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Abstract
We theoretically investigate the nonlinear optical response of a heterodimer comprising a
semiconductor quantum dot strongly coupled to a metal nanoparticle. The quantum dot is
considered as a three-level ladder system with ground, one-exciton, and bi-exction states. As
compared to the case of a two-level quantum dot model, adding the third (bi-exciton) state
produces fascinating effects in the optical response of the hybrid system. Specifically, we
demonstrate that the system may exhibit picosecond and sub-picosecond self-oscillations and
quasi-chaotic behaviour under single-frequency continuous wave excitation. An isolated
semiconductor quantum dot does not show such features. The effects originate from competing
one-exciton and bi-exciton transitions in the semiconductor quantum dot, triggered by the self-
action of the quantum dot via the metal nanoparticle. The key parameter that governs the
phenomena mentioned is the ratio of the self-action strength and the bi-exciton shift. The self-
oscillation regime can be achieved in practice, in particular, in a heterodimer comprised of a
closely spaced ZnS/ZnSe core-shell quantum dot and a spherical silver nanoparticle. The results
may have applications in nanodevices for generating trains of ultrashort optical pulses.

Keywords: quantum dots, metal nanoparticles, hybrid nanostructures, exciton-plasmon
interaction, nonlinear optical response, optical instabilities

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical nonlinear effects occur when the intensity of applied
electromagnetic fields are high enough to modify the mate-
rial’s optical properties. The first experimental demonstration
of a nonlinear optical effect was second harmonic generation
[1], shortly after the first report of a working laser [2]. Various
phenomena arising from optical nonlinearities, have been

applied in spectroscopic techniques to study physical prop-
erties of matter [3–5] or to develop active optical devices
[3, 6, 7]. Despite their wide range of applications, processes
related to optical nonlinearities are inherently weak, typically
a few orders of magnitude smaller than those known in the
linear regime [8]. However, the nonlinear optical response of
materials can be drastically enhanced by making use of
plasmon-assisted effects. Optically excited plasmons in a
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metal produce a strong near-zone electromagnetic field
[9, 10]. This field can significantly increase the applied optical
field, thereby giving rise to the subsequent enhancement of
nonlinear interactions [11–14].

In the past decade, nonlinear optical properties of nano-
heterostructures consisting of quantum emitters (in particular,
semiconductor quantum dots (SQDs)) coupled to metal
nanoparticles (MNPs) have attracted considerable attention.
The interest arises from the fact that such nanocomposites,
due to hybridization of emitter states and plasmons, demon-
strate new phenomena, such as enhancement of the second
harmonic generation [15], nonlinear and double-peaked Fano
resonances [16, 17], optical bistability [18–20] and many
other interesting effects [21–25]. All these features originate
from the strong coupling between the constituents (MNPs and
emitters), which can be controlled via the geometrical and
material parameters of the hybrid cluster. This makes SQD-
MNP nanoheterostructures promising nanomaterials with
large and tunable nonlinearities, required for nonlinear optical
applications.

Among the more exotic phenomena that can also be
observed in nonlinear optical systems are optical instabilities,
such as self-oscillations and chaos. It has been predicted
theoretically by Ikeda [26, 27] that a ring cavity filled with a
nonlinear dielectric medium may show periodic and chaotic
outputs. This phenomenon, called the Ikeda instability, has
been experimentally demonstrated by Gibbs et al [28] through
the observation of optical turbulence and periodic oscillations
in the optical bistability of a lead-based lanthanum-doped
zirconate titanate sample. In several recent theoretical studies
of nanoheterostructures, optical instabilities also have been
predicted [24, 29–32]. In particular, it has been demonstrated
that a heterotrimer SQD-MNP-SQD, subject to an external
optical field, may exhibit sustained oscillations and chaotic
behaviour of the response [24]. In addition, the optical
response of an SQD-MNP heterodimer interacting with two
applied fields, one in the visible and the other one in the
infrared domain, has been found to reveal a periodic oscil-
latory behavior of the output field [29–32].

In this paper, we examine theoretically the nonlinear
optical response of an SQD strongly coupled to a MNP,
where the SQD is modelled as a ladder-like three-level system
(ground, one-exciton, and bi-exciton states). We show that,
depending on system’s parameters, the SQD-MNP hybrid
may exhibit, in addition to bistability [33], self-oscillations
and quasi-chaotic behavior under single-frequency con-
tinuous wave (CW) excitation. This goes beyond the findings
for double-frequency excitation, mentioned above [29–32].
The effects originate from competing one-exciton and bi-
exciton SQD transitions in the presence of a nearby MNP.
The parameter that governs this behaviour is the ratio of the
exciton-plasmon coupling and the bi-exciton shift. The new
features in the response emerge when the SQD-MNP inter-
action becomes on the order of or larger than the bi-exciton
shift. Previously [33], we reported on the optical response of a
hybrid system consisting of a molecular dimer and an MNP,
which has a bi-exciton shift that is much larger than the
dimer-MNP coupling, thus not giving rise to the instabilities

found here. In the case of a three-level ladder-like SQD, these
two parameters can be fine-tuned.

This paper is organized as follows. In the next section,
we present the system’s model and the formalism for its
description. In section 3, we report the results of our num-
erical calculations of the optical response of this system for a
set of parameters that is achievable in practice and discuss
these. In section 4 we summarize.

