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Chapter 1

Introduction

1.1 The Main Themes

Probability lives a double life. There are at least two distinct concepts of proba-

bility, the physical and the subjective or epistemic one, that are frequently used

in our scientific and everyday talk.1 Consider the following examples of our talk

of probabilities:

(1) “The probability of canals in the Netherlands being frozen in February is

90%.”

(2) “For me, the probability of canals in the Netherlands being frozen in February

is very high, and so I can’t wait to go ice skating.”

In both examples, we employ the concept of probability, but in two different

ways. In (1), probability is physical or statistical, quantifying certain aspects of

the physical world that make the canals very likely to get frozen. This concept of

1A note on terminology. Often the notion of objective probability is used to refer to non-
epistemic probability. However, this use is confusing, for the adjective “objective” is also used
to characterize some types of epistemic probability. For example, it is used to characterize
a particular Bayesian interpretation of probability called objective Bayesianism. But, on this
view, probability is epistemic: it is a degree of belief that is normatively constrained by the
evidence one has. Also, the so-called logical interpretation of probability is regarded as an
objective interpretation, i.e. probability is understood as a partial entailment relation between
propositions that is meant to be independent of an agent’s epistemic state and of any fact about
the physical world.
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probability is often called chance. In (2), probability refers to what we expect or

believe about the canals in the Netherlands, and so it is about our epistemic atti-

tude to the proposition that the canals will be frozen. This concept of probability

is often called credence or degree of belief.

This thesis is a philosophical study of some of the core questions concerning

chance and credence. In this study, the thesis introduces and utilizes various

principles or conditions relating chances to credences, prior (or present) chances

to posterior (or later) chances, and prior credences to posterior credences. The

primary aim is to show that focusing and elaborating on these principles gives us

a fruitful way of theorizing about chance and credence. The secondary aim is to

show how we can combine these principles with some well-established argumen-

tative strategies to provide insight into both notions of probability. Although the

questions to be discussed belong to familiar territory within philosophy of proba-

bility, I believe that progress concerning these issues requires that we sometimes

step back and try to look at them from a different perspective. The thesis offers

such a perspective.

What are the principles that drive the discussion in the coming chapters?

The bulk of this thesis explores so-called chance-credence principles.2 They tell

us roughly that rational agents should set their credences equal to chances. Prin-

ciples of this sort are commonly regarded as rationality constraints on credences,

often together with such principles as the Principle of Indifference (Keynes 1921),

the requirement of Regularity (Shimony 1970), or Reflection Principles (van

Fraassen 1984). But there is also a different, less often recognized understanding

of these principles: they provide constraints on chances. Roughly speaking, they

tell us that a quantity can be legitimately called chance if it constrains the agent’s

credence. The thesis exploits both understandings of chance-credence principles.

In so doing, it shows how we can use these principles to tackle the following

questions:

• Why should we think that chances behave as probability functions over

some set of propositions?

• How can we show that information about chance conveyed by statistical

2In the literature, these principles are sometimes called probability coordination principles;
see, e.g. Strevens (1999).



1.1. THE MAIN THEMES 3

evidence is valuable for epistemically rational agents? In particular, is in-

formation about chance epistemically valuable for judges and jurors in legal

settings?

Other principles used extensively in this thesis relate prior and posterior

chances. By analogy to chance-credence principles, they may be called chance-

chance principles. The first principle of this sort to be explored says that the

prior chance of some proposition A conditional on the proposition about some

posterior chance of A should be set equal to that posterior chance of A. The

second one says that the prior chance of some proposition A should be equal to

the weighted average of possible posterior chances of A, where the weights are

chances assigned by the prior chance function to propositions about A’s possible

posterior chances. A substantial part of this thesis shows that these two princi-

ples are an essential feature of resilient or stable chance functions, i.e. it is shown

that chances obeying these principles maximize resiliency under variation of ex-

perimental factors. These principles are also used to provide a viable approach

to the following question:

• How should we model the evolution of chance through time? Or, how should

chances at different points in time be related to each other?

The thesis also exploits a principle that relates prior and posterior credences.

This principle, which may be understood as a kind of credence-credence principle,

says that one’s prior credence in proposition A conditional on the proposition

about A’s posterior credence should be equal to that posterior credence. By

focusing on this principle, the thesis provides some insight into the following

questions:

• How should rational agents update their credences? Is there a universal

updating rule for credences? What sort of considerations could underpin

our choice of updating rules for credences?

It is important to emphasize at the outset that a third concept of probability

is often distinguished in the philosophy of probability, viz. the concept of logical

probability. We use this concept, for example, when we say that:
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(3) “The probability that the canals in the Netherlands will be frozen in February,

given present evidence, is quite high.”

Here it seems that probability refers neither to a physical fact nor to one’s de-

gree of belief. Rather, it is a matter of evidential or logical relation between

propositions: the proposition that the canals in the Netherlands will be frozen in

February and the proposition about our present evidence. For many authors, log-

ical probability quantifies the degree to which evidence supports or undermines

the hypothesis. And this degree of support is supposed to capture some objective

relation between the evidence and the hypothesis. Traditionally, an analysis of

this relation is a subject matter for inductive logic (Keynes 1921; Carnap 1962).

The question, however, of how this objective relation should be understood is a

matter of substantial controversy. It is not the goal of this thesis to contribute to

the debate about the nature of logical probability. Nor is the aim to provide an

understanding of this concept by studying the notion of credence. In particular,

the question of whether the degree of support can be understood via some kind

of suitably constrained credence, as some Bayesians want to suggest, will not be

pursued in this thesis.

In the remainder of this introduction, I first describe the main argumentative

strategies used in this thesis. Second, I situate the main themes of this the-

sis within both contemporary philosophy of chance and Bayesianism. Third, I

present the basic presuppositions that pervade the thesis and remain the back-

ground against which the main ideas will be canvassed. Finally, I give an overview

of the chapters.

1.2 The Main Argumentative Strategies

Along with the various principles aforementioned, the thesis also attempts to

show how one can utilize some argumentative strategies either to argue for these

principles or to argue from these principles in order to justify certain features

of chance and credence. Two such strategies are extensively explored in this

thesis. One is the argumentative strategy that was first used by Bruno de Finetti

(De Finetti 1970) and then developed by James M. Joyce (1998), Hannes Leitgeb

and Richard Pettigrew (2010b; 2010a), and Richard Pettigrew (2012; 2013c).
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The basic methodological commitment behind this strategy is that we can justify

various constraints (e.g. the norm of Probabilism, Bayes’s rule, the Principle

of Indifference, the Principal Principle) on the agent’s credences by appealing

to a fundamental norm for credences called inaccuracy minimization. With a

suitable account of inaccuracy measure, this justification proceeds by arguing

that (i) if the agent’s credences fail to satisfy a given constraint, then they can

be dominated by other credences that satisfy this constraint and that are closer

to any truth-value assignment (or are less inaccurate), and (ii) if the agent’s

credences satisfy that constraint, then they cannot be so dominated. It is then

concluded that credences violating that constraint are inadmissible with respect

to the inaccuracy measure.

I develop a similar argumentative strategy in the case of chance, and argue

that certain constraints or principles for chance follow from some fundamental

norms governing chances, to wit, the norm of weak predictive accuracy and the

norm of maximizing resiliency. More specifically, I show that (i) if a chance

function fails to satisfy the axioms of finitely additive probability, then it can

be dominated by a chance function that satisfies these axioms and is closer to

any possible truth-value distribution, and (ii) if a chance function satisfies these

axioms, then it cannot be so dominated. I then conclude that a chance function

violating these axioms cannot be weakly predictively accurate, and so it cannot

play the role of an expert for an agent’s credences.

Similarly, I argue for two chance-chance principles by showing that (i) if a

chance function does not obey them, then there is another chance function that

satisfies them and is more resilient under variation of experimental factors, and

(ii) if a chance function obeys them, then there is no other chance function that

is more resilient in that way. I then conclude that any chance function which

violates these principles is inadmissible with respect to a resiliency measure.

Another argumentative strategy that orients this thesis appeals to the well-

known value of learning theorem, advanced by Leonard Savage (1954) and Irving

J. Good (1967).3 Generally speaking, this result says that the prior expected

utility of making an informed decision is always at least as great as that of making

3In fact, a sketch of this result was first given by Frank P. Ramsey in his note entitled
“Weight or the Value of Knowledge”, published in Ramsey (1990).
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an uninformed decision. I utilize the argumentative strategy behind this result (i)

to show when learning ruled by the principle of maximum relative entropy leads

to new credences that are expected to be helpful, and never harmful in making

decisions, and (ii) to show that the subjective expected accuracy of verdicts at a

legal trial cannot decrease when credences are expected to match chances.

1.3 Positioning the Main Themes

With some exceptions, most notably de Finetti4, the double life of probability

has long been recognized by philosophers, mathematicians, and statisticians. Fa-

mously, Ian Hacking claimed metaphorically that probability is Janus-faced—it

is like Janus, a Roman god depicted as having two faces, one looking to the future

and the other looking to the past. Hacking explained this metaphor by saying

that:

On the one side it [probability] is statistical, concerning itself with stochastic laws

of chance processes. On the other side it is epistemological, dedicated to assessing

reasonable degrees of belief in propositions quite devoid of statistical background.

(Hacking 1975, p. 12)

Interestingly, even if the reigning orthodoxy throughout the development of

probability theory during the seventeenth, eighteenth, and nineteenth century

was the subjective concept of probability, an idea of physical probability was also

presupposed in many important results obtained in that time. For example, in

“An Essay Towards Solving A Problem in the Doctrine of Chances” (written

around 1749 and published posthumously in 1763), Thomas Bayes posed the

famous problem: how to calculate the probability that the chance of an event

on a single trial lies in a certain interval of values, given frequencies in which

this event happened in a finite number of trials? Importantly, in construing this

4De Finetti argued that the concept of physical or statistical probability in science is ques-
tionable, and thus it is unnecessary. He argued that the role of chance in science can be
discharged by the notion of degree of belief. De Finetti’s ingenious thought was that if your
degrees of belief are exchangeable, then there is a unique representation of your degrees-of-belief
distribution over the trials as an expectation of possible objective probability distributions, ac-
cording to which the trials are independent and identically distributed. That is, whether or not
you believe in the reality of chances, your degrees of belief act as if they were degrees of belief
about possible chance distributions.



1.3. POSITIONING THE MAIN THEMES 7

problem, Bayes assigned probabilities over hypotheses about unknown probability

of the event in question, called by him chance. Bayes’s idea was that before any

trial, we have degrees of belief over a set of hypotheses stating different values of

that chance, where each value lies in a certain interval. As it has been stressed

out by some commentators, it seems plausible to think that while probabilities

over these hypotheses refer to one’s degrees of belief about some objective fact

of the world, the hypotheses themselves represent objective facts about the true

chances.5 Moreover, as it has been suggested in Earman (1992, p. 52) and in

Uffink (2011, p. 32), in providing his solution to the aforementioned problem,

Bayes used a chance-credence principle. That is, he needed to determine the

subjective probability that in a series of n independent trials some event occurs

k times, given the supposition that the physical probability has a certain value.

And his solution was that the subjective probability should be set equal to this

value of physical probability.

Traditionally, the two faces of probability are subjects of two closely related

research fields: philosophy of chance and Bayesianism. In what follows, I will

situate the ideas of this thesis within these two fields. However, before doing this,

I will touch upon David Lewis’s idea of chance-credence relation—the relation

that animates the bulk of this thesis.

1.3.1 David Lewis’s Legacy

David Lewis in his “A Subjectivist’s Guide to Objective Chance”, the gemlike self-

contained essay expounding the double life of probability, suggested an interesting

reorientation of our attempts to scrutinize the concept of chance, and provided a

stripe of Bayesian epistemology of credence.

In stating and defending his version of chance-credence principle, to wit, the

Principal Principle, Lewis argued that it yields interesting consequences for both

chance and credence. As to the notion of chance, Lewis (1986, p. 86) claimed

that it captures “all we know about chance”. He explored this idea by showing

how the Principal Principle could be informative about chance by “being rich in

5This interpretation of Bayes’s problem is to be found in Uffink (2011). Interestingly, he says
about Bayes’s contribution to the philosophy of probability that “by introducing probabilities
of probabilities, his paper is really the first to invite the notion of objective chance!” (Uffink
2011, p. 34).
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consequences that are central to our ordinary ways of thinking about chance”

(Lewis 1986, p. 109). In particular, Lewis went on to show how we can use the

Principal Principle to derive certain consequences for chance: that chance obeys

the axioms of probability theory, that chance evolves through time by some sort of

conditionalization, or that credences of frequencies can be inferred from credences

about chance.

As to the notion of credence, Lewis (1986, p. 110) claimed that the Principle

Principle “tells us something about what makes an initial credence function be a

reasonable one”. And though it does not tell us all about rational credence, it sup-

plies our understanding of it by requiring one’s rational credences to line up with

chances. Viewed this way, the Principal Principle is regarded as an important

component of what John Earman (1992, chapter 2) called modern Bayesianism,

together with the requirement that rational credences should obey the axioms of

probability (known also as Probabilism) and the requirement that rational agents

should not assign zero credence to epistemically possible propositions (known also

as Regularity).

Much of what is presented in this thesis is both a critical assessment and

a development of Lewis’s idea about the role of chance-credence principles in

theorizing about both chance and credence. One major moral that the thesis

attempts to convey is that much more than the Principal Principle informs our

understanding of chance. In so doing, it also has a significant revisionary com-

ponent: it discusses and revises Lewis’s arguments for the claim that chances

are probability functions and the claim that chances evolve by conditionalizing

on the intervening histories of categorical-property instantiations. Lewis argued

for these claims by appealing to his Principal Principle. The thesis develops al-

ternative ways to vindicate these two claims by either reorienting the use of the

Principal Principle or by invoking some plausible constraints on chance that are

different from the Principal Principle.

Another significant use of Lewis’s legacy concerns his stripe of Bayesianism.

Although the thesis does not provide a systematic defence of Lewis’s Bayesianism,

it shows how its salient features can be developed to handle the problem of

“naked” statistical evidence in the context of legal proof processes. To this end,

I offer a Bayesian model of credence with the allied decision-theoretic component
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in which two types of chance-credence principles play a pivotal role.

1.3.2 Philosophy of Chance

The concept of chance has been a matter of considerable discussion among

philosophers for a long time. Traditionally, frequency and propensity theories are

regarded as the two dominant philosophical theories of chance. These theories

are meant to be metaphysical: they aim at providing an answer to the question

of what chance is.6 In so doing, they hold that the concept of chance can be

analysed in terms of more graspable concepts that themselves make no reference

to chance. As such, they embody a classical project of conceptual analysis: they

show when a story told in a target vocabulary (a story about the analysandum)

is made true by a story told in some more fundamental or base vocabulary (a

story about the analysans) thought to be more graspable.7

The two dominant philosophical theories of chance differ on the nature of the

analysans of chance. Whereas frequentists claim that the analysans of chance de-

scribes some sort of regularity, proportion in the arrangement of instantiations of

some non-modal and non-dispositional properties pertaining to the outcomes of

a certain type of experiment, propensity theorists take this analysans to describe

some kind of dispositional and irreducible property of a chance set-up.8 Propen-

sity theorists claim that the notion of chance as posited in our scientific theories,

stochastic laws, and models expresses a kind of modality that itself cannot be

analysed away: in particular, it cannot be identified with the patterns among

outcomes of some type of experiment. But in recent years, both these theories,

6For example, this point has been made forcefully in Strevens (2003, chapter 1). He dis-
tinguished between a metaphysics and a physics of probability. While the former concerns the
question of what probability is, the latter focuses on the question of what physical underpinnings
of probabilistic processes are. He then argued that traditional philosophical theories of chance,
like frequency and propensity theories, are primarily concerned with the former question.

7By analogy, to conceptually analyse the notion “knowledge” is to reduce a story told in a
vocabulary that uses “knowledge” to a story told in a vocabulary that uses the terms “true”,
“justified”, and “belief”.

8Various frequency theorists identify chance with either actual finite relative frequency (Venn
1866), limiting relative frequency (Reichenbach 1949; von Mises 1957), or with hypothetical
limiting relative frequency (Kyburg 1974; van Fraassen 1979) of the occurrences of some event
or property in a certain reference class. Propensity theorists identify chance with a property of
some experimental or chance set-up to produce long-run relative frequencies (see, e.g. Popper
1959), or to produce certain outcomes on single trials (see, e.g. Giere 1973).
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and the analytical project they embody, have fallen into disrepute. In particu-

lar, several arguments have been devised to show that frequency and propensity

theories cannot provide an illuminating understanding of chance (see, e.g. Hájek

1996, 2009; Eagle 2004).

There is, however, another idea that drives current attempts to scrutinize the

concept of chance. This idea can be expressed as follows: we can master the con-

cept of chance by trying to understand what chance does, or what functional roles

it plays. More specifically, by elevating the Principal Principle to the status of

the sole constraint on chance, Lewis, in his “Humean Supervenience Debugged”,

advanced the idea that chance is whatever satisfies the Principal Principle:

A feature of Reality deserves the name of chance to the extent that it occupies the

definitive role of chance; and occupying the role means obeying the old Principle

[the Principal Principle], applied as if information about present chances, and the

complete theory of chance, were perfectly admissible. (Lewis 1994, p. 489)

A closely related view to Lewis’s has been defended by Jonathan Schaffer (2007).

He has argued that chance is what chance does, and a given probability function

is chance if it plays a number of chance roles, not only the role expressed by

Lewis’s Principal Principle. For example, according to Schaffer, chance is what-

ever grounds realizing possibilities: if there is a non-zero chance that a flipped

coin will land heads, and the proposition that the flipped coin landed heads is

true, then there is a possible world in which the coin lands heads; this chance

then is said to be grounded by that world, and not grounded by a possible world

in which the flipped coin lands on its edge. Or, chance is whatever fits a law-

fully projected quantity: if the chance that the coin lands heads is 0.5, then the

laws of nature together with the history of the coin-landing outcomes entail that

value. According to Schaffer, appreciating these “chance roles” provides a viable

understanding of the concept of chance. That is, we can understand this concept

by endorsing the following characterization:

Chance is that probability function from propositions, worlds, and times onto the

closed unit interval, which best satisfies: (i) the Principal Principle, (ii) the Real-

ization Principle, (iii) the Futurity Principle, (iv) the Intrinsicness Requirement,

(v) the Lawful Magnitude Principle, and (vi) the Causal Transition Constraint.

(Schaffer 2007, p. 126)

Importantly, all the principles listed in Schaffer’s characterization of chance are
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supposed to be platitudes we apparently have about chance, platitudes that cap-

ture important roles played by chance in our life.

In discussing the notion of chance, the thesis does not attempt to provide a

conceptual analysis of chance in the spirit of frequency and propensity theories.

Rather, it exemplifies the type of approach to chance proposed by Lewis and

Schaffer. To give it a name, this approach may be called chance functionalism.

In subsequent chapters concerning the life of probability as chance, the general

idea of chance functionalism is articulated by saying that chance is a quantity that

satisfies certain plausible principles or conditions. These principles are meant to

capture various roles we attribute to chance. Instead of providing an exhaustive

list of these principles, the thesis explores only chance-credence principles and

certain kind of chance-chance principles. This methodological choice may be

considered as a shortcoming, serious enough to doubt whether the thesis should

be added to the library. But the mission of the study of chance presented here is

different: it aims to show how reorienting our way of thinking about chance could

be worthwhile. In so doing, it invites the reader to judge the new perspective on

chance by its fruits, not by whether it provides a complete picture of chance.

Focusing on various principles for chances helps in readdressing some old prob-

lems as well as in developing some relatively unexplored areas. One of the old

chestnuts is the question of whether chance can be represented as the mathemat-

ical concept of probability, known as the question of formal adequacy. Tradition-

ally, this question has been approached by providing representation theorems for

various philosophical theories of chance. According to this approach, a concep-

tion of chance satisfies some axiomatization of probability just in case one can

show that the characteristic kind of axiomatized structure of that conception is

representable as a probability space. Typically, this approach proceeds, first, by

laying down some mathematical structure (a chance structure) and axioms that

are claimed to be characteristic of a given conception of chance, and then by

proving, in the form of a representation theorem, that such chance structure is

representable as a probability space (Suppes 1973, 1974; Eells 1983).

Whether or not this approach is cogent and even applicable depends to a

large extent on what philosophical theory of chance is assumed. If such theory

takes chance to be reducible to some sort of relative frequency or limiting relative
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frequency, then it is a straightforward exercise to show that a frequency structure

is isomorphic to a finitely additive probability space. But things are different

when we think of chance as some kind of real and irreducible propensity, or

genuine causal tendency to produce a given outcome or a series of outcomes.

When chances are irreducible propensities that cannot be defined in terms of

some observable or detectable properties, but can only be elucidated by them,

there seems to be no straightforward way to prove that they are representable as

a probability function on some space. For if propensities cannot be so defined, it

is not entirely clear how they behave, and so what axioms a propensity structure

might satisfy. But despite this apparent obstacle, some authors have attempted

to provide representation theorems for propensities. Most notably, Ronald Giere

(1976) has provided representation theorems for a single-case propensity theory.

This result, however, has been criticized on the grounds that the axiomatized

structure of the single-case propensity, as being based on a Laplacean possibility

model, is entirely formal, and as such it is not able to provide a satisfactory

understanding of what propensities might be (e.g. Milne 1987).

Things are even more complicated with the representation theorem approach

if we think of chance as a theoretical concept that cannot be reduced to non-

theoretical terms. Elliott Sober’s (2010) no-theory theory of chance is a recent

attempt to understand chance in this way. If chances are just theoretical quan-

tities posited by our scientific theories, then not only does the representation

theorem approach lose its allure, but also the very question of formal adequacy

seems superfluous. For, by and large, the characteristic axiomatized structures

of those probabilistic theories (e.g. quantum mechanics, statistical mechanics, or

evolutionary theory) are already modelled as probability spaces.

My aim is to address the question of formal adequacy from a different angle.

To approach this question, we need not to decide whether chance is a sort of

frequency, propensity, or theoretical entity. Consequently, we need not to lay

down some characteristic axiomatized chance structure. Instead, I explore one

particularly important functional role of chance—the expert role carved out by

the Principal Principle—and then argue that this role demands chance to be a

finitely additive probability function. This view is not only a viable alternative to

the representation theorem approach, but it also avoids some serious shortcom-
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ings of Lewis’s (1986) argument for chance’s formal adequacy. Like the approach

to be presented, Lewis’s argument builds on the thought that the Principal Prin-

ciple is a vehicle by which we could draw the conclusion that chance is a finitely

additive probability function. But, controversially, it forces us to adopt the view

that chance is a sort of credence, an objectified credence.

A relatively unexplored problem by philosophers is the question of how chances

should change through time. An interesting approach to this problem was pro-

posed by Lewis (1986). He argued that a particular kinematical model for chances

follows from his Principal Principle. The model that follows from this principle

is a form of Bayesian conditionalization: any later chance function is equal to

an earlier chance function conditional on the intervening history of categorical-

property instantiations in between.

But Lewis’s argument for Bayesian kinematics of chance appears to be prob-

lematic: there are reasons to doubt whether the epistemic role of chance captured

by the Principal Principle could be used to establish the way by which chances

should change through time. Intuitively, if chances are attributable to the mind-

independent world, the way they evolve through time might be quite independent

of the way they constrain one’s credences. But, as will be apparent, we can re-

tain Bayesian kinematics of chance without appealing to the Principal Principle.

More specifically, it can be shown that this kinematics of chance follows from

a plausible principle relating prior and posterior chances. This sort of chance-

chance principle turns out to be an essential feature of resilient chances, that is,

it characterizes chances that maximize resiliency under variation of intervening

histories.

In developing the idea of resilient chances, the thesis also sheds new light on a

class of philosophical theories of chance called Humean accounts of chance (Lewis

1994; Loewer 2004; Hoefer 2007). These theories face a problem known as the Big

Bad Bug, which has been a matter of considerable discussion in recent years.9

As presented originally in Lewis (1994), the Big Bad Bug is a reductio which

aims to show that Humean accounts of chance contradict the Principal Principle.

The Big Bad Bug is regarded essentially as an epistemological argument, for it

9For example, an extensive discussion of this problem is to be found in Lewis (1994), Thau
(1994), Hall (1994), Ismael (2008), and Briggs (2009a).
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appeals to the Principal Principle that captures the epistemic role of chance in

guiding one’s credence. But, as suggested in Bigelow et al. (1993) and in Briggs

(2009b), a version of the Big Bad Bug can be presented without making this

epistemological detour. More specifically, the Big Bad Bug can be formulated as a

genuine metaphysical argument by appealing to certain chance-chance principles

relating prior and posterior chances. I explore this suggestion by linking the

metaphysical reading of this argument with the idea of resilient chances. This

exploration in turn leads to a more general observation that Humean chances do

not necessarily maximize resiliency under variation of experimental factors.

1.3.3 Bayesianism

Bayesianism is a philosophical position centered on the interpretation of proba-

bility as credence. It is also one of the best examples of a research field in which

the interaction between credence and chance is widely recognized. For one can

advocate Bayesianism without endorsing the radical position that probabilities

should always be credences.

Conceived as a philosophical position, Bayesianism has a wide scope of ap-

plication: there are Bayesian positions in epistemology (in particular, in theories

of quantitative belief), decision theory, philosophy of science (in particular, in

theories of scientific confirmation and inductive reasoning), statistics, in legal

theory (in particular, in theories of legal evidence). Despite this wide scope of

application, there are some features that might be regarded as common to all

Bayesian positions. They may be introduced as the following claims:

(i) An agent’s doxastic attitudes come in degrees called credences, character-

ized by a function that assigns real numbers to propositions.

(ii) The rational agent’s credences ought to satisfy the axioms of probability.

(iii) Bayes’s rule or the rule of conditionalization is the standard way of updating

the agent’s credences.

There are many points of disagreement among Bayesians.10 One substantial point

10For excellent surveys of the main points of disagreement among Bayesians, see Easwaran
(2011) and Weisberg (2011).
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of disagreement concerns the question of whether there are other constraints be-

sides (ii) and (iii) that the rational agent’s credences ought to satisfy.11 Bayesians

that endorse only the constraints (ii) and (iii) are traditionally called strictly sub-

jective or permissive.

By imposing only these two constraints, strictly subjective Bayesians, like de

Finetti and his followers, allow for a wide disagreement between agents’ credences,

even if they are formed on the basis of the same evidence. This is so because

constraint (ii), traditionally called Probabilism, can be satisfied in a number of

different ways, i.e. different degrees-of-belief assignments may satisfy this con-

straint. Strictly subjective Bayesians often add that when evidence accumulates,

the disagreement between agents’ initial or prior credences would be “washed

out” in the long run, and so agents’ credences would come to an agreement.

Less permissive subjective Bayesians, called sometimes empirically-based sub-

jective Bayesians or tempered personalists12, hold that the agent’s credences

ought to be proportional to her evidence. And some stripes of this sort of subjec-

tive Bayesianism, like Abner Shimony’s tempered personalism, hold that agents

should assign non-zero credences to any hypothesis seriously proposed by a mem-

ber of a scientific community.

So-called objective Bayesians are even less permissive than tempered person-

alists: some, like Harold Jeffreys (1961), hold that there are constraints that

collectively fix a unique rational credence, others, like Edwin Jaynes (1957) and

Jon Williamson (2010, pp. 15-19), defend the view that if evidence determines

a range of compatible credences, the agent should adopt those credences that

equivocate between the propositions over which she has an opinion. A charac-

teristic feature of many sorts of objective Bayesianism is that the constraints

put on credences, like Jaynes’s principle of maximum entropy, go beyond purely

empirical ones.

Among additional constraints on credences endorsed by both empirically-

based subjective Bayesians and objective Bayesians is the requirement according

11Constraint (i) is also a matter of considerable discussion in the literature. There is much
controversy over the question of whether one’s credence should by characterized by a single
real value or by a set of such values. The second option gives rise to the idea of “vague” or
“indeterminate” credence.

12For a more detailed characterization of tempered personalism, see Shimony (1970), Earman
(1992, p. 35), and Williamson (2010, pp. 15-19).
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to which the agent’s credences should reflect all the available evidence. That is,

the set of the agent’s permissible credences should be narrowed down to the set

of credences that are proportional to her evidence. When the agent’s evidence is

about chance, the way in which the agent’s credences should be proportional to

that evidence is captured by various chance-credence principles.

In a way, the perspective from which the concept of credence is studied in

the thesis is a sort of empirically-based subjective Bayesianism. The thesis, how-

ever, does not focus on providing a systematic defence of the main tenets of that

Bayesian position. Specifically, it is not concerned with providing a justification

for chance-credence principles. Such justifications have been given elsewhere in

the literature.13 Instead, it concentrates on how these principles can illuminate

certain questions concerning the epistemology of credence. Viewed this way, the

thesis presents an application of this core component of empirically-based sub-

jective Bayesianism in the context of legal proof process. It develops a Bayesian

model of legal fact-finding covering both a fact-finder’s credences over factual

hypotheses disputed in courts of law and her verdicts. This particular applica-

tion helps in addressing the problem of using “naked” statistical evidence in that

context.

Together with a concept of accuracy suitable for the legal proof process, the

thesis develops a close connection between chance-credence principles and the

idea of credence and verdict accuracy maximization. In so doing, it subscribes

to one of the most flowering research areas within Bayesian epistemology, viz.

the project of linking chance-credence principles with the idea of accuracy max-

imization (see, e.g. Pettigrew 2012, 2013a). Also, by exploring the idea of ac-

curacy maximization in the legal proof process, the thesis develops an approach

that closely resembles Alvin Goldman’s (1999, chapter 9) veritistic epistemology

as applied to legal settings. As shown by Goldman (Goldman 2002), this ap-

proach allows us to defend Bayes’s rule in legal settings as a veritistically good

inferential practice, viz. practice that is likely to end up closer to the truth.

Much like in Goldman’s approach, it is argued that (i) credences satisfying cer-

tain chance-credence principles cannot lead to harmful verdicts: the subjective

13For a sampling literature focused on this issue, see Braithwaite (1966), Mellor (1982), Ear-
man (1992, chapter 2), Strevens (1999), Howson and Urbach (2006, chapter 3), and Williamson
(2010, pp. 39-42).
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expected accuracy of verdicts cannot decrease when credences are expected to

match chances, and (ii) the objective expected accuracy of credences satisfying

those chance-credence principles can only increase.

Bayesians also disagree as to whether Bayes’s rule is the only rational method

of updating the agent’s credences upon receipt of new evidence. Some Bayesians,

like Richard Jeffrey (1983), propose a modified form of conditionalization called

Jeffrey’s rule. This rule is a generalization of Bayes’s rule: while Bayes’s rule

applies only to a learning experience that makes the agent certain of a propo-

sition, Jeffrey’s rules applies also to a learning experience in which the agent

redistributes her credences over some propositions without her becoming cer-

tain of any of them. But it is widely recognized that both Bayes’s and Jeffrey’s

rule cannot be applied to every case in which we need to change our credences.

