lower than the expected backorder costs. For the shipment of

he k -th item, we assume that the previous k − 1 items have al-

eady been used to fulfill backorders. This accounts for the fact

hat shipped items can solve additional backorders in the future

fter completing a rental period. The total number of backorders

equiring reactive take-backs is then 

 

r 
0 = 

∑ 

i ∈ I −
z r i . 

Now we carry out take-backs from the libraries to reach a

tock-level z r 
0 

at the depot. As stated, we take-back from libraries

ith the longest expected stock-out times. Let I + = { i : x ′ 
i 
− z ′′ 

i 
> 0 }

e the set of libraries with stock on-hand. The candidate library j

s then 

j = arg max 
i ∈ I + 

{ E[ T i (x ′ i − z ′′ i − 1 , y i )] } , (10)

here x ′ 
i 
− z ′′ 

i 
− 1 is the new stock level after the projected addi-

ional take-back. 
Now iteratively increase the z ′′ 
j 

of each subsequent candidate

ibrary j by 1 until the depot’s stock reaches z r 0 or stock of all li-

raries is depleted: 

 

′ 
0 + 

n ∑ 

i =1 

z ′′ i ≥ z r 0 or 

n ∑ 

i =1 

(x ′ i − z ′′ i ) 
+ = 0 . 

ote that the condition x ′ 
0 

+ 

∑ n 
i =1 z 

′′ 
i 

≥ z r 
0 

may already be met due

o the take-backs in Phase 1. 

.4. Phase 3: preventive take-backs 

In the example of Section 3.2 , a preventive take-back typically

ccurs when the depot has a significant probability of failing to

eet demand during the next period, provided the take-back does

ot increase the stock-out probability of the candidate library too

uch. We apply that same idea in the TT heuristic. We balance the

egret of not taking back an item when it is required elsewhere in

he system, against the regret of taking back an item when it is

emanded at the candidate library itself in the next period. 

As initial step in the preventive take-back phase, we will cor-

ect the starting stock levels for reactive take-backs. The z r 0 items

t the depot from the reactive take-back phase have already been

eserved for dealing with existing backorders, so this stock can-

ot be used for preventing future backorders. Therefore, during the

reventive take-back phase we consider the inventory levels 

ˆ 
 i = (x ′ i − z ′′ i ) 

+ and 

ˆ x 0 = (x ′ 0 + 

n ∑ 

i =1 

z ′′ i − z r 0 ) 
+ , 

.e., the current on-hand inventory at the libraries and the current

tock at the depot not reserved for reactive take-backs. 

Now we calculate the one-period regret and savings. Two

vents may occur. The first event is that an item is taken back from

ibrary j in the current period and it is demanded at that same li-

rary in the next period. Then the regret is 2 c − h + h 0 , which con-

ists of the transportation costs minus the decrease in holding cost

or storing the item at the depot for one period. The second pos-

ible event is that no item is taken back from library j , but it is

equired by another library in the next period. Then the savings

re b + h − h 0 . This occurs whenever the item is not demanded at

ibrary j , while more than ˆ x 0 shipments are required in total. The

robability of the former event is 

p j = P 

(
D j − R j > 

ˆ x j − 1 

)
, 

here ˆ x j − 1 is the stock level after the take-back. The probability

f the latter event is 

 

(
D j − R j ≤ ˆ x j − 1 

)
P 

(∑ 

i � = j 
(D i − R i − ˆ x i ) 

+ > 

ˆ x 0 

)
= (1 − p j ) s j 

here s j = P 

(∑ 

i � = j (D i − R i − ˆ x i ) 
+ > ˆ x 0 

)
. 

The probability s j may be difficult to compute because it is a

onvolution of the demand and return distributions of n − 1 li-

raries. We therefore approximate s j for large n by assuming that

ibrary i requests shipments from the depot according to a Poisson

istribution with demand rate 

˜ 
i = − log 

(
P 
(
D i − R i ≤ ˆ x i 

))
. 

ith this demand rate, the approximate probability of zero ship-

ent requests from library i equals the exact probability, namely

 

(
D i − R i ≤ ˆ x i 

)
. The probabilities for overflow, i.e., D i > R i , are ap-

roximate. In case ˆ x i = 0 , y i = 0 , it is easily established that ˜ λi 

quals the exact demand rate for shipments λi . The aggregate de-

and 

˜ D 0 for shipments is Poisson 

(∑ 

i � = j ˜ λi 

)
distributed. The ap-

roximate value for s j is therefore given by 

˜ 
 j = P ( ̃  D 0 > 

ˆ x 0 ) . 