2. Model and theoretical background

We theoretically investigate the nonlinear optical response of
a nanocomposite consisting of an SQD and a nearby MNP
embedded in an isotropic and non-absorbing background.
This system is subjected to an applied CW optical field of
frequency ω and amplitude E0,  w= E tcos0 0 ( ), oriented
along the system’s axis (see figure 1(a)). The radii of the SQD
(a) and the MNP (r), as well as their center-to-center distance
(d) are assumed to be small compared to the optical wave-
length, allowing us to use the quasi-static approximation for
both particles [34, 35] and to neglect the retardation in the
SQD-MNP interaction; the latter is dominated by the near-
field multipolar coupling. For the MNP radii that we consider
( >r 5 nm), size quantization effects are negligible [36].

The optical excitation of an MNP is a localized surface
plasmon, i.e. oscillations of free electrons. Like most previous
studies of this type of nanohybrid, we adopt a classical
description for the plasmons, using the MNP’s polarizability
a w( ). The latter is given by

a w p
e w e
e w e

=
-
+

r4
2

, 13 m b

m b
( ) ( )

( )
( )

where em is the dielectric function of the metal, and eb is the
permeability of the surrounding medium.

The optical excitations in the SQD are excitons. Gen-
eralizing previous studies [16–20], which were restricted to a
two-level model of the SQD (a ground and a one-exciton
state), here we incorporate also a bi-exciton state in the SQD,
corresponding to two excitations coupled by the Coulomb
interaction. In such a system, the degeneracy of the one-
exciton state is lifted due to the anisotropic electron-hole
exchange, leading to two split linearly polarized one-exciton
states (see, e.g., [37–39]). In this case, the ground state is
coupled to the bi-exciton state via the linearly polarized one-
exciton transitions. By choosing the appropriate polarization
of the applied field, i.e. selecting one of the single-exciton
states, the system effectively acquires a three-level structure
with a ground state ñ1∣ , one exciton state ñ2∣ , and bi-exciton
state ñ3∣ with corresponding energies 0, w2, and
 w w= - D2 B3 2 , where DB is the bi-exciton shift. Within
this model, the allowed transitions, induced by the external
field, are ñ « ñ1 2∣ ∣ and ñ « ñ2 3∣ ∣ , which are characterized by
the transition dipole moments m m=21 12( ) and m m=32 23( ),
respectively (for the sake of simplicity, we assume that they
are real). The states ñ3∣ and ñ2∣ spontaneously decay with rates
g32 and g21, accordingly (see figure 1(b)). Note that the bi-
exciton state ñ3∣ , having no allowed transition dipole moment
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from the ground state ñ1∣ , can be reached either via con-
secutive ñ  ñ  ñ1 2 3∣ ∣ ∣ transitions or via the simultaneous
absorption of two photons of frequency w 23 .

The optical dynamics of the SQD is described by means
of the Lindblad quantum master equation for the density
operator r t( ), which in the rotating (with frequency ω of the
external field) frame reads


r r

g
s r s s r s

g
s r s s r s

= - + +

+ +

 i
H

a

,
2

, ,

2
, , ,

2

RWA 21
12 21 12 21

32
23 32 23 32

[ ] ([ ] [ ])

([ ] [ ])

( )




s s
s s

= D + D
- W + W +

H
h c

b
. .

2
RWA

21 22 31 33

21 21 32 32

( )
( )

( )

In equation (2a), HRWA is the SQD Hamiltonian in the
rotating wave approximation, square brackets denote the
commutator, and the two other terms represent the relaxation
operator, where s = ñái jij ∣ ∣ ( =i j, 1, 2, 3). In equation (2b),

w wD = -21 2 and w wD = - 231 3 are, in fact, the energies
of states ñ2∣ and ñ3∣ in the rotating frame, accordingly.
Alternatively, these quantities may be interpreted as the
detunings away from the one-photon resonance and the
coherent two-photon resonance, respectively.

mW = E 221 21 SQD ( ) and mW = E 232 32 SQD ( ) are Rabi
frequencies for the corresponding transitions, where ESQD is
the amplitude of the total field acting on the SQD. The latter is
the sum of the applied field E0 and the field produced by the
plasmon oscillations in the MNP [17–19]. For the MNP’s
field, we take into account the contribution of higher multi-
poles, which is important if the MNP’s radius r is on the order
of the SQD-MNP spacing d (our case, see below). Then ESQD
reads [40, 41]

⎡
⎣⎢

⎤
⎦⎥

å

m m
e

a w
p

r r
p e e e

a w

=
¢

+ +
+

¢

´
+

=

¥

+

E E
d

n

d

1
1

2 16

1
,

3

n

n
n

SQD
s

3 0
21 21 32 32

2
0 b s

1

2

2 4

( )

( ) ( )
( )

were e e e e¢ = + 2 3s s b b( ) ( ) is the effective dielectric function
of the SQD, es is the bulk dielectric function of the semi-
conductor, and

a w p
e w e

e w e
=

-

+
+

+r4 . 4n
n

n

n

2 1 m b

m
1

b

( ) ( )
( )

( )