Moreover, even if the two conditionalization rules are applicable, it appears that

they sometimes lead to hardly acceptable results. Specifically, it is often claimed

that learning experiences where one assigns a conditional posterior credence to

some proposition given another proposition cannot be adequately modelled by

Jeffrey’s rule. One of the widely discussed examples of this sort is the famous

Judy Benjamin Problem (van Fraassen 1981; van Fraassen et al. 1986).

The thesis contributes to the topic of credence updating by focusing on the

principle of maximum relative entropy, which is typically endorsed by objective

Bayesians. This principle allows us to cover a wide spectrum of learning expe-

riences: in principle, it can be used to model a learning experience where one’s

expectation of a random variable, computed relative to one’s posterior credence

function, gets a certain value. But in comparison with the conditionalization

rules, the question of how we can justify this principle as an updating method

received relatively little attention in the literature.14 Against this background,

I explore the possibility of providing such justification by looking at the extent

to which updating governed by this principle leads to new credences that are

expected to be helpful, and never harmful in making decisions. Along this way,

14For various arguments in favour of the conditionalization rules, see Teller (1973), Brown
(1976), Skyrms (1987a), van Fraassen (1989, pp. 331-337), Armendt (1993), van Fraassen
(1999), Greaves and Wallace (2006), Leitgeb and Pettigrew (2010b), and Easwaran (2013).
Attempts to provide a justification for the principle of maximum relative entropy are to be
found in Jaynes (1957), Shore and Johnson (1980; 1981) and Grünwald (2000).
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I show that recognition of the Judy Benjamin Problem may imperil such justi-

fication by showing that the value of learning theorem may not hold when one

learns a conditional proposition.

1.4 Central Presuppositions of the Thesis

Given the variety of issues to be discussed, it is necessary to state some central

presuppositions and regimentation of concepts if the discussion is to go forward.

Below I describe the main background of the thesis together with a prolegomenon

to the topic of expert functions.

1.4.1 Higher-Order Probabilities

Although each of the coming chapters is more or less self-contained, develop-

ing its own framework to tackle issues pertinent to chance or credence, there

is an important presupposition that underlies and motivates discussions in each

of the chapters—the idea that we can explore certain important relations be-

tween chance and credence, chances themselves, and credences themselves by

imposing a framework of higher-order probabilities. This framework constitutes

the entrance hall to the entire edifice. It allows us to speak about credences

assigned to propositions about chances, prior chances assigned to propositions

about posterior chances, and prior credences assigned to propositions about pos-

terior credences.

The idea of higher-order probabilities has a long tradition in the philosophy of

probability. Though initially contested as leading to inconsistency (Good 1950;

Miller 1966) or to a problematic “endless hierarchy” (Savage 1954, p. 58), this

idea gained currency as being legitimate and theoretically fruitful (Skyrms 1980b;

Domotor 1981; Lewis 1986; Gaifman 1988; Peijnenburg and Atkinson 2012). In

recent years, its formal fruitfulness has been proved by showing that higher-

order probabilities (i) allow us to formulate various principles for credences like

chance-credence principles (Lewis 1986) or Reflection principles (van Fraassen

1984), (ii) enable us to build a richer theory of credence updating that allows

us to conditionalize on propositions about posterior credences (Skyrms 1980b;
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Domotor 1981), or (iii) allow us to formulate important principles relating prior

and posterior chances (Bigelow et al. 1993; Lange 2006).

The thesis does not develop a formal theory of higher-order probabilities,

however. Instead, the various higher-order probabilities used in this thesis can

be read through the lens of Haim Gaifman’s (1988) framework, which underpins

his theory of expert functions.15 The guiding idea behind Gaifman’s framework

is that we can enlarge the original set of propositions over which a probability

function is defined by adding propositions about probabilities that this probabil-

ity function assigns over propositions in the original set. Consequently, we can

effectively assign probabilities to all the propositions in the enlarged set. Ac-

cording to Gaifman, the propositions about probabilities may be understood as

propositions describing various expert functions or expert assignments.

1.4.2 Expert Functions

Since the idea of expert functions underpins the principles used in this theses, it

is useful to show at the outset how this idea works.

Let p and q be two probability functions over a finite set of propositions A.

Each function assigns a non-negative real number from [0, 1] to every A ∈ A. Let

Cq be the proposition that the probability distribution over A is given by q. I

assume that Cq ∈ A. Then:

Expert Function: For all A ∈ A and all q,

p(A|Cq) = q(A),

providing p(Cq) > 0.

That is, q is an expert function for p concerning a set of propositions A just

in case, for every proposition A in A, the probability of A conditional on the

proposition Cq, p(A|Cq), is equal to the probability q(A).

How could this abstract idea of expert function underpin the various principles

discussed in this thesis? To give a concrete example, let us focus on chance-

credence principles. If we replace p with an agent’s credence function cr, and q

15A similar theory of expert functions has been developed in van Fraassen (1989, chapter 8).
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with a chance function ch, we get the following form of chance-credence principle:

Chance-Credence Principle: For all A ∈ A and all ch,

cr(A|Cch) = ch(A),

providing cr(Cch) > 0.

This principle expresses the idea that a chance function is an expert function for

the agent’s credence function concerning a set of propositions A.

Similarly, the idea of expert function underpins chance-chance and credence-

credence principles used in this thesis. That is, if we think of p as a prior chance

function and of q as a posterior chance function, we obtain a form of chance-

chance principle: it expresses the idea that a posterior chance function is an

expert function for a prior chance function concerning A. And if we take p as

standing for a prior credence function and q for a posterior credence function, we

get an analogous formulation of credence-credence principle.

It is also useful to drive a wedge between two types of expert functions, viz.

database-expert function and analyst-expert function.16 Stated broadly, we defer

to database-experts because they are better informed than we are, and we defer

to analyst-experts because they are better than we are at analysing evidence they

are given. So we might defer to an analyst-expert, even if we are better informed

than she is. For example, a judge in a criminal court regards a mental health

expert as an analyst-expert because the expert is good at analysing evidence at

trial, no matter how much information about the crime she has. But the judge

regards an eyewitness to the crime as a database-expert because the witness is

better informed about the crime, and not because she is good at analysing the

evidence at trial. Importantly, as argued in Hall (2004), q is a database-expert for

an agent’s credence function cr if the agent has no evidence that the expert lacks.

After all, she defers to q because of q’s evidence. But this is not so with analyst-

experts: to regard q as an analyst-expert is to defer to q’s opinions conditional

on the agent’s evidence.

With this in place, let us apply the notions of database- and analyst-expert

16This distinction has been introduced by Ned Hall (2004), and it dovetails with Elga’s (2007)
expert/guru distinction.
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function to the chance-credence relation. Suppose that E∧Cch is the proposition

about the agent’s total evidence. Then:

Chance as Database-Expert Function: For all A ∈ A and all ch,

cr(A|E ∧ Cch) = ch(A),

if E is admissible and cr(E ∧ Cch) > 0.

That is, to defer to chance regarded as a database-expert is to set your credence

in A equal to the unconditional chance of A, provided that your evidence E is

admissible. And, roughly, E is admissible if it gives no information about the

truth of A that does not go through the chance of A.17 And:

Chance as Analyst-Expert Function: For all A ∈ A and all ch,

cr(A|E ∧ Cch) = ch(A|E ∧ Cch).

That is, to defer to chance regarded as an analyst-expert is to set your credence in

A equal to the conditional chance of A, where the condition is your total evidence

E ∧ Cch.

In the coming chapters, the thesis puts to work chance-credence principles

that characterize chance as both a database- and expert-function. In partic-

ular, it uses Lewis’s Principal Principle and its various formulations as an in-

stance of Chance as Database-Expert Function, the so-called New Principle as

an instance of Chance as Analyst-Expert Function, and the End-Point Chance-

Credence Principle as a special case of Chance as Analyst-Expert Function.

1.5 Synopsis of the Thesis

Our journey begins in chapter 2 with developing an answer to the question of

whether chance satisfies a constraint known in the literature as the condition of

17For similar formulations of what admissible evidence is, see Lewis (1986), Loewer (2004),
and Pettigrew (2012). A somewhat different characterization of admissible evidence is to be
found in Thau (1994), Strevens (1995), and Meacham (2010).
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formal adequacy, which requires chance to satisfy some axiomatization of proba-

bility. The primary aim of this chapter is to show how considerations concerning

the chance-credence interaction can be used to vindicate the formal adequacy

of chance. More precisely, this chapter introduces and motivates a framework

in which it can be shown that, under fairly intuitive assumptions, the expert

role codified by the Principal Principle demands chance to be a finitely additive

probability function.

Chapter 3 focuses on two chance-chance principles relating prior and poste-

rior chances. I first introduce, motivate, and make precise a resiliency-centered

approach to chance whose basic idea is that any chance distribution should be

maximally invariant under variation of experimental factors. Second, I provide

resiliency-based arguments for the two principles: I show that any chance distri-

bution that violates them can be replaced by another chance distribution that

satisfies them and that is more resilient under variation of experimental factors.

I then go on to show that these principles lead to hardly acceptable consequences

in the case of Humean accounts of chance. Also, I show that considerations of

the resiliency of chance have substantial repercussions on the question of whether

these principles should be retained in that case.

The topic of chapter 4 concerns the kinematics of chance, to wit, the problem

of how chances should change through time. First, the chapter investigates the

conditions that any kinematical model for chance needs to satisfy to count as

Bayesian kinematics of chance. Second, it presents and discusses Lewis’s argu-

ment for Bayesian kinematics of chance, viz. it shows how this kinematical model

for chances follows from Lewis’s Principal Principle. Third, the chapter presents

an alternative argument for Bayesian kinematics of chance that does not appeal

to the Principal Principle, but to a principle that relates prior and posterior

chance functions. This principle in turn is motivated by resiliency considerations

similar to those presented in chapter 3.

Chapters 5 and 6 focus on the credence-side of probability. In chapter 5, I ap-

ply a simple Bayesian model to legal fact-finding to argue that statistical evidence

in courts of law is conducive to the achievement of accuracy, which appears to be

a fundamental objective of legal fact-finding. I present two accuracy-based argu-

ments for the thesis that chances should constrain a fact-finder’s credences about
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factual hypotheses discussed in courts of law. The first argument says that the

fact-finder’s credences informed by chances cannot lead to a decrease of subjective

expected verdict accuracy. The second argument shows that the fact-finder’s cre-

dences informed by chances maximize objective expected credence accuracy. The

notions of subjective expected verdict accuracy and objective expected credence

accuracy are precisely explained within a Bayesian model of legal fact-finding.

This model also induces a particular chance-credence principle that captures the

idea of using exclusively statistical evidence in courts of law.

While chapter 5 concentrates on issues pertaining to the statics of credence (it

studies various constraints on credence at a given time of the agent’s epistemic

life), chapter 6 moves to the dynamics of credence (it studies various ways by

which the agent should change her credences over time). It examines the possi-

bility of justifying the principle of maximum relative entropy, considered as an

updating rule, by looking at the value of learning theorem established in classi-

cal decision theory. This theorem captures an intuitive requirement for learning:

learning should lead to new degrees of belief that are expected to be helpful, and

never harmful in making decisions. I call this requirement the value of learning.

I consider the extent to which learning ruled by the principle of maximum rela-

tive entropy could satisfy this requirement, and so could be a rational means for

pursuing practical goals. In passing, I discuss a long standing controversy in the

philosophy of credence, that is, the question of whether there could a universal

or mechanical updating rule for credences.

Most of the chapters can be fully comprehended without reading the material

in other chapters. The only principal interdependency concerns chapters 3 and

4. That is, the latter applies the idea of chance’s resiliency that is fully explained

and motivated in the former.





Chapter 2

Chance-Credence Principles

and the Question of Formal

Adequacy

The chapter explores a particular chance-credence relation in order to develop an

argument for the thesis that chances are finitely additive probability functions.

The chance-credence relation that plays a pivotal role in this chapter is captured

by David Lewis’s Principal Principle.

The argument to be given purports to show that the expert role of chance

codified by the Principal Principle demands chance to be a finitely additive prob-

ability function. This result is established, first, by employing chance function-

alism: the view that chance is whatever plays certain functional roles. Second,

by exploring the expert role codified in the Principal Principle, it is claimed that

a real-valued function ch over a finite set of propositions is chance if it plays the

role of an expert for the epistemic agent. Third, it is argued that the function

ch plays that role if it is weakly predictively accurate. This condition is taken

to be fairly minimal: ch is weakly predictively accurate if and only if there is no
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other real-valued function over a finite set of propositions, known to the epistemic

agent, that could match better the possible truth-value distributions over that

set. Fourth, it is proved that the function ch is weakly predictively accurate if

and only if it is a finitely additive probability function. Finally, it is concluded

that the function ch is chance if it is a finitely additive probability function.

2.1 Introduction

Is chance a model for the mathematical theory of probability? Philosophical

tradition has it that any satisfactory account of chance (physical or statistical

probability) should meet certain fairly intuitive conditions (Salmon 1967; Suppes

1973, 1974; Eells 1983). One of the core conditions, which has become to be

known in the literature as formal adequacy1, says that chance should satisfy some

axiomatization of probability.2 This chapter shows how considerations concerning

the chance-credence relation can be used to vindicate the formal adequacy of

chance. More precisely, this chapter introduces and motivates a framework in

which it can be shown that the expert role codified by the Principal Principle

demands chance to be a finitely additive probability function.

The argument to be presented in this chapter can be outlined as follows:

1. A real-valued function ch over a finite set of propositions is chance if it plays

the role of an expert for the epistemic agent whose evidence is admissible.

That is, ch is chance if it satisfies the Principal Principle.

2. ch plays the role of an expert if it is weakly predictively accurate. That is,

ch is an expert function if there is no other real-valued function ch′, known

to the epistemic agent, that could match better all the possible truth-value

distributions over a finite set of propositions.

3. Theorem: ch is weakly predictively accurate if and only if it is a finitely

additive probability function. This can be shown once we adopt the Brier

1Wesley Salmon (1967) called this condition admissibility.
2I understand the condition of formal adequacy broadly, in the sense that it does not require

chance to satisfy a particular axiomatization of probability, e.g. Kolmogorov’s axioms, Popper’s
axioms, or Rényi’s axioms of probability. Rather, the condition says that chance should satisfy
some axiomatization of probability.
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score as a measure of the “distance” between the real-valued function ch

and a truth-value distribution.

4. Therefore, ch is chance if it is a finitely additive probability function.

That is, starting from the premise that chance is an expert function for the

epistemic agent, and that any expert function must be weakly predictively ac-

curate, we get the conclusion that chance must be a finitely additive probability

function.

The linchpin of this argument shows close affinity with a more familiar idea

of James M. Joyce’s justification of probabilism—the thesis that one’s credence

function should obey the axioms of probability. Inspired by Bruno de Finetti

(1970), Joyce (1998) showed that a credence function that is incoherent (violates

the axioms of probability) can be replaced by a coherent one which is closer to

the truth values of propositions in every possible world.3 Similarly, the argument

just outlined can be read as follows: if ch is not a finitely additive probability

function, then there is ch′ that could match better all the possible truth-value

distributions. Hence, by premise 2, ch is not an expert function and, by premise

1, is not a chance function.

The general similarity with Joyce’s approach notwithstanding, there are also

important differences. The first and most obvious difference is that this chapter

aims to justify the probability axioms as a requirement for chances posited in

the stochastic theories and referred to the objective features of a world, not as a

rationality norm for one’s doxastic attitudes understood as credences. Of course,

it might be pointed out that this difference vanishes if one interprets chances as

embodiments of expert opinions. According to such a view, chances would be

credences of an expert believer, perhaps suitably constrained. But the account

of chance defended in this paper does not commit us to accept that view. That

is, I argue that chance is first and foremost a function from propositions to real

numbers that plays certain roles like guiding one’s credences in those propositions,

and as such it need not be reducible to frequencies, propensities, or a believer’s

credences.

3In a similar spirit, Hannes Leitgeb and Richard Pettigrew (2010b; 2010a) have argued that
conformity to the axioms of probability results in minimizing expected inaccuracy of credence
functions.
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The second difference is that the approach focuses on the predictive accuracy

of chances, rather than on the closeness-to-the-truth of one’s credences. While

the former has to do with how accurately the predicted chances match possible

random outcomes of a given chancy process, the latter concerns the question

of how accurately credences represent a world. Moreover, I suggest to take the

former as a key to explain why chances are expert functions, while the latter is

often regarded as a mark of partial believers’ epistemic success.

The third difference worth emphasizing is that while the accuracy of cre-

dences is taken to be absolute, the predictive accuracy of chances defended here

is comparative. That is, whereas a credence is accurate if it is as close as possible

to the truth (ideally having the value 1 for the truth and 0 for the falsehood),

a chance is predictively accurate if there is no other chance that could match

better the possible outcomes (it can have an intermediate value, say 0.5, insofar

as no other chance could do better in reducing the distance to the truth about

these outcomes). According to this view, no threshold to be exceeded in reducing

this distance is required to call a chance predictively accurate. I argue that this

weak notion of predictive accuracy not only does justice to our intuitions about

chance, but more importantly it suffices to show that chance is a finitely additive

probability function.

The possibility of using a chance-credence principle to tackle the issue of

formal adequacy is perhaps mostly connected with David Lewis’s philosophy

of chance, launched in “A Subjectivist’s Guide to Objective Chance” (Lewis

1986). Lewis showed that his Principal Principle, though primarily concerning

the relationship between chance and credence, brings interesting consequences

for chance alone. One of those consequences is that chance is a finitely additive

probability function, and so satisfies formal adequacy. At the core of Lewis’s

argument lies a particular use of the Principal Principle, which defines chance

as a suitably objectified credence. As will be apparent in this chapter, this use

of the Principal Principle is controversial. Though the argument to be given

also appeals to the Principal Principle, it does not commit us to adopt Lewis’s

controversial move. Rather, the understanding of the Principal Principle that

inspires my argument is much closer to Lewis’s idea introduced in his “Humean

Supervenience Debugged” (Lewis 1994). In that paper, he advanced the idea that
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chance is whatever satisfies the Principal Principle. Elaborating on this idea, I

argue that chance is whatever plays the expert role codified by the Principal

Principle together with some other equally important roles.

Before I continue, let me say something more about why formal adequacy

appears to be an important condition on chance. Clearly, we require chance to

satisfy more than just the condition of formal adequacy. This is because objects

that can hardly be called chances also satisfy formal adequacy. For example, if the

surface of a table is divided into black and red measurable regions, the proportion

of black regions of the table satisfies Kolmogorov’s axioms of probability. But

we are far from calling this proportion a chance. However, formal adequacy

seems to place a substantive constraint on chance. Obviously, if chance does

not satisfy formal adequacy, then it is not an interpretation of a mathematical

concept of probability, but it is an interpretation of some other mathematical

formalism. More importantly, if chance satisfies formal adequacy, then we know

how to reason about it. For to reason about chance, we use axioms and theorems

of a given mathematical theory of probability. Thus, the language and rules of

a mathematical concept of probability transfer into the language and rules for

chances.

It also needs to be emphasized that, unlike the other chapters of this thesis,

this chapter uses the set operations ∩ and ∪. The reason for using these oper-

ations is that, in the framework to be developed in section 2.4, I give a fuller

understanding of the propositions over which the function ch and the credence

function are defined. That is, I will understand these propositions as certain

subsets of a set of possible worlds. Since the two functions are to be related by

means of the Principal Principle, I also use the set operations to formulate this

principle.

The structure of this chapter is as follows. Section 2.2 discusses in more detail

Lewis’s Principal Principle-centered argument for formal adequacy. Here I ex-

plain why I find this argument unsatisfactory and why I think the argument to be

defended is a viable alternative with none of the controversies surrounding Lewis’s

argument. Section 2.3 introduces and discusses the view that chance is whatever

plays the expert role codified in the Principal Principle. The discussion is em-

bedded in a more general account of chance called chance functionalism. Here I



30 CHAPTER 2. THE QUESTION OF FORMAL ADEQUACY

also explore a link between chance functionalism and Ramsey-Lewis method of

conceptual analysis in order to show how we can provide a functional definition of

chance. Section 2.4 provides a formal characterization of the real-valued function

that is required to fill the expert role given by the Principal Principle—the can-

didate chance function. Section 2.5 introduces and defends a necessary condition

for that function to fill the expert role. This condition is called weak predictive

accuracy. This section provides a precise formulation of the predictive accuracy

measure, and introduces a particular measure called the Brier score. This mea-

sure is then used to underpin the condition of weak predictive accuracy. Section

2.6 states the centrepiece of the argument: a theorem which shows that, relative

to the Brier score, any finitely additive candidate chance function is predictively

accurate in the weak sense. Section 2.7 provides motivation for using the Brier

score to measure predictive accuracy. Section 2.8 generalizes the theorem estab-

lished in section 2.6 by employing a scoring function represented as Bregman

divergence. Section 2.9 provides some suggestions on how the predictive accu-

racy as measured by the Brier score could incorporate a particular measure of

calibration between chance functions and relative frequencies. This in turn shows

that the predictive accuracy of a chance function could also reflect “nearness”

between a real-valued distribution it gives and the relative frequencies. Section

2.10 draws the pieces and concludes.

2.2 Lewis’s Argument for Formal Adequacy

This section expounds and examines Lewis’s argument for formal adequacy.

There are at least two reasons for doing this. First, Lewis’s argument is ar-

guably the first argument incorporating the thought that the Principal Principle

is a vehicle by which we could draw the conclusion that chance is a finitely ad-

ditive probability function. Second, by pointing out some serious shortcomings

of Lewis’s argument, I suggest how to reorient the use of the Principal Principle

in order to avoid these shortcomings and possibly to reach the conclusion that

chance is a finitely additive probability function.

Lewis (1986, p. 98) explored a particular formulation of the Principal Princi-

ple in order to reach the conclusion that chance is a finitely additive probability
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function. His argument can be presented as follows:

1. Given a finite partition of histories and complete theories of chance {Hi ∩
Ti}, the chance distribution at time t and world w over a family of proposi-

tions A, chtw, comes from any “reasonable initial credence function”4 over

A, cr, by conditionalizing on the member of the partition Hi∩Ti that holds

true at w. Formally, for any time t, world w ∈ Hi ∩ Ti, and proposition A

in the domain of chtw,

chtw(A) = cr(A|Hi ∩ Ti).

2. cr is a probability distribution.

3. Whatever comes by conditionalizing from a probability distribution is itself

a probability distribution.

4. Therefore, chtw is a probability distribution.

Premises 2 and 3 seem straightforward. Premise 2 might be justified by appealing

to Dutch book arguments (Ramsey 1931) or epistemic inaccuracy arguments

(Joyce 1998). Premise 3 is true, since any function updated by means of Bayes’s

rule is a conditional probability function. I will argue below that what makes

Lewis’s argument controversial is premise 1.

Premise 1 is a version of Lewis’s second formulation of the Principal Principle

called the Principal Principle Reformulated. What is striking about this principle

is that it is able to give a semantics for statements of the form “The chance

assignment over A is given by ch”. To show this, consider first the notion of

credence relativized to a partition {Hi∩Ti} which is a finite partition of histories

together with complete theories of chance (a history-theory partition), i.e. a finite

number of ways that the true determinant of A’s chance might be. It may be

defined as a random variable whose values are:

cr(A|H1 ∩ T1) if w ∈ H1 ∩ T1,

...,

4This is one’s hypothetical credence function prior to accumulating any evidence. For sim-
plicity, I will refer to it as one’s credence function, always keeping in mind its special meaning.
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cr(A|Hn ∩ Tn) if w ∈ Hn ∩ Tn.

Each such value may be called a version of the credence of A conditional on

{Hi ∩ Ti}.5 According to the Principal Principle Reformulated, in any world

w ∈ Hi ∩ Ti, a version cr(A|Hi ∩ Ti) gives the value of the chance of A which is

constant for such worlds. Lewis called such version the objectified credence, i.e.

the credence of an agent after her learning that the cell, Hi ∩ Ti, of the partition

holds true at w.

Importantly, each version or objectified credence gives truth conditions for

statements of the form “The chance assignment over A is given by ch”, which

can be abbreviated as Cch. That is, Cch ⇔ H1 ∩T1 ∪ ...∪Hn ∩Tn, for all Hi ∩Ti
such that cr(A|Hi ∩ Ti) = ch(A). Moreover, we have that

cr(A|Cch) = cr(A|H1 ∩ T1 ∪ ... ∪Hn ∩ Tn)

=
cr(A ∩ (H1 ∩ T1 ∪ ... ∪Hn ∩ Tn))

cr(H1 ∩ T1 ∪ ... ∪Hn ∩ Tn)

=

∑
i cr(A ∩Hi ∩ Ti)∑
i cr(Hi ∩ Ti)

=

∑
i cr(Hi ∩ Ti)cr(A|Hi ∩ Ti)∑

i cr(Hi ∩ Ti)

=

∑
i cr(Hi ∩ Ti)∑
i cr(Hi ∩ Ti)

ch(A)

= ch(A).

(2.1)

That is, the semantics for “The chance assignment over A is given by ch” given by

objectified credences leads us to a rough formulation of Lewis’s original Principle

Principle. According to this formulation, one’s credence in A conditional on Cch

should be set equal to ch(A).

The crucial question is whether objectified credence can always be identified

with the chance of A for worlds that are members of Hi ∩ Ti, as it is required

by the Principal Principle Reformulated. If this is not the case, then premise 1

should not be accepted, and so Lewis’s argument pales. In what follows, I give

5For a similar account of credence relative to a partition, see most notably Skyrms (1984;
1991) and Jeffrey (1983, chapter 12). According to Skyrms, it is an essential part of what he
calls a subjectivist or Bayesian theory of objective chance.
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four reasons for doubting the positive answer to this question.

The first reason for doubting premise 1 is that the Principal Principle Refor-

mulated commits us to accept the view that there might be no unique chance of A.

For two different reasonable initial credence functions may lead to two different

chances of A, even if they are conditioned on the same proposition Hi ∩ Ti. And

nothing in Lewis’s characterization of reasonable initial credence implies that it

is unique.6 While it is acceptable to believe that two chances of A conditional

on two different propositions may be different, it is hardly acceptable that two

chances of A conditional on the same proposition could differ. If we were to think

that one’s objectified credence is an estimate of the chance of A, we would rea-

sonably accept the view that two estimates of the chance of A conditional on the

same proposition could be different. But the Principal Principle Reformulated

does not say merely that one’s objectified credence in A is one’s estimate of A’s

chance: it says that this credence is the chance of A.

The next three reasons for doubting premise 1 concern Lewis’s own meta-

physical account of chance, to wit, his Humean or best-system theory of chance.

According to this theory, the value of A’s chance at time t and world w is fixed

by the global regularity of A’s coming out true, covered by a stochastic law of

the best system of truths about w (i.e. by a history-to-chance conditional in the

set Ti which is true at w), together with the history of A’s coming out true up

to t.

With this in mind, let me give the second reason against premise 1. Suppose

that given a history-theory partition {Hi∩Ti}, the value of A’s chance at w is fixed

by the version cr(A|Hi ∩ Ti), but given another coarser, yet equally legitimate

by Lewis’s own standards, partition {Hk ∩ Tk}, this value is fixed by the version

cr(A|Hk∩Tk) such that it disagrees with the former. Hence, the determination of

A’s chance also depends on what history-theory partition is assumed. But, then,

6According to Lewis (1986, p. 80), one’s initial credence “is to be reasonable in the sense
that if you started out with it as your initial credence function, and if you always learned
from experience by conditionalizing on your total evidence, then no matter what course of
experience you might undergo your beliefs would be reasonable for one who had undergone
that course of experience”. Moreover, even if, as Lewis assumes, one’s initial credence function
is a regular probability function, there is not just one way in which it can be so: there are
different ways in which such a credence function gives a non-negative, normalized, and finitely
additive assignment over some set of propositions.



34 CHAPTER 2. THE QUESTION OF FORMAL ADEQUACY

A’s chance so determined cannot be Humean, since it is fixed by something more

than just the stochastic law and the history. More generally, but relatedly, in his

“Postscripts” to “A Subjectivist Guide to Objective Chance”, Lewis formulated

certain conditions that any history-theory partition should satisfy, e.g. that a

partition must be natural, not gerrymandered, or that it should be feasible to

investigate which cell of that partition is true, and then concluded that there

seems to be no unique partition that satisfies them. So unless other conditions

are formulated, there are many competing partitions that are equally admissible.

For this reason, he noticed that objectified credences are more like counterfeit

chances that are “not the sort of thing we would want to find in our fundamental

physical theories” (Lewis 1986, p. 121).

The third reason concerns a peculiar feature of Humean chances, i.e. the fact

that the Humean chance at w of Hi∩Ti may not equal 1. That is, for any time t,

there is a small but non-zero chance that the determinant of A’s chance at w is

different than Hi ∩ Ti, and so ch(Hi ∩ Ti) 6= 1. This is because Humean chances,

understood as global regularities covered by stochastic laws of the best system of

truths, are counterfactually dependent on any future course of a world’s history,

even a future that undermines these chances. Just consider the following example.

Suppose that, at some initial time t at world w, Hi∩Ti says that ten independent

coin tosses will take place, and half of them will yield the result “heads”. So,

Hi∩Ti determines that ch(heads) = 1
2 . Suppose further that F is the proposition

about an undermining future which says that the coin will land heads on every

toss. We have that, at time t, ch(F ) > 0 (i.e. ch(F ) =
(

1
2

)10
= 0.0009765625).

Notice that F determines a different Humean chance for heads than ch, i.e.

ch′(heads) = 1, and so T ′i is true at w.7 But since the chance function ch gives

a non-zero chance to F , and thus to the possibility that T ′i is true at w, it must

assign to Hi ∩ Ti a chance different from 1.

With this peculiarity in mind, suppose that given a set U ∈ {Hi ∩ Ti}, which

is a disjoint union Hi1 ∩ Ti1 ∪ ... ∪ Him ∩ Tim , m ≤ n, we want to calculate at

w the credence cr(A|U). Since, as conditional probability, such credence can be

7For a more elaborate analysis of the problem of undermining futures, see Lewis (1994),
Ismael (1996), and Vranas (2002). This problem is also discussed in chapter 3.
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defined by the ratio formula, we can use the following equivalent product rule:

cr(A ∩ U) =
∑
m

cr(A|Him ∩ Tim)cr(Him ∩ Tim), (2.2)

where the credences, cr(Him ∩ Tim), are the weights assigned by an agent to

the disjoint members of U . Of course, after learning that a particular member

Him∩Tim holds true at w, the agent sets her weight assigned to Him∩Tim equal to

1 while her weights for the other members of U equal to 0. But the weights given

by the Humean chance at w may be different, due to the peculiarity mentioned

above. That is, such chance may assign a value to Him ∩ Tim , which is close

but not equal to 1, and some positive values to other members of U . Thus,

by equating objectified credences with Humean chances, we do not give enough

weight to some striking features of the metaphysics of Humean chances.