74 G. Van der Heide et al. / Computers and Operations Research 83 (2017) 66–77 

Table 3 

Look-up table for the names of the heuristics. 

Shipment heuristics 

SO Sort by lowest rented items, highest backorders, and highest demand 

rate 

SF Ship to the first library with backorders 

Take-back heuristics 

TT Three phase heuristic 

TTa Three phase heuristic with an approximation for s j 
TB Take-back according to a base-stock policy at the depot 

TA Take back all stock from the libraries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Experimental design for each n . 

# h 0 b c B λ1 λ2 λ3 λ4 

1 0 .5 10 1 1 0 .05 0 .05 0 .05 0 .05 

2 0 .5 10 4 2 0 .15 0 .15 0 .15 0 .15 

3 0 .5 10 7 3 0 .25 0 .25 0 .25 0 .25 

4 0 .5 15 1 1 0 .15 0 .15 0 .25 0 .25 

5 0 .5 15 4 2 0 .25 0 .25 0 .05 0 .05 

6 0 .5 15 7 3 0 .05 0 .05 0 .15 0 .15 

7 0 .5 20 1 2 0 .05 0 .25 0 .15 0 .25 

8 0 .5 20 4 3 0 .15 0 .05 0 .25 0 .05 

9 0 .5 20 7 1 0 .25 0 .15 0 .05 0 .15 

10 0 .8 10 1 3 0 .25 0 .15 0 .15 0 .05 

11 0 .8 10 4 1 0 .05 0 .25 0 .25 0 .15 

12 0 .8 10 7 2 0 .15 0 .05 0 .05 0 .25 

13 0 .8 15 1 2 0 .25 0 .05 0 .25 0 .15 

14 0 .8 15 4 3 0 .05 0 .15 0 .05 0 .25 

15 0 .8 15 7 1 0 .15 0 .25 0 .15 0 .05 

16 0 .8 20 1 3 0 .15 0 .25 0 .05 0 .15 

17 0 .8 20 4 1 0 .25 0 .05 0 .15 0 .25 

18 0 .8 20 7 2 0 .05 0 .15 0 .25 0 .05 
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We test the effectiveness of this approximation in the results sec-

tion. 

Candidates are selected, as in the reactive take-back phase, ac-

cording to Eq. (10) . A take-back from candidate library j is carried

out whenever its expected savings exceed its regret, that is, 

(2 c − h + h 0 ) p j ≤ (b + h − h 0 )(1 − p j ) s j . (11)

If (11) holds, then the z ′′ 
j 

of the candidate is increased by one. With

the updated stock levels and a new candidate, we check the crite-

rion until it is not satisfied or until 
∑ n 

i =1 ̂  x i = 0 . This gives the final

value of the take-back decision z ′ ′ . 

5.5. Alternative take-back heuristics 

The presented take-back heuristic has several complex steps, in-

cluding the calculation of a single library policy using an MDP. In

order to assess the added value of these complexities, we introduce

two simple alternative heuristics for comparative experiments. 

The Take-back Base-stock heuristic (TB) has base-stock level Q .

Every review period it is ensured that the depot has Q units, if the

total on-hand stock in the system so permits. Hence, we set 

Z = min { Q − x 0 , 

n ∑ 

i =1 

(x i ) 
+ } 

as the total number of take-backs and iteratively ship these from

the candidate library according to (10) . This heuristic provides a

practical and intuitive way to resupply the depot. 

The Take-back All (TA) heuristic takes back all on-hand stock at

the libraries to the depot. This is achieved by setting z ′′ 
i 

= (x i ) 
+ .

The TA heuristic is a special case of the TB heuristic with Q = K. 

6. Results 

In this section we evaluate the performance of the shipment

and take-back heuristics. We test the heuristics in instances with

small n by comparing them with the optimal solution of the MDP.

For large n we run the heuristics and compare them with each

other. For reference, Table 3 summarizes the names and main con-

cepts of the heuristics. 

