



University of Groningen

#### Metabolic adaptations in models of fatty liver disease

Hijmans, Brenda

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Hijmans, B. (2017). Metabolic adaptations in models of fatty liver disease: Of mice and math. Rijksuniversiteit Groningen.

#### Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

# Appendices

Appendix A

Taqman qPCR primer and probe sequences.

| gene          | forward primer 5'-3'          | reverse primer 5'-3'                          | probe 5'-3'                                     |
|---------------|-------------------------------|-----------------------------------------------|-------------------------------------------------|
| 185           | CGGCTACCACATCCAAGGA           | CCAATTACAGGCCTCGAAA                           | CGCGCAAATTACTCCCGA                              |
| 36b4          | GCTTCATTGTGGGGGGGGGAGACA      | CATGGTGTTCTTGCCCATCAG                         | TCCAAGCAGATGCAGCAGAATCCGC                       |
| Abcg1         | CAAGACCCTTTTGAAAGGGGATCTC     | GCCAGAATATTCATGAGTGTGGAC                      | CCCATGATGGCCACCAGCTCTCC                         |
| Abcg5         | TCAGGACCCCAAGGTCATGAT         | AGGCTGGTGGATGGTGACAAT                         | CCACAGGACTGGACTGCATGACTGCA                      |
| A ca ca       | GCCATTGGTATTGGGGGCTTAC        | CCCGACCAAGGACTTTGTTG                          | CTCAACCTGGATGGTTCTTTGTCCCAGC                    |
| A coxI        | GCCACGGAACTCATCTTCGA          | CCAGGCCACCACTTAATGGA                          | CCACTGCCACATATGACCCCAAGACCC                     |
| Acsl3         | GCCAACGTGGAAAAGAAAGC          | GTGGACCCACTTGTGTACATGATT                      | AGCAAACCACTGCCCTCAGATATTGCA                     |
| Agl           | CTATCCCGCTCGGGTAACT           | AGAGTTCGAATCCTCCAGAAGCCA                      | GCTTCTCCATCTCGTTCAGTAG                          |
| Angptl4       | AGATCCAGCAATTGTTCCAGAAG       | AAGAGGTCTATCTGGCTCTGAAGATT                    | CCCAGCAGCAGATACCTATCAAAGCAG                     |
| Ap2           | GATCACCATTAAATCTGAAAGTACCTTTA | GGTTATGGTGCTCTTGACTTTCC                       | ACTGAGATTTCCTTCATACTGGGCCAGGA                   |
| A p o b       | GCCCATTGTGGACAAGTTGATC        | CCAGGACTTGGAGGTCTTGGA                         | AAGCCAGGGCCTATCTCCGCATCC                        |
| A po C1       | GGGCAGCCATTGAACATATCA         | TTGCCAAATGCCTCTGAGAAC                         | CCCGGGTCTTGGTCAAATTTCCTTC                       |
| A poc 2       | TTACTGGACCTCTGCCAAGGA         | CCCTGAGTTTCTCATCCATGC                         | CCAAAGACCTGTACCAGAAGACATACCCGA                  |
| Apoc3         | CCAAGACGGTCCAGGATGC           | ACTTGCTCCAGTAGCCTTTCAGG                       | CCATCCAGCCCTGGCCACC                             |
| A po E        | CCTGAACCGCTTCTGGGATT          | GCTCTTCCTGGACCTGGTCA                          | AAAGCGTCTGCACCCAGCGCAGG                         |
| Cd36          | GATCGGAACTGTGGGCTCAT          | GGTTCCTTCTTCAAGGACAACTTC                      | AGAATGCCTCCAAACACAGCCAGGAC                      |
| Chrebpa       | CGACACTCACCCACCTCTTC          | TTGTTCAGCCGGATCTTGTC                          | CCTGGCTTACAGTGGCAAGCTGGTCTCT                    |
| $Chrebp\beta$ | TCTGCAGATCGCGTGGAG            | CTTGTCCCGGCATAGCAAC                           | CTCAGTGGCAAGCTGGTCTCTCCCA                       |