The fourth reason has been given by Carl Hoefer (2007). His main complaint

against premise 1 of Lewis’s argument is that the Principal Principle Reformu-

lated gives a misleading picture of Humean chance in saying that the source of

Humean chance at a given world is one’s credence function. It is misleading be-

cause such a chance is rooted in the global regularity among categorical properties

covered by stochastic laws of the best system of truths, not in one’s credence,

however constrained or objectified. It is true that one’s credence about A, after

enough objectification, may be equal to the Humean chance of A, but it is not

clear-cut, and actually doubtful, that such credence is ontologically on a par with

the Humean chance. Without a sufficient reason, one cannot simply take the se-

mantics for chance statements given by objectified credences as dictating to the

metaphysics of A’s Humean chance.

What I have shown above is that we have good reasons to doubt Lewis’s

Principal Principle-centered argument for chance’s formal adequacy. Although

the argument to be given in this chapter hinges on the Principal Principal, it

dispenses with its problematic reading given by the Principal Principle Reformu-

lated, and fastens on the idea that the Principal Principle is an essential part

of an account of chance which I call chance functionalism. The view to be de-

veloped is that it is constitutive to chance that it should be an expert function,

and the Principal Principle is just one way to express this idea. And if chance
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is whatever satisfies the Principal Principle or, equivalently, whatever plays the

expert role, we stay neutral as to whether objectified credence is really a chance.

Perhaps it is once we show that it satisfies the Principal Principle. But it is

equally possible that other things, usually claimed to be chances like propensi-

ties, frequencies or Humean best-system chances, satisfy the Principal Principle

equally well. One important point about chance functionalism is that it allows

for there being multiple satisfiers of the Principal Principle. Thus, by reorienting

our understanding of the Principal Principle, we avoid the problematic claim that

chance is an objectified credence.

2.3 The Principal Principle and Chance Func-

tionalism

Lewis’s Principal Principle connects chance with an agent’s credence. But in

doing so, the Principal Principle may be viewed as playing at least a twofold

role. Its first role is to provide a principle of rationality for an agent’s credence

function. That is, the Principal Principle normatively requires the agent to set

her credence about a proposition in accordance with the proposition’s chance,

given that the agent’s evidence is admissible.

The second role of the Principal Principle is to put a requirement on any

candidate for chance. According to Lewis (1994), chance is what satisfies the

Principal Principle and thus any feature of reality that aspires to be chance must

satisfy this principle. Lewis put this as follows:

Don’t call any alleged feature of reality “chance” unless you’ve already shown

that you have something, knowledge of which could constrain rational credence.

(Lewis 1994, p. 484)

To be clear, by highlighting this role of the Principal Principle Lewis suggested

to think of chance as follows: take any feature of reality which you think can play

the role of chance, whether it be a frequency, symmetry, propensity, or Humean

best-system chance. But to be called chance properly, this feature must be a

thing that would, if known, constrain an agent’s credence.

Lewis’s Principal Principle-centered view about chance can be make more

precise as follows. Let ch be a real-valued function over a family of propositions
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A, which assigns to any proposition A in A a chance—a number in [0, 1]. Think of

the function ch as representing a candidate for chance, e.g. frequency, strength

of propensity, or Humean best-system chance. Assume that cr is an agent’s

credence function over A assigning credences—numbers in [0, 1]. Let Cch be the

proposition that the chance assignment over A is given by ch, and assume that

cr(Cch) > 0.8 Then:

Chance: The function ch is chance if for all propositions A ∈ A,

cr(A|E ∩ Cch) = ch(A),

providing that evidence E is admissible with respect to Cch.

In other words, any candidate for chance codified by the function ch is required

to play the role of an expert function whose expert assignment over A constrains

one’s credence function over A, provided that one has admissible evidence.9 And

evidence E is admissible with respect to Cch if it gives no information about the

truth of each A that does not go through the chance of A. We say that such

evidence is screened off by chance.

Importantly, Lewis took the expert role given by his Principal Principle to be

a condition for any adequate theory of chance, including his Humean theory of

chance:

If Humean Supervenience is true, then contingent truths about chance are in the

same boat as all other contingent truths: they must be made true, somehow,

by the spatiotemporal arrangement of local qualities. How might this be? Any

satisfactory answer must meet a severe test. The Principal Principle requires that

the chancemaking pattern in the arrangement of qualities must be something that

would, if known, correspondingly constrain rational credence. Whatever makes

it true that the chance of decay is 50% must also, if known, make it rational to

believe to degree 50% that decay will occur. (Lewis 1994, p. 476)

I propose to think of Lewis’s account as a functional account of chance (hereafter,

chance functionalism). Broadly speaking, this is the view that chance is, first

8One of Lewis’s assumptions is that chance is time-dependent, and so the proposition about
chance should be written as Ccht . For the purposes of this chapter, I dispense with this
assumption, for nothing to be presented here essentially hinges on it.

9For the classical account of experts, see Gaifman (1988). Like Gaifman, I understand the
term “expert” very broadly, so that an expert may be a person, a stochastic theory yielding
chance, or even a mechanical device, e.g. a thermometer.
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and foremost, constituted in terms of its functional roles. As it is easy to see,

Lewis suggests a particular sort of chance functionalism, since he defines only one

role of chance, namely its expert role.

Could there be other roles that chance should play? As it has been shown

in chapter 1, on a closely related view defended in Schaffer (2007), the answer is

in the affirmative. Recall that Schaffer argues that chance is what chance does,

and a given probability function is chance if it plays not only the expert role. In

addition, to count as chance a probability function should play the roles described

by principles that connect chance to possibility, lawhood, futurity, intrinsicness,

and causation. For example, chance is whatever grounds realizing possibilities:

if there is a non-zero chance that my ticket wins a lottery and the proposition

that my ticket wins the lottery is true, then there is a possible world in which

the ticket wins that lottery; this chance is said to be grounded by that world and

not grounded by a possible world in which the ticket wins some other lottery.

Although I follow Lewis in claiming that the Principal Principle captures a

central function of chance, I take it, pace Lewis, that the expert role given by the

Principal Principle is not the only role that chance should play. Like Schaffer, I

take it that chance is whatever plays the expert role together with some other

roles. To the chance roles defined by Schaffer, let me add the chance roles codified

in the following, fairly intuitive principles:

Explanatory Role: The chance of some proposition A should help

explain the frequency with which A comes out true in a sequence of

trials conducted on some experimental set-up.

Frequency Connection: The frequency with which A comes out

true in a sequence of trials conducted on some experimental set-up

provides evidence for the chance of this set-up resulting in A.

Frequency Tolerance: In any finite sequence of trials on some ex-

perimental set-up, no matter how long, the frequency with which A

comes out true in that sequence may diverge from the chance of that

set-up resulting in A.

It is important, however, to emphasize one point of disagreement between Schaf-

fer’s chance functionalism and the version of chance functionalism defended here.
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Unlike Schaffer, I do not assume that whatever plays these chance roles is al-

ready a probability function, and hence satisfies formal adequacy. Instead, my

goal in this chapter is to show that formal adequacy follows from these chance

roles. Specifically, I explore one particular chance role—the expert role—and

show that whatever plays this chance role must also be formally adequate.

Continuing to chance functionalism itself, let me characterize some of its

salient features. The first important feature is that, like many other types of

functionalism (e.g. about the mental, colours or moral concepts), chance func-

tionalism lends support for the multiple realizability or satisfiability thesis. The

thesis says that there are multiple satisfiers of the chance roles. So, for example, a

coin’s 50% chance of landing heads on a trial may be realized by the coin’s causal

tendency or propensity to produce heads and tails, or by symmetries inherent to

the coin’s constitution, or by certain frequencies of heads and tails in a sequence

of tosses of this coin. And, what determines whether those potential realizations

are chances is not that they have certain intrinsic features, e.g. are frequencies or

propensities of a certain sort, but whether they fill the chance roles, e.g. whether

they constrain rational credence in the manner prescribed by the Principal Princi-

ple. In other words, once we accept the multiple realizability/satisfiability thesis,

the temptation to think of chance as reducible to only one sort of satisfier loses

its allure; as far as the functional role is concerned it is left open what the nature

of the occupants of this role is.

The second feature worth mentioning is that our functional analysis of chance

tells us what is required for having a mastery of the concept of chance, and as

such is still silent on whether we can provide a functional definition of chance.

But this possibility is not blocked. In what follows, I explore the well-known

Ramsey-Lewis method for construing functional definitions.10 This method has

become a standard way of defining terms for functionalists of all varieties.

Consider the following sentence:

(F) Chance constrains credence, and chance explains relative frequencies, and

chance fits a lawfully projected quantity, and ...

This sentence is a conjunction of sentences expressing various roles played by

10For a presentation of this method, see Lewis (1970).
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chance. Now, we “Ramseify” (F) by replacing every “chance” in it by a variable

φ, so that we obtain the following sentence:

(FR) (∃φ)(φ constrains credence, and φ explains relative frequencies, and φ fits

a lawfully projected quantity, and...)

Next, we can use (FR) to define what is for chance to be assigned to an event:

(D) For any event e, we assign chance to e = (∃φ)(φ constrains credence in e,

and φ explains relative frequencies with which e occurs, and φ fits a lawfully

projected quantity assigned to e, and...) and we assign φ to e.

Essentially, this definition says that we assign chance to some event just in case

there is some variable φ that fills those various roles specified by (F). From this

perspective, the question of what entities in the world satisfy those chance roles

is not important. Moreover, it might likely be that many different entities satisfy

those roles. If so, the functionalist would count any of them as chance.

Before closing this section, let me briefly compare chance functionalism with

the analyses of chance given by frequency and propensity theories. As indicated in

chapter 1, these theories aim at analysing the concept of chance in terms of more

fundamental or base concepts. Recall that various frequency theorists of chance

identify chance with either actual finite relative frequency (Venn 1866), limiting

relative frequency (Reichenbach 1949; von Mises 1957), or with hypothetical lim-

iting relative frequency (Kyburg 1974; van Fraassen 1979) of the occurrences of

some event in a certain reference class. Similarly, various Humean best-system

theories of chance gives an analysis of the concept of chance in terms of regular-

ities posited in stochastic laws of the best-system of truths, i.e. a system that

receives the optimal balance between fit, informativeness, and simplicity. Propen-

sity theorists postulate that a different kind of property may be used to analyse

chance, to wit, disposition, propensity, or causal tendency. And it is typically

taken to be a property of some experimental system to produce long-run relative

frequencies, or to produce outcomes on a single trial.

In contrast to the theories of chance given above, the version of chance func-

tionalism just given does not purport to provide an analysis of the concept of

chance in terms of some more fundamental or graspable vocabulary. In partic-

ular, it does not identify chance with some specific property of an experimental
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system. There is also good reason to think that chance functionalism is a viable

alternative to such theories of chance. For there are serious reasons to doubt

whether an analysis of chance either in terms of propensities or frequencies can

succeed (Hájek 1996, 2009; Eagle 2004), and chance functionalism simply by-

passes all the familiar charges against such theories.

Given chance functionalism, how should one tackle the question of formal

adequacy? There seems to be at least two strategies. First, one may add the

condition of formal adequacy to the list of chance roles, and argue that chance

is whatever satisfies this condition. As suggested above, this strategy has been

employed by Schaffer. Second, one may try to show that formal adequacy follows

from some or all of the other chance roles. In this chapter, I employ a version

of the second strategy. In the next sections, I will show that whatever plays

the expert role given by the Principal Principle must also be a finitely additive

probability function.

2.4 The Candidate for Chance

In this section, I characterize more precisely the real-valued function ch that

is required to fill the expert role codified by the Principal Principle. Here this

function is regarded as an abbreviated description of a candidate for chance,

i.e. any function that is required to satisfy the Principal Principle, or simply a

candidate chance function. I introduce a framework which remains neutral as

to whether this function represents a measure of propensity, relative frequency,

or Humean (best-system) chance. I also argue that this framework is able to

encompass both reductive and non-reductive metaphysical theories of chance.

Roughly stated, while the former takes facts about chances to be reducible to

some non-modal facts, the latter takes facts about chances to be ontologically on

a par with these non-modal facts.

To start with, let a single outcome of some chancy process (e.g. tossing a

coin) at time t, t = 1, ..., N , be denoted by the variable at taking one of the

values in the set {0, 1}, where 1 indicates that an outcome occurs and 0 that it

does not. Denote by {0, 1} the set of all possible outcomes at at a given time t.

Now consider w = a1a2...aN , which is a finite N -long binary sequence consisting
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of time-indexed outcomes at, say a sequence of heads and tails in the coin tossing

up to and including time t = N . For example, if 1 stands for “heads” and 0

for “tails”, then the ordered sequence w4 = 〈1100〉 indicates the fact that on the

first two tosses the coin landed heads and on the next two tails. Let WN be the

set of all N -long binary sequences of time-indexed outcomes; it is the Cartesian

product of N copies of {0, 1}. The set WN has 2N elements. We will think of

the sequences w as possible worlds in a logical space WN .

We may now define sets withinWN called cylinder sets. The basic category of

cylinder sets in WN are the propositions denoted by Aat . Each such proposition

is a set of all those sequences or worlds w that agree on the outcome a at time t

for some t-th element w(t) in a sequence w. More precisely:

Aat =
{
w ∈ WN : w(t) = a

}
. (2.3)

So, for example, the proposition A1
4 means that at time t = 4 the outcome is

a = 1, and is identified with all those worlds w in which at time t = 4 the

outcome a = 1 occurs, that is, A1
4 = {w : w(4) = 1}. Bear in mind that what

happens before and after time t = 4 is irrelevant to identifying these sets at time

t = 4, that is, before and after t = 4 these worlds may exhibit a different sequence

of outcomes.

There is also a special category of propositions that can be defined as cylinder

sets in our framework. These are the historical propositions that specify the

“complete” history of outcomes up to some time t. We denote these propositions

by H
〈a1...at〉
t , where 〈a1...at〉 refers to some finite history of outcomes up to time

t, t < N . We define H
〈a1...at〉
t as sets of worlds in WN that for any time t′ ≤ t

share the finite sequence of outcomes 〈a1...at〉 whose t-th element is denoted by

w(t). More precisely:

H
〈a1...at〉
t =

{
w ∈ WN : ∀t′ ≤ t (w(t′) = at′)

}
. (2.4)

For example, consider the historical proposition H
〈11〉
2 at time t = 2 characterized

by the finite sequence of outcomes 〈11〉. On our account, this proposition is

identified with the set of worlds w ∈ WN in which, for t = 1 and t = 2, w(t1) = 1

and w(t2) = 1. In due course I will omit, when unnecessary, the reference to a



2.4. THE CANDIDATE FOR CHANCE 43

and 〈a1...at〉 in Aat and H
〈a1...at〉
t respectively, writing just At and Ht.

Each Ht can be understood as intersections of the sets At′ . More generally:

Ht =

t⋂
t′=1

At′ . (2.5)

We take it that each history Ht up to some time t is extendable by adding

propositions specifying subsequent outcomes At+1, thus Ht+1 = Ht ∩At+1. This

means, in fact, that after each extension by At+1, each previous history Ht is

narrowed down to the smaller set, Ht+1 ( Ht ( Ht−1.

We can also make sense of propositions in WN that describe global histories,

i.e. past, present, and future history of outcomes. Each such proposition, denoted

by HN , is given by:

HN =

N⋂
t=1

At. (2.6)

Let A be a finite algebra generated by the cylinder sets Aat inWN . This is the

smallest algebra containing the cylinder sets inWN .11 We can define the function

is required to fill the expert role as a set function ch over A, ch : A → [0, 1].

It follows that the function ch : A → [0, 1] uniquely determines the function

ch :WN → [0, 1], i.e. the chance function over all the elements (“thin” cylinders)

ofWN . This is a function defined over the most fine-grained partition ofWN , i.e.

the set of all singleton propositions {w} for w ∈ WN . Does the converse hold?

Can we say that the function ch : WN → [0, 1] is uniquely extendible to all the

subsets of WN? A positive answer to this question would require the following

to hold:

∀At ⊂ WN : ch(At) =
∑
w∈At

ch({w}). (2.7)

However, there is reason to suspect that condition (2.7) does not hold until the

formal adequacy of ch is established. For it requires finite additivity to hold, and

we do not know yet whether or not ch is finitely additive. As we will see later

on, the function ch :WN → [0, 1] plays a crucial role in providing a geometrical

11The algebra A over WN is a set of subsets of WN that contains WN , ∅, and is closed
under complementation and union, i.e (i) if At ∈ A, then WN −At ∈ A and (ii) if At, Bt ∈ A,
then At ∪Bt ∈ A.
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representation of ch which is needed for making the talk of “distances” between

chance distributions and the truth-value distributions graspable. For this reason

it seems prudent first to address the question of formal adequacy of the func-

tion ch : WN → [0, 1]. Once its formal adequacy is established, one can easily

generalize it into the function ch : A → [0, 1] by using (2.7).

As advertised at the beginning of this section, the framework just described is

capable of representing both reductive and non-reductive metaphysical accounts

of chance. A reductionist about chance holds that chances are reducible to certain

other, metaphysically prior non-modal features of the world. A non-reductionist

about chance holds that they are not: that, ontologically, chances are on a par

with other non-modal features of the world. Recall that within our framework,

a set of these non-modal features at a given time t is given by the set {0, 1},
that is, the set of chancy outcomes. But how should these non-modal features be

understood? Lewis (1994), for example, characterised them as perfectly natural

properties (non-gerrymandered), possessed intrinsically by space-time points or

occupants thereof. Whether or not we accept this characterization, we should

keep in mind that what matters for a reductionist about chance is that these

properties cannot involve chances, dispositions, or causal tendencies.

Now, suppose that the function ch : A → [0, 1] represents a feature of the

world that is reducible to these non-modal features. For concreteness, let’s focus

on one stripe of reductionism about chance, namely on Lewis’s Humean theory

of chance. Let Cch be the proposition that the real-valued assignment over WN

is given by the function ch. Cch is true at a world w if and only if ch = chw.

That is, Cch is true at those worlds at which the function ch and chw give

the same real-valued assignment over the singleton propositions {w} in WN .

In every such world, Humean chance function ch is identical with the function

chw, which is the so-called initial or ur -chance function at w, i.e. the chance

function at the beginning of w’s history. What are the worlds at which Cch is

true? The answer to this question is provided by the metaphysical doctrine of

Humean Supervenience (HS). In general, HS states that modal concepts such

as laws of nature, dispositions, counterfactuals, causation, or chances supervene

on the global histories of non-modal properties. Applied to chances, HS can be

formulated within the framework given above as follows:
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HSchance: For any worlds w and w′ in WN , if w and w′ have the

same global (past, present, and future) histories of chancy outcomes,

then w and w′ have the same chance function ch.

For example, suppose that at worlds w and w′ some chancy process takes place

and instantiates, on each of its ten trials, one of the two possible non-modal

properties denoted by 0 or 1. Suppose that the pattern of these instances is the

same at these worlds, i.e. w and w′ ∈ HN . By the HSchance, the worlds have the

same ch. Given that a summary of the pattern is a theorem of the best system

of truths, ch is fixed, at each of these worlds, by the same T , which is a set of

history-to-chance conditionals that are true at w and w′. These conditionals have

the status of stochastic laws of the best-system theory for w and w′, i.e. the best

summary of the true pattern at w and w′. Lewis characterised them as follows:

(1) The consequent is a proposition about chance at a certain time. (2) The

antecedent is a proposition about history up to that time; and further, it is a

complete proposition about history up to that time, so that it either implies or

else is incompatible with any other proposition about history up to that time.

It fully specifies a segment, up to the given time, of some possible course of

history. (3) The conditional is made from its consequent and antecedent not

truth-functionally, but rather by means of a strong conditional operation of some

sort. (Lewis 1986, p. 94)

Further, the chance function at time t, cht, comes from the chance function ch

by conditionalizing on the history up to t, Ht; more precisely:

cht(−) = ch(−|Ht). (2.8)

Therefore, cht is always fixed by the history Ht at t and the stochastic laws in T .

Importantly, once ch is shown to be formally adequate, cht must also be formally

adequate. Since cht comes from ch by conditionalizing on the history, formal

adequacy is “carried over” to it from ch.

But the function ch :WN → [0, 1] might well represent a feature of the world

that is not reducible to the non-modal features. Non-reductionists about chance,

most notably propensity theorists, reject HSchance and claim that different chance

distributions could give rise to the same global history of chancy outcomes. That

is, chance distributions do not depend ontologically on such histories. At best,
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such histories provide evidence for these chance distributions.

2.5 Playing the Expert Role: A Necessary Con-

dition

It seems rather uncontroversial to say that if a theory or a person is an expert

for you, it will be incoherent if you also believed that this theory or person is

not reliable. In this section, I argue in a similar spirit that if the function ch is

as an expert for you, it must be the case that you believe it to be predictively

accurate in some definite way. More specifically, it is shown that the agent sets

her credence function overWN equal to a real-valued assignment overWN given

by ch if she believes that ch is weakly predictively accurate, i.e. it is such that

there is no other function ch′ over WN , known to her, that could match better

all the possible truth-value distributions over WN . Although the condition of

weak predictive accuracy may not suffice to play the expert role, it is argued

that it is necessary to play this role. It is shown that for ch to not ruin a priori

the possibility of being an expert function, it must satisfy the condition of weak

predictive accuracy. For if this function does not satisfy this condition, there is

an epistemic sense in which your credences over WN fixed by that function can

be “outperformed” by credences fixed by some other candidate chance function

that you might adopt instead.

This section is organized as follows. First, I explain what it means when we

say that the function ch matches a possible truth-value distribution over WN .

In so doing, the notion of ch’s predictive accuracy is introduced and explained.

Second, I introduce the notion of weak predictive accuracy, and show why it

is a necessary condition for ch to play the expert role. Third, I show why the

condition of weak predictive accuracy in the case of chances is superior over other

two intuitive conditions that might be formulated in terms of predictive accuracy.

2.5.1 Chance and Predictive Accuracy: Brier Score

For each time t, the set WN contains singleton propositions describing possible

outcomes of a chancy process. Given that the truth-value distributions over these
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propositions fully characterize the possible worlds inWN , we can ask how well the

predicted values given by ch match these truth-value distributions. The extent to

which the values predicted by ch accord with a given truth-value distribution at

w will be called ch’s predictive accuracy at w. I take the predictive accuracy of ch

to be a measurable property. Mathematically, a measure of predictive accuracy

is a function of ch and w whose value indicates how much ch diverges from w. I

will refer to this measure as a scoring function.

Due to its pivotal role in my argument, let me describe the scoring function

more precisely. If C is a finite set of candidate chance functions over WN and

WN is a set of possible worlds, then our scoring function may be defined as a

real-valued function S :WN × C → R which, for each pair (w, ch) of ch ∈ C and

w ∈ WN , gives the predictive accuracy score S(w, ch). This score measures ch’s

predictive accuracy at w, which is the extent to which it diverges from the world

w. If S(w, ch) < S(w, ch′), we say that ch is less divergent from the world w

than ch′, and thus is more predictively accurate at w than ch′.

Our scoring function S may be also characterized as follows. Given the char-

acteristic function vw of w, i.e. a function such that for each {wj} in WN ,

vw({wj}) =

1 if w ∈ {wj} ,

0 if w /∈ {wj} ,
(2.9)

and the value ch({wj}) ∈ [0, 1] for each singleton proposition {wj}, let s : {0, 1}×
[0, 1]→ R be a scoring rule. Then, our scoring function is given by

S(w, ch) =

2N∑
j=1

s
(
vw({wj}), ch({wj})

)
. (2.10)

That is, whereas s
(
vw({wj}), ch({wj})

)
measures how the individual chance,

ch({wj}), diverges from the individual truth value, S(w, ch) measures how the

whole function ch overWN diverges from the whole truth-value distribution over

WN . We say that S(w, ch) is generated by the scoring rule s.

But how could the predictive accuracy score be calculated? From now on, I

confine my attention to a particular predictive accuracy score called the Brier
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score:12

Brier Score: Suppose that S : WN × C → R is a scoring function

for each pair (w, ch). Then, S(w, ch) is said to be the Brier score if

and only if for any world w ∈ WN and any ch ∈ C,

S(w, ch) =
1

|WN |

2N∑
j=1

(
vw({wj})− ch({wj})

)2

,

where
∣∣WN

∣∣ stands for the number of elements in WN .

The Brier score thus construed gives a score in the form of a sum of squares of

distances between the characteristic function vw({wj}) of a singleton proposition

{wj} in a world w and the value ch({wj}) assigned to this proposition, given an

equal weight 1
|WN | assigned to every world w ∈ WN .

Proceeding more geometrico, each world w ∈ WN whereWN = {w1, ..., w2N },
can be represented by the 2N -vector of truth values δw having entries vw({wj}) =

1 if w ∈ {wj} and 0 otherwise. The vector δw represents the truth-value distri-

bution over the propositions {w1}, ..., {w2N } if the world w ∈ WN is actual. This

vector has 1 at its jth place and 0 everywhere else if and only if the proposition

{wj} is true in the world w.

Likewise, the function ch over WN can be represented by a vector c =

(ch({w1}), ..., ch({w2N })). The vector c represents the candidate chance distribu-

tion over all the singleton propositions {w} for w ∈ WN . Since we do not know

yet whether ch is formally adequate, we cannot say whether
∑2N

j=1 ch({wj}) = 1.

Once the possible worlds and candidate chance functions are positioned as

vectors in the 2N -dimensional Euclidean space, we can determine distances be-

tween them. Let ‖δw − c‖ be the Euclidean distance between any two vectors wi

and ch. Such Euclidean distance is always a non-negative quantity defined given

by:

‖δw−c‖ =

√
(vw({w1})− ch({w1}))2

+ ...+ (vw({w2N })− ch({w2N }))2. (2.11)

12The Brier score—a particular sort of quadratic scoring rule—is named after Glenn Brier
(1950), who developed it to measure the accuracy of probabilistic weather forecasts.
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The divergence of ch from a world wi, then, may be represented as a distance

thus construed. If the distance of c from δw is lesser than the distance of c′ from

δw, we say that ch is more predictively accurate than ch′. More precisely, for any

ch, ch′ and a world wi:

S(w, ch) < S(w, ch′) ⇐⇒ ‖δw − c‖ < ‖δw − c′‖, (2.12)

where |wi − ch| and |wi − ch′| stand for Euclidean distances. Within our geo-

metrical representation, the Brier score may be defined as the squared Euclidean

distance:

S(w, ch) = ‖δw − c‖2. (2.13)

It is natural to ask whether there are some special reasons that led me to

adopt the Brier score rather than some other measure of predictive accuracy.

This is an important issue, for it might be claimed that the whole argument is

essentially Brier scoring rule-dependent and thus we need a justification of why

this scoring rule is suitable for the task of measuring the predictive accuracy

of candidate chance functions. Since my answer to this question involves a few

subtle points, I shall postpone it until section 2.7.

2.5.2 Weak Predictive Accuracy and the Expert Role

Suppose that epistemic rationality requires an agent to approximate an “epistem-

ically ideal” credence function over the singleton propositions in WN . Given a

possible world w, the “epistemically ideal” credence function at w is the one that

assigns maximal credence, i.e. 1, to propositions that are true at w and minimal

credence, i.e. 0, to propositions that are false at w. Thus, for each w ∈ WN ,

such credence function is the characteristic function vw at w. Many philosophers

have argued that proximity to the “epistemically ideal credence” function is a

fundamental requirement of epistemic rationality for the agent’s credence func-

tion (see, e.g. Joyce 1998, 2009; Pettigrew 2013b). And even if there are other

requirements of epistemic rationality, there are good reasons to believe that they

are consistent with this fundamental requirement.13

13For example, as argued in Pettigrew (2013b), the goal of proximity to the “epistemically
ideal credence” and the goal of matching one’s credences with one’s evidence are not only
compatible, but may lead to the same norms for credences.
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It seems natural to think that the agent will pursue the goal of approximating

such epistemically ideal credence function by adopting the credence function that

is best justified in the light of her evidence, including evidence about chances.

Let me use the following personification for heuristic purposes. Suppose that the

agent has at her disposal a whole “panel” of functions that are the candidate

expert functions concerning WN . We assume that information given by these

functions is the only relevant information about the propositions’ truth values.

Let this “panel” be represented by a set C. Assume also that the agent has

no inadmissible evidence. In particular, she does not possess a crystal ball-like

evidence that predicts correctly the truth values of all the propositions in WN .

With these assumptions in mind, the question arises: what is required for any

function ch in C to count as an expert concerning WN for the agent’s credence

function?

My answer is that ch must satisfy some condition whereby it deserves, by the

agent’s lights, the status of expert. That is, our agent would set her credence

function equal to the function ch in C if she knew that ch satisfies that condition.

Following Hall (2004, pp. 102-104), we can make this point more precise. Let

the agent’s admissible evidence E be the proposition that ch meets the required

condition, and let Cch be the proposition that the real-valued assignment over

WN is given by ch. Then, for all singleton propositions in WN ,

cr({w}|E ∩ Cch) = ch({w}|E), (2.14)

which is equivalent to the PP, if ch is “certain” that it satisfies the required

condition E, i.e. that ch(E) = 1.

But what could this condition be? By the agent’s lights, it must be a condition

whose satisfaction is necessary for ch to generate a rational credence function

as defined by the agent’s epistemic rationality. This, in fact, means that by

satisfying this condition the chance function (i) generates a credence function

which approximates the epistemically ideal credence function, and (ii) makes

the agent’s credence function resilient in the following sense: once the agent’s

credence function is set equal to ch, she is not epistemically compelled to move

to some other ch′ in C, which is known to her, on pain of violating epistemic
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rationality. What is important is that we can reveal such a condition when we

focus on ch’s predictive accuracy. Obviously, not any kind of ch’s predictive

accuracy would be suitable for this task. If some proposition {w} happens to

be true at a world w and ch assigns to it a very low value, then it is hardly

informative about the proposition’s truth values at w. Here the normative force

of the injunction to move to some other chance distribution, say ch′, will be

quite strong. But what I call the weak predictive accuracy is perfectly suitable

to be such a necessary condition. One may state this condition, more precisely,

as follows:

Weak Predictive Accuracy: Suppose that S(w, ch) is the Brier

score. Then, ch ∈ C is said to be weakly predictively accurate if and

only if there is no other ch′ ∈ C such that for all w ∈ WN ,

S(w, ch′) ≤ S(w, ch).

In other words, ch is weakly predictively accurate just in case there is no other ch′

in C that could have a better score of predictive accuracy in every possible world.

Here the operating idea is that no matter which world turns out to be actual, ch

must be such that no other ch′ could outperform it in reducing the distance to

all the possible worlds. The weak predictive accuracy of ch so construed assures

that there is no other chance function, known to the agent, that could be a better

guide to the truth. That is, there is no other chance among the “panellists” that

could be more informative about the truth values of propositions over which the

agent’s credences are distributed. Hence, the agent who adjusts her credence

function to such a chance function would maximize its closeness to the truth,

and would not be compelled to move to some other chance function, on pain of

epistemic irrationality.