The first term in equation (3) describes the renormalization of
the external field due to the presence of the MNP. The second
one represents the electromagnetic self-action of the SQD via
the MNP, in which the field acting on the SQD depends on
the SQD state itself through the density matrix elements r21
and r32. As will be shown below, this plays an important role
in the optical response of the SQD-MNP hybrid,

Using equation (3), we can specify expressions for the
Rabi frequencies W21 and W32:

r rW = W + +
~

G G a, 521 21
0

1 21 3 32 ( )

r rW = W + +
~

G G b, 532 32
0

3 21 2 32 ( )

where we introduced:

⎡
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⎤
⎦⎥e

a w
p

W =
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+ W
~

d
a

1
1

2
, 621
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s
3 21
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⎡
⎣⎢

⎤
⎦⎥e

a w
p

W =
¢

+ W
~

d
b

1
1

2
, 632

0

s
3 32

0( ) ( )

and

å
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p e e e

a w
=

¢
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+
G

n

d
a

16

1
, 7

n

n
n1

21 21
2

0 b s

2

2 4

( ) ( ) ( )

Figure 1. (a)Schematics of an SQD-MNP nanocomposite interacting with an applied field  w= E tcos0 0 ( ). The field is linearly polarized
along the system axis (shown by the red arrow). d is the SQD-MNP center-to-center distance, r is the radius of the MNP, es and e wm ( ) are the
dielectric constant of the SQD and the MNP, respectively. The system is embedded in an isotropic and non-absorbing medium with
permittivity eb. (b)Energy diagram of a ladder-type three-level SQD: ñ1∣ , ñ2∣ , and ñ3∣ are the ground, one-exciton, and bi-exciton states,
respectively. The energies of corresponding states are e = 01 , e w=2 2 and e w= - D2 B3 2 . Here, DB is the bi-exciton binding energy.
Allowed transitions with the corresponding transition dipole moments m21 and m32 are indicated by solid arrows. Wavy arrows denote the
allowed spontaneous transitions with rates g32 and g21. The black-dashed horizontal line shows the location of the coherent two-photon
resonance (with simultaneous absorption of two photons).
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Here, mW = E 221
0

21 0 ( ) and mW = E 232
0

32 0 ( ) are the
Rabi frequencies of the external field for the corresponding
transitions. The complex value quantities = +G G iGR I

1 1 1 ,
= +G G iGR I

2 2 2 , and = +G G iGR I
3 3 3 represent the so-called

feedback parameters, describing the self-interaction of the
SQD via the MNP [17–19].

Using the above, the equations for the density matrix
elements rij ( =i j, 1, 2, 3), describing the optical dynamics
of the SQD in the presence of the MNP, read

* *

* * * *

r g r r r

r r r r r r

= + W - W

+ - +

~ ~
i

i G G G a2 , 8I

11 21 22 21
0

21 21
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21

3 32 21 3 32 21 1 21 21

˙ ( )

( ) ( )

* *

* *

* *
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r g r g r r r

r r

r r r r

r r r r
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where w w wD = - -32 3 2 is the detuning away from the
ñ « ñ3 2∣ ∣ transition and r r= -Zji jj ii is the population dif-

ference between the states ñj∣ and ñi∣ .
As follows from equations (8a)–(8f), the self-action of

the SQD, governed by the feedback parameters Gi

( =i j, 1, 2, 3), gives rise to many additional nonlinearities as
compared to an isolated SQD. The two of these, that should
be mentioned especially, are (i)—renormalization of the SQD
frequencies, w w + G ZR

2 2 1 21 and w w + G ZR
3 3 2 32, and

(ii)—renormalization of the relaxation rates of the off-diag-
onal density matrix elements, g g - G Z2 2 I

21 21 1 21 and
g g g g+  + - G Z2 2 I

21 32 21 32 2 32( ) ( ) (see equations (8d)
and (8e)), both depending on the corresponding population

differences. As will be shown below, these two effects are
essential in the formation and understanding of the compli-
cated optical response of the hybrid system.

3. Numerical results and discussion

In this section, we analyse the optical response of an SQD in
close proximity to a spherical Ag MNP, both embedded in a
host with permittivity e = 2.16b (silica). The Ag nanosphere
considered has radius =a 11 nm. The dielectric functionεm
of silver is taken from experiment [42]. The corresponding
surface plasmon resonance is found to be w = 3.12 eVsp . For
the SQD, we use the following set of parameters: the di-
electric constant e = 6s , the population relaxation rates,
describing the spontaneous emission of states ñ2∣ and ñ3∣ , are
g = -1 200ps21

1 and g = -1 300 ps32
1. The transition

dipole moments are m = e0.60 nm21 and m = e0.75 nm32 ,
and the energies of the bare one-exciton and bi-exciton
transitions are w = 3.1 eV2 and  w w= - D2 B3 2( ) with
D = 2.5 meVB , parameters that can be realized by tuning
the geometry of ZnS/ZnSe core-shell quantum dots [43]. The
center-to-center SQD-MNP distance is taken to
be =d 16 nm.

The system is subjected to an external field under two
resonance conditions: w w= 2 (in resonance with the bare
one-exciton transition) and w w= 23 (in resonance with the
coherent two-photon transition). We analyse the optical
response of the hybrid by examining the populations r11, r22,
r33, and the magnitude of the SQD’s dipole moment,

m r m r= +pSQD 21 21 32 32∣ ∣ ∣ ∣. The applied field magnitude W21
0

is swept up and down adiabatically in order to check whether
the optical response depends on the history of the input.