| Cyp  7a1      | CAGGGAGATGCTCTGTGTTCA         | AGGCATACATCCCTTCCGTGA                         | TGCAAAACCTCCAATCTGTCATGAGACCTCC                 |
| Elvol 5       | TGGCTGTTCTTCCAGATTGGA         | CCCTTTCTTGTTGTAGTCTGAATGTA                    | CATGATTTCCCTGATTGCTCTCTTCACAAAC                 |
| Elvol6        | ACACGTAGCGACTCCGAAGAT         | AGCGCAGAAACAGGAAAGACT                         | TTTCCTGCATCCATTGGATGGCTTC                       |
| Fabp1         | GAACTTCTCCGGCAAGTACCAA        | TGTCCTTCCCTTTCTGGATGAG                        | CCATTCATGAAGGCAATAGGTCTGCCC                     |
| Fabp4         | GATCACCATTAAATCTGAAAGTACCTTTA | GGTTATGGTGCTCTTGACTTTCC                       | ACTGAGATTTCCTTCATACTGGGCCAGGA                   |
| Fasn          | GGCATCATTGGGCACTCCTT          | GCTGCAAGCACAGCCTCTCT                          | CCATCTGCATAGCCACAGGCAACCTC                      |
| Fgf21         | CCGCAGTCCAGAAAGTCTCC          | TGACACCCAGGATTTGAATGAC                        | CCTGGCTTCAAGGCTTTGAGCTCCA                       |
| $Gaa^*$       | CTTCAAGATCAAAGATCCTGCTAGTAAG  | TGAGAATTCCACGCTGTAAAGTG                       |                                                 |
| Gabarapl1 *   | ACGCCTTATTCTTCTTGTCAACA       | CCTCGTGGTTGTCCTCATACAG                        |                                                 |
| Gbel          | CCCCTTTCACTCCAGTAATTGATC      | GCCCAAACTCATTACCCATGA                         | ATGATTCGTCTCATCACTCACGGGCTC                     |
| Gck           | CCTGGGCTTCACCTTCTCCTT         | GAGGCCTTGAAGCCCTTGGT                          | CACGAAGACATAGACAAGGGGCATCCTGCTC                 |
| Gkrp          | TGGGACCATGCCAAGCA             | TTCATACCCTGACAACTCCCATT                       | CAGCATGTGATCGAGACCCCTGAGC                       |
| $G_S$         | GCTCTCCAGACGATTCTTGCA         | GTGCGGTTCCTCTGAATGATC                         | CCTCTACGGGTTTTGTAAACAGTCACGCC                   |
| Gp            | GAAGGAGGCAAACGGATCAAC         | TCACGATGTCCGAGTGGATCT                         | CCTCTGCATCGTGGGCTGCCA                           |
| Gpat          | GCTATCATGTCCACCCACATTG        | ACTTCCTCCTTCATCACAAGAAGTC                     | CTCCTCTACAGACACAGGCAGGGAATCC                    |
| Hmgcr         | CCGGCAACAAGAAGATCTGTG         | ATGTACAGGATGGCGATGCA                          | TGTCGCTGCTCAGCACGTCCTCTTC                       |
| Hmgcs         | CGATGGTGTAGATGCTGGAAAG        | CTCCATCAGTTTCTGAACCACAGT                      | CGATCCGTGCAGAAGCCCATCC                          |
| $H_{sl}$      | GAGGCCTTTGAGATGCCACT          | AGATGAGCCTGGCTAGCACAG                         | CCATCTCACCTCCCTTGGCACACAC                       |
| L cad         | TACGGCACAAAGAACAGATCG         | CAGGCTCTGTCATGGCTATGG                         | CACTTGCCCGCCGTCATCTGG                           |
| Ldlr          | GCATCAGCTTGGACAAGGTGT         | GGGAACAGCCACCATTGTTG                          | CACTCCTTGATGGGCTCATCCGACC                       |
| Lpl           | AAGGTCAGAGCCAAGAGAAGCA        | CCAGAAAAGTGAATCTTGACTTGGT                     | CCTGAAGACTCGCTCTCAGATGCCCTACA                   |
| Lrp1          | TCAGACGAGCCTCCAGACTGT         | ACAGATGAAGGCAGGGTTGGT                         | CCAGTTCCAGTGCTCCACCGGC                          |
|               | Full gene n                   | ames are explained throughout the manuscript. | *SYBR green method used Continued on next page. |