To make this point more vivid, suppose that (i) there are two singleton

propositions {w1} and {w2}, (ii) there are three candidate chance functions ch1,

ch2, and ch3 in C, whose predictions are represented by three different vectors

ch1 =
(

1
4 ,

1
4

)
, ch2 =

(
1
2 ,

1
2

)
, and ch3 = (1, 0), (iii) there are two possible worlds

w1 and w2 that might be represented by two vectors δw1
= (1, 0) and δw2

= (0, 1)

respectively, and (iv) for each ch ∈ C and w ∈ WN , the Brier score gives the
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Table 2.1: An Example of the Brier Scores for Chances

ch {w1} {w2} S(w1, ch) S(w2, ch)

ch1
1
4

1
4

5
16

5
16

ch2
1
2

1
2

1
4

1
4

ch3 1 0 0 1

score S(w, ch) = 1
2

(
vw({w1}) − ch({w1})

)2

+
(
vw({w2}) − ch({w2})

)2

. Table

2.1 summarizes the results of assessing the predictive accuracy of our three can-

didate chance functions. Could ch1 be an expert function? Given that it is

outperformed by ch2 in both w1 and w2, it would generate a credence function

which does not maximize the closeness to the truth, and it would make the agent

epistemically compelled to move to some other “panellist”. Consequently, it can-

not constrain the agent’s credence, on pain of epistemic irrationality. In this

example, only ch2 and ch3 are weakly predictively accurate because there is no

other function that could outperform them in w1 and w2. Thus, by the agent’s

light, they both deserve the status of expert.

2.5.3 Other Notions of Predictive Accuracy

Could considerations concerning the predictive accuracy of chance reveal other

conditions whose satisfaction might be required to play the expert role? Two such

conditions are worth noticing. The first condition may be called the Laplacean

predictive accuracy. We say that ch is Laplacean predictively accurate just in case

ch is the actual truth-value distribution over WN . I call this notion of predictive

accuracy Laplacean, for it bears a close resemblance to Pierre Laplace’s idea,

famously articulated in “A Philosophical Essay on Probabilities”:

Given for one instant an intelligence which could comprehend all the forces by

which nature is animated and the respective situation of the beings who compose

it—an intelligence sufficiently vast to submit these data to analysis—it would

embrace in the same formula the movements of the greatest bodies of the universe



2.5. PLAYING THE EXPERT ROLE: A NECESSARY CONDITION 53

and those of the lightest atom; for it, nothing would be uncertain and the future,

and the past, would be present to its eyes. (Laplace 1951, p. 4)

To put it somewhat anthropomorphically, ch is Laplacean predictively accurate if

and only if it can be portrayed as Laplace’s demon, i.e. it “knows” which one of

the possible worlds is actual. On this account, chance is always an “opinionated”

expert with categorical predictions that might be represented numerically by the

truth values 0 and 1. Moreover, it is an “opinionated” expert whose categorical

predictions, together with the background assumptions, deductively entail the

truth or falsehood of a given proposition. Since it knows in advance which of

the possible worlds is actual, it makes no sense to speak about the distance be-

tween its predictions and the possible truth-value distributions. Though initially

attractive, it seems to be too strong a condition for counting ch as expert. Many

well-confirmed stochastic theories (e.g. population genetics in biology) deserve to

be called experts, even though their predictions confer on the propositions some

non-extreme values from the unit interval of real numbers. We do not discard

such theories as experts just because they cannot tell us what will happen for

sure. So a stochastic model of the evolution of some population may be a good

predictor of a change in trait frequency, even though at the micro-physical level

this process is purely deterministic.

Another important problem facing this condition is that it construes the no-

tion of predictive accuracy in an absolute manner. That is, it holds that to be

predictively accurate chance must reach some threshold in reducing the distance

to the truth. But once we agreed that the threshold given by the truth values

of a proposition is not applicable to chances, there seems to be no non-arbitrary

way to say what the threshold should be. The notion of weak predictive accuracy

avoids this problem because it is couched in a comparative way. We ask when a

chance is predictively accurate when compared to other chances.

The second condition may be called the strong predictive accuracy. We say

that ch is strongly predictively accurate just in case ch matches all possible

truth values of the propositions in WN better than any other ch′ in C. Unlike

the condition of Laplecean predictive accuracy, this condition is construed in

a comparative manner and thus avoids the pitfalls of the absolute reading of

predictive accuracy. Moreover, this condition is more liberal than the Laplacean
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one. For a chance that assigns to propositions in its domain some non-extreme

values from the unit interval of real numbers may be regarded as an expert. The

only condition is that it must be the best chance in reducing the distance from

all possible worlds, i.e. it must yield a prediction that is closest to all possible

worlds. Of course, to be philosophically significant, this condition must specify

whether “best” refers to “actually best” or maybe to “possibly best”. But even

if this issue is solved, there is another and more serious wrinkle that besets this

condition. It is perfectly possible that for any set containing the purported expert

chances, there might be no chance that outperforms all the others in reducing the

distance from all possible worlds. This may be due to the infamous problem of

underdetermination of theories by evidence. The condition of strong predictive

accuracy implies that unless some other criteria determining our choice of these

chances are used (e.g. simplicity, ad hocness, explanatory power), one faces a

surprising stalemate: none of these chances could be considered as an expert

for you. But it sounds at least odd to say that stochastic theories cannot be

considered as experts just because they are predictively equivalent. The oddity

evaporates when we recognize that predictively equivalent theories may still be

candidates for experts, even though we cannot decide which one of them is the

best with respect to predictive accuracy.

The notion of weak predictive accuracy avoids this oddity. The example

discussed in subsection 2.5.2 reveals, quite intuitively, that ch2 that assigns in-

termediate values might be an expert on a par with the “opinionated” ch3. Of

course, the condition of weak predictive accuracy does not suffice to tell us which

of these chances would constrain an agent’s credence. After all, it is a neces-

sary condition. But still there is a way in which ch2 and ch3 could constrain

the agent’s credence in that case. The idea is that one should adjust one’s cre-

dence to a mixture of the known chances, weighted by one’s credences assigned

to them. In other words, one should adjust credence to one’s best estimate of

these chances. Of course, this manoeuvre works only if stochastic theories are

mutually exclusive. More precisely, for all singleton propositions in WN ,

cr({w}) = cr(Cch1)ch1({w}) + cr(Cch2)ch2({w}), (2.15)
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where Cch1
is the proposition that the chance distribution over WN is given by

ch1 and Cch2
is the proposition that the chance distribution overWN is given by

ch2.

2.6 Proving Formal Adequacy

In this section, I prove that the expert role demands chance to be formally ade-

quate, i.e. to be a finitely additive probability function. It is shown that, relative

to the Brier score, any function ch over WN , which is a finitely additive proba-

bility function, is predictively accurate in the weak sense. But before I state and

prove the theorem, let me outline a strategy for deducing formal adequacy of ch

from the condition of weak predictive accuracy, to wit, a necessary condition for

counting ch as expert function.

Let the function ch : A → [0, 1] uniquely determine the function ch : WN →
[0, 1]. Let V =

{
vw : w ∈ WN

}
be the set of consistent truth-value distributions

over the propositions in WN , i.e. a collection of functions vw : WN → {0, 1}.
Further, we introduce the set of all convex combinations of the vw’s in V, called

the convex hull of V. It can be defined as follows:

Conv(V) =

{ ∑
w∈W

λwvw : 0 ≤ λw ≤ 1,
∑
w∈W

λw = 1

}
. (2.16)

That is, Conv(V) is the smallest set that (i) contains V, and (ii) contains, for

any two vw and vw′ , every convex combination or mixture of them. i.e. for any

0 ≤ λw ≤ 1, it contains λwvw + (1− λw)vw′ .

We say then that ch : WN → [0, 1] is formally adequate if and only if ch ∈
Conv(V). That is, due to a well-known result of Bruno de Finetti’s (De Finetti

1970), finitely additive probability functions are precisely the mixtures of truth-

value distributions in V.

How can the formal adequacy thus construed be derived from the condition of

weak predictive accuracy? Suppose again that you assess the predictive accuracy

of the functions in C. Assume that there are some functions that are not formally

adequate. Then, the first step towards a vindication of formal adequacy is to

show that the function ch, which is not formally adequate, can be outperformed
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by a formally adequate one in reducing the distance to all possible truth-value

distributions over WN . That is to say, any function ch that is not formally

adequate is not predictively accurate in the weak sense because there is always

another function ch′—a formally adequate one—that could match better every

possible world:

¬ Formal Adequacy ⇒ ¬ Weak Predictive Accuracy: Let ch

be a candidate chance function over WN . Then, if ch /∈ Conv(V),

then there is another function ch′ ∈ Conv(V) such that

∀w ∈ WN : S(w, ch′) ≤ S(w, ch).

But does (¬ Formal Adequacy ⇒ ¬ Weak Predictive Accuracy) suffice as

an argument for formal adequacy? No, it does not. It only shows that if ch /∈
Conv(V), then there is a formally adequate function ch′ ∈ Conv(V) that could

outperform ch in reducing the distance to every possible world. This, however,

does not preclude the possibility that ch′ ∈ Conv(V) might be outperformed by

some other formally adequate function ch∗ ∈ C. To make this point more vivid,

suppose that the vectors δw1 = (1, 0) and δw2 = (0, 1) are two vectors of the truth-

value distribution over two mutually exclusive singleton propositions {w1}, {w2}.
Let c′1 and c′2 be two vectors of predicted values given by ch′1 ∈ Conv(V) and

ch′2 ∈ Conv(V) respectively. Although both ch′1 and ch′2 are formally adequate,

they are formally adequate in a different way; that is to say, c′1 =
(

1
2 ,

1
2

)
and

c′2 = (1, 0). (¬ Formal Adequacy ⇒ ¬ Weak Predictive Accuracy) shows that

if ch is not formally adequate, then it can be outperformed by some formally

adequate function, say either ch′1 or ch′2. However, it does not mean that neither

of these formally adequate chance functions can be outperformed by the other

one. So in order to guarantee that every formally adequate function is weakly

predictively accurate, one needs to prove the following:

Formal Adequacy ⇒ Weak Predictive Accuracy: Let ch′ be a

candidate chance function over WN . Then, if ch′ ∈ Conv(V), then

there is no other ch∗ ∈ C such that

∀w ∈ WN : S(w, ch∗) ≤ S(w, ch′).
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With this strategy in mind, we can reach an equivalence between the formal

adequacy and the weak predictive accuracy of chances. I shall establish this

equivalence by means of the following theorem:

Theorem 2.1. Suppose that the predictive accuracy of ch over WN is scored by

the Brier score with the score S(w, ch) = 1
|WN |

∑2N

j=1

(
vw({wj}) − ch({wj})

)2

.

Then the following two propositions are true:

(i) If ch /∈ Conv(V), then there is another function ch′ ∈ Conv(V) such that

∀w ∈ WN : S(w, ch′) ≤ S(w, ch).

(ii) If ch′ ∈ Conv(V), then there is no other ch∗ ∈ C such that

∀w ∈ WN : S(w, ch∗) ≤ S(w, ch′).

For the proof, let us introduce the following assumptions:

• Let ch ∈ C and vw ∈ V be represented as vectors c and δw respectively. We

have that V ⊆ C.

• Let the set Conv(V) be represented by the set{ ∑
w∈WN

λwδw : 0 ≤ λw ≤ 1,
∑

w∈WN

λw = 1

}
,

which is a convex hull of 2N -dimensional vectors δw. Every vector in this

set is a vector of finitely additive probability distribution overWN denoted

by p = (p({w1}), ..., p({w2N })), where p ({wj}) ≥ 0 and
∑2N

j=1 p ({wj}) = 1.

We have that V ⊆ Conv(V).

• Let D : C × C → R be a real-valued function which, for each pair (ch, ch′)

of ch ∈ C and ch′ ∈ C, gives a score D(ch, ch′) given by

D(ch, ch′) = ‖c− c′‖2.
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The function D measures the Brier score-based distance between any two

candidate chance functions ch and ch′. Note that for ch ∈ C and w ∈ WN ,

S(w, ch) = D(vw, ch).

Before giving the proof of Theorem 2.1, we state and prove the following

technical lemma:

Lemma 2.1. Let c′ be an orthogonal projection PΛc of c onto Conv(V).

Then c′ minimizes the distance from c to Conv(V), i.e. for all c′′ ∈
Conv (V),

D(ch, ch′) ≤ D(ch, ch′′),

where ch, ch′, ch′ are represented as vectors c, c′, c′′ respectively.

Proof of Lemma 2.1. Since c− c′ is orthogonal to Conv(V), c− c′ ⊥
Conv(V), it also must be orthogonal to c′ − c′′, i.e. c − c′ ⊥ c′ − c′′,
for any c′′ ∈ Conv(V). Then, by the Pythagorean theorem, we have

that

‖c− c′′|2 = ‖c− c′‖2 + ‖c′ − c′′‖2 ≥ ‖c− c′‖2.

And thus,

D(ch, ch′) ≤ D(ch, ch′′),

as required.

Proof of Theorem 2.1. (i) Suppose that c /∈ Conv(V). Then, for the proof of

Theorem 2.1 (i), it suffices to show that there is c′ ∈ Conv(V) such that ‖δw −
c′‖2 ≤ ‖δw − c‖2. Hence, D(vw, ch

′) ≤ D(vw, ch), and thus S(w, ch′) ≤ S(w, ch)

for all w ∈ WN . Suppose that c′ ∈ Λ. Let c − c′ be orthogonal to Conv(V),

c − c′ ⊥ Conv(V). Then, c′ is an orthogonal projection PConv(V)c of c onto

Conv(V). With Lemma 2.1 in mind, suppose that c′ 6= δw. Define a line

L = {λc+ (1− λ) c′ : −∞ < λ <∞},
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(0,0)

δw1
= (0, 1)

δw2 = (1, 0)

Conv(V)

c

c′

L

D1

D2

D3

Figure 2.1: Suppose that c′ ∈ Conv(V) is an orthogonal projection
PLδw1 of δw1 onto L, c ∈ L and c − c′ ⊥ δw1 − c′. Let D1 be the
distance ‖ch − ch′‖2, D2 be the distance ‖δw1

− c′‖2, and D3 be the
distance ‖δw1

−c‖2. Then, by the Lemma 2.1, we have that D2 ≤ D3,
as required. The same result can be established for δw2

.

which is a ray from c through c′ to infinity. We know that δw /∈ L. If so, then

we can consider projections of δw onto L. Because c′ ∈ L and δw − c′ ⊥ L, we

have that c′ is an orthogonal projection PLδw of δw onto L. Since c ∈ L and

c− c′ ⊥ δw − c′, then by the Lemma 2.1 we have

D(vw, ch
′) ≤ D(vw, ch).

Hence,

S(w, ch′) ≤ S(w, ch),

as required (see Figure 2.1 for a useful illustration).
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(ii)14 For a reductio, suppose that c′ ∈ Conv(V) and there is c∗ such that

‖δw − c∗‖2 ≤ ‖δw − c′‖2 for all δw. Hence, D(vw, ch
∗) ≤ D(vw, ch

′), and so

S(w, ch∗) ≤ S(w, ch′) for all wi ∈ WN . Construe a subset G ⊆ Conv(V) defined

as follows:

G = {g ∈ Conv(V) : D (g, ch∗) ≤ D (g, ch′)}.

Because the scoring function D is convex, we have that for all g, g′ ∈ G and

for any 0 ≤ λ ≤ 1,

D(λg + (1− λ)g′, ch∗) ≤ D(g, ch∗), D(g′, ch∗),

and

D(λg + (1− λ)g′, ch′) ≤ D(g, ch′), D(g′, ch′),

and thus by the definition of G,

D(λg + (1− λ)g′, ch∗) ≤ D(λg + (1− λ)g′, ch′).

It follows then that G must be convex, i.e. for any two g and g′ ∈ G, G contains

every convex linear combination λg+(1−λ)g′ for any 0 ≤ λ ≤ 1. Since any convex

combination λg+(1−λ)g′ of two elements in G is a convex combination λ[λwvw]+

(1−λ)[(1−λw′)v′w] of two elements in Conv(V), we have that G is a convex hull

containing Conv(V). Hence, G ⊇ Conv(V). Since D(ch′, ch′) < D(g, ch∗), we

have that ch′ /∈ G and ch′ ∈ Conv(V). But then we have a contradiction because

it cannot be true that simultaneously G ⊇ Conv(V) and G ( Conv(V). Therefore,

(ii) holds true.

To sum up: It has been shown how the expert role demands chance to be

a finitely additive probability function. That is, it has been proved that only a

finitely additive probability function can satisfy the condition of weak predictive

accuracy, and thus can play the expert role.

Note that the result just given has been established for a chance function

defined over the most fine-grained partition of WN , i.e. the set of all singleton

14The proof of Theorem 2.1 (ii) hinges on the method used in Pettigrew (2012).
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propositions {w}, for w ∈ WN . But, by exploring equation (2.7), this result can

hold for a finite algebra A generated by the cylinder sets Aat in WN . Therefore,

the expert role demands ch to be a finitely additive probability function over A,

i.e. it ought to be such that: (i) for all At ∈ A, ch(At) ≥ 0, (ii) ch(∅) = 0 and

ch
(
WN

)
= 1, and (iii) for any disjoint At, Bt ∈ A, ch(At∪Bt) = ch(At)+ch(Bt).

2.7 Motivating the Brier Score

One might claim that the result established in the last section hinges essentially

on the application of the Brier score. After all, the proof of the theorem makes

use of the convexity of the Brier score. If this is so, then it might be objected

that the result is tainted with a disreputable arbitrariness, since no reason has

been proposed for why we should prefer the Brier score over some other measure

of the predictive accuracy of chance. I this section, I show how the use of the

Brier score for measuring the predictive accuracy of chance can be justified.

Given the task of measuring the predictive accuracy of chance, one can isolate

certain desirable properties of the measures of predictive accuracy, and try to

show that the only measure that satisfies them is the Brier score. Of course, the

question arises whether one can isolate such properties in the case of measuring

the predictive accuracy of chance. In the remainder of this section, I will try to

show how this might be possible.

This proposal can be formulated as follows. The Brier score satisfies two

properties, namely propriety and neutrality, that seem adequate for the task of

measuring the predictive accuracy of chances, and no other scoring function can

satisfy them simultaneously. The heart of this proposal is Reinhard Selten’s result

(Selten 1998) showing that only the quadratic scoring function possesses the two

properties just mentioned. A quadratic scoring function may be introduced as

follows:

Quadratic Scoring Function: Suppose that S : WN × C → R+
0

is a scoring function for each pair (w, ch). Then, we say that S is a
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quadratic scoring function if and only if

S(w, ch) =

2N∑
j=1

λj

(
vw({wj})− ch({wj})

)2

,

where
∑2N

j=1 λj = 1, and each λj > 0.

The quadratic scoring function allows us to weigh some propositions as more

important than other. As it is easy to observe, the Brier score is an instance

of the quadratic scoring function: it counts each proposition of the form {wj}
equally. Specifically, Selten showed that while propriety is satisfied also by scoring

functions other than the quadratic ones, e.g. by the spherical scoring function,

only quadratic scoring functions satisfy both propriety and neutrality.

To introduce these two properties, let us define, for all ch, ch′ ∈ C, the expected

predictive accuracy of the function ch′ by the lights of ch and relative to a scoring

function S as

Expch,S(ch′) =
∑

w∈WN

ch({w})S(w, ch′). (2.17)

The expected predictive accuracy of ch′ is the sum of scores for ch′ at all worlds

w ∈ WN , weighted by the values assigned by ch to each of these worlds, i.e.

to each of the singleton propositions {w}, for w ∈ WN . One may think of

Expch,S(ch′) as a measure of how good the function ch′ is in matching every

w ∈ WN , according to ch.

Given (2.17), we can characterize the first of the two properties of S, namely

propriety:

Propriety. S is said to be proper if for all ch, ch′ ∈ C,

Expch,S(ch) ≤ Expch,S(ch′).

We say that S is strictly proper if Expch,S(ch) < Expch,S(ch′) for all

ch, ch′ ∈ C unless ch = ch′.

That is, a proper scoring function tells us that setting ch = ch′ minimizes the

expected score. Thus, if S is proper, then ch does not expect that any other
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candidate chance function is more predictively accurate. If S is strictly proper,

then the expected score is uniquely minimized by setting ch = ch′.

Neutrality may be introduced as follows:

Neutrality: S is said to be neutral if for all ch, ch′ ∈ C,

Expch,S(ch′) = Expch′,S(ch).

Neutrality may be explained in the following way: if one does not know which of

the functions ch and ch′ is “true” or “correct”, then a scoring rule S should not

favour any of them in advance.

There is a way to show that a scoring function S, which has both these

properties, seems adequate for the task of measuring the predictive accuracy of

chances. Here is why I think this is so. Suppose that ch is an expert function,

i.e. it satisfies the condition of weak predictive accuracy. If S were not a proper

scoring function, then setting ch = ch′ would not minimize the expected score.

Thus, ch would not expect that no other ch′ could be better than it in matching

the possible worlds. But if so, ch hardly deserves the status of expert. Neutrality

can be utilized in our context as follows. It may be interpreted as saying that if

one does not know which of the functions ch and ch′ is an expert, then a scoring

function S should not favour any of them in advance. This is expressed by saying

hypothetically that if ch were an expert and ch′ were not, then ch′ would be

regarded as good at reducing the distance as ch would be if ch′ were an expert

instead of ch. Neutrality implies that if we are ignorant about which chance

function is weakly predictively accurate, then there is no other factor that could

affect our evaluation of candidate chance functions besides our ignorance about

their predictive accuracy.

I do not deny that there might be other reasons for adopting the Brier score.

For example, it might be prudent to defend this scoring function by appealing to

its convexity. Let us formulate convexity more precisely as follows:

Convexity: S is said to be convex if for all ch, ch′ ∈ C, w ∈ WN ,

and all λ ∈ [0, 1],

S(w, λch+ (1− λ)ch′) ≤ λS(w, ch) + (1− λ)S(w, ch′).
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That is, convexity means that the score of any function intermediate between ch

and ch′ is less or equal to a linear combination of the score of ch and the score

of ch′. Strict convexity means that the above inequality is strict unless ch = ch′.

There is a way to argue that any measure of chance’s predictive accuracy should

be convex. Suppose that ch and ch′ are both expert functions, i.e. both satisfy

the condition of weak predictive accuracy. In subsection 2.5.3, I have claimed

that, in such a situation, these chance functions can still place constraints on the

agent’s credence function. The recipe I have alluded to is that the agent should

set her credence function equal to a mixture of the expert functions ch and ch′.

But why should we believe that this recipe is rational? Importantly, convexity

gives an answer to this question. If S is convex, it would render any mixture of

the form λch + (1 − λ)ch′ an expert function for the agent. This is so because

any mixture of this form is at least as predictively accurate as ch and ch′. Hence,

we have reason to follow that recipe.

In sum, I have shown that the use of the Brier score to measure the predictive

accuracy of chance can be well justified, and thus is not a matter of mere fiat.

I have isolated certain properties of the Brier score, and have argued that they

make the Brier score well suited for the task of measuring the predictive accuracy

of chance.

2.8 Measuring Predictive Accuracy:

Bregman Divergence

This section shows how our main result established in section 2.6 can hold for a

class of predictive accuracy measures that are instances of the so-called Bregman

divergence. This in turn shows how this result can be generalized from the Brier

score to the Bregman divergence.

For the purposes of this section, we use the following representation:

• Let ch ∈ C and vw ∈ V be represented as vectors c and δw respectively. We

have that V ⊆ C.
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• Let the set Conv(V) be represented by the set{ ∑
w∈WN

λwδw : 0 ≤ λw ≤ 1,
∑

w∈WN

λw = 1

}
,

which is a convex hull of 2N -dimensional vectors δw. Every vector in this set

is a vector of finitely additive probability distribution over WN denoted by

p = (p ({w1}) , ..., p ({w2N })), where p ({wj}) ≥ 0 and
∑2N

j=1 p ({wj}) = 1.

We have that V ⊆ Conv(V).

Now, for our purposes, we can introduce the Bregman divergence between any c

and c′ in C as follows (a geometrical interpretation of it is given by Figure 2.2):

Bregman Divergence: Suppose that C is a convex subset of RN .

Let Φ : C → R be a strictly convex function whose gradient ∇Φ is

defined in the interior of C and extends to a bounded, continuous

function on C. Then, for all c, c′ ∈ C, the Bregman divergence DΦ :

C × C → R corresponding to Φ is given by

DΦ(c′, c) = Φ(c′)− Φ(c)−∇Φ(c) · (c′ − c) ,

where ∇Φ(c) is the gradient of Φ and · denotes the inner product of

two vectors.

Since Φ is strictly convex, it follows that DΦ(c′, c) ≥ 0 with equality if and

only if c′ = c. The function DΦ is the difference between the value of Φ at c

and the first-order Taylor expansion of Φ around c evaluated at c′. Now, if the

function Φ is defined as Φ(c) = ‖c‖2, then DΦ(c′, c) = ‖c′ − c‖2. That is, the

squared Euclidean distance is a Bregman divergence. Hence, the Brier score is

a Bregman divergence. Other instances of the Bregman divergence include the

Kullback-Leibler divergence, the Itakura-Sato distance, or the Hellinger distance

(Banerjee et al. 2005).

How could our scoring function S(w, ch) be represented as a Bregman diver-

gence? Following the results due to Predd et al. (2009), we can introduce the

scoring function S(w, ch) as a Bregman divergence generated by a proper scoring

rule s. Suppose that s : {0, 1} × [0, 1] → R is a continuous proper scoring rule.
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c

Φ(c)

Φ

c c′

Φ(c)

Φ(c′)

Φ(c) + (c′ − c) · ∇Φ(c)

DΦ(c′, c)

c′ − c

Figure 2.2: Visualizing the Bregman divergence generated by Φ. The
Bregman divergence from c to c′ is a difference between the value of
two functions at c′. The first function is Φ and the second function is
the tangent to Φ taken at c.

We say that:

• s is continuous if for all i ∈ {0, 1} and any sequence xn ∈ [0, 1] converging

to x, limn→∞ s (i, xn) = s(i, x).

• s is proper if for all x ∈ [0, 1], xs(1, y)+(1−x)s(0, y) is uniquely minimized

at y = x.

Then, the function ϕ : [0, 1]→ R defined as

ϕ(x) = −xs(1, x)− (1− x)s(0, x) (2.18)
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is (i) continuous, bounded, strictly convex on [0, 1], (ii) continuously differentiable

on (0, 1), and (iii) such that for all x ∈ [0, 1],

s(i, x) = −ϕ(x)− ϕ′(x)(i− x). (2.19)

Now, define Φ : C → R as

Φ(c) =

2N∑
j=1

ϕ
(
ch ({wj})

)
. (2.20)

Hence,

Φ(δw) =

2N∑
j=1

ϕ
(
vw({wj})

)
. (2.21)

Then,

S(w, ch) =

2N∑
j=1

s
(
vw({wj}), ch({wj})

)

=

2N∑
j=1

−ϕ
(
ch({wj})

)
− ϕ′

(
ch({w1})

)
(vw({wj})− ch({wj})) (by (2.18))

= DΦ(δw, c)−
2N∑
j=1

ϕ
(
vw({wj})

)
(by the definition of Bregman divergence)

= DΦ(δw, c) +

2N∑
j=1

s
(
vw({wj}), vw({wj})

)
(by the fact that s

(
vw({wj}), vw({wj})

)
= −ϕ

(
vw({wj})

)
),

as required.

The following proposition (for a proof see Predd et al. 2009, p. 4789) captures

a feature of any Bregman divergence, feature that will play a crucial role in

showing that our main result holds for any Bregman divergence:
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Proposition 2.1. Let Conv(V) ⊆ [0, 1]
N

be a closed convex subset of RN . Then,

if c ∈ C −Conv(V), there is c′ ∈ Conv(V) such that DΦ(c′, c) ≤ DΦ(c′′, c) for all

c′′ ∈ Conv(V). Moreover, DΦ(c′′, c′) ≤ DΦ (c′′, c)−DΦ(c′, c) for all c′′ ∈ Conv(V)

and all c ∈ C − Conv(V).

The key idea behind this proposition is this. Given a chance function not in

Conv(V), there is a chance function in Conv(V) that is at least as close to the

chance function outside Conv(V) as any other chance function in Conv(V). The

vector c′ is called the projection of c onto Conv(V). The second sentence of

this proposition expresses the fact that any Bregman divergence satisfies the

generalized Pythagorean theorem, i.e. DΦ(c′′, c) ≥ DΦ(c′′, c′) +DΦ(c′, c).

With these notions and results in hand, we can state and prove the following

theorem:

Theorem 2.2. Let S(w, ch) = DΦ(δw, c)+
∑2N

j=1 s
(
vw({wj}), vw({wj})

)
. Then:

(i) If c /∈ Conv(V), then there is c′ ∈ Conv(V) such that S(w, ch′) ≤ S(w, ch)

for all w ∈ WN .

(ii) If c′ ∈ Conv(V), then there is no c∗ ∈ C such that c∗ 6= c′ and S(w, ch∗) ≤
S(w, ch′) for all w ∈ WN .

Proof. For the proof of Theorem 2.2 (i), suppose that c ∈ C − Conv(V). Then,

by Proposition 2.1, there is c′ ∈ Conv(V) such that for all c′′ ∈ Conv(V),

DΦ(c′′, c′) ≤ DΦ(c′′, c)−DΦ(c′, c).

And since V ⊆ C, we have that for all δw ∈ V,

DΦ(δw, c
′) ≤ DΦ(δw, c)−DΦ(c′, c).

Since c /∈ Conv(V) and c′ ∈ Conv(V), we have that c 6= c′, and so DΦ(c′, c) > 0.

Hence,

DΦ(δw, c
′) ≤ DΦ(δw, c),
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and by the definition of S(w, ch),

S(w, ch′) ≤ S(w, ch),

as required.

For the proof of Theorem 2.2 (ii), suppose that c′ ∈ Conv(V). Now, suppose

that DΦ(c′′, c∗) ≤ DΦ(c′′, c′) for all c′′ ∈ Conv(V). Since c′ ∈ Conv(V), it follows

that DΦ(c′′, c∗) ≤ DΦ(c′, c′) = 0. This implies that DΦ(c′′, c∗) = 0 and c∗ = c′.

But this contradicts the assumption that c∗ 6= c′.

I have just shown that relative to the scoring function represented as Breg-

man divergence, the condition of weak predictive accuracy, to wit, a necessary

condition on chance to play the expert role, demands chance to be a finitely ad-

ditive probability function. Thus, we have shown that the expert role demands

chance to be formally adequate, even if the assumption about the Brier score as

a measure of predictive accuracy is relaxed.