3.1. Isolated SQD

First, we investigate the optical response of a quasi-isolated
SQD, by setting the SQD-MNP centre-to-centre distance to
d=200 nm, which is large enough to decouple both parti-
cles. At such a distance, g gG ,m 21 32∣ ∣ . We calculate the
field dependent behaviour of r11, r22, r33, and

m r m r= +pSQD 21 21 32 32∣ ∣ ∣ ∣ for two resonance conditions: (i)
—the applied field is in resonance with the bare one-exciton
transition w w= 2 (see figure 2) and (ii)—it is tuned to the
two-photon resonance, w w w= = - D2 2B3 2 (see
figure 3). As mentioned above, we adiabatically swept the
applied field magnitude W21

0 up and down. The trajectories of
increasing and decreasing W21

0 are indicated in figures 2 and3
by black-solid and red-dashed arrows, respectively.

In figure 2, the field dependent response of the SQD is
shown for the case of excitation at the single exciton reso-
nance, w w= 2. For a weak external field ( gW 21

0
21), the

SQD is in the ground state, r » 111 , while the other states are
unpopulated, r r» » 022 33 (see figures 2(a)–(c)). At higher
magnitudes of W21

0 (more specifically, gW »21
0

21), the
ñ  ñ1 2∣ ∣ transition starts to develop, accompanied by a

growing one-exciton population r22 (figure 2(b)) and,
respectively, depleting r11 (figure 2(a)). Upon increasing W21

0
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further to gW 21
0

21, the ñ  ñ1 2∣ ∣ transition saturates, which
is reflected by plateaus in figures 2(a) and (b). However, in
this regime, the population of the bi-exciton state remains
close to zero, because the applied field magnitude is still
smaller than the bi-exciton binding energy, W < DB21

0 (for the
parameters chosen, gD = 10B

2.92
21). For W D B21

0 , both
transitions are saturated, which explains the further reduction
of r11 and r22.

The tiny peak in the field dependence of the r11 popu-
lation in the vicinity of gW » D =2 10B21

0 2.62
21, i.e., at the

frequency of the coherent two-photon transition, demands
extra attention. Under this condition, the population of the
ground state is directly transferred to the bi-exciton state,
without populating the single exciton state. This breaks the
saturation balance between the ground and single exciton
states and leads to a further redistribution of populations,
giving rise to the tiny peak.

The field dependence of the magnitude of the SQD’s
dipole moment m r m r= +pSQD 21 21 32 32∣ ∣ ∣ ∣ (figure 2(d)) can
be fully inferred from the field behaviour of the populations.
As is observed, pSQD∣ ∣ shows two peaks. For the external field

magnitude gW 21
0

21, the SQD is predominantly in its
ground state ñ1∣ , whereas the populations of the single-exciton
ñ2∣ and bi-exciton ñ3∣ states are minor. Correspondingly, the

coherences r21 and r32 are close to zero. When the transition
ñ « ñ1 2∣ ∣ starts to develop, the coherence r21 increases and

reaches its maximum at gW »21
0

21. Upon further increasing
W21

0 , the transition ñ  ñ1 2∣ ∣ becomes saturated, resulting in
drop in r21, as the latter is proportional to r r-22 11. For the
external field amplitude g W D  B21 21

0 , the coherence r32
is still negligible. This explains the low-field peak of p ;SQD∣ ∣ it
is mainly due to the field dependence of r21.

In the strong saturation regime, when W ~ DB21
0 , the

transition between the single-exciton ñ2∣ and bi-exciton ñ3∣
states starts to grow efficiently, giving rise to the second peak

of pSQD∣ ∣. Importantly, the coherence r21 is also not zero now
and contributes again to the low-field peak of pSQD∣ ∣. This
explains the difference in amplitudes of low- and high-field
peaks. At W D B21

0 , all transitions are saturated and both
coherences, r21 and r32 decrease, resulting in p 0SQD∣ ∣ .
Note that we discussed here the route of an adiabatic increase
of the external field magnitude W21

0 . In the opposite case, the
system follows the reversed route, in full correspondence with
the behaviour of the populations.

Figure 3 shows the field dependent response of the sys-
tem for w w w= = - D2 2B3 2 , i.e., when the applied field
is in resonance with the coherent two-photon transition. Some
features of the response, which are sharply contrasted with the
previous case, should be mentioned. First, the field depend-
ence of all populations is almost monotonous, where r11 and
r22 do not show a plateau (like in figure 2(a)) or a peak (like
in figure 2(b)), respectively. Second, unlike the case of direct
excitation of the one-exciton resonance, w w= 2 (figure 2),
considerable changes in the response occur at the field mag-
nitude gW » 1021

0
21. It should also be noticed that, in spite of

the fact that this magnitude is much smaller than D 2B , so
that there is no real transition to the one-exciton state, this
state experiences considerable changes together with the
ground and bi-exciton states. We attribute this to the fact that
excitation of the bi-exciton state is immediately followed by
spontaneous transition to the one-exciton state, implying that
they develop synchronously. The applied field amplitude W21

0 ,
at which the populations start to grow significantly, can be
estimated from equating the Rabi frequency and the rate of
excitation for the coherent two-photon transition, both cal-
culated in second order of the perturbation theory. For the
energy level scheme of our model, this gives

g gW ~ D » 10B21
0

32
1 2

32( ) (see, e.g., [44]), which is in good
agreement with the numerical value (compare with figure 3).
Recall that g g»32 21.