Table A.1:Taqman qPCR primer and probe sequences.

|         |                               | Table A.1 - continued from previous page |                                  |
|---------|-------------------------------|------------------------------------------|----------------------------------|
| gene    | forward primer 5'-3'          | reverse primer 5'-3'                     | probe 5'-3'                      |
| Lxra)   | TGCCTGATGTTTCTCCTGATTCT       | CCTCCCTGGTCTCCTGCAT                      | TTGAGGTTCTGTCTTCCACAACTCCGTTG    |
| Me1     | AGGCAGCGTCTTCCAAATATG         | TCGATACTTGTTCAGGAGACGAA                  | TGGCAAAATCTTCAAACTGAATAAGGCAATTC |
| Mttp    | CAAGCTCACGTACTCCACTGAAG       | TCATCATCACCATCAGGATTCCT                  | ACCGCAAGACAGCGTGGGGCTACA         |
| Pparg1  | AACAAGACTACCCTTTACTGAAATTACCA | CACAGAGCTGATTCCGAAGTTG                   | ACACAGAGATGCCATTCTGGCCCAC        |
| Pparg2  | CTATGAGCACTTCACAAGAAATTACCA   | CACAGAGCTGATTCCGAAGTTG                   | ACACAGAGATGCCATTCTGGCCCAC        |
| Plin    | AGAACGTGCTCAGAGAGGTTACAG      | GTGTTCTGCACGGTGTGTGTACC                  | CCTGCCCAACCCGAGAGGCC             |
| Pltp    | TTCCTCCTCAACCAGCAGATCT        | CAGGAGGGAGTTGAGCAACAC                    | CCCTGTGCTCTACCATGCTGGGACG        |
| Scd1    | ATGCTCCAAGAGATCTCCAGTTCT      | CTTCACCTTCTCTCGTTCATTTCC                 | CCACCACCATCACTGCACCTC            |
| Srebpf1 | GGAGCCATGGATTGCACATT          | CCTGTCTCACCCCCAGCATA                     | CAGCTCATCAACCAACCAAGACAGTGACTTCC |
| Srebpf2 | CTGCAGCCTCAAGTGCAAAG          | CAGTGTGCCATTGGCTGTCT                     | CCATCCAGCAGCAGGTGCAGACG          |
| Sqs     | TGGCGGTTCACTGAGAGCA           | ATCACTGTTTGATATTTCTCAGCCAA               | ACTTCCCCACGATCTCCCTGGAGTTT       |
| Ucp2    | CGAAGCCTACAAGACCATTGC         | ACCAGCTCAGCACAGTTGACA                    | CAGAGGCCCCGGATCCCTTCC            |
| Vldlr   | CCACAGCAGTATCAGAAGTCAGTGT     | CACCTACTGCTGCCATCACTAAGA                 | CAGCTGCCTGGGCCATCCTTCC           |
|         |                               |                                          |                                  |

#### Appendix B

#### ADAPT methodology

In this dissertation, the mathematical model that is used with ADAPT is composed of three compartments representing the liver, blood plasma, and peripheral tissues. The liver compartment includes reactions comprising the production, utilization and storage of triglyceride (TG) and cholesterol, and the mobilization of these metabolites to the endoplasmic reticulum (ER), where they are incorporated into nascent very low density lipoprotein (VLDL) particles. The VLDL particles are secreted in the plasma compartment where they serve as nutrients for peripheral tissues. Remnant particles are taken up and cleared by the liver. The model furthermore includes the hepatic uptake of free fatty acids (FFA) as well as high density lipoprotein (HDL) mediated reverse cholesterol transport (Figure B.1).