2.9 Expert Role, Predictive Accuracy, and Cali-

bration

One of the building blocks of our argument is the assumption that the predictive

accuracy of chance is the extent to which a chance distribution diverges from a

world which is fully characterized by a truth-value distribution. Thus, the pre-

dictive accuracy of chance is concerned with “nearness” of the predicted chance

distribution to a possible outcome at a particular time represented by a particular

truth-value distribution.

But it seems that the predictive accuracy of a probabilistic theory does not

only pertain to particular outcomes. Also, we often evaluate probabilistic theories

with respect to how well they predict the relative frequency with which a given

outcome occurs. In other words, the predictive accuracy of chance is not limited

to a single case, but also concerns its predictive success in the long run, i.e. in a

long series of trials. In this section, I suggest a way to incorporate the thought

about long run predictive accuracy into our basic framework. Specifically, I show
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that the predictive accuracy measured by the Brier score is able to reflect how

well chances are calibrated with relative frequencies at a given world.

Informally, the idea of calibration is intuitively simple. Consider a probabilis-

tic theory that repeatedly makes probabilistic predictions. Now, if this theory

assigns a 0.7 chance to some coin landing heads over a series of 100 tosses, and

it happens that the coin lands heads 70 times over this long run, then there is

something good about this probabilistic theory. We say that this theory is well

calibrated. More generally, a probabilistic theory is well calibrated if, over a long

run of trials, for each chance x that it assigns, the proportion of true proposi-

tions amongst all propositions to which it assigns x equals x. Let us make this

idea more precise. Assume that a probabilistic theory is fully characterized by a

chance function ch :WN → [0, 1]. Then:

Calibration: Let us divide WN into mutually exclusive reference

classes WN
x =

{
{w} ∈ WN : ch({w}) = x

}
. That is, two propositions

{w1} , {w2} ∈ WN belong to the same reference class if and only if

ch({w1}) = ch({w2}). Define the frequency of true propositions at a

world w amongst all propositions to which ch assigns chance x as:

freqw
(
WN
x

)
=

∣∣{{w} ∈ WN : ch({w}) = x and vw({w}) = 1
}∣∣

|{{w} ∈ WN : ch({w}) = x}|

Then, ch is well calibrated at w if for each value x ∈ ran(ch),

x = freqw
(
WN
x

)
.

Let me stress some basic features of calibration so introduced. First, calibra-

tion has to do with how well a chance distribution matches the frequency of true

propositions in a reference class consisting of propositions to which it assigns the

same value x. Thus, calibration depends on how the space is carved into ref-

erence classes. The above-mentioned way of dividing WN into reference classes

is due to Bas van Fraassen (1983) and Abner Shimony (1988). The key idea is

that the reference class is fixed by the chance function. Second, calibration is a

measurable property: we can measure how well calibrated a chance function is,

even if it falls short of perfect calibration. But how can calibration be measured?
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Let us focus on the calibration score (also called the index of calibration) given

in Murphy (1973):

Calibration Score: Let us divide WN into mutually exclusive ref-

erence classes WN
x =

{
{w} ∈ WN : ch({w}) = x

}
for x ∈ ran(ch). If

nx is the number of elements in WN
x , we have that

∑
x∈ran(ch) nx =∣∣WN

∣∣. For each x ∈ ran(ch), let freqw
(
WN
x

)
be the frequency of true

propositions in the set labelled by x. Then, the calibration score for

ch at world w is given by

C(w, ch) =
1

|WN |
∑

x∈ran(ch)

nx

(
freqw

(
WN
x

)
− x
)2

,

where
∣∣WN

∣∣ stands for the number of elements in WN and nx is the

number of elements in WN
x .

That is, the calibration score is the sum of weighted squared differences between

the frequency of true propositions in WN
x and the value of chance assigned to all

propositions in this set, where the weight is the number of elements in WN
x . The

sum itself is weighted by an equal weight 1
|WN | assigned to every world w ∈ WN .

The idea behind the calibration score is as follows. The chance function ch

is well calibrated at w if C(w, ch) = 0. This means that half the propositions

assigned chance 1
2 are true, two-thirds of those assigned chance 2

3 are true, three-

fourths of those assigned chance 3
4 are true, and so forth. It is easy to observe

that, for each world w, the truth-value distribution at w is always well calibrated.

For vw assigns 1 to a proposition just in case that proposition is true at w, and

so 100% of those propositions to which vw assigned value 1 are true. And vw

assigns 0 to a proposition just in case that proposition is false at w, and so 0%

of those propositions to which vw assigned value 0 are true.

At first sight, the idea of calibration and predictive accuracy measured by the

Brier score are significantly different. Both these measurable quantities capture

important aspects concerning the assessment of probabilistic predictions given by

chance functions. But whereas the Brier score-based predictive accuracy mea-

sures the reliability of a chance function by assessing how informative it is about

possible truth-value distributions, the calibration score measures how reliable it is
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as an indicator of the truth-frequency of propositions. Could these two quantities

be reconciled?

One attempted reconciliation, due originally to Murphy (1973) and developed

in DeGroot and Fienberg (1983) and in Blattenberger and Lad (1985), says that

the Brier score is an aggregate of various measures, one of which is the calibration

score. In particular, the Brier score can be separated into the calibration score and

the refinement score.15 Informally, the refinement score measures the variance in

truth-value across all the reference classes WN
x fixed by ch or, equivalently, the

extent to which each reference class of propositions assigned by the same chance

x is uniform in the truth-value distribution over its members. More precisely, the

refinement score can by introduced as follows:

Refinement Score: Let us divide WN into mutually exclusive ref-

erence classes WN
x =

{
{w} ∈ WN : ch({w}) = x

}
, for x ∈ ran(ch). If

nx is the number of elements in WN
x , we have that

∑
x∈ran(ch) nx =∣∣WN

∣∣. For each x ∈ ran(ch), let freqw
(
WN
x

)
be the frequency of true

propositions in the set labelled by x. Then, the refinement score for

ch at world w is given by

REF (w, ch) =
1

|WN |
∑

x∈ran(ch)

nxfreqw
(
WN
x

)(
1− freqw

(
WN
x

))
,

where
∣∣WN

∣∣ stands for the number of elements in WN and nx is the

number of elements in WN
x .

That is, the refinement score is the sum of weighted uniformities of truth values

in WN
x , where the weight is the number of elements in WN

x . The sum itself is

weighted by an equal weight 1
|WN | assigned to every world w ∈ WN .

The refinement score is minimal (REF (w, ch) = 0) if ch fixes the reference

classes in such a way that the frequency of true propositions amongst the proposi-

tions assigned by the same chance x is either 0 or 1. This is a situation in which ch

perfectly discriminates truths from falsehoods. It is maximal
(
REF (w, ch) = 1

4

)
if the frequency of true propositions in the reference classes is 1

2 .

15In fact, Murphy (1973) showed that the refinement score can be separated into two other
components: uncertainty and resolution.
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The Brier score thus can be separated as follows:

Brier Score Separation: Suppose that S(w, ch) = 1
|WN |

∑2N

j=1

(
vw({wj})

− ch({wj})
)2

. Then,

S(w, ch) = C(w, ch) +REF (w, ch).

The Brier score so separated might be understood as balancing the two compo-

nents off and giving an overall measure of predictive accuracy. But why do we

need to balance off calibration and refinement? The answer is that it appears

that refinement can be improved at a cost of calibration, and vice versa. For

example, perfect refinement can be achieved by assigning chance 1 to every false

proposition and chance 0 to every true proposition, but in terms of calibration

such assignment is maximally miscalibrated.

Given that the Brier score may be understood as a measure of the balance

between calibration and refinement, I suggest that the result from section 2.6 can

also be read as follows:

• if ch is not a finitely additive probability function, then there is another

ch′ that is a finitely additive probability function and that could strike a

better balance of calibration and refinement in every w ∈ WN .

• if ch is a finitely additive probability function, then there is no other ch′

such that it could strike a better balance of calibration and refinement in

every w ∈ WN .

2.10 Concluding Remarks and Further Research

This chapter has shown how a particular use of the Principal Principle can lead

to the conclusion that chance is a finitely additive probability function. I have

arrived at this conclusion, first, by introducing and defending chance functional-

ism: the view that chance is whatever plays certain functional roles. Second, by

exploring a particular role—the expert role codified in the Principal Principle—I

have argued that chance plays the expert role if it is weakly predictively accu-

rate. This condition was taken to be fairly minimal: a chance function is weakly
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predictively accurate if and only if there is no other chance function, known to

the epistemic agent, that could fit better the possible truth-value distributions

over some family of propositions. Third, I have proved that chance is weakly

predictively accurate if and only if it is a finitely additive probability function.

From this, I have concluded that chance plays the expert role if it is a finitely

additive probability function. Thus, I have shown that the expert role formulated

in the Principal Principle demands chance to be formally adequate.

Obviously, the approach to formal adequacy presented in this chapter leaves

some questions untouched. It is worth mentioning that this approach has exten-

sions that point towards future research. Let me briefly indicate some of them.

First, by letting A be a countably infinite σ-algebra, one may try to extend this

approach to show that the expert role demands chance to be countably additive.

Second, one may wish to extend the framework in order to prove that chance sat-

isfies the laws of quantum probability. This could be done by replacing WN with

a Hilbert space HN , which is a N -dimensional vector space, by generating an al-

gebra of propositions (subspaces in HN )—an orthomodular lattice L, and finally

by showing that ch must be a σ-additive quantum probability (quantum state)

φ : L → [0, 1] in order to play the expert role. A third extension worth mentioning

concerns an axiomatic treatment of probability in which conditional probability is

primitive. For example, one may define chance as a mapping ch : A×A → [0, 1],

and show that it satisfies the axioms for Popper functions. These tasks also sug-

gest avenues for further elaboration and clarification of the functionalist approach

to formal adequacy.



Chapter 3

Chance and Resiliency

In this chapter, I show how a particular resiliency-centered approach to chance

lends support for two conditions that are claimed in the literature to be consti-

tutive of chance. The first condition says that the present chance of some propo-

sition A conditional on the proposition about some later chance of A should be

set equal to that later chance of A. The second condition requires the present

chance of some proposition A to be equal to the weighted average of possible

later chances of A, where the weights are chances assigned by the present chance

function to propositions about A’s possible later chances. I first introduce, moti-

vate, and make precise a resiliency-centered approach to chance whose basic idea

is that any chance distribution should be maximally invariant under variation of

experimental factors. Second, I provide resiliency-based arguments for the two

conditions: I show that any present chance distribution that violates the two con-

ditions can be replaced by another present chance distribution that satisfies them

and is more resilient under variation of experimental factors. Finally, I show that

the conditions in the case of Humean accounts of chance lead to hardly acceptable

consequences. It is then argued that considerations of the resiliency of chance

have substantial repercussions on the question of whether these conditions should

be retained in that case.
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3.1 Introduction

Several philosophers have claimed that any notion of chance (physical probabil-

ity) should satisfy certain conditions that appear to be constitutive of chance or

might be regarded as platitudes we apparently have about chance (e.g. Loewer

2001; Schaffer 2003, 2007). According to this line of thought, a notion of chance

that violates these conditions either refers to something which only approximates

genuine chance or does not refer to chance at all. Despite considerable discus-

sion, there is no consensus among philosophers as to how many of such conditions

a notion of chance should satisfy. Famously, David Lewis (1986) claimed that

his Principal Principle is the sole condition on chance: it captures all we know

about chance. But, as shown by Frank Arntzenius and Ned Hall (2003), Lewis’s

claim cannot be rationally sustained. Similarly, Jonathan Schaffer (2007) has ar-

gued that besides the Principal Principle, there is a number of equally plausible

conditions that inform our understanding of chance.

Two interesting conditions on chance have been proposed in Bigelow et al.

(1993). In addition, they have claimed that the two conditions are constitutive

of chance. To introduce these conditions, I assume that Ch denotes a chance

function over a finite set of propositions A generated by a set of possible worlds

W.1 Suppose further that CF = {chw : w ∈ W} is a finite set of chance functions

over A indexed by the worlds in W. Each chw stands for a chance function

in some possible world w. Following Bigelow et al. (1993, p. 458), let Ch be

a present or prior chance function, and let the chw’s be the possible later or

posterior chance functions. As will be apparent, the former can be understood

as an unrefined chance function and the latter as the possible refinements of Ch.

Further, let Cchw
be the proposition that the chance distribution over A is given

by chw. Assume that Ch and the chw’s are probability functions over A. Then,

the two conditions on chance may be presented more generally as follows:

C1 (Chance conditional on chance formulation): For all A ∈ A and

all possible later chance functions chw,

Ch(A|Cchw
) = chw(A).

1Here the original formulation of these conditions is slightly rephrased to fit in with the
framework presented in this chapter.
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C2 (Chances are equal to the expected values of chances): For all

A ∈ A,

Ch(A) =
∑
w∈W

Ch(Cchw
)chw(A).

In words, C1 tells us that the present chance of some proposition A conditional

on the proposition about some later chance of A should be set equal to that

later chance of A. C2 requires the present chance of some proposition A to be

equal to the weighted average of possible later chances of A, where the weights

are chances assigned by the present chance function to propositions about A’s

possible later chances. In other words, the present chance of some proposition A

is the expectation of the possible posterior chances of A. Thus, both C1 and C2

relate any present chance distribution to the possible later chance distributions

in a certain way.

To get a better grasp of these conditions, one might frame the present chance

function Ch, the possible later chance functions, the chw’s, and the relations

between them covered by C1 and C2 within the theory of expert functions de-

veloped by Haim Gaifman (1988) and Bas van Fraassen (1989, chapter 8). With

this theory in mind, each possible later chance function might be interpreted as

a first-order chance function over A, and assuming that every proposition of the

form Cchw belongs to A, the present chance function Ch might be regarded as

a second-order chance function over A so enriched. Following Gaifman’s termi-

nology, we may interpret the possible first-order chance functions that figure in

conditions C1 and C2 as expert functions for any present chance function.

The question arises: why should we believe that the two conditions are con-

stitutive of chance? It seems that these conditions are neither trivially true,

nor self-evident, nor do they follow from platitudes we apparently have about

chance. This question appears to be even more interesting once we acknowledge

that in the case of Humean accounts of chance these conditions lead to hardly

acceptable consequences. This observation in turn prompts the following prob-

lem: should we reject Humean accounts of chance or the two conditions? Given

that Humean accounts of chance have been invoked successfully in explanations

of certain physical phenomena as well as in explanations of some philosophical
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puzzles concerning chances, their rejection seems to be too hasty.2 After all,

in such cases, one might start to question the very constitutive role of the two

conditions, rather than Humean accounts of chance themselves. From this point

of view, then, bringing up a rationale for these conditions seems to be impor-

tant. Also, the task of providing such rationale appears to be challenging. For

on the face of things, there seems to be no straightforward answer to the ques-

tion of what considerations concerning chances could lend credence to the two

conditions. We might require that whatever those considerations might be, they

should point towards some fundamental feature of chance, feature that itself does

not require any deeper justification. But alternatively, we might tackle this ques-

tion in a more modest way by showing that some well-motivated considerations

concerning chance provide support for the two conditions. As will be apparent,

this chapter employs the latter strategy.

My primary aim in this chapter is to provide support for conditions C1 and C2

by appealing to the idea of chance’s resiliency. I show that chances that violate

these two conditions do not maximize resiliency suitably understood. Resiliency

is taken to be a kind of stability property of chance: it reflects the approximate

invariance of a chance distribution under variation of experimental factors that

bear on a given chance set-up. I introduce and motivate a norm, according to

which chances that figure in statistical laws should maximize resiliency over a

given set of experimental factors. This idea draws on Brian Skyrms’s (1977;

1978; 1980a) resiliency-based account of chance. Skyrms (1980a) has used the

notion of resiliency to explain the status of chances or physical probabilities

posited in statistical laws. He has argued that such chances should be highly

resilient probabilities. In this chapter, this idea is employed in the following

way: (i) the experimental factors over which the resiliency of chance is evaluated

form a partition, (ii) each cell of the partition singles out a possible world at

which the cell holds true, (iii) we associate with every such world a possible later

chance function which is the present chance function refined by accommodating

2Let me mention two such attempts. Loewer (2001) uses Lewis’s conception of Humean
chance to resolve what he calls the paradox of deterministic probabilities, to wit, the problem
of reconciling the fact that some theories posit non-trivial probabilities for events not to occur
with the fact that those events are determined to occur. In a similar vein, though more specif-
ically, Frigg and Hoefer (2015) use their Humean account of chance to explain the nature of
probabilities posited by classical statistical mechanics in deterministic settings.
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information about an experimental factor (a given cell of the partition) that

obtains at that world, (iv) in each possible world, we measure the resiliency

of the present chance function by showing how “close” that chance function is

to the possible later chance function at that world. Given these assumptions,

it is then shown, for each of the conditions C1 and C2 separately, that (i) if

the present chance function does not obey that condition, then there is another

present chance function that obeys it and is “closer” to every possible later chance

function, and (ii) if a present chance function obeys that condition, then there

is no other present chance function that is closer to every possible later chance

function. This result then shows that any present chance function which violates

that condition is inadmissible with respect to the resiliency measure. That is, it

is ruled out as inadmissible by a seemingly plausible standard of resiliency.

Secondarily, I show that considerations concerning the resiliency of chance

have substantial repercussions on whether the two conditions should be retained

in the case of so-called Humean accounts of chance. Since these conditions lead to

hardly acceptable consequences in that case, one might question their plausibil-

ity, let alone their constitutive character. I suggest, however, that our resiliency-

centered arguments for these conditions provide reason for treating Humean ac-

counts of chance with caution. For if chances are not constrained by these con-

ditions, they do not necessarily maximize resiliency which appears to be one of

the fundamental virtues of a good probabilistic theory.

Before I continue some remarks are in order. First, as it stands in Bigelow et

al. (1993, p. 458), the words “present” and “later” that characterize the chance

functions in C1 and C2 carry no specific meaning. This in turn leaves much room

for interpretation. In section 3.2, I will introduce some of their possible under-

standings, and I will propose to understand the present chance function as an

unrefined chance function and the possible later ones as its possible refinements.

I will argue that this understanding is sufficiently broad to make sense of various

cases involving the relation between the chance functions that figure in the two

conditions. Second, though the chapter employs Skyrms’s idea of resiliency, it

does not adopt his theory of chance built on this concept. Skyrms (1980a; 1984)

developed a pragmatic theory of chance, according to which chance is a resilient

subjective or personal probability. He thus thought of resiliency as a feature
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of one’s degrees of belief or credences over some family of propositions. In this

chapter, resiliency is taken to be a measurable property of chance distributions,

without claiming that these chance distributions can be analysed in terms of one’s

resilient degrees of belief.

The chapter is structured as follows. Section 3.2 expounds the two condi-

tions. Section 3.3 introduces, motivates, and makes precise the idea of chance’s

resiliency. Section 3.4 provides two resiliency-based arguments for the two con-

ditions. Section 3.5 discusses some philosophical consequences of the resiliency-

based approach to chance for the debate concerning the plausibility of Humean

accounts of chance. Section 3.6 concludes.

3.2 A Closer Look at the Conditions

In this section, I explain the two conditions more precisely. First, I give some

examples that (i) show how these conditions could work and (ii) provide some

insight into how the present and the possible later chance functions could be

understood. Second, in order to give a more general account of the present and

the possible later chance functions, I introduce a rule called a refinement rule for

chances. Finally, I explore some relations that hold between these conditions and

state some of their consequences by combining them with some additional, fairly

intuitive assumptions.

Let me start with some examples illustrating how conditions C1 and C2 could

work. Also, the purpose of these examples is to highlight some possible under-

standings of the words “present” and “later” that characterize the chance func-

tions that figure in C1 and C2, and to motivate a fairly general way of thinking

about them.

Example 1: Suppose that the coin is loaded with iron and that its

bias depends on whether the electromagnet is off or on. Assume that

if the electromagnet is on, the coin is biased towards heads, and if it

is off, the coin is biased towards tails. We have two possible worlds,

one in which the electromagnet is on, the other in which it is off.

Also, we have two corresponding chance functions: the one assigning

greater chance to heads at world “on”, and the other assigning greater
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chance to tails at world “off”. In this scenario, C1 tells us that the

present chance of heads, given that the chance of heads is determined

by the chance function at world “on”, is equal to the chance of heads

at world “on”. C2 states that the chance of heads is a mixture of the

chance of heads at world “on” and the chance of heads at world “off”.

Example 2:3 Suppose that you are in Atlantic city playing a “back-

ward bandit” game. It is like playing a one-armed bandit game ex-

cept the following: while in the ordinary one-armed bandit game the

chance of winning the jackpot is determined (of course, not the out-

come itself) when you pull the handle, in the “backward bandit” game

the chance of winning the jackpot is not. In fact, peculiarly, your

present chance of winning the jackpot is counterfactually dependent

on whether you actually win! We have two peculiar counterfactu-

als: (i) if world “win” were actual, the chance of winning the jackpot

would be low, and (ii) if world “not win” were actual, the chance of

winning the jackpot would be high. In this case, C1 tells us that

the present chance of winning the jackpot, given that the chance of

winning the jackpot is determined by the chance function at world

“win”, is equal to the chance of winning the jackpot at world “win”.

And C2 requires the chance of winning the jackpot to be a mixture

of the chance of winning the jackpot at world “win” and the chance

of winning the jackpot at world “not win”.

Example 3:4 Merlin is about to cast a risky spell on a bottle at time

t. There is a 50% chance that his spell will turn out to be a dark

one, and there is a 50% chance that it will turn out to be a light one.

We consider two possible worlds: the one at which Merlin’s spell is

light, and the other with a dark spell. If Merlin’s spell turns out to

be a light one, then by time t+ 1 the bottle turns a milky colour and

at time t + 1 there is a 60% chance that a genie will emerge from

the bottle. If Merlin’s spell turns out to be a dark one, then by time

3This is a slight reformulation of the example given by Bigelow et al. (1993).
4This example is based on a case discussed by Fisher (2006).
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t+ 1 the bottle turns a murky colour and at time t+ 1 there is a 40%

chance that a genie will emerge from the bottle. By C1, the present

(at t) chance of the genie emerging from the bottle, given the chance

at t + 1 of this event at world with a light spell, is 60%. By C2,

the present (at t) chance of the genie emerging from the bottle is a

mixture of the chance at t+ 1 of this event at world with a light spell

and the chance at t+ 1 of this event at world with a dark spell.

Importantly, the examples given above show that the words “present” and “later”

have three different meanings. In cases like example 1, the possible later chance

functions are two possible “fine-grained” chance functions. Here no temporal

shift in chance distributions is necessarily involved: we consider two ways in

which a “coarse-grained” chance function could be made finer.5 Example 2 points

towards subjunctive supposing or hypothesizing. We imagine what the present

chance function would be if some possible world turned out to be actual. Here the

possible later chance functions are counterfactual chance functions. In example 3,

we consider two possible shifts of the present chance distribution across time. The

possible later chance functions result from two ways by which a present chance

function might develop at some later time. Thus, here we relate the current and

the possible future chance functions.

A question that naturally arises is: could we provide a more general account

of the present and the possible later chance functions that figure in C1 and C2

to capture the different meanings mentioned above? To answer this question,

I introduce, in an abstract way, a rule that relates a chance function Ch, a

certain partition of propositions, and the chance functions chw. Consider a chance

function Ch and a rule RE which might be called a refinement rule for chances.

We assume that F = {Fw : w ∈ W} is a finite partition of W into propositions

describing experimental factors that obtain at some possible world w, and that

could affect a given chance set-up, e.g. a coin tossing, a slot machine like the

aforementioned “backward bandit”, or even a spell casting on a bottle. For this

idea to work, we might think of an element in W as specifying not only the

outcome of a chancy experiment, but also the experimental arrangement. More

5More precisely, what is made finer is an experimental set-up to which a given chance
function is ascribed.
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generally, I take any Fw in F to stand for a supposition upon which the chance

function Ch can be refined. We can think of it as a possible world at which a

given experimental factor obtains. Furthermore, such a supposition might be a

matter-of-fact supposition as well as a subjunctive supposition. In particular, Fw

may be a more fine-grained description of a given chance set-up as in example

1, or it may describe a subjunctive supposition on which the chance set-up is

counterfactually dependent as in example 2, or it may characterize some history

of chancy outcomes in the interval from time t to t+ 1, as in example 3.

Now, we can think of RE as a function that takes element Fw of the partition

F and returns a chance function RE (Ch,F , Fw). That is, the refinement rule

is a way to transform Ch in order to accommodate some supposition. Given

the refinement rule for chances so understood, I propose to think of a present

chance function and the possible later chance functions as a chance function

before refinement (an unrefined chance function) and the possible refinements

respectively. The latter are the chance functions obtained from the present one

by accommodating the suppositions from partition F . As shown by the three ex-

amples given above, there are various ways by which Ch might be refined. That

is, Ch may be refined by considering a partition F containing propositions about

possible ways in which a chance set-up could be made finer, or a partition F con-

taining propositions about possible counterfactual situations describing factors

that could affect the set-up, or a partition F of propositions about some possible

intervening histories between t and t+ 1.

Notice that if we take Ch to stand for a chance function at t and the chws

as the possible chance functions at t + 1 (characterized as the possible chance

functions obtained from Ch by accommodating information about intervening

histories between t and t+1), then conditions C1 and C2 parallel the well-known

Reflection principles (van Fraassen 1984, van Fraassen 1995) that govern subjec-

tive probabilities. Under this interpretation, C1 says that the current chance of A

conditional on the proposition about some future chance of A should be equal to

that future chance of A. And C2 says that the current chance of A should be the

expectation of the possible future chances of A. But given that the refinement

rule for chances is broadly understood, other interpretations of these conditions

are possible.
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Since the refinement rule for chances is an abstract rule, it is tempting to ask:

how could the later chance function RE (Ch,F , Fw) be defined? One candidate

is the rule of conditionalization. More precisely:

Refinement by Conditionalization (REC): For all A ∈ A,

RE (Ch,F , Fw)(A) = Ch(A|Fw),

provided that Ch(Fw) > 0.

That is, the later chance function is equal to the present chance function condi-

tional on some experimental factor Fw in F that obtains at w.

Importantly, Lewis (1986) famously claimed that REC captures fully the kine-

matics of chance, that is, the way in which chances develop through time. He

considered a specific partition of possible intervening histories of chancy outcomes

in the interval between t and t + 1, with each intervening history obtaining at

some possible world. To illustrate this point consider again example 3. There

are two possible histories between t and t + 1. If the world will develop so that

the bottle has a milky colour, then the chance of a genie emerging from it would

change from the chance at t to the chance at t+1 by conditionalizing on the inter-

vening history between t and t+1. Similarly, the chance of a genie emerging from

the bottle changes upon the fact that the bottle has a murky colour. Although

Lewis’s kinematics of chance is seemingly attractive, it captures only one kind of

chance refinement: the one alluded to in example 3. But our goal is to deal also

with other cases of chance refinement. As it is easy to observe, examples 1 and 2

cannot be adequately governed by Lewis’s kinematics of chance, for they do not

describe the evolution of chances through time. For this reason, I reject the pos-

sibility of defining RE (Ch,F , Fw) as the present chance function conditional on

intervening histories. Even though, we can still consider REC as a viable option,

for it is not limited to the intervening histories. Should we assume that any kind

of chance refinement on a partition proceeds by the rule of conditionalization?

The following considerations show that we should not.

First, it seems that REC requires justification. Similarly, Bayesians do not

take for granted the parallel claim that rational credence is updated on evidence

by the rule of conditionalization. Rather, they argue for this claim by appeal-
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ing to various arguments: Dutch book arguments or arguments from minimizing

expected inaccuracy. By analogy, we should ask what considerations concern-

ing chances justify the claim that REC is a correct refinement rule for chances.

Lacking an answer to this question, it seems that REC is only a conjecture.

Moreover, as recently argued in Lange (2006), REC faces serious problems in

connection with higher-order chances and so is not as evident as we might think.

Second, and more importantly for the purpose of this chapter, if we adopt

REC as a refinement rule for chances, we thereby assume that any present chance

function satisfies C2. This in turn undermines the whole project of providing an

independent support for this condition. To see this, observe that if Ch is refined

by conditionalizing on supposition Fw, then

Ch(A) =
∑
w∈W

Ch(A|Fw)Ch(Fw), (3.1)

where the sum extends over all w such that Ch(Fw) > 0 and
∑
w∈W Ch(Fw) = 1.

That is, the present chance of A is the expectation of the possible conditional

present chances of A. Given that chw = Ch(A|Fw), we have that the present

chance of A is a convex combination of possible later chances of A. And this is

exactly what C2 requires.

For these reasons, I proceed in the next sections without a definition of

RE (Ch,F , Fw). I take it that Ch is an unrefined chance function and the chw’s

are its possible refinements obtained from Ch by accommodating in a certain

way a partition of suppositions describing experimental factors. Thus, I treat the

possible later chance functions as fixed by some refinement rule. Also, as will be

shown, this account of Ch and the chw’s underpins a resiliency measure which

is one of the building blocks of our resiliency-based arguments for conditions C1

and C2.

Despite this abstract characterization of the refinement rule, we can require

it to satisfy the following conditions:

(R1) For all Fw ∈ F and any refinement RE (Ch,F , Fw), RE (Ch,F , Fw)(Fw) =

1.

(R2) Suppose that RE is a set of possible refinements of some Ch. Then, if
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Ch ∈ RE , Ch(·) = RE (Ch,F , Fw)(·) for some Fw ∈ F .

(R3) For any A ∈ A that implies Fw, RE (Ch,F , Fw)(A) ≥ Ch(A).

Condition R1 should be straightforward: the chance function produced by the

refinement rule accommodates fully the experimental factor that prompts revi-

sion, and so it assigns chance 1 to the proposition about that factor. Condition

R2 says if Ch has already accommodated an experimental factor, then it cannot

be further refined by that factor. Finally, condition R3 expresses the thought

that the refinement rule never decreases the chances of propositions that imply

the proposition about a given experimental factor.

I now turn to some relations between C1 and C2. The first important relation

between the two conditions is straightforward. It is captured by the following

proposition:

Proposition 3.1. If Ch satisfies C1, then it follows that Ch satisfies C2.

Proof. Suppose that Ch satisfies C1 and that Cchw ∈ A for all w in W. Then,

Ch(A) = Ch

( ∨
w∈W

(A ∧ Cchw)

)
=
∑
w∈W

Ch(A ∧ Cchw)

=
∑
w∈W

Ch(A|Cchw
)Ch(Cchw

)

=
∑
w∈W

Ch(Cchw
)chw(A) (by C1).

What other relations could hold between conditions C1 and C2? Interestingly,

under a certain assumption, C1 and C2 come as equivalent conditions. The

assumption says that any possible later chance function chw is “certain” in giving

the correct chance distribution, i.e. chw(Cchw) = 1. Call such a later chance

function an immodest expert function.6 Given this assumption, we can prove the

following proposition:

6For a more thorough analysis of epistemic expert functions, see Pettigrew and Titelbaum
(2014).
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Proposition 3.2. Suppose that every chw is an immodest expert function. Then,

Ch satisfies C1 if and only if it satisfies C2.