The experiments will be based on a Taguchi design ( Taguchi,

1986 ), which, due to their orthogonality, are deemed suitable to

test a wide range of parameter values with a relatively small num-

ber of scenarios. We use a Taguchi design with 18 scenarios and

3 levels per factor. The values for the parameters h 0 , b, c, B , and

λi , i = 1 , . . . , 4 in the scenarios are specified in Table 4 . For in-

stances with n > 4, we explain later how we specify the demand

rates. While it seems obvious to vary the cost and demand param-

eters, we also vary B to observe the effect of the partial backo-

rdering on the effectiveness of the heuristics. In each scenario, we

set h = 1 , � = 2 b and p = 0 . 3 . This value for p is the weekly return

rate as estimated from a data set with 4 million library loans in the

Netherlands in the year 2013. We later specify the choice of K . The

value iteration algorithm from Section 2.5 is run with ε = 10 −6 . 
.1. Solution times of the MDP 

We first discuss solution times of the MDP for instances of

arious size, shown in Table 5 . We vary n and K while keeping

he other variables at h 0 = 0 . 5 , c = 4 , b = 10 , � = 20 , B = 2 , and

i = 0 . 25 for i = 1 , . . . , n . The solution time includes all steps re-

uired to solve the MDP, such as generating the state space and

he transition matrix. Table 6 shows the number of states in the

ame instances. The program has been implemented in Python and

he instances were run on a Core i7-4770 CPU (3.3 GHz) with 16GB

emory. 

Instances with n ≤ 4 are solved within several minutes. For

 = 5 and K > 7, where instances have more than 1 million states,

he solution times become several hours. For the instance with

 = 5 and K = 9 the transition matrix exceeded memory limits. An

mportant practical problem when solving instances is that when

 increases by 1, K needs to increase as well to cover demand from

he extra library. This reinforces the need for heuristics when n in-

reases. 

.2. Performance of heuristics in small instances 

We now compare shipment and take-back heuristics to the op-

imal policy in an experiment with small instances. The number of

ibraries in the scenarios varies between n = 2 , 3 , 4 . For a specific

 , only demand parameters λi , i ≤ n will be included. The number

f items K is specified according to the rule 

 = 

⌈
1 . 8 

∑ n 
i =1 λi 

p 

⌉
, (12)

hich can roughly be interpreted as having 1.8 times the stock re-

uired to meet the total system demand, scaled by the average re-

urn time 1 
p of a rented item. The base-stock level Q of the TB pol-

cy is determined by calculating the average cost per time unit for

 = 1 , . . . , K and taking the cost-minimizing value. 

Table 7 shows for each value of n the average percentage dif-

erence of the heuristics from the optimal policy (obtained with

he MDP from 2.5 ) in the 18 scenarios, as well as the maxi-

um and the standard deviation. The most important column is

O/TTa, showing the performance of our combined shipment and

ake-back heuristic. In order to study performance of each ship-

ent and take-back heuristic in isolation, we also measure the

est-case performance of each individual heuristic in the columns

O,SF,TT,TTa,TB, and TA. The best-case performance is obtained by

orcing the MDP to take the heuristic shipment or take-back de-

isions, while letting the other decisions be optimized freely. The
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Table 5 

Solution time in seconds of the MDP for different values of n and K . 

K 

n 2 3 4 5 6 7 8 9 

2 0 .01 0 .01 0 .02 0 .04 0 .06 0 .08 0 .11 0 .16 

3 0 .04 0 .09 0 .20 0 .37 0 .72 1 .57 3 .22 6 .16 

4 0 .46 1 .40 4 .04 9 .72 21 .86 47 .07 103 .58 221 .69 

5 9 .54 36 .76 112 .93 331 .93 921 .63 2204 .05 6159 .06 –

Table 6 

Number of states in the state space for different values n and K . 