ADAPT is based on a time-dependent evolution of model parameters. The progression of adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained at different time-points. Subsequently, ADAPT provides trajectories of time-dependent changes in metabolic states, parameters, and fluxes, that occurred during the treatment intervention. In the following sections a stepby-step generic description of the methodology underlying ADAPT is presented.

#### Step 1: Calculating data interpolants.

Quantitative experimental data at different stages of a treatment intervention are required to study the dynamics of induced molecular adaptations. Data on hepatic TG, free cholesterol, and cholesterylester (CE) levels; fractional contributions of *de novo* lipogenesis to the hepatic TG pool; plasma concentrations of TG, total cholesterol, HDL cholesterol, FFA; VLDL-TG production rates, VLDL-TG catabolism rates, VLDL particle size, and VLDL composition obtained in C57BL/6J mice treated with T0901317 for 0, 1, 2, 4, 7, 14, and 21 days was used as input for ADAPT. Moreover, quantitative data on hepatic cholesterol uptake and the deposition and synthesis of hepatic TG in cytoplasmic and microsomal fractions [387] in untreated control mice was derived from literature [388] and included in ADAPT.

To allow for estimation of dynamic trajectories of metabolic parameters and fluxes, continuous dynamic descriptions of the experimental data were used as input for ADAPT. For this purpose, cubic smoothing splines were calculated that describe the dynamic trend of the experimental data. To account for experimental and biological uncertainties a collection of splines was calculated using a Monte Carlo approach. Different random samples of the experimental data were generated assuming Gaussian distributions with means and standard deviations of the data. Subsequently, for each generated sample a cubic smoothing spline was calculated.

#### Step 2: Construction of a mathematical model.

A mathematical multi-compartment model was used describing TG and cholesterol metabolism. The mathematical model contains three compartments representing the liver, blood plasma, and periphery (Figure B.1). The liver includes the production, utilization and storage of TG and cholesterol, as well as the mobilization of these metabolites to the ER where they are incorporated into nascent VLDL particles. These VLDL particles are subsequently secreted in the plasma compartment and provide nutrients for peripheral tissues. The model furthermore includes the hepatic uptake of FFA from the plasma that predominantly originate from adipose tissue. Finally, the model includes the reverse cholesterol transport pathway, i.e., the net transport of cholesterol from peripheral tissues back to the liver via HDL.

The mathematical model contains 11 metabolic species (Table B.1) interlinked by 29 flux interactions (Table B.2). The flux equations (Table B.2) are based on mass-action kinetics. The ordinary differential equations are given by:

$$\frac{d[x_1]}{dt} = f_1 + f_4 + f_6 - f_2 - f_3 - f_5$$

$$\frac{d[x_2]}{dt} = f_3 - f_4 + V_{plasma}(f_{17} + f_{21})$$

$$\frac{d[x_3]}{dt} = f_5 - f_6 - f_{15}$$

$$\frac{d[x_4]}{dt} = f_9 - f_8 - f_{11} + V_{plasma}(\frac{f_{12}}{3} + f_{16} + f_{22})$$

$$\frac{d[x_5]}{dt} = f_{11} - f_9 - f_{28}$$

$$\frac{d[x_6]}{dt} = f_7 + f_{26} - f_{25} - f_{27}$$

$$\frac{d[x_7]}{dt} = f_{10} + f_{27} - f_{29} - f_{26}$$

$$\frac{d[x_8]}{dt} = \frac{f_{14}}{V_{\text{plasma}}} - f_{16} - f_{18} - f_{22} - f_{23}$$

$$\frac{d[x_9]}{dt} = \frac{f_{15}}{V_{\text{plasma}}} - f_{17} - f_{19}$$

$$\frac{d[x_{10}]}{dt} = f_{20} - f_{21}$$

$$\frac{d[x_{11}]}{dt} = f_{13} - f_{12}$$

The square brackets indicate the concentration of a specific metabolite. The blood plasma volume, given by  $V_{plasma}$ , was assumed to be 1 mL [389].