Proof. Suppose that chw(Cchw
) = 1. We prove that Ch satisfies C1 iff it satisfies

C2 in the following two steps.

(a) C1 ⇒ C2. Suppose that Ch satisfies C1, chw(Cchw
) = 1, and Cchw

∈ A
for all w in W. Then,

Ch(A) = Ch

( ∨
w∈W

(A ∧ Cchw
)

)
=
∑
w∈W

Ch(A ∧ Cchw)

=
∑
w∈W

Ch(A|Cchw
)Ch(Cchw

)

=
∑
w∈W

Ch(Cchw
)chw(A) (by C1),

as required.

(b) C2 ⇒ C1. Suppose that Ch satisfies C2, chw(Cchw) = 1, and Cchw ∈ A
for all w in W. Then,

Ch(A|Cchw
) =

Ch(A ∧ Cchw
)

Ch(Cchw
)

=

∑
w′∈W Ch(Cchw′ )chw′(A ∧ Cchw

)∑
w′∈W Ch(Cchw′ )chw′(Cchw)

(by C2)

=
chw(A ∧ Cchw

)

chw(Cchw
)

(since chw′(Cchw′ ) = 1)

= chw(A|Cchw
)

= chw(A),

as required.

Assuming that every later chance function is immodest, this result in fact shows

that we deal not with two conditions, but with one condition. The condition
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relates two chance or physical probability functions in a way that parallels the way

in which various chance-credence principles relate one’s subjective probability

and physical probability functions. That is, it requires a present chance function

to line up with some possible later chance function. Putting some qualifications

aside, like the admissibility clause, this condition might be regarded as the chance-

counterpart of Lewis’s famous Principal Principle.

But why should we assume that every later chance function is immodest?

Interestingly, it turns out that this assumption plays an important role when it

is conjoined with condition C1 and with the demand that any chance function

should be a probability function. If we allow any possible later chance function

to be modest, i.e. chw(Cchw
) < 1, then we get a contradiction when we require

any present chance function Ch to obey C1. To see this, suppose that a given

later chance function chw is modest and that the present chance function Ch

satisfies C1. Assume further that Ch(Cchw
) > 0. Then, we get the following two

contradictory conclusions:

• By probability theory, Ch(Cchw |Cchw) = 1.

• By C1, we have Ch(Cchw
|Cchw

) = chw(Cchw
) < 1, since chw is modest.

Thus, it appears that a consistent application of condition C1 requires any pos-

sible later chance function to be immodest.

Before closing this section, let me state one consequence of condition C2. It

can be formulated as a condition relating present and possible later expectations,

calculated relative to present and later chance functions. To introduce this con-

dition, let us define the expectation of a random variable X :W → R, calculated

relative to a chance function:

Ech(X) =
∑
w∈W

ch(w)X(w). (3.2)

Then, the following condition is a consequence of C2:
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C3 (Present expectations are equal to the expected values of later ex-

pectations): For all Ch and chw,

ECh(X) =
∑
w∈W

Ch(Cchw)Echw(X).

That is, C3 requires an expectation of a random variable, calculated relative to

the present chance function, to be equal to an expectation of later expectations,

calculated relative to the possible later chance functions. To show that C2 entails

C3, let me prove the following proposition:

Proposition 3.3. If Ch satisfies C2, then it follows that Ch satisfies C3.

Proof. Suppose that Ch satisfies C2 and that Cchw
∈ A for all w in W. Then,

ECh(X) =
∑
w∈W

Ch(w)X(w)

=
∑
w∈W

(∑
w∈W

Ch(Cchw
)chw(w)X(w)

)
(by C2)

=
∑
w∈W

∑
w∈W

Ch(Cchw)chw(w)X(w)

=
∑
w∈W

Ch(Cchw
)
∑
w∈W

chw(w)X(w)

=
∑
w∈W

Ch(Cchw
)Echw

(X),

which yields C3.

3.3 Chance and Resiliency

In this section, I introduce, motivate, and make precise a norm for chances called

Maximizing Resiliency. This norm captures a fundamental intuition concerning

chance, to wit, the intuition that chances should be as stable as possible under

variation of experimental factors. This norm, suitably understood, is the linchpin

of our resiliency-centered arguments for conditions C1 and C2. That is, I will

show in the next sections how these two conditions follow from the norm of
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Maximizing Resiliency.

3.3.1 Maximizing Resiliency and Resiliency Measure

Our fundamental norm governing chances runs as follows:

Maximizing Resiliency: Chance should maximize its resiliency in

the presence of experimental factors. That is, a chance distribution

ought to be maximally invariant upon variation of experimental fac-

tors.

Before I elaborate on this norm, let me briefly provide a pre-theoretic motivation

for the resiliency-centered approach to chance given in this chapter. I begin with

a presentation of Skyrms’s (1980a) reasons for why resiliency considerations are

so crucial to chance.

First, Skyrms argues that scientific methodology aims at achieving resilient

chances that figure in statistical laws. This goal stems from an important canon

of scientific methodology known as Bacon’s rule of varying the circumstances. It

says that to test a law, we have to vary as much as possible the conditions that

are not described by the law. Second, he claims that the resiliency of chance is

closely tied to the notion of statistical necessity. One way to clarify this claim

is to say that a high resiliency of chance posited in a statistical law means that

this law obtains almost unconditionally. Thus, resiliency is a way to capture the

necessity of statistical laws. Since resiliency comes in degrees, this observation

in turn implies that the necessity of statistical laws might be gradual. In recent

years a similar idea has been developed in connection with attempts to explain

lawful generalizations. Various argumentative strategies have been put forward

to defend the view that any lawful generalization, including a statistical one,

must be sufficiently “resilient”, “stable”, “robust”, or “invariant” under certain

sorts of changes, and that the degree of its stability indicates how immutable or

necessary it is.

Let me mention two attempts of this kind. Mitchell (2000) defends the view

that generalizations admit of various degrees of stability, and consequently there

is no simple divide between accidental and lawful generalizations. On Mitchell’s

view, a generalization’s stability is the extent to which it is contingent. As an ex-
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ample, generalizations covering biological phenomena, like Mendel’s laws, seem to

be more contingent (less robust) than fundamental physical laws, but are less con-

tingent (more robust) than generalizations of the kind “All the coins in my pocket

are 1 cent euro coins”. Using a different conceptual framework, Woodward (2003,

chapter 6) argues that invariance across certain changes is the key to understand

successful explanatory generalizations. One of his major goals is to account for

the explanatory role of generalizations of the special sciences. Although those

generalizations have exceptions, they should be regarded as lawful because of

their stability under a wide range of changes or interventions, he claims. Like

Mitchell, he argues that, given that invariance comes with gradations, the stan-

dard law versus accident framework fails to give us a full understanding of possible

explanatory and causal relationships that various generalizations are supposed to

cover.

Third, and perhaps most importantly, Skyrms claims that the resiliency of a

chance (propensity) is a mark of the confirmatory value of a statistical law that

posits this propensity, and argues that well-confirmed statistical laws posit highly

resilient chances. Resiliency thus is evidentially significant. More precisely, he

argued that “A propensity statement is well confirmed if the epistemic probability

is high that the correct objective distribution gives the probability attribution

at issue high resiliency. In other words, confirmation of propensity statements

goes by epistemic expectation of objective resiliency” (Skyrms 1980a, p. 71).

Well-confirmed statistical laws thus should have a high epistemic expectation of

the resiliency of chances or propensities they assign to experimental outcomes.

In sum, Skyrms shows that the resiliency of chance is closely related to various

concepts concerning statistical laws, their modal status and their testing.

Interestingly, there are other important reasons for adopting a resiliency-based

approach to chance. First, and more generally, resiliency viewed as a property

of chance distributions is strictly connected with the strategy of scientific model

building that aims at finding “robust” models. In his classical paper on model

building in population biology, Richard Levins (1966) developed the idea that

model building in population biology involves a trade-off among realism, preci-

sion, and generality, and that population biology should aim at finding robust

models, including robust statistical models. According to Levins, such models
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supply an access to the truth about biological reality. On this view thus, robust-

ness is truth conducive. Here I do not want to adjudicate whether robustness is a

mark of truth. Perhaps, robust models are worthwhile, regardless of whether or

not they are truth conducive. What is important in the context of this chapter

is that the idea of chance resiliency seems to fit well with the idea of robust sta-

tistical models. One natural thought seems to be that a robust statistical model

posits a chance distribution that is invariant across variation in data. The ro-

bustness of a model, or a degree thereof, might in turn be revealed by the extent

to which that chance distribution is resilient across variation of data.

Second, resiliency appears to be a key feature of a certain sort of objective

probabilities that figure in probabilistic explanations. Aidan Lyon (2010) calls

such objective probabilities counterfactual probabilities. These probabilities are

distinguished by playing a specific conceptual role in probabilistic explanations:

they convey modally comparative information about a system. On this view,

counterfactual probability is a measure of how robust a proposition is under vari-

ation of experimental factors that could impinge on the system. This variation

proceeds by considering counterfactual situations. As an example of counter-

factual probabilities, consider probabilities that figure in explanations given by

classical statistical mechanics. For concreteness, consider an explanation of why

a cup of coffee cools down. Classical statistical mechanics tells us that this is be-

cause, given a probability distribution over initial conditions, it is overwhelmingly

probable that its micro-state is one that lies on a trajectory that deterministi-

cally takes it into the macro-state “cooled down”. What makes these explanations

satisfactory is that, among other things, these probabilities are highly resilient:

we are told that the overwhelming majority of micro-states compatible with a

given macro-state would evolve to a higher-entropy macro-state. So even if we

knew these micro-states, this would have a negligible impact on the probabilistic

explanation given by classical statistical mechanics.

Resiliency thus appears to be an important virtue of chances. Naturally, one

may ask: how important is this virtue? Clearly, resiliency is not the sole virtue

of chances. There are other virtues of chances that scientists seem to value. For

example, they value chance distributions that match relative frequencies with

which events actually occur or chance distributions that are predictively accurate.
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However, to run our resiliency-based approach we do not need to decide how

important resiliency is when compared to these other virtues. For our purposes,

it suffices to assume that resiliency is one of many virtues that a good probabilistic

theory should have.

Having said that, I now turn to clarify the norm of Maximizing Resiliency. In

so doing, let me first provide a more precise way of understanding our key con-

cept, to wit, the resiliency of a chance function. Like Skyrms (1980a), I take it

that the resiliency of a chance distribution is a measurable property. My proposal

is that a resiliency measure should tell us how stable a present chance distribution

over some family of propositions is when compared to a chance distribution that

is obtained from the present one by accommodating information about an exper-

imental factor, understood as a supposition, that obtains at some possible world.

Given that this accommodation proceeds via some refinement rule, we compare

in fact an unrefined chance function with its possible refinements. To provide a

resiliency measure of this sort, we use the following background assumptions:

• Let F be a set of experimental factors. F is taken to be a finite partition

{Fw : w ∈ W} of W. Since F is a partition, no two elements from F are

true at the same w.

• For each possible world w and an experimental factor Fw that holds true

at w, we define the possible later chance function as:

chw(·) = RE (Ch,F , Fw).

That is, a possible later chance function chw is obtained from the present

chance function Ch by accommodating via a refinement rule the experi-

mental factor Fw that holds true at w.

• We assume that C is a set of present chance functions and CF = {chw : w ∈
W} is the set of possible later chance functions.

With this background in mind, we can introduce a resiliency measure for the

present chance function Ch at a world w. Mathematically, it is a function R

that takes the present chance function Ch and a world w, and returns a score
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R(Ch,w), a number in R, that measures the resiliency of Ch at w. Given this

notion, it is natural to ask: how should the resiliency of Ch at w be computed?

My proposal is that it is computed by measuring a divergence between the

present chance function Ch and a possible later chance function chw that comes

from Ch by accommodating via a refinement rule the Fw, which is true at w.

Thus, the resiliency at w expresses how “close” the present chance function is

to the possible later chance function, chw, which is a possible refinement of Ch

at w. More precisely, if [0, 1]
n ⊂ Rn is the unit cube of chance functions over

a finite set of propositions A = {A1, ..., An}, then D : [0, 1]
n × [0, 1]

n → R is a

divergence that takes Ch ∈ [0, 1]
n

and chw ∈ [0, 1]
n
, and gives a real number in

R. We assume that for all Ch, chw ∈ [0, 1]
n
,

• D(chw, Ch) is non-negative, i.e. D(chw, Ch) ≥ 0 with equality if and only

if Ch = chw.

However, we do not need to assume that D(chw, Ch) is a metric in the mathe-

matical sense. That is, we do not require it to satisfy the triangle inequality nor

to be symmetric. For concreteness, let us specify D(chw, Ch) as

D(chw, Ch) =
∑
A∈A

(
chw(A)− Ch(A)

)2
. (3.3)

That is, D(chw, Ch) is given by the sum over the propositions A ∈ A of the

squares of differences between the present chance assigned to A by Ch and the

later chance assigned to A by chw. If A = {A1, ..., An}, then we can think of Ch

and chw as real-valued vectors, (Ch(A1), ..., Ch(An)) and (chw(A1), ..., chw(An))

respectively, in n-dimensional space equipped with the Euclidean inner product.

Then, D(chw, Ch) is the squared Euclidean distance between these vectors. Now,

a resiliency measure that corresponds to this divergence function can be given by

R(Ch,w) =
∑
A∈A

(
chw(A)− Ch(A)

)2
. (3.4)

Having specified the resiliency measure, we can now clarify the norm of Max-

imizing Resiliency. Let C be a set of present chance functions. Suppose that

Ch,Ch′ are in C. We say that:
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• Ch′ strongly resiliency-dominates Ch if R(Ch′, w) < R(Ch,w) for all

worlds w in W,

• Ch′ weakly resiliency-dominates Ch if R(Ch′, w) ≤ R(Ch,w) for all worlds

w in W, and R(Ch′, w) < R(Ch,w) for at least one world w in W.

That is, Ch′ strongly resiliency-dominates Ch if it is less divergent from the later

chance function in every possible world. And Ch′ weakly resiliency-dominates

Ch if it is at least as divergent as Ch is from the later chance function in every

possible world, and it is less divergent from the later chance function in at least

one possible world.

Now, I propose to think of the norm of Maximizing Resiliency more precisely

as follows:

Maximizing Resiliency∗: Suppose that Ch and Ch′ are in C. If

(i) Ch′ strongly resiliency-dominates Ch, and

(ii) there is no other Ch′′ in C that weakly resiliency-dominates Ch′,

then Ch is inadmissible with respect to the resiliency measure.

Thus, Maximizing Resiliency∗ tells us which present chance functions in C are in-

admissible with respect to the resiliency measure. According to this norm, an in-

admissible present chance function is one that is strongly resiliency-dominated by

some other present chance function that itself is not weakly resiliency-dominated

by any other present chance function in C. Our norm might be regarded, mutatis

mutandis, as a version of the Dominance Principle exploited in statistical decision

theory. This norm goes as follows:

Dominance: Let o and o′ be two options in a set of options O. Then,

if

(i) o′ strongly dominates o, and

(ii) there is no other o′′ in O that weakly dominates o′, then

o is an inadmissible choice from O.

Like Dominance, Maximizing Resiliency∗ signals which element of some set should

be ruled out as inadmissible. At this point, one might wonder whether clause (ii)
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in Maximizing Resiliency∗ could be dropped. That is, one might argue for the

following alternative norm:

Maximizing Resiliency∗∗: Suppose that Ch and Ch′ are in C. If

Ch′ strongly resiliency-dominates Ch, then Ch is inadmissible with

respect to the resiliency measure.

Maximizing Resiliency∗∗ does not require that at least one present chance func-

tion in C is undominated. It tells us that no chance function that is strongly

resiliency-dominated is admissible. However, Maximizing Resiliency∗ does not

seem satisfactory. For it allows for the possibility that all present chance func-

tions in C are ruled out as inadmissible with respect to resiliency. This is so

because it does not guarantee that there is a present chance function that is not

dominated by some other chance function in C. That is, it does not guaran-

tee that there is a stable dominance-stopping chance function in C. Maximizing

Resiliency∗ makes it explicit that strong dominance signals inadmissibility in case

there is a dominance-stopping chance function in C.
In the next section, I show how Maximizing Resiliency∗ establishes conditions

C1 and C2. That is, I show that any present chance function that violates each

of the conditions C1 and C2 is strongly resiliency-dominated by a present chance

function in C that satisfies these conditions, whereas any chance function that

satisfies each of the conditions is not even weakly resiliency-dominated by some

other chance function in C. Thus, we show that any chance function that violates

each of the conditions C1 and C2 must be regarded as inadmissible with respect

to the resiliency measure.

3.3.2 Comparison with Skyrms’s Resiliency Measure

The resiliency measure presented above differs importantly from Skyrms’s re-

siliency measure. Slightly reformulated for the purpose of comparison, Skyrms’s

resiliency measure might be understood as a mathematical function RS that takes

proposition A ⊆ W, a present chance of A, Ch(A), and a finite set B of propo-

sitions describing truth-functional combinations of experimental factors that are

logically consistent with A and ¬A, and gives a measure of the resiliency of the
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chance of A under B. Resiliency, so understood, is then measured by

RS(A,Ch(A),B) = 1−max
B∈B

(
Ch(A)− chB(A)

)
, (3.5)

where B ranges over propositions describing truth-functional combinations of

experimental factors, and chB(A) is the conditional chance of A obtained from

Ch(A) by conditioning on B. That is, the resiliency of Ch(A) under B is the

maximal change of Ch(A) over all elements in B. The divergence that underpins

Skyrms’s resiliency measure is the variation distance between Ch(A) and chB(A).

Let us point out some crucial differences between Skyrms’s resiliency measure

and the resiliency measure given in (3.4). First, Skyrms’s resiliency measure mea-

sures the resiliency of a particular present chance assignment for A, Ch(A), while

our resiliency measure measures the resiliency of the whole present chance distri-

bution, Ch, over A. Second, Skyrms deals with the resiliency under the algebra

B that contains non-empty and consistent Boolean combinations of propositions

describing experimental factors, whereas we deal with the resiliency at a par-

ticular world w or, equivalently, under a particular experimental factor from F
that obtains at w. We thus assume that F is a partition: no two elements F

and F ′ in F are both true at w. This is so because if the elements of F are not

disjoint, then Fw is not well defined and hence chw cannot be determined. Third,

Skyrms’s resiliency measure compares the present chance of A with the chance

of A that is “obtainable” from the present one by conditioning on some truth-

functional combination of experimental factors. For reasons given in section 3.2,

we do not assume REC as the refinement rule for chances. Simply, to measure

the resiliency of a present chance function at w, we take a divergence between

that function and its refinement at w obtained by accommodating via some re-

finement rule an experimental factor that obtains at w. Thus, the refinement of

a present chance in the light of some experimental factor proceeds in a “black-

box”: we are only given information about the input (a present chance function)

and the output(a refined present chance function at w), without specifying pre-

cisely the rule by which the present chance distribution is refined. Fourth, on

Skyrms’s view, the divergence between Ch(A) and chB(A) is given by the largest

amount of disagreement between Ch(A) and chB(A), where B ranges over truth-
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functional combinations of propositions describing experimental factors, whereas,

on our view, the divergence between Ch and chw is given by the sum over the

propositions A ∈ A of the squares of differences between Ch and chw.

3.3.3 Generalizing Resiliency Measure: Bregman Diver-

gence

The resiliency-based arguments for C1 and C2 to be presented do not hinge

essentially on the resiliency measure given in (3.4). As will be apparent, these

arguments hold for a class of resiliency measures that are instances of the so-called

Bregman divergence.

To introduce Bregman divergence more generally in this chapter, let A =

{A1, ..., An}, and let x and y be real-valued vectors in n-dimensional space

equipped with the Euclidean inner product. Suppose that X is a convex sub-

set of Rn. Let Φ : X → R be a strictly convex function whose gradient ∇Φ is

defined in the interior of X and extends to a bounded, continuous function on X .

Then for all x,y ∈ X , the Bregman divergence DΦ : X × X → R corresponding

to Φ is given by

DΦ(y,x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x), (3.6)

where ∇Φ(x) is the gradient vector of Φ evaluated at x and · denotes the inner

product of two vectors (Figure 3.1 visualizes the Bregman divergence). Since Φ

is strictly convex, it follows that DΦ(y,x) ≥ 0 with equality if and only if y = x.

The function DΦ is the difference between the value of Φ at x and the first-order

Taylor expansion of Φ around x evaluated at y. Now, if the function Φ is defined

as Φ(x) = ‖x‖2, then DΦ(y,x) = ‖y− x‖2. That is, squared Euclidean distance

is a Bregman divergence (Banerjee et al. 2005).

More specifically, for our purposes let us assume that X is the unit cube,

[0, 1]
n
, in Rn and let Ch and chw be represented as real-valued vectors of chances,

respectively Ch = (Ch(A1), ..., Ch(An)) and chw = (chw(A1), ..., chw(An)), in

Rn equipped with the Euclidean inner product. Then for all Ch, chw ∈ [0, 1]
n
,
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Φ(x) + (y − x) · ∇Φ(x)

DΦ(y,x)

y − x

Figure 3.1: Visualizing the Bregman divergence generated by Φ. The
Bregman divergence from y to x is a difference between the value of
two functions at y. The first function is Φ and the second function is
the tangent to Φ taken at x.

the Bregman divergence DΦ : [0, 1]
n× [0, 1]

n → R corresponding to Φ is given by

DΦ(chw, Ch) = Φ(chw)− Φ(Ch)−∇Φ(Ch) · (chw − Ch). (3.7)

The following proposition (for a proof see Predd et al. 2009, p. 4789) captures

a feature of any Bregman divergence, feature that will play a crucial role in our

resiliency-centered arguments for C1 and C2:

Proposition 3.4. Let Z ⊆ [0, 1]
n

be a closed convex subset of Rn. Then, if

Ch ∈ [0, 1]
n − Z, there is Ch′ ∈ Z such that DΦ(Ch′, Ch) ≤ DΦ(chw, Ch) for

all chw ∈ Z. Moreover, DΦ(chw, Ch
′) ≤ DΦ(chw, Ch) − DΦ(Ch′, Ch) for all
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chw ∈ Z and all Ch ∈ [0, 1]
n −Z.

The key idea behind this proposition is this. Given an unrefined chance function

that is not in Z, there is an unrefined chance function in Z that is at least as close

to the chance function outside Z as any other chance function in Z. The vector

of chances Ch′ is called the projection of Ch onto Z. The second sentence of this

proposition expresses the fact that any Bregman divergence satisfies the general-

ized Pythagorean theorem, i.e. DΦ(chw, Ch) ≥ DΦ(chw, Ch
′) +DΦ(Ch′, Ch).

3.4 Resiliency-based Arguments for C1 and C2

We first establish a theorem which is crucial for the task of showing how con-

ditions C1 and C2 follow from the stricture of maximizing resiliency. Let F =

{Fw : w ∈ W} be a finite partition of experimental factors, and let CF = {chw :

w ∈ W} be the corresponding set of possible later chance functions. These chance

functions are possible refinements of some chance function in C. We introduce

the set of all convex combinations of the possible later chance functions in CF ,

called the convex hull of CF . It can be defined as follows:

Conv(CF ) =

{ ∑
w∈W

λwchw : 0 ≤ λw ≤ 1,
∑
w∈W

λw = 1

}
. (3.8)

That is, Conv(CF ) is the smallest set that (i) contains CF , and (ii) contains,

for any two later chance functions chw and chw′ , every convex combination or

mixture of them. i.e. for any 0 ≤ λw ≤ 1, it contains λwchw + (1 − λw)chw′ .

Alternatively, Conv(CF ) may be defined as the intersection of all convex sets

containing CF .

Now, endowed with these notions, we can establish the following theorem:

Theorem 3.1. Let R(Ch,w) = DΦ(chw, Ch). Suppose CF ⊆ [0, 1]
n

. Then:

(i) If Ch /∈ Conv(CF ), then there is Ch′ ∈ Conv(CF ) such that DΦ(chw, Ch
′) <

DΦ(chw, Ch) for all chw ∈ CF .

(ii) If Ch′ ∈ Conv(CF ), then there is no Ch′′ ∈ [0, 1]
n

such that Ch′′ 6= Ch′

and DΦ(chw, Ch
′′) ≤ DΦ(chw, Ch

′) for all chw ∈ CF , and DΦ(chw, Ch
′′) <
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DΦ(chw, Ch
′) for some chw ∈ CF .

Proof. For the proof, we assume that:

• A = {A1, ..., An} is a finite set of propositions.

• Ch and chw are represented as real-valued vectors of chances in the n-

dimensional Euclidean space Rn.

• Conv(CF ) is the convex hull of CF . Thus, CF ⊆ Conv(CF ).

For the proof of Theorem 3.1 (i), suppose that Ch ∈ [0, 1]
n − Conv(CF ).

Then, by Proposition 3.4, for all chw ∈ Conv(CF ) and hence for all chw ∈ CF ,

DΦ(chw, Ch
′) ≤ DΦ(chw, Ch)−DΦ(Ch′, Ch).

And so,

DΦ(chw, Ch) ≥ DΦ(chw, Ch
′) +DΦ(Ch′, Ch).

Since Ch /∈ Conv(CF ) and Ch′ ∈ Conv(CF ), we have that Ch 6= Ch′, and so

DΦ(Ch′, Ch) > 0. So

DΦ(chw, Ch
′) < DΦ(chw, Ch),

as required.

For the proof of Theorem 3.1 (ii), suppose that Ch′ ∈ Conv(CF ). Now, sup-

pose that DΦ(chw, Ch
′′) ≤ DΦ(chw, Ch

′) for all chw ∈ Conv(CF ), and hence

for all chw ∈ CF . Since Ch′ ∈ Conv(CF ), it follows that DΦ(chw, Ch
′′) ≤

DΦ(Ch′, Ch′) = 0. This implies that DΦ(chw, Ch
′′) = 0 and Ch′′ = Ch′. But

this contradicts the assumption that Ch′′ 6= Ch′.

Our theorem has two parts. In the first part, it says that if a present chance

function Ch is not in Conv(CF ), then there is another present chance function Ch′

that is in Conv(CF ) and is more resilient at all possible worlds or, equivalently, is

closer to every possible later chance function. The basic idea of this part of our

theorem is that any unrefined chance function that lies outside the convex hull

of CF can be replaced by some unrefined chance function in the convex hull of
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CF that is more resilient at all possible worlds. The second part of the theorem

ensures that once the unrefined chance function Ch′ is in Conv(CF ), there is

no other unrefined chance function Ch′′ ∈ C that could be more resilient at all

possible worlds. In other words, the theorem says that if the chance function Ch

is in the convex hull of CF , then its resiliency would not be improved by replacing

it with any other chance function in C.
It has to be emphasized that this theorem hinges on the assumption that the

set of possible refinements CF is hold fixed: it is fixed by some refinement rule that

maps Ch and the elements of F to the chw’s. We then consider whether Ch should

be replaced with some other unrefined chance function Ch′ from C by looking at

how the two unrefined chance functions diverge from every element of the fixed set

CF . Thus, our result relies heavily on the assumption that the chance functions in

C give rise to the same refined chances in CF . At this juncture, however, it might

be objected that since every possible refined chance depends both on the element

of F and on the unrefined chance function Ch, the assumption is an unacceptable

oversimplification. We should expect that for any two different unrefined chance

functions in C, the refinement rule would produce different sets of possible refined

chances. Consequently, we should consider different convex hulls of these sets.

My response to this objection is that our framework does not require the

refinement rule to track or conserve possible unrefined chance functions in C.
Hence, it is entirely possible for this rule to produce refined chance functions

that track only the experimental factors in F and do not conserve unrefined

chance functions. That is, any refined chance function could satisfy only the

constraints imposed by the experimental factors and be far removed from the

unrefined chance function. An instance of a refinement rule that tracks both the

experimental factors in F and the unrefined chance function is REC: a refined

chance is a given unrefined chance function conditional on a true member of F .

But we have given reasons in section 3.2 for why REC is not a good choice in our

framework.

3.4.1 A Resiliency-based Argument for C2

I start by providing a resiliency-based argument for C2. The reason for approach-

ing our task in this order is that a resiliency-based argument for C1 hinges on
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the assumption that every chw ∈ CF is an immodest expert function. And given

Proposition 3.2, it follows that such an argument for C1 is automatically an ar-

gument for C2. But I would like to examine whether resiliency considerations

provide support for C2 independently of how C1 and C2 are related. I thus pro-

ceed in this section without assuming that the possible later chance functions are

immodest. However, I make another additional assumption about the elements

in CF : it is required that each later chance of A is the expectation of the later

chances of A calculated relative to the later chance function. That is, for all

v ∈ W and all A ∈ A,

chv(A) =
∑
w∈W

chv(Cchw
)chw(A). (3.9)

Thus, each chv “expects” itself to give the later chance of A. It is easy to make

this assumption seem plausible. To display more effectively the role played by

this assumption, recall the theory of expert functions adduced at the beginning

of this chapter. If Ch(A) is the expectation of the expert values for A, then it

seems that each expert value for A should itself be an expectation of the expert

values for A. And this intuition is captured by (3.9): each expert value for A

expects itself to give the expert value for A.

Our resiliency-based argument for C2 comprises the norm of Maximizing

Resiliency∗, Theorem 3.1, and the following theorem:

Theorem 3.2. Suppose that CF is the set of possible later chance functions. And

suppose that for all v ∈ W and all A ∈ A, chv(A) =
∑
v∈W chv(Cchw)chv(A).

Then, Ch satisfies C2 if and only if Ch ∈ Conv(CF ).

Proof. The first step is to show that if Ch ∈ Conv(CF ), then Ch satisfies C2.

Since Conv(CF ) contains CF and every convex combination of any two elements

in CF , we proceed as follows. First, we show that if Ch ∈ CF , then Ch satisfies

C2. And this is straightforward, since for all v ∈ W and all A ∈ A, chv(A) =∑
w∈W chv(Cchw)chw(A).

Second, we show that if Ch and Ch′ satisfy C2, then so does any convex
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combination of Ch and Ch′. Suppose that Ch and Ch′ satisfy C2. Then,

λCh+ (1− λ)Ch′(A) =
∑
w∈W

λCh(Cchw)chw(A) +
∑
w∈W

(1− λ)Ch′(Cchw)chw(A)

=
∑
w∈W

λCh(Cchw
) + (1− λ)Ch′(Cchw

)chw(A),

as required.

The second step is to show that if Ch satisfies C2, then Ch ∈ Conv(CF ).

Suppose that Ch satisfies C2. It follows then that Ch is a convex combination of

the posterior chance functions, the chws, in CF . That is, there are λw such that∑
w∈W λw = 1 and for λw = Ch(Cchw

),

Ch =
∑
w∈W

λwchw.