Furthermore, at gW » D =2 10B21
0 2.62

12, the population
of the one-exciton state r22 slightly increases, accompanied
by a decrease of the bi-exciton state population r33. This
happens because W21

0 overcomes the detuning away from the
one-exciton resonance, which gives rise to the ladder-like
population transfer between states ñ1∣ , ñ2∣ , and ñ3∣ and to the
respective redistribution of their populations.

As for the case of w w= 2, the magnitude of the SQD’s
dipole moment, pSQD∣ ∣, shows two peaks (figure 3(d)) with
different amplitudes. Also in this case, these peaks originate
from the creation of the coherences r21 and r32. It should be
noticed, however, that at the current frequency and for
W D B21

0 , this occurs in two steps, because these coherences
can not be created directly: the excitation is out of resonance
with the ñ  ñ1 2∣ ∣ and ñ  ñ2 3∣ ∣ transitions. The incoming
field first excites the state ñ3∣ , which is followed by the con-
secutive spontaneous transitions ñ  ñ3 2∣ ∣ and ñ  ñ2 1∣ ∣ .
Simultaneously, the coherences r21 and r32 are building up
(see equation (8)). Upon further increasing the applied field
magnitude to gW » D »2 10B21

0 2.62
12 ( W » 1.25 meV21

0 ),
the ladder transitions to the states ñ2∣ and ñ3∣ become avail-
able, producing again both r21 and r32. As a consequence, the

Figure 2. Field dependent response of an isolated SQD for w w= 2.
Populations of the ground state r11 (a), one-exciton state r22 (b), and
bi-exciton state r33 (c). (d) SQD’s dipole moment magnitude pSQD∣ ∣.
Solid and dashed arrows show the direction of sweeping the applied
field magnitude W21

0 up and down, respectively. System parameters
are described in the text.
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second peak of pSQD∣ ∣ appears. The peak positions perfectly
follow changes in the populations.

To further demonstrate the stability of the system, we
calculated the kinetics of pSQD∣ ∣ for gW = 1021

0 0.5
21 and

w w= 2. Figure 4 shows the results. As is seen from panel (a),
oscillations of pSQD∣ ∣ are damped and reach their steady state

after =t 2 ns, i.e., approximately after g-
21

1. The frequency of

oscillations is on the order of W21
0 . The phase space map

(figure 4(b)) confirms the above kinetic picture, showing that
the phase trajectory spirals to an equilibrium point.

3.2. SQD-MNP hybrid

Hereafter, we consider the case of a coupled SQD-MNP
system by reducing the center-to-center distance to
=d 16 nm. Other parameters are the same as in section 3.1.

For this value of d, the feedback parameters are found to be
 g= + = +G i i10 10 1.6 1.5 meV1

2.72 2.70
21( ) ( ) ,

 g= + = +G i i10 10 2.1 2.0 meV2
2.84 2.82

21( ) ( ) , and
 g= + = +G i i10 10 1.8 1.7 meV3

2.78 2.76
21( ) ( ) . We

performed calculations similar to those presented in
section 3.1, i.e., sweeping slowly the input field magnitude
W21

0 up and down for two resonance conditions: w w= 2 and
w w= 23 . The results are presented in figures 5 and 6,
respectively. As can be seen, the hybrid’s optical response in
both cases markedly differs from the response of an isolated
SQD (compare with figures 2 and3).

We start with an analysis of the hybrid’s response, when
the applied field is in resonance with the one-exciton trans-
ition, w w= 2 (see figure 5). In contrast with an isolated SQD
(compare with figure 2), the hybrid exhibits two remarkable
features. First, within a certain range of the input field
amplitude W D B21

0 , its response shows hysteresis char-
acteristic of bistability. In this range of W21

0 , the population of
the bi-exciton state r33 remains close to zero, as, due to the
condition W D B21

0 , the transition efficiency to this state is
negligible. Thus, the SQD to a good approximation then can

be considered as a two-level system. The origin of bistability
for a two-level emitter strongly coupled to an MNP has been
discussed in a number of papers (see, e.g., [17–19, 45]): the
strong SQD-MNP coupling is responsible for the occurrence
of this effect. On a quantitative basis, it is driven by the
feedback parameter G1. The real and imaginary parts of G1

(describing different mechanisms of bistability) should meet
certain threshold conditions [18, 19, 45], which are fulfilled in
the current case.

At higher W21
0 , when the transition to the bi-exciton state

is well developed, the hybrid’s response shows an unusual
behaviour: the field dependence of the populations r11, r22,
r33, and the dipole moment magnitude pSQD∣ ∣ appear as a
‘thick’ noisy line (compare with figure 2), indicating the
occurrence of instabilities in the hybrid’s response. When
sweeping down the field amplitude W21

0 , the system follows
another path, showing ‘bi-instability’.