| State            | Description |                                |
|------------------|-------------|--------------------------------|
| x <sub>1</sub>   |             | Hepatic free cholesterol       |
| $\mathbf{X}_2$   |             | Hepatic CE (cytoplasm)         |
| $\mathbf{x}_3$   |             | Hepatic CE $(ER)$              |
| $\mathbf{x}_4$   |             | Hepatic TG (cytoplasm)         |
| $\mathbf{x}_5$   |             | Hepatic TG (ER)                |
| $\mathbf{x}_{6}$ |             | Hepatic de novo TG (cytoplasm) |
| $X_7$            |             | Hepatic de novo TG (ER)        |
| $\mathbf{X}_{8}$ |             | Plasma VLDL-TG                 |
| $\mathbf{X9}$    |             | Plasma VLDL-cholesterol        |
| x <sub>10</sub>  |             | Plasma HDL-cholesterol         |
| x <sub>11</sub>  |             | Plasma FFA                     |

**Table B.1:** Overview and description of the state variables included in the mathematical model.

Step 3: Calibrating the model to the untreated phenotype.

In ADAPT the mathematical model is first used to describe the untreated phenotype. It is assumed that prior to the onset of a treatment intervention the concentrations and fluxes in the biological system are in a steady-state. The following protocol was employed to capture multiple parameter sets describing the untreated phenotype. The model parameters were estimated by applying a least squares algorithm that minimizes the sum of squared errors between the experimental data of the untreated phenotype and corresponding model outputs. The optimization procedure was repeated for all data interpolants



Figure B.1: Computational model of hepatic lipid and plasma lipoprotein metabolism. ApoB, apolipoprotein B; CE, cholesterylester; ER, endoplasmic reticulum; FFA, free fatty acids; FC, free cholesterol; HDL, high density lipoprotein; TG, triglyceride; VLDL, very low density lipoprotein. See text for details.