K 

n 2 3 4 5 6 7 8 9 

2 79 155 270 434 658 954 1335 1815 

3 414 10 0 0 2086 3934 6888 11,388 17,985 27,357 

4 1917 5493 13,327 28,791 57,051 105,699 185,526 311,454 

5 8208 27,198 75,183 182,887 404,162 828,432 1,597,882 2,930,642 

Table 7 

Statistics for the percentage difference from the optimal solution for various heuristics. 

n SO/TTa SO SF TT TTa TB TA 

Average 2 0 .67% 0 .00% 0 .95% 0 .63% 0 .67% 3 .58% 14 .40% 

3 0 .81% 0 .11% 1 .95% 0 .64% 0 .70% 2 .52% 14 .33% 

4 0 .81% 0 .26% 3 .20% 0 .54% 0 .54% 1 .87% 10 .30% 

Maximum 2 2 .48% 0 .02% 3 .07% 2 .48% 2 .48% 11 .79% 53 .46% 

3 2 .86% 0 .35% 3 .93% 2 .85% 2 .85% 7 .41% 47 .17% 

4 1 .81% 0 .66% 5 .70% 1 .59% 1 .59% 4 .97% 34 .82% 

St. Dev. 2 0 .70% 0 .01% 0 .92% 0 .70% 0 .70% 3 .91% 16 .25% 

3 0 .71% 0 .10% 1 .18% 0 .72% 0 .71% 2 .19% 15 .65% 

4 0 .45% 0 .21% 1 .48% 0 .47% 0 .46% 1 .48% 10 .47% 
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ercentage differences of each individual scenario are shown in

ig. 6 . Since the differences for the TTa and TT heuristic are near-

dentical, Fig. 6 does not show the TT heuristic. 

From Fig. 6 we can immediately see that the SO heuristic out-

erforms the SF heuristic in each scenario and for each value of n .

ts average percentage difference over all scenarios is 0.12% and its

aximum difference is below 1%. The SO heuristic seems to per-

orm slightly worse as n grows, however shipping with priority to

ibraries with the least rented items seems appropriate in most in-

tances. In any case, it outperforms shipping with priority to the

rst library with a backorder, as in the SF heuristic. The SF heuris-

ic has an average percentage difference of 2.04% over all scenarios

nd its performance is highly volatile. 

The take-back heuristics (TT, TTa, TB, and TA) typically have

arger differences from optimality than the shipment heuristics

ecause take-back decisions are more complex. Not only do we

ave to specify which candidates to take-back from, but also the

mounts. From Fig. 6 it seems that the take-back heuristics have

he following order in terms of performance: TTa outperforms TB,

hich in turn outperforms TA. The TA heuristic is on average

3.01% from the optimal solution, implying that there are high

osts associated with overestimating the number of required take-

acks. Taking back all on-hand stock can be optimal for scenar-

os with low demand rates at all libraries and low shipment costs,

ut leads to high costs in most other scenarios. The Take-back

ase-stock heuristic (TB) has a relatively large average difference

f 2.66% over all scenarios. Since the TB heuristic has a static rule

ndependent of the state, it is incapable of adapting to the situ-

tion when required, leading to large differences in some scenar-

os. However, its percentage differences seem to decrease as n in-

reases. 

The three phase take-back heuristics, TT and TTa, are within 1%

rom optimality on average and all differences are below 3%. In

ost scenarios TTa and TT have the same percentage differences,
lthough in some scenarios there are minor differences. Overall the

hoice between using the exact or approximate stock-out probabil-

ty seems to have negligible effect on costs. When combining the

O and TTa heuristic, we see in the column SO/TTa that the gap

ith the optimal solution remains below 1% on average. In most

cenarios the total percentage difference from this combined pol-

cy is close to the sum of the percentage differences of the individ-

al policies. The interaction between the shipment and take-back

euristic thus appears limited. 

.3. Take-back heuristics in larger instances 

In order to gain insight in performance of the take-back heuris-

ics in instances with a higher number of libraries, we carry out a

imulation experiment. The costs of the TTa, TA, and TB heuristic

re compared with each other in instances with n = 5 , 10 , 20 , 50 ,

nd 100 libraries. For all these take-back heuristics, we take the

hipment decisions according to the SO heuristic. Common random

umbers are used, to the extent possible, to reduce the variability

f the results. All heuristics face common Poisson demand D t in

eriod t of a given simulation run. Since the state variable y t varies

etween heuristics, we chose not to take common random returns

 t . Instead, each R t is drawn independently from a Binomial distri-

ution. 

As before, the experiment follows the design from Table 4 .

ince there are only four values for demand rates in this table,

e need a new way to specify the demand rates. The following

ethod is applied. The base demand rate for each library is λ1 

rom Table 4 , now denoted λ̄. For each library, we set 

i = λ̄ + u i , 

ith u i ∼ N(0 , 0 . 2 ̄λ) distributed. Adding this normal random noise

eads to libraries with varied demand rates in the experiment. The

umber of items K is again set according to (12) . 