For excitation into the coherent two-photon resonance,
w w= 23 (see figure 6), the hybrid’s optical response shows
similar features as in the previous case, w w= 2. However,
details of the system’s behaviour differ substantially. First of
all, bistability and instabilities coexist within the same range
of the applied field amplitude W21

0 , i.e., both branches of the
hysteresis loop turn out to be unstable, although not to the
extent that the hysteresis disappears. Second, the saturation of
the system occurs also just within this range (see panels (a),
(b), and (c) in figure 6). Remember, that in the case of
excitation into the one-exciton resonance (w w= 2), the SQD
saturates at much larger applied field amplitudes W21

0 (see
figures 5(a)–(c)). However, at w w= 23 , the hybrid is stable
here. We see an explanation of these peculiarities in a higher
efficiency of the coherent two-photon transition as compared
to the ladder-like transitions at w w= 23 , where both (bare)
transitions ñ  ñ1 2∣ ∣ and ñ  ñ2 3∣ ∣ are out of resonance with
the applied field.

To get insight into the nature of these instabilities, we
calculated r11, r22, r33, and pSQD∣ ∣ at a particular amplitude of

the applied field W21
0 , lying within the range of interest. The

results obtained for gW = 1021
0 2.2

21 are shown in figures 7 and
8. As is seen from figure 7, all populations exhibit sustained
oscillations (self-oscillations), in spite of the fact that the input
field amplitude W21

0 is fixed. We do not present in figure 7 the
transient stage of the population dynamics, before the

Figure 3. Same as in figure 2, but now for the external field in
resonance with the coherent two-photon trans-
ition (w w w= = - D2 2B3 2 ).

Figure 4. Dynamics of the isolated SQD calculated for the excitation
at w w= 2 with the incident field amplitude gW = 1021

0 0.5
21. (a) Time

evolution of the dipole moment magnitude pSQD∣ ∣. (b) Phase map of

pSQD in the ( p pRe , ImSQD SQD[ ] [ ]) plane. Other parameters are the

same as in figure 2.
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oscillation regime sets in. Note that r11 and r33 oscillate in
anti-phase and have amplitudes significantly larger than that
for r22 oscillations. This suggests that efficient population
transfer occurs between the ground and bi-exciton states via
the two-photon absorption, presumably, the ladder-like one
(see below).

More information about the self-oscillation regime is
provided by studying the magnitude of the SQD’s dipole
moment pSQD. In figure 8, we plotted the time evolution of
pSQD∣ ∣ [panel (a)], its the Fourier spectrum [panel (b)], and the
phase map of pSQD [panel (c)]. Consistent with the dynamics
of the populations, pSQD∣ ∣ shows sustained oscillations too,
figure 8(a). In the Fourier spectrum of pSQD∣ ∣, several har-
monics are visible, however, one low-frequency is dominant;
just this harmonic is responsible for the self-oscillation

regime. Accordingly, the phase space map of pSQD represents
an ellipse, because ¹p pRe ImSQD SQD[ ] [ ]. Note that the
period of the phase space cycle for the parameters used is on
the order of hundreds of femtoseconds. In other words, the
SQD-MNP heterodimer in the self-oscillation regime gen-
erates a train of ultrashort optical pulses.

We also performed calculations for higher applied field
magnitudes W21

0 to check out whether the self-oscillation
regime is the unique regime in the high-field limit W > DB21

0 .
The results (not presented here) confirmed this. We only
found that the frequency of self-oscillations depends on W21

0 .
While the bistable regime of the hybrid can be analysed

and understood in detail (see, e.g., [19]), the physical picture
of self-oscillations is much more complicated, because all
three SQD’s states are involved in this process. The com-
plexity comes from the fact that both allowed transitions
undergo renormalization due to the exciton-plasmon interac-
tion: for the lower one, w w + G ZR

2 2 1 21 and g 221

g - G Z2 I
21 1 21, and for the higher one, w w + G ZR

3 3 2 32

and g g g g+  + - G Z2 2 I
21 32 21 32 2 32( ) ( ) . So for

>G G G G, , , 0R R I I
1 2 1 2 (our case), w2 and w3 acquire a red-shift

and additional broadening, depending on the population dif-
ferences Z21 and Z32, respectively. In the low-field limit
( gW 21

0
21), the population difference » -Z 121 , whereas

»Z 032 , because the states ñ2∣ and ñ3∣ are unpopulated.
Accordingly, only the lower ( ñ « ñ1 2∣ ∣ ) transition experi-
ences the above mentioned renormalization: w w - G R

2 2 1

and g g + G2 2 I
21 21 1 , whereas the higher ( ñ « ñ2 3∣ ∣ )

transition is kept unchanged.
After the SQD has switched from the lower to the upper

branch (both stable) of the bistable characteristics (see
figure 5), the population difference Z21 becomes approxi-
mately zero, because the transition ñ « ñ1 2∣ ∣ is saturated
[18, 19]. Consequently, the renormalized transition frequency
w + G ZR

2 1 21 and the relaxation rate g - G Z2 I
21 1 21 take

their bar values w2 and g 221 , respectively. At the
same time, the state ñ3∣ persists to be unpopulated (see
figure 5(c)). However, as now r » 1 222 , the ñ « ñ2 3∣ ∣
transition appears to be renormalized: w w - G1 2 R