| Flux     | Equation              | Description                                                      |
|----------|-----------------------|------------------------------------------------------------------|
| $f_1$    | p <sub>1</sub>        | Hepatic de novo synthesis of free cholesterol                    |
| $f_2$    | $p_2[x_1]$            | Net hepatic catabolism of free cholesterol                       |
| $f_3$    | $p_3[x_1]$            | Hepatic synthesis of CE (cytoplasm)                              |
| $f_4$    | $p_4[x_2]$            | Hepatic conversion of CE (cytoplasm) to free cholesterol         |
| $f_5$    | $p_5[x_1]$            | Hepatic synthesis of CE (ER)                                     |
| $f_6$    | $p_6[x_3]$            | Hepatic conversion of CE (ER) to free cholesterol                |
| $f_7$    | p <sub>7</sub>        | Hepatic de novo synthesis of TG (cytoplasm)                      |
| $f_8$    | $p_8[x_4]$            | Hepatic catabolism of TG (cytoplasm)                             |
| $f_9$    | $p_9[x_5]$            | Hepatic transport of TG from the ER to the cytoplasm             |
| $f_{10}$ | p <sub>10</sub>       | Hepatic de novo synthesis of TG (ER)                             |
| $f_{11}$ | $p_{11}[x_4]$         | Hepatic transport of TG from the cytoplasm to the ER             |
| $f_{12}$ | $p_{12}[x_{11}]$      | Hepatic uptake of FFA                                            |
| $f_{13}$ | p <sub>13</sub>       | Net efflux of FFA from peripheral tissues to plasma              |
| $f_{14}$ | $p_{14}([x_5]+[x_7])$ | Hepatic secretion rate of VLDL-TG                                |
| $f_{15}$ | $p_{15}[x_3]$         | Hepatic secretion rate of VLDL-cholesterol                       |
| $f_{16}$ | $p_{16}[x_8]$         | Hepatic uptake of TG via whole-particle uptake                   |
| $f_{17}$ | $p_{16}[x_9]$         | Hepatic uptake of cholesterol via whole-particle uptake          |
| $f_{18}$ | $p_{17}[x_8]$         | Peripheral uptake of TG via whole-particle uptake                |
| $f_{19}$ | $p_{17}[x_9]$         | Peripheral uptake of cholesterol via whole-particle uptake       |
| $f_{20}$ | p <sub>20</sub>       | Peripheral efflux of cholesterol to HDL particles                |
| $f_{21}$ | $p_{21}[x_{10}]$      | Hepatic uptake of HDL-cholesterol                                |
| $f_{22}$ | $p_{18}[x_8]$         | Hepatic uptake of TG via lipolytic enzymes                       |
| $f_{23}$ | $p_{19}[x_8]$         | Peripheral uptake of TG via lipolytic enzymes                    |
| $f_{24}$ | p <sub>22</sub>       | Hepatic secretion rate of apolipoprotein B                       |
| $f_{24}$ | p <sub>22</sub>       | Hepatic secretion rate of apolipoprotein B                       |
| $f_{25}$ | $p_8[x_6]$            | Hepatic catabolism of de novo TG (cytoplasm)                     |
| $f_{26}$ | $p_9[x_7]$            | Hepatic transport of $de \ novo$ TG from the ER to the cytoplasm |
| $f_{27}$ | $p_{11}[x_6]$         | Hepatic transport of $de \ novo$ TG from the cytoplasm to the ER |
| $f_{28}$ | $p_{14}[x_5]$         | Hepatic secretion rate of non de novo VLDL-TG                    |
| $f_{29}$ | $p_{14}[x_7]$         | Hepatic secretion rate of de novo VLDL-TG                        |

Table B.2: Overview and description of the fluxes included in the mathematical model.

calculated in step 1, resulting in a collection of parameter sets that describe the untreated phenotype. These parameter sets will serve as a starting point from which necessary dynamic changes are identified to describe the transition between experimental data obtained during different stages of the treatment.

Step 4: Estimating time-dependent changes of the model parameters. Dynamic adaptations in metabolic processes are identified by inferring necessary dynamic changes in the model parameters which are therefore timedependent. To this end, a simulation of the full treatment period was divided into a number of steps. First, the simulation is started using the parameters and model outputs of the untreated phenotype. Next, each subsequent step n, the system is simu-lated for a short time-period using the parameters and model outputs of the previous step n-1 as a starting point. The parameters at step n are re-estimated by minimizing the difference between the data interpolants and corresponding model outputs at step n. The optimization procedure is repeated for all para-meter set of the untreated phenotype, obtained in step 3.

#### Integration of gene expression data in ADAPT

To integrate information about the transcriptome into ADAPT, the optimization problem presented in step 4 was extended as follows. Time-course data of relative gene expression levels (Figure B.2) were used to constrain the dynamics of parameter trajectories. First, each step, parameter adaptations are preferred such that resulting parameter trajectories and corresponding gene expression profiles display temporal correlation, compared to uncorrelated scenarios. This was effectuated by including an additional objective function that maximizes the temporal correlation (Pearson correlation coefficient) between these profiles.

Secondly, gene expression data was also used to constrain the magnitude of dynamic variations in the parameter trajectories. It was assumed that parameters are less likely to change when corresponding gene expression levels (Table B.3) remain unchanged, compared to scenarios when expression of the genes is induced or repressed. Therefore, in latter cases parameter adaptations will be less penalized compared to former cases. This was effectuated by including an additional objective function that utilizes the time derivative of gene expression profiles to penalize parameter fluctuations. The higher the derivative, the lower the penalty will be.