76 G. Van der Heide et al. / Computers and Operations Research 83 (2017) 66–77 

Fig. 6. Comparison of the percentage differences for the shipment and take-back heuristics. 

Table 8 

The percentage increase in costs for the TA and TB heuristic compared to the TTa heuristic for a varying number of libraries. 

Cost increase of TA in % Cost increase of TB in % 

exp \ n 5 10 20 50 100 5 10 20 50 100 

1 −0.11 0 .13 0 .10 0 .01 0 .02 −0.01 0 .01 0 .59 0 .51 0 .39 

2 10 .13 9 .58 12 .36 16 .59 19 .03 2 .30 1 .52 0 .36 0 .22 0 .10 

3 48 .38 50 .96 59 .30 66 .53 69 .84 1 .83 2 .01 0 .47 0 .28 0 .34 

4 1 .54 2 .52 3 .99 7 .00 8 .31 1 .07 0 .80 0 .41 0 .17 0 .14 

5 20 .63 27 .04 33 .83 41 .75 45 .90 2 .49 1 .48 0 .99 0 .39 0 .18 

6 −0.57 0 .17 0 .12 1 .30 2 .03 −0.55 0 .19 −0.08 0 .05 −0.01 

7 0 .18 0 .13 0 .12 0 .19 0 .05 0 .07 1 .19 0 .83 2 .14 1 .62 

8 3 .44 5 .90 9 .18 14 .71 17 .63 0 .31 0 .72 0 .41 0 .13 0 .07 

9 51 .13 62 .39 71 .04 80 .99 84 .38 1 .05 −0.11 −0.29 0 .09 0 .14 

10 4 .03 5 .97 8 .63 11 .73 12 .93 0 .93 0 .54 0 .33 0 .12 0 .01 

11 0 .41 0 .91 1 .14 2 .34 3 .42 0 .40 0 .12 0 .28 0 .14 0 .04 

12 22 .52 25 .37 27 .58 32 .35 35 .67 0 .92 1 .69 0 .29 −0.02 −0.11 

13 3 .90 7 .88 10 .63 14 .71 16 .10 1 .21 0 .78 0 .39 0 .16 0 .04 

14 −1.20 0 .17 0 .53 1 .28 2 .24 −1.02 0 .03 0 .11 0 .03 0 .03 

15 25 .64 26 .71 31 .82 36 .79 40 .63 0 .84 0 .38 −0.16 −0.31 −0.26 

16 −0.42 0 .34 1 .22 3 .18 4 .24 0 .14 −0.10 0 .04 −0.17 −0.16 

17 41 .42 52 .10 61 .05 74 .76 78 .78 0 .55 −1.21 −0.23 −0.25 −0.06 

18 0 .23 1 .44 1 .55 2 .36 3 .95 0 .72 0 .51 −0.01 0 .21 0 .12 
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For each scenario in the L18 array, we take 10 different ran-

dom draws of the demand rates. For each random draw, 10 0 0 sim-

ulation runs are carried out, giving 10,0 0 0 runs in total for each

scenario. In every run the system is simulated for 10 0 0 weeks, ex-

cluding a warmup period of 100 weeks. The starting state for each

policy is x 0 = K, x i = 0 for i = 1 , . . . , n . For each random draw, the

base-stock level Q of the TB policy is determined by simulation.

For Q = 1 , . . . , K, we calculate the average costs of 100 simulation

runs and stop as soon as the average costs increase. 

Table 8 shows the outcome of the experiment. The columns for

the TA and TB heuristic give the percentage cost increase in each

scenario relative to the TTa heuristic (averaged over the 10 ran-

dom draws). For each n , Table 9 summarizes the average, maxi-

mum, minimum and standard deviation over all 180 combinations

of scenarios and draws. On average we see that the TTa heuristic is

better than the TA and TB heuristic. The negative minima indicate
hat the TTa heuristic can be worse than TA and TB in some com-

inations of scenarios and draws, however, this percentage is small

nd decreases quickly in n . 