3 3 2( )
and g g g g+  + + G2 2 1 2 I

21 32 21 32 2( ) ( ) ( ) , implying
that the transition acquires a red shift G1 2 R

2( ) and an addi-
tional relaxation rate G1 2 I

2( ) , both on the order of one meV,
i.e. the bi-excitonic shift DB. Furthermore, when the ampl-
itude of the external field exceeds the value of DB, which
happens at approximately gW = 1021

0 2.2
21, the one-exiton-to-

bi-exciton transition comes into play, and the bi-exciton state
begins to get populated. Note that this happens at a lower
applied field amplitude as compared to the isolated SQD,
where the corresponding value of gW = 1021

0 2.62
21 (see

figure 2). This effect originates from the plasmon-induced
enhancement of the field acting on the SQD, as described by
equation (5a).

The excitation of the bi-exciton state leads to a redis-
tribution of populations of all states and, consequently, to
changes in the population differences Z21 and Z32, giving rise
to changing dynamic energy shifts and relaxation rates of the
transitions. These dynamic modulations of the SQD

Figure 5. Field dependent response of a strongly coupled SQD and
MNP, center-to-center distance =d 16 nm. The applied field is in
resonance with the bare ñ  ñ1 2∣ ∣ transition, w w= 2. Populations of
(a) the ground state r11, (b) single-exciton state r22, and (c) bi-
exciton state r33. (d) SQD’s dipole moment magnitude, pSQD∣ ∣. Solid
and dashed arrows show the direction of sweeping the applied field
magnitude W21

0 up and down, respectively.

Figure 6. Same as in figure 5, but now for the applied field tuned in
resonance with the resonant two-photon transition, w w= 23 .

7

J. Opt. 19 (2017) 015004 B S Nugroho et al



parameters provoke a dynamic competition between two
transitions, resulting finally in a self-oscillating response.
Understanding these regimes requires special methods of the
theory of nonlinear dynamical systems, such as Poincare
maps (see, e.g., [46]), the application of which is beyond the
scope of the present paper.

In our previous paper [33], we considered a model where
the bi-excitonic shift is much larger than the dynamic shift
and broadening of the quantum dot transitions induced by the
interaction with the MNP. As a result, the latter are relevant
only for the one-exciton transition. This leads to bistability in
the one-exciton transition, but does not affect the two-exciton
transition in a principle way (in [33], the only effect of the
MNP on the two-exciton transition is its enhanced saturation).
In the current paper, the bi-excitonic shift is on the order of
the dynamic shift and broadening. As a result, a complicated
interplay between the one-exciton and bi-exciton transitions
occurs when the driving field starts to populate the bi-exciton
state, resulting in the new phenomena of self-oscillations and
(vide infra) chaos.

When the applied field is in resonance with the coherent
two-photon transition, w w w= = - D2 2B3 2 (see
figure 6), the hybrid shows a response which is, in general,
similar to the previous case in the sense that it also demon-
strates a hysteresis loop at moderate applied field amplitudes
W21

0 , around a value of gW » 1021
0 0.8

21, accompanied by a
saturation regime for higher W21

0 . However, in contrast to the
case of excitation of the one-exciton resonance w w= 2( ),
here instabilities occur within the hysteresis loop, showing
however a stable response at values of W21

0 for which all
transitions are saturated. Note that the saturation regime starts
at smaller amplitudes of W21

0 than for the case of an isolated
SQD (compare with figure 3), which again is a consequence
of the effect of the plasmon-induced enhancement of the
applied field, equation (5a).

To get insight into the nature of the instabilities of the
SQD response, we calculated the time evolution of the
magnitude pSQD∣ ∣ of the SQD dipole moment, its Fourier
spectrum and phase space map at the lower branch of the
hysteresis loop (see figure 6(d)) for gW = 1021

0 0.8
21, which lies

within the instability range. Figure 9 shows the results. From
plot (a), it is seen that pSQD∣ ∣ exhibits sustained self-

oscillations, but of more complicated form than for the case of
excitation into the one-exciton resonance (w w= 2, see
figure 8). The Fourier spectrum of pSQD∣ ∣ [plot (b)] consists of
a number of harmonics with comparable intensities. So the
resulting time-dependent signal represents a superposition of
these harmonics. The more complicated behaviour of pSQD∣ ∣ is
also reflected in the phase map of pSQD: the trajectory of the
system in the phase space p pRe , ImSQD SQD[ ( ) ( )] is now
represented by a close ¥ like– curve. Calculations performed
for other values of W21

0 revealed that the self-oscillation
regime of the hybrid’s response is the only type of instability
that occurs in addition to the already known bistability.

Particular attention should be paid to the period of the
self-oscillations. First, it depends on the applied field mag-
nitude W21

0 and therefore can be controlled by changing W21
0 .

Second, the values of the period, for the parameters used, are
on the order of several picoseconds at gW = 1021

0 0.8
21 (see

figure 9) end even significantly shorter (hundreds of femto-
seconds) at gW = 1021

0 2.2
21 (see figure 8). In other words, the

heterodimer in the self-oscillation regime generates a train of
ultrashort optical pulses, that might be interesting from the
viewpoint of practical applications in nanodevices.