An extra objective function that utilizes the time derivative of gene expression profiles to constrain parameter fluctuations was included. Parameter trajectories were estimated using 200 time steps. A collection of 20000 parameter trajectory sets was obtained that describe the experimental data. For the ADAPT analyses presented in chapter 2 and 3 we used 1000 parameter trajectory sets that displayed the highest temporal correlation with gene expression profiles.



Figure B.2: Time-course data of relative hepatic gene expression levels.

| Parameter       | Gene      | Associated flux(es) |
|-----------------|-----------|---------------------|
| p <sub>1</sub>  | Sqs       | $f_1$               |
| $\mathbf{p}_1$  | Hmgcoared | $f_1$               |
| $\mathbf{p}_1$  | Srebp-2   | $f_1$               |
| $\mathbf{p}_2$  | Abcg1     | $f_2$               |
| $\mathbf{p}_2$  | Abcg5     | $f_2$               |
| $\mathbf{p}_2$  | Cyp7a1    | $f_2$               |
| $p_7$           | Gpat      | $f_7$               |
| $p_7$           | Fas       | $f_7$               |
| $p_7$           | Me1       | $f_7$               |
| $p_7$           | Srebp-1c  | $f_7$               |
| $p_7$           | Scd1      | $f_7$               |
| $\mathbf{p}_8$  | Hmgcoa    | $f_8, f_{25}$       |
| $p_8$           | Ucp2      | $f_8,\ f_{25}$      |
| $p_8$           | Lcad      | $f_8,\ f_{25}$      |
| $\mathbf{p}_8$  | Aox       | $f_8, f_{25}$       |
| $p_{10}$        | Gpat      | $f_{10}$            |
| $p_{10}$        | Fas       | $f_{10}$            |
| $p_{10}$        | Me1       | $f_{10}$            |
| $p_{10}$        | Srebp-1c  | $f_{10}$            |
| p <sub>10</sub> | Scd1      | $f_{10}$            |
| $p_{12}$        | Cd36      | $f_{12}$            |
| $p_{12}$        | Ap2       | $f_{12}$            |
| $p_{14}$        | Mttp      | $f_{14}, f_{15}$    |
| $p_{15}$        | Mttp      | $f_{14}, f_{15}$    |
| p <sub>16</sub> | Ldlr      | $f_{16}, f_{17}$    |
| p <sub>16</sub> | Vldlr     | $f_{16}, f_{17}$    |
| $p_{16}$        | Lrp1      | $f_{16}, f_{17}$    |
| p <sub>18</sub> | Lpl       | $f_{22}$            |
| $p_{22}$        | A po B    | $f_{24}$            |

**Table B.3:** Overview of the parameter-genecouples.

#### Calculation of VLDL particle diameter

The following strategy was followed to calculate nascent VLDL particle diameters ( $D_{VLDL}$ ). As each VLDL particle contains one apolipoprotein B particle, the number of TG and CE molecules per VLDL particle can be determined by correcting the specific lipid fluxes for the number of apolipoprotein B proteins. The core volume of a VLDL particle was subsequently determined assuming a molecular volume of 946.84 mL/mol for TG (TGmv) and a molecular volume of 685.48 ml/mol for CE (CEmv) [390]. A core radius (Rc) was calculated from the core volume assuming a spherical shape of the VLDL particles. Furthermore, the particle membrane accounts for an additional two nanometers (Rs) [391].

$$D_{VLDL} = 2(R_c + R_s)$$

$$R_c = \sqrt[3]{\frac{3V_c}{4\pi}}$$

$$V_c = 10^{21} \frac{TG_{cnt}TG_{mw} + CE_{cnt}CE_{mv}}{N_A}$$

$$TG_{cnt} = \frac{f_{14}}{f_{24}}$$

$$CE_{cnt} = \frac{f_{15}}{f_{24}}$$

Where NA is the constant of Avogadro.