Theorem 3.2 thus identifies the set Conv(CF ) with the set of all possible later

chance functions that satisfy C2. To establish this result, we have used the

following strategy. Since Conv(CF ) is the intersection of all convex sets containing

CF and a convex set is one that contains each convex combination of the elements

in CF , we have shown that for all convex sets containing CF , (i) every element in

CF satisfies C2 and (ii) every convex combination of the elements in CF satisfies

C2.

Next, we infer the following proposition from Theorem 3.1 and Theorem 3.2:

Proposition 3.5. Let R(Ch,w) = DΦ(chw, Ch). Suppose CF ⊆ [0, 1]
n

. Then:

(i) If Ch does not satisfy C2, then there is Ch′ ∈ C that satisfies C2 and

DΦ(chw, Ch
′) < DΦ(chw, Ch) for all chw ∈ CF .

(ii) If Ch′ satisfies C2, then there is no other Ch′′ ∈ C such that Ch′′ 6= Ch′

and DΦ(chw, Ch
′′) ≤ DΦ(chw, Ch

′) for all chw ∈ CF , and DΦ(chw, Ch
′′) <

DΦ(chw, Ch
′) for some chw ∈ CF .

From Proposition 3.5 and the norm of Maximizing Resiliency∗, we conclude that

Ch is inadmissible with respect to the resiliency measure. That is, any Ch that
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violates C2 is strongly resiliency-dominated by some other Ch′′ that itself is not

even weakly resiliency-dominated by any other element in C.
The argument just given thus may be formalized as follows:

(1) Maximizing Resiliency∗

(2) Theorem 3.1

(3) Theorem 3.2

(4) Proposition 3.5

(5) Therefore, Ch is inadmissible with respect to the resiliency measure.

3.4.2 A Resiliency-based Argument for C1

Our resiliency-based argument for C1 combines Maximizing Resiliency∗, Theorem

3.1, and the following theorem:

Theorem 3.3. Suppose that CF is the set of all possible later chance functions.

And suppose that each chw is an immodest expert function, i.e. chw(Cchw
) = 1.

Then, Ch satisfies C1 if and only if Ch ∈ Conv(CF ).

Proof. The first step is to show that if Ch ∈ Conv(CF ), then Ch satisfies C1.

Since Conv(CF ) contains CF and every convex combination of any two elements

in CF , we proceed as follows. First, we show that if Ch ∈ CF , then Ch satisfies

C1. Suppose that v, w ∈ W. Then, if chv(Cchw
) > 0, we have that chv = chw,

and so

chv(A|Cchw
) = chw(A|Cchw

) = chw(A),

as required.

Second, we show that if Ch and Ch′ satisfy C1, then any convex combination

of Ch and Ch′ satisfies C1. Suppose that Ch and Ch′ are in Conv(CF ) and

satisfy C1. Then,

(λCh+ (1− λ)Ch′)(A|Cchw
) =

λCh(A ∧ Cchw
) + (1− λ)Ch′(A ∧ Cchw

)

λCh(Cchw
) + (1− λ)Ch′(Cchw

)

=
λCh(A|Cchw)Ch(Cchw)

λCh(Cchw
)
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+ (1− λ)Ch′(A|Cchw)Ch′(Cchw)

+ (1− λ)Ch′(Cchw
)

=
λchw(A)Ch(Cchw) + (1− λ)chw(A)Ch′(Cchw)

λCh(Cchw
) + (1− λ)Ch′(Cchw

)

(by the fact that Ch and Ch′ satisfy C1

and by the axioms of probability)

= chw(A),

as required.

The second step of our proof is to show that if Ch satisfies C1, then Ch ∈
Conv(CF ). Suppose that Ch satisfies C1 and that Cchw ∈ A for each w ∈ W.

Then, for any A ∈ A,

Ch(A) = Ch

( ∨
w∈W

(A ∧ Cchw
)

)
=
∑
w∈W

Ch(A ∧ Cchw
)

=
∑
w∈W

Ch(A|Cchw)Ch(Cchw)

=
∑
w∈W

chw(A)Ch(Cchw
) (by C1).

And for λw = Ch(Cchw
), we have that Ch ∈ Conv(CF ), as required.

Much like Theorem 3.2, the theorem just established identifies the set Conv(CF )

with the set of all possible later chance functions that satisfy C1. To establish this

result, we have shown that for all convex sets containing CF , (i) every element in

CF satisfies C1 and (ii) every convex combination of the elements in CF satisfies

C1.

Now, from Theorem 3.1 and Theorem 3.3, we infer that:

Proposition 3.6. Let R(Ch,w) = DΦ(chw, Ch). Suppose CF ⊆ [0, 1]
n

. Then:

(i) If Ch does not satisfy C1, then there is Ch′ ∈ C that satisfies C1 and

DΦ(chw, Ch
′) < DΦ(chw, Ch) for all chw ∈ CF .
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(ii) If Ch′ satisfies C1, then there is no other Ch′′ ∈ C such that Ch′′ 6= Ch′

and DΦ(chw, Ch
′′) ≤ DΦ(chw, Ch

′) for all chw ∈ CW , and DΦ(chw, Ch
′′) <

DΦ(chw, Ch
′) for some chw ∈ CF .

From Proposition 3.6 and from the norm of Maximizing Resiliency∗, we conclude

that Ch is inadmissible with respect to the resiliency measure. It means that

any Ch that violates C1 is strongly resiliency-dominated by some other Ch′′ that

itself is not even weakly resiliency-dominated by any other element in C.
In sum, the resiliency-based argument for C1 may be formalized as follows:

(1) Maximizing Resiliency∗

(2) Theorem 3.1

(3) Theorem 3.3

(4) Proposition 3.6

(5) Therefore, Ch is inadmissible with respect to the resiliency measure.

3.4.3 Summary

We have just shown how considerations of resiliency can be adduced in order

to provide support for conditions C1 and C2. We have shown that any present

chance function that violates each of our conditions should be deemed as in-

admissible by the norm of Maximizing Resiliency∗. Informally, the gist of our

resiliency-based arguments is the thought that an unrefined chance function that

satisfies each of these conditions belongs to a convex hull of its possible refine-

ments. And once this unrefined chance function is in that convex hull, it cannot

be even weakly resiliency-dominated by some other unrefined chance function.

But if an unrefined chance function violates these conditions, then it lies outside

this convex hull and so it always can be strongly resiliency-dominated by some

other unrefined chance function that satisfies each of these conditions and thus be-

longs to that convex hull. Therefore, any unrefined chance function that violates

each of these conditions is ruled out as inadmissible by the norm of Maximizing

Resiliency∗.
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It has to be emphasized that though considerations concerning the resiliency

of chance shed new light on conditions C1 and C2, they should not be taken as

providing a “bedrock” or ultimate justification of these conditions. Rather, they

should be understood as providing a support for the claim that these conditions

should be requirements for chance.

3.5 Some Consequences: Humean Supervenience

In this section, I discuss some philosophical consequences of our resiliency-based

arguments for the debate concerning the plausibility of so-called Humean ac-

counts of chance. First, I show that conditions C1 and C2 imposed in the case of

Humean accounts of chance might lead to unacceptable consequences. Second, I

focus on how our resiliency-centered approach to chance contributes to the widely

discussed controversy over Humean accounts of chance, known as the Big Bad

Bug. Third, I show that there are Humean accounts of chance that accommodate

perfectly the two conditions.

Let me start by providing a characterization of Humean accounts of chance.

They are grounded on the metaphysical doctrine of Humean Supervenience (HS).

In general, HS states that modal concepts such as laws of nature, dispositions,

counterfactuals, causation, or chances supervene on the global histories of non-

modal facts. For the purpose of this chapter, HS applied to chance can be for-

mulated slightly more precisely as follows:

HSchance: For any worlds w and v and any time t, if w and v have the

same global (past, present, and future) histories of chancy outcomes,

then w and v have the same chance function at t.

In view of HSchance, Humean accounts of chance might be called reductionist,

for they treat chances are being fixed or determined by non-modal features of

a world. But not only does the Humean accept HSchance, also she denies the

following doctrine:

HS∗chance: For any worlds w and v and any time t, if w and v have

the same past and present histories of chancy outcomes (up to and

including t), then w and v have the same chance function at t.
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That is, the Humean accepts that chances supervene on the whole of history of

chancy outcomes and denies that they supervene on the present and past history

alone. Now, the conjunction of HSchance with the denial of HS∗chance leads to the

following peculiar conclusion:

Underminability: For any world w and any time t, it is possible that

w will have a future history of chancy outcomes that (i) is compatible

with w’s history up to and including t, (ii) has positive chance at t to

come out true at w, and (iii) is incompatible with the chance function

at t.

That is, the Humean metaphysical credo leads to the possibility of so-called

undermining futures, i.e. certain future histories of chancy outcomes such that if

they were to come out true, they would determine, together with the past and

present history, a chance distribution that differs from the present one. We say

then that such a future undermines the present chance distribution. Lewis gave

the following example of an undermining future:

For instance, there is some minute present chance that far more tritium atoms

will exist in the future than have existed hitherto, and each one of them will decay

in only a few minutes. If this unlikely future came to pass, presumably it would

complete a chancemaking pattern on which the half-life of tritium would be very

much less than the actual 12.26 years. (Lewis 1994, p. 482)

To show how the conjunction of HSchance with the denial of HS∗chance leads to

Underminability, suppose for reductio that Underminability is false. Then, the

present chance function at w is compatible with any future history of chancy

outcomes at w. This means in turn that the present chance function at w is fixed

by the past and present history alone. But this is just to say that the present

chance function at w supervenes on the past and present history alone. Hence,

HS∗chance is true, and this contradicts the Humean assumptions.

The foregoing is a brief summary of the metaphysical doctrine underpinning

Humean accounts of chance. The question arises: how does this metaphysical

doctrine relate to conditions C1 and C2? A simple way of framing a version

of Underminability within the talk about an unrefined chance function and its

possible refinements shows that both C1 and C2 cannot be satisfied. But in view

of Proposition 3.1, this is a hardly acceptable conclusion.
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To show this, let G = {Gw : w ∈ W} be a finite set of mutually exclusive

propositions describing possible global (past, present, and future) histories of

chancy outcomes. According to HSchance, each Gw is equivalent to the propo-

sition Cchw
, which says that the chances are given by chw. That is, for each

w ∈ W, Cchw
≡ Gw. Suppose that each chw is a possible refinement of some Ch.

Now, consider such refinement at world v at the beginning of v’s history, and

suppose that it assigns positive chances to undermining global histories. That

is, it assigns positive chances to global histories such that if they came about

at v, they would fix a refinement different from chv. Thus, we have the chance

function at v that assigns positive chances to undermining global histories and is

fixed by one global history which will come about at v. If this is so, however, we

have that, for every A ∈ A, the expected chance of A at v, computed relative to

the chance function chv, may differ from the chance of A at v. That is, for all

A ∈ A, it might be the case that

chv(A) 6=
∑
w∈W

chv(Cchw
)chw(A). (3.10)

This shows that it might be the case that chv does not expect to give the chances

at v. A simple example brings home this point. A coin is tossed three times.

There are 23 possible global histories, and hence, by HSchance, there are 23 propo-

sitions about possible chance functions. Further, there are four possible chance

functions that assign a chance to the proposition that the coin lands heads: (i)

chw0(H) = 0, (ii) chw1(H) = 1
3 , (iii) chw2

(H) = 2
3 , and (iv) chw3

(H) = 1. Now,

according to HSchance:

• Cchw0
≡ TTT

• Cchw1
≡ TTH ∨ THT ∨HTT

• Cchw2
≡ THH ∨HHT ∨HTH

• Cchw3
≡ HHH

Consider, for example, the chance of heads given by chw1
. Does this chance
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function expect itself to give the chance of heads? No, it does not since:

1

3
= chw1

(H) =

3∑
i=0

chw1

(
Cchwi

)
chwi

(H)

= chw1(TTT )chw0(H) + chw1(TTH ∨ THT ∨HTT )chw1(H)+

chw1
(THH ∨HHT ∨HTH)chw2

(H) + chw1
(HHH)chw3

(H)

=
31

81

6= 1

3
.

Now, (3.10) when conjoined with conditions C1 and C2 leads to the following

problem. Let Ch be some unrefined chance function. Suppose that Ch satisfies

C1. In particular, suppose that for all A ∈ A,

Ch(A|Cchv
) = chv(A). (3.11)

Then, by (3.10):

chv 6=
∑
w∈W

chv(Cchw
)chw(A). (3.12)

But (3.12) is a violation of C2, for C2 requires that

chv =
∑
w∈W

chv(Cchw
)chw(A). (3.13)

So if Ch satisfies C1, then it does not satisfy C2. But this result is hardly

acceptable given Proposition 3.1, which says that any unrefined chance function

that satisfies C1 also satisfies C2. This suggests that there is a tension between

Humean accounts of chance and conditions C1 and C2.

Where does this observation leave us? It prompts the following question:

should we still believe that the conditions are plausible requirements for chance,

let alone constitutive to it? By appealing to resiliency considerations, I suggest

that it is Humean accounts of chance that should be treated with suspicion, not

the two conditions. A defender of Humean accounts of chance might react by
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claiming that C1 and C2 are not plausible conditions on chance. However, our

resiliency considerations provide reason to doubt whether this reaction is correct.

For what we have shown in the preceding sections is that there is an important

sense in which any account of chance that collides with the two conditions is

wrong. That is, if it allows an unrefined chance function to violate these condi-

tions, then this chance function is inadmissible with respect to resiliency.

Let me now turn to another worry surrounding Humean accounts of chance,

known as the Big Bad Bug (hereafter, the Bug). As presented originally in

Lewis (1994), the Bug is a reductio which aims to show that Humean accounts

of chance contradict the Principal Principle. The Bug is essentially an episte-

mological argument: it appeals to the Principal Principle which tells us how an

agent’s credences in propositions concerning chances should be related to her

credences in other propositions. But, as shown in Bigelow et al. (1993) and in

Briggs (2009b), a version of the Bug can be presented without making this epis-

temological detour. More specifically, the Bug can be formulated as a genuine

metaphysical argument (hereafter, the metaphysical Bug). The key is to replace

the Principal Principle with a non-epistemic condition C1. The metaphysical

argument shows that the application of C1 in the context of Humean accounts

of chance leads to inconsistency. Again, let G = {Gw : w ∈ W} be a finite set

of mutually exclusive propositions describing possible global (past, present, and

future) histories of chancy outcomes. Consider a chance function chv at v that

assigns a positive chance to every member of G. In particular, it assigns a positive

chance to some undermining global history Gw at v, i.e. chv(Gw) > 0. Hence,

by HSchance, chv(Cchw) > 0. Now, by C1:

Ch(Cchw
|Cchv

) = chv(Cchw
) > 0. (3.14)

But since Cchw
and Cchv

are mutually exclusive, by probability theory:

Ch(Cchw
∧ Cchv

) = 0. (3.15)

Thus,

Ch(Cchw |Cchv ) = 0. (3.16)
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So by (3.14) and (3.16) we arrive at a contradiction. This argument thus shows

that C1 is incompatible with Ch’s possible refinements that allow for undermining

global histories.

But it might be objected that the metaphysical Bug is not a problem for the

Humean. For it rests on C1 and, as we have just shown, this condition appears to

be in a serious tension with Humean accounts of chance. So unless there is a good

reason to accept C1, the Humean might not be convinced by the metaphysical

Bug. But the core idea of this chapter is that such reason in fact could be given.

If one cares about the resiliency of chance, then C1 should be a requirement for

chance. Therefore, both the Humean and non-Humean should accept C1. If this

is so, then the metaphysical Bug remains a serious challenge for the Humean.

My final point in this section concerns the question of whether there might

be Humean accounts of chance that avoid the two problems presented above.

It appears that not all Humean accounts of chance lead to Underminability.

Schaffer (2003) has offered an account of chance that satisfies HSchance and avoids

Underminability. According to Schaffer, for any world w and A ∈ A, the correct

chance of A at w, denoted by ch∗w(A), is the chance of A conditional on the

proposition that the chances at w are given by chw, i.e. ch∗w(A) = chw(A|Cchw).

Since each chance function chw satisfies HSchance, and ch∗w is defined from chw,

ch∗w satisfies HSchance as well. To see how this theory works, recall our example

given above. According to Schaffer’s view, the possible four chances of the coin

landing heads are:

• ch∗w0
(H) = chw0

(
H|Cchw0

)
= chw0

(H|TTT )

• ch∗w1
(H) = chw1

(
H|Cchw1

)
= chw0

(H|TTH ∨ THT ∨HTT )

• ch∗w2
(H) = chw2

(
H|Cchw2

)
= chw2

(H|THH ∨HHT ∨HTH)

• ch∗w3
(H) = chw3

(
H|Cchw3

)
= chw3(H|HHH)

As it is easy to observe, if chwi
is a chance function at a world in which the

coin lands heads i times, then so is ch∗wi
. Thus, ch∗w satisfies HSchance. To show

that Schaffer’s Humean account of chance avoids Underminability, suppose that

chv(Cchw
) > 0, where Cchw

is equivalent to some undermining global history at

v. Since Cchv
and Cchw

are incompatible, it follows that chv(Cchw
|Cchv

) = 0.
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But this is just to say that ch∗v(Cchw
) = 0, and so ch∗ does not assign a positive

chance to the undermining global history at v.

Because Schaffer’s Humean account of chance avoids Underminability, it ac-

commodates perfectly C1, and hence is immune to the metaphysical Bug. To

show the latter, notice that if ch∗v(Cchw
) = 0, then it is also true that ch∗v

(
Cch∗w

)
=

0. So by C1:

Ch
(
Cch∗w |Cch∗v

)
= ch∗v

(
Cch∗w

)
= 0, (3.17)

which just says that Cch∗w and Cch∗v are incompatible relative to Ch.

3.6 Conclusions

I have shown that conditions C1 and C2 are an essential feature of resilient chance

functions. They follow from the injunction to maximize the resiliency of chance.

Based on the norm of Maximizing Resiliency suitably understood, it has been

shown that an unrefined chance function that violates each of these conditions

can be resiliency-dominated by an unrefined chance function that satisfies these

conditions. Thus, as I hope to have shown, conditions C1 and C2 can be mo-

tivated on grounds of resiliency. Also, I have shown how the resiliency-based

motivation for these conditions could contribute to the debate over some worries

surrounding Humean accounts of chance. I have thus identified some interesting

consequences of the resiliency-based approach to chance.

Our result may well be read as follows. Even if one is not convinced that

conditions C1 and C2 are constitutive to chance, but cares about the resiliency

of chance, one should regard the two conditions as a basic requirement for chances.

It has to be emphasized that it was not my goal to show that conditions C1 and

C2 are requirements for chances under all circumstances. Rather, the strategy

offered in this chapter was to provide a framework and within it the assumptions

under which these conditions can be supported.



Chapter 4

Kinematics of Chance:

Conditionalization and

Resiliency

The question of how an agent’s credences or subjective probabilities change

through time is one of the central topics discussed in Bayesian epistemology.

It is widely believed that the rule of conditionalization or Bayes’s rule captures

the salient features of the way epistemic agents should update their credences

through time upon receipt of new evidence. But the question of how chances or

physical probabilities change through time appears to be a less explored issue in

the philosophy of chance. An interesting approach to this problem was proposed

by David Lewis (1986). He located the problem, and an answer to it, within

the context of chance-credence coordination. More specifically, he argued that a

particular kinematical model for chances follows from his Principal Principle—a

principle prescribing a particular way of coordinating credences with chances.

The model that follows from the Principal Principle is a form of Bayesian con-

ditionalization. According to this model, any later chance function is equal to



116 CHAPTER 4. KINEMATICS OF CHANCE

an earlier chance function conditional on the intervening history of categorical-

property instantiations in between.

This chapter discusses in a systematic way Lewis’s kinematical model for

chances. First, it investigates the conditions that any kinematical model needs to

satisfy to count as Lewis’s kinematics of chance. Second, it presents and discusses

Lewis’s argument for his kinematics of chance: it shows how this kinematical

model for chance follows from the Principal Principle. Third, the chapter presents

an alternative argument for Lewis’s kinematics of chance that does not appeal

to the Principal Principle. Instead, the argument appeals to a principle that

relates chance functions at different times. This principle in turn is motivated by

resiliency considerations similar to those presented in chapter 3.

4.1 Introduction

If there are chances attributable to the world, how can we account for the way

they develop over time? Consider David Lewis’s (1986, p. 91) case of a labyrinth

that you enter at 11:00 a.m. and you choose your turn at any branch point you

reach by tossing a coin. At the starting point you have a 42% chance of reaching

the center by noon. But suppose that at 11:30 you have turned into a region of

the labyrinth from which it is hard to reach the center, and so your chance of

reaching it has changed to 26%. We may think that the change in your chance of

reaching the center was prompted by a change in the chance set-up (that is, you

in the labyrinth) between 11:00 and 11:30. After all, between these two times

you moved to a different region from which the center is hardly reachable, and

so your chance of reaching it decreased.

Lewis famously claimed that the kinematics of chance, or the way in which

chances develop over time, is fully captured by the rule of conditionalization, also

known as Bayes’s rule. Call Lewis’s claim Bayesian Kinematics of Chance. More

precisely, Lewis (1986, p. 101) claimed that “a later chance distribution comes

from an earlier one by conditionalizing on the complete history of the interval in

between”. Bayesian Kinematics of Chance thus tells us how chances at one time

relate to chances at a different time. Lewis argued for this claim by appealing

to his Principal Principle—a particular chance-credence principle that relates an
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agent’s credences in propositions concerning chances to her credences in other

propositions.

Lewis’s argument for Bayesian Kinematics of Chance is based on two assump-

tions. The first assumption is a formulation of the Principal Principle, according

to which for any time t, a chance distribution at t is one’s credence (subjective

probability) distribution conditional on the complete theory of chance and the

complete history up to and including t. The second assumption is that the com-

plete history up to t′, t′ > t, can be decomposed into the conjunction of the

complete histories of subsequent intervals, i.e. into the complete history up to

t and the complete history of the interval between t and t′. As Lewis showed,

from these two assumptions it follows that the chance distribution at t′ equals

the preceding chance distribution at t conditional on the complete history of the

interval between t and t′.

Interestingly, the idea that the kinematics of chance is governed by condition-

alization parallels the well-known view in Bayesian epistemology, which says that

the kinematics of an agent’s credence is governed by conditionalization. Lewis

wrote:

The evolution of chance is parallel to the evolution of credence for an agent who

learns from experience, as he reasonably might, by conditionalizing. In that case

a later credence function comes from an earlier one by conditionalizing on the

total increment of evidence gained in the interval in between. For the evolution

of chance we simply put the world’s chance distribution in place of the agent’s

credence function, and the totality of particular fact about a time in place of the

totality of evidence gained at that time. (Lewis 1986, p. 101)

Typically, however, the idea that updating on evidence is governed by the rule

of conditionalization is not taken for granted in Bayesian epistemology. Various

arguments have been employed to show that, as a way of updating the agent’s

credences, the rule of conditionalization can be justified from more fundamental

rationality requirements for credences. Some authors (Teller 1973; Skyrms 1987a;

Lewis 1999) have argued that the rule of conditionalization as a way of updating

one’s degrees of belief follows from the injunction to avoid sure loss. Here so-called

diachronic Dutch book arguments have been devised to show that any agent who

violates conditionalization is vulnerable to a set of bets which ensure that she

suffers a net loss. Other authors (Brown 1976; Maher 1992) have shown that any



118 CHAPTER 4. KINEMATICS OF CHANCE

agent should update by conditionalization in order to maximize expected utility

of her acts with respect to her prior credence function. Similarly, some authors

(Greaves and Wallace 2006; Leitgeb and Pettigrew 2010b; Easwaran 2013) have

shown that any agent should update her credences by conditionalization in order

to maximize expected epistemic utility of her credences with respect to her prior

credence function. Also, it has been argued that the rule of conditionalization

follows from certain symmetry requirements for degrees-of-belief updating (van

Fraassen 1989, pp. 331-337) and from Reflection principles that relate an agent’s

present and later credences (van Fraassen 1999).

It thus seems natural to ask: could Bayesian Kinematics of Chance be justi-

fied from more fundamental requirements for chance? If we follow Lewis in taking

the Principal Principle as such requirement, the answer is: Yes, it could. But, as

many authors pointed out, the Principal Principle cannot be the sole requirement

for chances: there are other equally fundamental requirements for chances that

do not follow from the Principal Principle (Arntzenius and Hall 2003; Schaffer

2003, 2007). If so, could we show that Bayesian Kinematics of Chance follows

from these other requirements for chances? Moreover, the Principal Principle

provides only an epistemic justification for Bayesian Kinematics of Chance in the

sense that we derive this kinematics of chance from a principle that says how

one’s epistemic state described by a credence function should be constrained by

evidence of chances. But if chances are to be objective features in the world, it

might be claimed that any justification of the way by which they evolve through

time had better be objective, i.e. appealing to objective, agent-independent fea-

tures of chances. After all, one might reasonably wonder what the evolution of

chances over time has to do with one’s credences. It is thus tempting to ask: could

we justify Bayesian Kinematics of Chance by appealing to the requirements for

chances that do not make an epistemological detour to the Principal Principle?

My aim in this chapter is to show how Bayesian Kinematics of Chance can be

justified without appealing to the Principal Principle. I shall argue that, under

certain fairly plausible conditions, Bayesian Kinematics of Chance is equivalent to

a particular principle connecting prior and possible posterior chances. I call this

principle Generalized Chance Expectation, for it requires chances at a particular

time to be equal to a certain expectation of possible chances at some later time.
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As will be apparent, Generalized Chance Expectation has nothing to do with

the way chances regulate one’s credences, and the support it lends for Bayesian

Kinematics of Chance is grounded only on a relation between chances at two

different times.

A closely related principle to Generalized Chance Expectation, together with

other plausible requirements for chances, has been introduced by John Bigelow,

John Collins, and Robert Pargetter (1993) as constitutive to our notion of chance.

They have argued that chances violating this principle are not only peculiar, but

in fact they are not chances at all. In chapter 3, I have shown that a formulation

of this principle can be supported by appealing to the idea of chance’s resiliency.

Similarly, in this chapter I will also show how Generalized Chance Expectation

can be supported by resiliency considerations. That is, I will show that there is

a certain sense in which this principle is an essential feature of resilient or stable

chance distributions, under suitable conditions.

The structure of this chapter is as follows. In section 4.2, I give a precise state-

ment of Bayesian Kinematics of Chance, and examine the conditions under which

a transition from one chance function to another counts as Bayesian Kinematics

of Chance. In section 4.3, I present a detailed reconstruction of Lewis’s argument

for Bayesian Kinematics of Chance, and show how it can be extended to justify

separately two conditions whose conjunction is equivalent to Bayesian Kinemat-

ics of Chance. In section 4.4, I give some motivation for why we might want to

give a justification of Bayesian Kinematics of Chance without appealing to the

Principal Principle. In section 4.5, I present an argument for Bayesian Kinemat-

ics of Chances that rests solely on Generalized Chance Expectation. In section

4.6, I will bolster the argument given in section 4.5 by showing how resiliency

considerations support Generalized Chance Expectation. Finally in section 4.7,

I discuss the scope of Bayesian Kinematics of Chance.
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4.2 Bayesian Kinematics of Chance: A Precise

Statement

In this section, I present Bayesian Kinematics of Chance more precisely. In par-

ticular, I show how it can be located in a broader context concerning a transition

from one chance function to another, and what conditions need to be satisfied

for Bayesian Kinematics of Chance to work. Before doing so, however, let me

introduce some terminology and notation.

Suppose that W is a set of possible outcomes of a trial conducted on some

chance set-up and that F is a full and finite algebra of propositions generated by

W. We might think of the elements of W as possible worlds and the elements of

F as propositions describing those worlds. Let cht stand for a chance function

over F at time t. It is important to note that Lewis thought of chance functions

as relative not only to time, but also to possible worlds. For simplicity, I assume

that cht holds at some particular world, and so I will not use the world parameter

explicitly. Further, for any times t′ and t, t′ > t, let Itt′ be a finite partition of

W. Each proposition Itt′ in Itt′ describes a complete history of changes that a

chance set-up may undergo in the interval between t and t′. According to Lewis,

this complete intervening history is given by the complete intervening history of

categorical-property instantiations. These categorical properties do not involve

chances, for chances according to Lewis supervene on the global distribution of

these properties’ instantiations. More precisely, Lewis (1983; 1994) claimed that

categorical properties are qualitative, perfectly natural (i.e. non-gerrymandered,

e.g. unlike the property of being an emerald), involve nothing modal like propen-

sities, chances or counterfactuals, and are capable of being possessed by spacetime

points or occupants thereof. For the purpose of this section, I assume Lewis’s

characterization of a complete history of the interval. This, however, is not to

say that Bayesian Kinematics of Chance works only if this characterization is

assumed. In section 4.7, I will argue that a complete history of the interval can

be understood broadly as the history of changes in a chance set-up.

Now, given the set Itt′ and the set C of chance functions over F , we can

introduce a kinematics rule for chances. This rule manages to model a transition

from one chance function to another chance function. Formally, the kinematics
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rule for chances is a function K : C×Itt′ → C that, given the chance function cht(·)
and a complete intervening history Itt′ ∈ Itt′ , produces another chance function

K
(
cht, I

t
t′

)(
·
)
. That is, if Itt′ is a complete intervening history in the interval

between t and t′, then the kinematics rule induces a shift or transition from the

chance function cht(·) at t to the revised chance function K
(
cht, I

t
t′

)(
·
)

at t′.

Thus, the kinematics rule tells us how to revise cht(·) in order to accommodate

the truth of Itt′ .

With these assumptions in place, Bayesian Kinematics of Chance may be

presented more precisely as follows:

Bayesian Kinematics of Chance: If Itt′ ∈ Itt is the complete his-

tory of the interval between t and t′, then for all A ∈ F ,

K
(
cht, I

t
t′
)(
A
)

= cht
(
A|Itt′

)
:=

cht
(
A ∧ Itt′

)
cht
(
Itt′
) ,

providing cht
(
Itt′
)
> 0.

In words, the chance function at t′ is equal to the chance function at t conditional

on the complete history of the interval in between.

To illustrate how this kinematical model for chances works, consider the fol-

lowing example. Suppose that there are two urns, each one containing 100 mar-

bles. One urn contains 40 red and 60 white marbles, and the other urn contains

60 red and 40 white marbles. There is also a device that first selects with 0.5

chance one of these urns, and then selects a marble at random from it.