Summarizing our findings, we find that the feedback
parameters Gm play a crucial role in the optical response of
the heterodimer, eventually resulting in instabilities in the
optical response: bistability and self-oscillations. Note that for
the set of parameters we used in our calculations, the real Gm

R

and imaginary Gm
I parts of each Gm are approximately equal

to each other. The general question arises: what happens if
they are considerably different? To answer this, we performed
model calculations when =G 0m

I , keeping Gm
R the same as

previously. This eliminates the dynamic damping described
by the imaginary parts of Gm. We will only discuss the results
for the case when the applied field is in resonance with the

Figure 7. Time evolution of the populations r11, r22, and r33 after
transient effects have disappeared, calculated for the applied field
amplitude gW = 1021

2.2
21. Other parameters are the same as in

figure 5.

Figure 8. (a) Time evolution of the magnitude of the SQD’s dipole
moment pSQD∣ ∣, (b) Fourier spectrum of pSQD∣ ∣, (c) phase space map

of pSQD plotted in the ( pRe SQD[ ], pIm SQD[ ]) plane. The applied field

amplitude is given by gW = 1021
0 2.2

21. Other parameters are the same
as in figure 5.
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coherent two-photon transition, w w= 23 , just to illustrate
the heterodimer’s optical response in this particular situation.

Without going into detail about the field dependence of
the populations r11, r22, r33, and the magnitude pSQD∣ ∣ of the
SQD dipole moment, we only present the dynamics of
the dipole moment pSQD∣ ∣, calculated for the applied field

amplitude gW = -1021
0 0.55

21, see figure 10. From plot (a)
we observe that the time evolution of pSQD∣ ∣ reveals an
oscillatory regime, the nature of which can be deduced
from the Fourier spectrum [plot (b)] and the phase space map
of pSQD [plot (c)]. A is seen, the Fourier spectrum represents a
broad structureless quasi-continuum, suggesting that the
oscillatory regime we found is of quasi-chaotic nature. The
phase-space map confirms this, showing a trajectory that
covers a finite volume of the pSQD phase space, not forming
any closed loop.

In the opposite case of zero real parts of Gm (not shown
here), the system exhibits only the self-oscillation regime.
From this observation, we can conclude that the imaginary
parts of the feedback parameters somehow stabilize the
chaotic behaviour of the hybrid, turning this regime into one
characterized by self-oscillations.

4. Summary

We conducted a theoretical study of the optical response of a
heterodimer comprising a SQD and a metal nanosphere. In
contrast to many preceding studies, where quantum dots have
been treated as a two-level system with the ground state ñ1∣
and the one-exciton state ñ2∣ , we also accounted for a bi-
exciton (two coupled excitons) state ñ3∣ . As was shown pre-
viously, the presence of a MNP in close proximity to a two-
level SQD may result in optical bistability and hysteresis of

the composite, driven by a complex-valued feedback para-
meter. This feature also persists for a heterodimer with a
three-level quantum dot. However, including the third level
gives rise to a much richer optical dynamics of the system,
including self-oscillations and quasi-chaotic behaviour. The
dynamics is governed by two complex-valued feedback
parameters, associated with the ground-to-one exciton and
one-exciton-to-bi-exciton transitions. The real and imaginary
parts of these feedback parameters determine different sce-
narios for the composite’s optical instabilities. It should be
stressed that all these effects occur under single-frequency
CW excitation. By contrast, the optical response of an isolated
three-level quantum dot does not show any instability. We
have presented the physical explanation of the instabilities,
which find their origin in the competition between the
ground-to-one exciton and one exciton-to-bi-exciton transi-
tions, driven by the quantum dot self-action via the MNP. We
performed our calculations for a model system that may be
realized in practice: a heterodimer comprised of a closely
spaced ZnS/ZnSe core-shell quantum dot and a silver nano-
sphere and found bistability and self-oscillations in the optical
response. Another candidate to observe the instabilities would
be a heterodimer comprised of an -In Gax x1 As/GaAs quantum
dot and a triangular silver nanoparticle, absorbing in a wide
spectral range, from the visible to the infrared [47].

To conclude, we note that the period of the self-oscilla-
tions depends on the applied field magnitude and can be
pushed down to the sub-picosecond regime. Thus, potentially
an SQD-MNP heterodimer, in its unstable regime, represents
a tunable nanogenerator of trains of ultrashort optical pulses
that might be interesting from the viewpoint of practical
applications in nanodevices.

Figure 9. (a) Time evolution of the magnitude of the SQD’s dipole
moment pSQD∣ ∣, (b) Fourier spectrum of pSQD∣ ∣, (c) phase space map

of pSQD plotted in the ( pRe SQD[ ], pIm SQD[ ]) plane. In all plots we

used the applied field amplitude gW = 1021
0 0.8

21. Other parameters
are the same as in figure 6.

Figure 10. (a) Time evolution of the SQD’s dipole moment
magnitude pSQD∣ ∣, (b) Fourier spectrum of pSQD∣ ∣, (c) phase space

map of pSQD plotted in the ( pRe SQD[ ], pIm SQD[ ]) plane. The applied
field is in resonance with the coherent two-photon transition,
w w w= = - D2 2B3 2 . Its amplitude gW = -1021

0 0.55
21. Other

parameters are the same as in figure 6, except =G 0m
I .
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