#### Calculation of *de novo* lipogenesis

The fractional contribution of *de novo* lipogenesis was calculated as follows in the computational model:

$$FC_{DNL}(t) = \frac{[x_6](t) + [x_7](t)}{[x_4](t) + [x_5](t) + [x_6](t) = [x_7](t)}$$

#### Calculation of VLDL catabolic rate

VLDL catabolic rate was calculated as follows in the computational model:

$$CR_{VLDL}(t) = \frac{p_{16}(t) + p_{17}(t)}{p_{16}(t_0) + p_{17}(t_0)}$$

## Calculation of cytoplasmic / ER TG concentration and production ratio

Equations for the ratio between cytoplasmic and ER TG concentration ( $R_{cTGcyt,TGER}$ ) and production ( $R_{pTGcyt,TGER}$ ) are given by:

$$R_{cTGcyt,TGer}(t) = \frac{[x_4](t) + [x_6](t)}{[x_5](t) + [x_7](t)}$$
$$R_{pTGcyt,TGer}(t) = \frac{f_7(t)}{f_{10}(t)}$$

#### Linking the computational model to experimental data

To enable the estimation of dynamic trajectories of metabolic parameters and fluxes, continuous dynamic descriptions of the experimental data were used as input for the computational approach. For this purpose, cubic smoothing splines were calculated that describe the dynamic trend of the experimental data. To account for experimental and biological uncertainties a collection of splines was calculated using a Monte Carlo approach. Different random samples of the experimental data were generated assuming Gaussian distributions with means and standard deviations of the data. Subsequently, for each generated sample a cubic smoothing spline was calculated. Measures of spread used for the Monte Carlo sampling of these quantities were estimated based on similar experiments that were performed [392]. An overview of the quantities that were experimentally observed and its relation to corresponding model components is presented in Table B.4. A model output  $y_i$  was coupled to experimental data  $d_i$ . Note that  $y_{13}$  to  $y_{15}$  were observed experimentally for the untreated phenotype only.

| Measurement                        | Model output | Equation                              |
|------------------------------------|--------------|---------------------------------------|
| Hepatic TG                         | У1           | $[x_4]+[x_5]+[x_6]+[x_7]$             |
| Hepatic CE                         | У2           | $[x_2]+[x_3]$                         |
| Hepatic free cholesterol           | <b>y</b> 3   | $[x_1]$                               |
| Plasma total cholesterol           | Y4           | $[x_9] + [x_{10}]$                    |
| HDL-cholesterol                    | <b>Y</b> 5   | $[x_{10}]$                            |
| Plasma TG                          | У6           | $[x_8]$                               |
| Plasma FFA                         | У7           | $[x_{11}]$                            |
| VLDL TG/C ratio                    | <b>Y</b> 8   | $\mathrm{TG}_{cnt}/\mathrm{CE}_{cnt}$ |
| VLDL-diameter                      | У9           | $D_{VLDL}$                            |
| VLDL-TG production                 | Y10          | $f_{14}$                              |
| VLDL catabolic rate                | Y11          | $CR_{VLDL}$                           |
| De novo lipogenesis                | Y12          | $FC_{DNL}$                            |
| Hepatic HDL-C uptake               | Y13          | $f_{21}$                              |
| Ratio cyt-TG / ER-TG concentration | Y14          | $\mathbf{R}_{cTGcyt,TGer}$            |
| Ratio cyt-TG $/$ ER-TG production  | Y15          | $\mathbf{R}_{pTGcyt,TGer}$            |

**Table B.4:** Overview of the quantities that were measured and their relationto corresponding model components.

### Appendix C

Lipolytic enzymes in L- $G6pc^{+/+}$  and L- $G6pc^{-/-}$  mice



**Figure C.1:** A) Epididymal WAT relative mRNA fold induction of genes involved in lipolysis. B) Representative immunoblots for epididymal adipose tissue for indicated proteins, + lanes indicate L- $G6pc^{+/+}$  mice and lanes indicate L- $G6pc^{-/-}$  mice. See Figure 4.4D and 4.4E for quantification.