The TA heuristic leads, as before, to relatively high costs. The

A heuristic has the lowest backorder and holding costs of all

euristics, but this is at the expense of extreme transportation

osts. Because libraries hold no stock, there may also be costs

or lost demands. Taking back all stock seems appropriate in sce-

arios with low demand. In these scenarios the single library

hresholds are zero, hence all heuristics lead to the same take-back

ecisions. However, the cost differences in scenarios with higher

emand are significant. The performance of the TA policy becomes

elatively worse compared to the TTa heuristic as the number of

ibraries increases, because for high n the total system demand has

elatively low variance, requiring a lower amount of stock at the

epot. 
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Table 9 

Statistics of the TA and TB heuristic over all scenarios and random draws for a given n . 

Average Minimum Maximum St. Dev. 

n TA TB TA TB TA TB TA TB 

5 12 .85% 0 .74% −2.41% −2.14% 64 .36% 3 .74% 17 .90% 1 .09% 

10 15 .54% 0 .59% −1.37% −1.42% 71 .82% 6 .68% 20 .27% 0 .96% 

20 18 .57% 0 .26% −1.43% −0.63% 79 .56% 3 .33% 23 .10% 0 .48% 

50 22 .70% 0 .22% −0.16% −0.42% 87 .89% 5 .89% 26 .33% 0 .68% 

100 24 .73% 0 .14% −0.06% −0.36% 86 .58% 4 .76% 27 .43% 0 .51% 
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It should be clear that the TB policy performs reasonably well

n this simulation. While the TTa policy is better than the TB pol-

cy in many of the scenarios, the differences becomes smaller as n

ncreases. For small n demand is volatile, requiring a policy which

s capable of adapting to the situation. For large n an invariant

ase-stock level will usually suffice, because demand for shipments

rom the depot becomes quite constant. This can be regarded as a

ertain kind of pooling of demand. The TB policy could therefore

e a suitable alternative in situations with a large number of

ibraries. 

. Conclusion 

This paper considers a library system with a low-cost depot

rom which items are shipped in case of stock-outs at the libraries.

n contrast to regular inventory systems, 100% of the rented items

n a library system return. Therefore, restocking of the depot must

e achieved by taking back items from the libraries. We formulate

nd solve an MDP for several scenarios and use the obtained in-

ights to create heuristics for large size problems. With this work

e target two specific issues that are of interest to library orga-

izations with such a system: storage of low-demand items and

esupplying the depot for future shipment requests. 

The single library problem provides some insights into

torage of low-demand items. We observe that it is optimal to

ake back all on-hand items above a certain threshold which

ecreases in the number of rented items. Knowledge of this

ake-back policy can assist in practice in making decisions for re-

oving rental items from libraries to create room for new and

opular rental items. 

The optimal resupply of the depot follows from studying the

DP. We find that the concepts of reactive and preventive pool-

ng from inventory theory are of importance in library systems:

e observed combinations of reactive and preventive take-backs.

hese take-backs are largely explained by economic trade-offs

etween backorder costs and shipment costs. For library systems

ith many libraries, we have shown that a base-stock policy at

he depot may yield reasonable results. The above results have

een communicated with various public library organizations in

he Netherlands. 

The results seem also to apply to more general rental systems

ith a depot. In case there is full backordering in those systems,

e would need to increase the partial backorder level to a point

here sales are not lost. Since the results and heuristics are mostly

ocused on situations with low demand rates, some adjustments

ay be required for higher demand rates. 

As a future research direction one could consider substitution of

roducts in case of stock-outs. The state space with multiple items
s in general extremely large: if a single item state space has size

S| , an m item state space has roughly |S| m states. Therefore, it

eems most practical to study substitution in a setting with small

S| and m , for example a setting with one rental location, one de-

ot, and two item types. We expect that the fact that customers

an substitute products reduces the number of required shipments

nd take-backs. An alternative direction is to include advance de-

and information in the model. In some rental systems there are

wo types of demand: regular demand and advance demand to be

icked up by a customer in a specified later period. It is of interest

o optimize decisions when there are two such demand streams

hich have possibly different backordering costs. This could lead to

tock rationing policies at the depot for customers with high back-

rder costs. Finally, one could investigate optimal decisions when

ustomers return items to a different location than the original

ental location, which occurs frequently in car rental systems and

ccasionally in public library systems. 
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