As Figure 4.1 shows, there are two possible changes in the marble-selecting

device’s categorical properties between t and t′, each one determining a different

chance at t′ that a red (blue) marble will be selected. The device has different

categorical properties at t′ depending on which urn it has selected at t′. Each

possible change in the device’s state has a 0.5 chance at t to come out true at

t′. If Urn 1 is selected, the chance of Urn 1 being selected raises from 0.5 to

1, while the chance of Urn 2 being selected lowers to 0. Suppose that the top

path in Figure 4.1 represents the actual history from t to t′′. Then, if there is

a determinate chance at t that a red (blue) marble will be selected, Bayesian

Kinematics of Chance takes the chance at t′ of a red (blue) marble being selected
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Urn
1 and
Urn 2

Urn 2
40R,
60B

B
0.6

R

0.4

0.5

Urn 1
60R,
40B

B
0.4

R

0.6

0.
5

t t′ t′′

Figure 4.1: The chances at t′ of a red marble (R) and a blue marble (B) being
selected at t′′ are determined by the chances at t and the change of the device’s
categorical properties between t and t′.

to be the conditional chance at t given the selection of Urn 1 at t′.

It can be shown that Bayesian Kinematics of Chance is equivalent to two

conditions that I call Chance Certainty and Chance Rigidity. These two condi-

tions can be thought as chance-counterparts of two analogous conditions that are

typically imposed on an agent’s credence function in the case of belief updating

(e.g. Jeffrey 1988). Suppose that a shift from cht(·) to K
(
cht, I

t
t′

)(
·
)

satisfies

the following two conditions:

Chance Certainty: For all Itt′ ∈ F ,

K
(
cht, I

t
t′
)(
Itt′
)

= 1.

Chance Rigidity: For all A and Itt′ ∈ F ,

K
(
cht, I

t
t′
)(
A|Itt′

)
= cht

(
A|Itt′

)
.

Then, the following proposition holds true:



4.2. A PRECISE STATEMENT 123

Proposition 4.1. Chance Certainty and Chance Rigidity ⇔ Bayesian Kinemat-

ics of Chance.

Proof. (⇒) Suppose that Chance Certainty and Chance Rigidity hold true. Then,

K
(
cht, I

t
t′
)(
A
)

= K
(
cht, I

t
t′
)(
A|Itt′

)
(by Chance Certainty)

= cht
(
A|Itt′

)
(by Chance Rigidity),

as required.

(⇐) Suppose that Bayesian Kinematics of Chance holds true. Then,

K
(
cht, I

t
t′
)(
Itt′
)

= cht
(
Itt′ |Itt′

)
= 1,

which yields Chance Certainty, and

K
(
cht, I

t
t′
)(
A|Itt′

)
=
K
(
cht, I

t
t′

)(
A ∧ Itt′

)
K
(
cht, Itt′

)(
Itt′
)

=
cht
(
A ∧ Itt′ |Itt′

)
cht
(
Itt′ |Itt′

)
= cht

(
A ∧ Itt′ |Itt′

)
=
cht
(
A ∧ Itt′ ∧ Itt′

)
cht
(
Itt′
)

= cht
(
A|Itt′

)
,

which gives Chance Rigidity.

Chance Certainty appears to be a highly intuitive condition. If a particular Itt′ is

true, then the chance at t′ of Itt′ ’s truth should be 1. After all, at t′ the proposition

Itt′ describes the past intervening history, and as Lewis claims: “what’s past is

no longer chancy” (Lewis 1986, p. 93). At any time up to t′ the chance of Itt′ ’s
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truth fluctuates, but is fixed at 1 once Itt′ is true. The intuitive force of Chance

Certainty notwithstanding, in section 4.3 I will show how this condition can be

supported additionally by the Principal Principle.

But is Chance Rigidity an equally intuitive condition for the evolution of

chances? There seems to be no immediate rationale for imposing Chance Rigidity

on the kinematical rule for chances. Why should prior and posterior chances

conditional on Itt′ stay unchanged? Typically, an analogous condition in the case

of an agent’s credences is defended by means of the following intuitive argument:

Suppose that A is all and everything that is learned, that all changes to the agent’s

partial belief are rational effects of her learning that A, but that her new degrees

of belief are not her old degrees of belief conditional on A. Then her conditional

degrees of belief given A must have changed. But the truth of A is not itself

a reason to change one’s conditional beliefs given A, so something more than A

must have been learned. But that is contrary to the supposition that A is all that

is learned. (Bradley 2005, p. 345)

Adapting this line of thought in the case of chances, we could argue that if the

chances at t and t′ conditional on Itt′ are different, then Itt′ does not describe the

whole change that a chance set-up undergoes between t and t′, and thus something

more must have occurred in between. But also it is well known that the Rigidity

condition in the case of an agent’s credences might fail to be satisfied: though

A is all and everything that is learned, it could, together with the agent’s other

credences, prompt a change in her conditional degrees of belief given A. Likewise,

consider the example visualized in Figure 4.1: it might well be that the change

of the marble-selecting device’s categorical properties at t′ prompts a change in

the device’s causal mechanism which in turn fixes different chances conditional

on Itt′ . Hence, in such circumstances, the proposition Itt′ would not describe

all the changes that the device undergoes. These observations notwithstanding,

in section 4.3 I will show how Chance Rigidity could follow from the Principal

Principle, and in section 4.5 how it could be supported by Generalized Chance

Expectation.

We can illustrate the idea behind these two conditions by means of van

Fraassen’s (1989, pp. 161-162) muddy Venn diagrams. Suppose that proposi-

tions from W are regions inside a box representing W, as presented in Figure

4.2. Imagine that we heap one unit of mud on the box, and the amount of mud
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¬A ∧ ¬Itt′

x y z 1− x− y − z
A A ∧ Itt′ Itt′

Figure 4.2: A distribution of the mud over regions representing propositions A,
A ∧ Itt′ , Itt′ , and ¬A ∧ ¬Itt′ from W.

in each region is the chance of the proposition represented by that region. Now,

as presented in Figure 4.3, when a particular Itt′ is true, we wipe away all the

mud that lies outside the region Itt′ and leave the rest of the mud where it is

in. This results, first, in removing all of the mud that was not already in Itt′ ’s

region into it. This in turn increases the amount of mud in that region to unity,

and so K
(
cht, I

t
t′

)(
Itt′
)

= 1. Hence, Chance Certainty holds true. Second, the

proportion of Itt′ ’s mud that is also in A is kept unchanged: the swept-away mud

is redistributed in Itt′ in such a way that the proportions of the mud in regions

within Itt′ are retained.

As it is easy to observe from Figure 4.2 and 4.3, before redistribution the

ratio of the mud in A ∧ Itt′ to the mud in Itt′ is y
y+z , for the amount of mud in

Itt′ is y + z and the amount of mud in A ∧ Itt′ is y. After redistribution the total

amount of mud is in Itt′ and the amount of mud in A ∧ Itt′ is y
y+z . Hence, the

ratio of the mud in A ∧ Itt′ to the mud in Itt′ is y
y+z , and so it is left unchanged

after redistribution. And if we write cht
(
A|Itt′

)
for the proportion of Itt′ ’s mud

that is also in A before redistribution and K
(
cht, I

t
t′

)(
A|Itt′

)
for the proportion

of Itt′ ’s mud that is also in A after redistribution, we get Chance Rigidity, i.e.

K
(
ch, Itt′

)(
A|Itt′

)
= cht

(
A|Itt′

)
.

It is worth noticing that, in view of Proposition 4.1, any argument support-

ing Bayesian Kinematics of Chance also supports Chance Certainty and Chance
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¬A ∧ ¬Itt′

0
y
y+z 1− y

y+z 0

A A ∧ Itt′ Itt′

Figure 4.3: A redistribution of the mud over regions representing propositions A,
A ∧ Itt′ , Itt′ , and ¬A ∧ ¬Itt′ from W, given the truth of Itt′ .

Rigidity, and vice versa. In section 4.3, I introduce Lewis’s argument for Bayesian

Kinematics of Chance. Although it justifies the two conditions automatically, I

will also use the main idea of his argument to provide an independent Lewis-style

justification for each of the two conditions.

4.3 Bayesian Kinematics of Chance: Lewis’s Ar-

gument

Lewis derives Bayesian Kinematics of Chance from his Principal Principle. In

fact, for this derivation he uses a particular reformulation of that principle. In this

section, I first show that the Principal Principle and this particular reformulation

are equivalent principles. Second, I state precisely Lewis’s argument for Bayesian

Kinematics of Chance by using this reformulation of the Principal Principle.

Finally, I use the basic idea behind Lewis’s argument to justify Chance Certainty

and Chance Rigidity.

Lewis’s Principal Principle can be introduced as follows:

Principal Principle: Suppose that cr is an agent’s reasonable initial

credence function. Let cht be the chance function over F at time t,

and let pcht(A) = xq be the proposition that the chance of A at t is
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x, where x is a real number in the closed unit interval. If E is any

proposition that is admissible at t, then

cr(A|pcht(A) = xq ∧ E) = x,

providing cr(pcht(A) = xq ∧ E) > 0.

In words, if the agent started with a reasonable initial credence in A, received

at time t the information that the chance of A at t equals x, and the rest of her

evidence E were admissible at t, then she should have credence in A equal to x.

To provide Lewis’s reformulation of the Principal Principle, we need to intro-

duce his characterization of admissibility:

Admissible propositions are the sort of information whose impact on credence

about outcomes comes entirely by way of credence about the chances of those

outcomes. (Lewis 1986, p. 92)

Lewis gave two examples of propositions that satisfy his account of admissible

information: information about the complete history of categorical-property in-

stantiations up to and including time t, and information about the laws of nature,

including probabilistic laws. Moreover, Lewis assumed that any Boolean combi-

nation of the two is also admissible at time t.

With these notions in mind, we are in a position to introduce what Lewis calls

the Principal Principle Reformulated. It can be presented as follows:

The Principal Principle Reformulated: Suppose that cr is an

agent’s reasonable initial credence function, and let t be any time.

Let Ht be a proposition about the complete history of categorical-

property instantiations up to and including time t and let L be a

proposition about the laws of nature. Then, for all A ∈ F ,

cht(A) = cr(A|Ht ∧ L),

providing cr(Ht ∧ L) > 0.

That is, this principle tells us that the chance of A at time t is equal to the

conditional reasonable initial credence in A given the complete history up to

and including t and the laws of nature. To show precisely that the Principal
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Principle and the Reformulated Principal Principle are equivalent, let us prove

the following proposition:

Proposition 4.2. The Principal Principle ⇔ The Principal Principle Reformu-

lated.

Proof. (⇐) Following Lewis (1986, p. 99), assume that pcht(A) = xq ↔ H1
t ∧

L1 ∨ ... ∨ Hn
t ∧ Ln for all Hi

t ∧ Li such that cht(A) = x. Assume further that

E is admissible and compatible with pcht(A) = xq. Now, since every Hi
t ∧ Li is

admissible and compatible with pcht(A) = xq, we can replace E with H1
t ∧ L1 ∨

... ∨Hn
t ∧ Ln. Then,

cr(A|E ∧ pcht(A) = xq) = cr(A|H1
t ∧ L1 ∨ ... ∨Hn

t ∧ Ln ∧ pcht(A) = xq)

= cr(A|H1
t ∧ L1 ∨ ... ∨Hn

t ∧ Ln)

=
cr(A ∧ (H1

t ∧ L1 ∨ ... ∨Hn
t ∧ Ln))

cr(H1
t ∧ L1 ∨ ... ∨Hn

t ∧ Ln)

=

∑
i cr(A ∧Hi

t ∧ Li)∑
i cr(H

i
t ∧ Li)

=

∑
i cr(H

i
t ∧ Li)cr(A|Hi

t ∧ Li)∑
i cr(H

i
t ∧ Li)

=

∑
i cr(H

i
t ∧ Li)cht(A)∑

i cr(H
i
t ∧ Li)

(by the Reformulated Principal Principle)

=

∑
i cr(H

i
t ∧ Li)∑

i cr(H
i
t ∧ Li)

x (by assumption)

= x,

as required.

(⇒) Suppose that cht(A) = x and E is admissible and compatible with

pcht(A) = xq. Then, Ht ∧ L→ pcht(A) = xq, and we have that

cr(A|Ht ∧ L) = cr(A|pcht(A) = xq ∧Ht ∧ L)

= x

(by the Principal Principle and the fact that Ht ∧ L is admissible)
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= cht(A) (by assumption),

as required.

The crucial step in the proof of Proposition 4.2 involves the fact that the proposi-

tion that the chance of A at t is x is equivalent to the disjunction of the Hi
t ∧Li’s,

for each of which the chance of A at t is x. The proposition that the chance of A

at t is x and the disjunction of the Hi
t ∧Li’s are equivalent in the sense that the

former is true just in case some Hi
t ∧ Li picks out the value cht(A) = x.

With the Principal Principle Reformulated in hand, I will now present Lewis’s

argument for Bayesian Kinematics of Chance as a series of equations which I will

then chain together.

First, since K
(
cht, I

t
t′

)(
A
)

is the chance of A at t′, it follows from the Principal

Principle Reformulated that

K
(
cht, I

t
t′
)(
A
)

= cr(A|Ht′ ∧ L). (4.1)

Second, following Lewis (1986, p. 101), assume that any complete history of

categorical-property instantiations up to and including time t′ can be decomposed

into the conjunction of complete histories of subsequent intervals. Formally, Ht′ =

Ht ∧ Itt′ , where Ht is the complete history of categorical-property instantiations

in the interval up to and including time t, and Itt′ is the complete history of

categorical-property instantiations in the interval from t up to and including t′.

Then,

cr(A|Ht′ ∧ L) = cr(A|Ht ∧ Itt′ ∧ L). (4.2)

By the definition of conditional probability:

cr
(
A|Ht ∧ Itt′ ∧ L

)
=
cr
(
A ∧Ht ∧ Itt′ ∧ L

)
cr
(
Ht ∧ Itt′ ∧ L

) . (4.3)

By the product rule of probability theory:

cr
(
A ∧Ht ∧ Itt′ ∧ L

)
cr
(
Ht ∧ Itt′ ∧ L

) =
cr(Ht ∧ L)cr

(
A ∧ Itt′ |Ht ∧ L

)
cr(Ht ∧ L)cr

(
Itt′ |Ht ∧ L

) . (4.4)
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By the Reformulated Principal Principle again:

cr(Ht ∧ L)cr
(
A ∧ Itt′ |Ht ∧ L

)
cr(Ht ∧ L)cr

(
Itt′ |Ht ∧ L

) =
cr(Ht ∧ L)cht

(
A ∧ Itt′

)
cr(Ht ∧ L)cht

(
Itt′
)

=
cht
(
A ∧ Itt′

)
cht
(
Itt′
) .

(4.5)

And by the definition of conditional probability again:

cht
(
A ∧ Itt′

)
cht
(
Itt′
) = cht

(
A|Itt′

)
. (4.6)

Chaining together equations (4.1)—(4.6), we get

K
(
cht, I

t
t′
)(
A
)

= cht
(
A|Itt′

)
, (4.7)

which yields Bayesian Kinematics of Chance. This argument thus shows that

if chance satisfies the Reformulated Principal Principle, then it also satisfies

Bayesian Kinematics of Chance.

The idea behind Lewis’s argument is simple. If we define the chance func-

tion at t′ as the agent’s reasonable initial credence function conditional on the

complete history up to t′ and the laws of nature, and we extend that history by

conjoining complete histories of subsequent intervals, then we get, by using the

Principal Principle Reformulated, the conclusion that the chance function at t′ is

equal to the chance function at t conditional on complete history of the interval

between t and t′. Thus, Bayesian Kinematics of Chance follows from a principle

that tells us how chance should guide one’s credence.

So far in this section, I have reconstructed Lewis’s argument for Bayesian

Kinematics of Chance. But the basic idea behind Lewis’s argument can also

be used to show how Chance Certainty and Chance Rigidity follow from the

Reformulated Principal Principle. As shown in section 4.2, the two conditions

taken together are equivalent to Bayesian Kinematics of Chance. Thus, given

an argument for Bayesian Kinematics of Chance, we also get an argument for

the two conditions taken together. However, one might want to provide support

for each of these conditions separately. Interestingly, the Reformulated Principal
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Principle provides such support.

Let me first provide an argument for Chance Certainty, by giving a series of

equations and then chaining them together. Assume again that Ht′ = Ht ∧ Itt′ ,
and the Principal Principle Reformulated is the rule that connects credences with

chances. Then, by the Principal Principle Reformulated:

K
(
cht, I

t
t′
)(
Itt′
)

= cr
(
Itt′ |Ht′ ∧ L

)
. (4.8)

By the fact that Ht′ = Ht ∧ Itt′ and by the probability theory:

cr
(
Itt′ |Ht′ ∧ L

)
= cr

(
Itt′ |Ht ∧ Itt′ ∧ L

)
= 1.

(4.9)

Now, chaining together equations (4.8)—(4.9), we get

K
(
cht, I

t
t′
)(
Itt′
)

= 1, (4.10)

as required. That is, it follows from the Principal Principle Reformulated that

the chance at t′ of the interval-history between t and t′ must be 1. In other words,

an application of this principle leads to the conclusion that any past intervening

history of categorical-property instantiations is fixed, and so the chance of its

occurring must be 1.

Using the same assumptions as above, we can give the following argument for

Chance Rigidity. By the definition of conditional probability:

K
(
cht, I

t
t′
)(
A|Itt′

)
=
K
(
cht, I

t
t′

)(
A ∧ Itt′

)
K
(
cht, Itt′

)(
Itt′
) . (4.11)

By the Principal Principle Reformulated:

K
(
cht, I

t
t′

)(
A ∧ Itt′

)
K
(
cht, Itt′

)(
Itt′
) =

cr
(
A ∧ Itt′ |Ht′ ∧ L

)
cr
(
Itt′ |Ht′ ∧ L

) . (4.12)
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By the fact that Ht′ = Ht ∧ Itt′ and by the probability theory:

cr
(
A ∧ Itt′ |Ht′ ∧ L

)
cr
(
Itt′ |Ht′ ∧ L

) =
cr
(
A ∧ Itt′ |Ht ∧ Itt′ ∧ L

)
cr
(
Itt′ |Ht ∧ Itt′ ∧ L

)
= cr

(
A ∧ Itt′ |Ht ∧ Itt′ ∧ L

)
.

(4.13)

By the definition of conditional probability:

cr
(
A ∧ Itt′ |Ht ∧ Itt′ ∧ L

)
=
cr
(
A ∧ Itt′ ∧Ht ∧ Itt′ ∧ L

)
cr
(
Ht ∧ Itt′ ∧ L

) . (4.14)

By the product rule of probability theory:

cr
(
A ∧ Itt′ ∧Ht ∧ L

)
cr
(
Ht ∧ Itt′ ∧ L

) =
cr
(
Ht ∧ L

)
cr
(
A ∧ Itt′ |Ht ∧ L

)
cr
(
Ht ∧ L

)
cr
(
Itt′ |Ht ∧ L

) . (4.15)

And, by the Principal Principle Reformulated and probability theory:

cr
(
Ht ∧ L

)
cr
(
A ∧ Itt′ |Ht ∧ L

)
cr
(
Ht ∧ L

)
cr
(
Itt′ |Ht ∧ L

) =
cr
(
Ht ∧ L

)
cht
(
A ∧ Itt′

)
cr
(
Ht ∧ L

)
cht
(
Itt′
)

=
cht
(
A ∧ Itt′

)
cht
(
Itt′
)

= cht
(
A|Itt′

)
.

(4.16)

Now, chaining together equations (4.11)—(4.16):

K
(
cht, I

t
t′
)(
A|Itt′

)
= cht

(
A|Itt′

)
, (4.17)

as required. That is, by using the Principal Principle Reformulated, we get the

conclusion that the chance functions at t and t′ conditional on Itt′ stay unchanged.

Thus, Chance Rigidity receives an independent motivation by appealing to the

chance-credence relation.
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4.4 Do We Need a New Argument?

If we were to follow Lewis in regarding the Principal Principle, and hence the

Principal Principle Reformulated, as the key requirement for chance, then it seems

that there would be no way to question his argument for Bayesian Kinematics of

Chance. After all, the argument derives this kinematical model from the Principal

Principle. But it seems that Lewis’s idea about the role of the Principal Principle

in establishing Bayesian Kinematic of Chance is not so innocuous as one might

think. In this section, I give two reasons for thinking this is so. By doing so, I

also give motivation for seeking a new argument in favour of Bayesian Kinematics

of Chance.

The first reason for doubting Lewis’s argument is that it seems contentious to

believe that the Principal Principle—a principle that relates chance to credence—

could be used to establish the way by which chances should evolve through time.

While it is uncontroversial to think that the Principal Principle captures an

expert role of chance, to wit, its role in guiding one’s belief, it is problematic to

think that this principle dictates the way in which chances should evolve through

time. For if chances are attributable to the mind-independent world, the way

they evolve through time might be quite independent of the way they constrain

one’s credences.

The worry stated above stems from a more general observation, due to Bigelow,

Collins, and Pargetter (1993). They claim, pace Lewis, that it is not so evident

that the Principal Principle gives us the ultimate justification for attributing

chances to the world in order to capture various physical phenomena. For if this

were so, adhering to the Principal Principle would mean that

[...] when physicists assign half-lives, they can only be justified in doing so if

they have a justification for assigning specific rational degrees of belief. And yet

that cannot be right! Physicists are not investigating rational degrees of belief.

They are investigating physical phenomena. A physicist justifies attribution of a

specific half-life by appealing to physical grounds alone. No appeal is made to

suppositions about which degrees of belief are rational. The physical justification

for attributing a half-life might be by a demonstration that the attribution of the

half-life explains various phenomena. In particular, the attribution of this half-life

might explain various observed frequencies. Justifications of this sort seem entirely

adequate for the attribution of half-lives. They also seem to be justifications of a
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sort which it would be appropriate for physicists to provide, entirely within their

role as physicists. Such a justification is adequate for the attribution of half-lives,

or chances, properly so called. And yet justifications of the sort outlined make no

appeal at all to rational degrees of belief. (Bigelow et al. 1993, p. 447)

The view advocated by Bigelow, Collins, and Pargetter is that in physics facts

about chances are not necessarily derivable from facts about credences. This

in turn makes dubious the claim that we could regulate the way chances evolve

through time by appealing to facts about credences. Of course, this is not to say

that the Principal Principle says nothing about chances. Rather, it is to say that

it could not provide the defining role for chance. As Bigelow and his co-authors

claim, we should think that once the chances are derived from our best scientific

theories, our credences ought to be constrained by them. That is:

The physicist attributes chances—properly so called—without paying any heed

to rational degrees of belief. Then the nature of rationality is such that certain

rational degrees of belief will be consequences of certain chances. And, hence,

certain credences must match certain chances–and so the Principal Principle holds.

(Bigelow et al. 1993, p. 448)

The second, and perhaps more important, reason for questioning Lewis’s ar-

gument is that even if we regard the chance-credence relation as a tool for deriving

certain facts about chances, we do not know the exact formulation that this re-

lation should take. And this seems to be problematic because if we replace the

Principal Principle with some other formulation of that relation, we may derive a

kinematical model for chances that differs from Bayesian Kinematics of Chance.

To illustrate this point, consider Ned Hall’s (1994) and Michael Thau’s (1994)

New Principle:

The New Principle: Suppose that cr is an agent’s reasonable initial

credence function, and let t be any time. Let Ht be a proposition

about the complete history of categorical-property instantiations up

to and including time t, and let L be a proposition about the laws of

nature. Then, for all A ∈ F ,

cht(A|L) = cr(A|Ht ∧ L),

providing cr(Ht ∧ L) > 0.
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That is, the New Principle tells us that the chance of A at time t conditional on

the laws of nature is equal to the conditional reasonable initial credence in A given

the complete history up to and including t and the laws of nature. Assuming the

New Principle, one can ask: does this principle lead to Bayesian Kinematics of

Chance? But the answer to this question is: No, it does not.

To see this, observe first that it follows from the New Principle that

K
(
cht, I

t
t′
)(
A|L

)
= cr(A|Ht′ ∧ L), (4.18)

where K
(
cht, I

t
t′

)
(A|L) is the chance of A at t′ conditional on L. Then, assuming

that Ht′ = Ht ∧ Itt′ , we get

cr(A|Ht′ ∧ L) = cr(A|Ht ∧ Itt′ ∧ L). (4.19)

By the definition of conditional probability:

cr(A|Ht ∧ Itt′ ∧ L) =
cr(A ∧Ht ∧ Itt′ ∧ L)

cr(Ht ∧ Itt′ ∧ L)
. (4.20)

By the product rule of probability theory:

cr(A ∧Ht ∧ Itt′ ∧ L)

cr(Ht ∧ Itt′ ∧ L)
=
cr(Ht ∧ L)cr (A ∧ Itt′ |Ht ∧ L)

cr(Ht ∧ L)cr (Itt′ |Ht ∧ L)
. (4.21)

By the New Principle again:

cr(Ht ∧ L)cr (A ∧ Itt′ |Ht ∧ L)

cr(Ht ∧ L)cr (Itt′ |Ht ∧ L)
=
cr(Ht ∧ L)cht (A ∧ Itt′ |L)

cr(Ht ∧ L)cht (Itt′ |L)

=
cht(A ∧ Itt′ |L)

cht(Itt′ |L)
.

(4.22)

And by the definition of conditional probability again:

cht(A ∧ Itt′ |L)

cht(Itt′ |L)
= cht(A|Itt′ ∧ L). (4.23)
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Chaining together equations (4.18)—(4.23), we get

K
(
cht, I

t
t′
)(
A|L

)
= cht(A|Itt′ ∧ L), (4.24)

which yields a kinematical model for chances conditional on L. And this model

agrees with Bayesian Kinematics of Chance only if, for any t, cht(L) = 1. Thus,

by varying the formulation of the chance-credence relation, we may get different

kinematical models for chances.

The foregoing suggests that there are two sorts of motivation for providing an

argument in favour Bayesian Kinematics of Chance that would make no detour to

the Principal Principle. First, if facts about chances cannot be derived from facts

about credences, then presumably they could be derived from some facts about

physicists’ scientific practice, or from some features of well-confirmed scientific

laws, as suggested by Bigelow, Collins, and Pargetter. Hence, it is natural to

ask whether Bayesian Kinematics of Chance could be justified by appealing to

these other facts. Second, in providing a justification of Bayesian Kinematics of

Chance we would like to avoid the unpleasant consequence of Lewis’s argument:

that a change in the formulation of the chance-credence relation can lead to a

different kinematical model for chances.

There is also a third kind of motivation that should be considered. Although

we might think that the Principal Principle tells us a great deal about chances,

and could be used to derive Bayesian Kinematics of Chance, there are other

equally important principles that inform our understanding of chances. A view

of this sort is advocated by Schaffer (2007), who argues extensively that the

Principal Principle could not be all we know about chance. Recall that Schaffer

identifies a set of platitudes about chance, one of which is the Principal Principle.

And, though the Principal Principle is perhaps the most plausible and acceptable

of these conditions, Schaffer claims that chance is what best satisfies all of these

conditions. Of course, Schaffer does not intend to provide an exhaustive list of

platitudes about chance: his point is that there is more to our understanding of

chance than the platitude given by the Principal Principle.

Similarly, Arntzenius and Hall (2003) have argued that the Principal Principle

cannot be the sole constraint on chance, since it fails to explain why chances
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must explain physical symmetries of time and space: for example, that if two

coin tosses in different regions of spacetime are exactly alike, their outcomes have

the same chances. They have shown that what appears to play the role defined

by the Principal Principle cannot explain these physical symmetries. From this

observation they have concluded that the Principal Principle cannot be the sole

constraint for chance.

Now, if there are other equally important principles for chances, it is tempting

to ask: could we provide an argument in favour of Bayesian Kinematics of Chance

by appealing to such principles? Note that this sort of motivation does not stem

from a critique of Lewis’s argument. Someone who is motivated by this sort of

considerations might well endorse Lewis’s argument. Still, she might want to seek

a different justification for Bayesian Kinematics of Chance.

Whether or not the problems discussed above make Lewis’s argument unac-

ceptable, I will present below an argument for Bayesian Kinematics of Chance

that makes no detour to the Principal Principle, but instead appeals to a principle

relating prior and posterior chances.

4.5 A New Argument for Bayesian Kinematics

of Chance

In this section, I formulate a principle for chances called Generalized Chance Ex-

pectation. Under a slightly different name, a similar principle, together with a

set of other fairly plausible conditions for chances, has been proposed by Bigelow,

Collins, and Pargetter (1993). I then show that, under suitable conditions, Gen-

eralized Chance Expectation is equivalent to Bayesian Kinematics of Chance.

Let us first introduce a condition that relates chance functions at two different

times. I call this condition Chance-Chance Principle, for it might be read as a

way of coordinating different chance functions through time. A similar condition

has been defended by Bigelow, Collins, and Pargetter (1993) under the name

“Chance Conditional on Chance Formulation”, and has been put forward to rule

out conceptions of chance that allow chances to be counterfactually dependent

on future courses of history. Our condition might be formulated as follows:
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Chance-Chance Principle: Suppose that cht is the chance function

over F at time t and K
(
cht, I

t
t′

)
is the chance function over F at time

t′, t′ > t. Let pK
(
cht, I

t
t′

)
= cht′q be the proposition that the chance

function over F at t′ is cht′ .
1 Then, for all A ∈ F ,

cht
(
A
∣∣pK(cht, Itt′) = cht′q

)
= cht′(A),

if cht
(
pK
(
cht, I

t
t′

)
= cht′q

)
> 0.

That is, the condition requires the chance function at t conditional on the propo-

sition about some possible later chance function to be equal to that later chance

function. It is easy to observe that our condition allows chances to be ascribed

to propositions about other chances. Thus, we might think of the condition as

relating first- and second-order chances.

Although the talk about higher-order chances might strike us as odd, it is not

hard to find cases that in fact involve such chances. Recall the example of the

marble-selecting device discussed in section 4.2. We might well think that at t

there is a 0.5 chance of there being a 0.6 chance at t′ that the device will select

a red marble, and there is also a 0.5 chance of there being a 0.4 chance at t′ that

the device will select a blue marble. Thus, in this case, it seems reasonable to

speak about chances assigned to other chances.

Importantly, in cases like the marble-selecting device, Chance-Chance Princi-

ple plays a crucial role in determining the initial first-order chance of an outcome

(selecting a red marble). Note that, in the case discussed above, there is no deter-

minate value for the chance at time t of the device’s selecting a red marble. But

assuming that chances are probabilities, we can use the law of total probability

and Chance-Chance Principle to determine the value of the chance at time t. For

concreteness, let us assume that K
(
cht, I

t
t′

)(
A
)

is the chance at t′ of the device’s

selecting the red marble and that K
(
cht, J

t
t′

)(
A
)

is the other chance at t′ of the

device’s selecting the red marble, where Itt′ , J
t
t′ ∈ Itt and Itt′ 6= J tt′ . Then,

cht(A) = cht
(
A
∣∣pK(cht, Itt′) = cht′q

)
cht
(
pK
(
cht, I

t
t′

)
= cht′q

)
1Here I assume that pK(cht, Itt′ ) = cht′q ∈ F for all K

(
cht, Itt′

)
in the set of chance functions

over F .
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+ cht
(
A
∣∣pK(cht, J tt′) = ch∗t′q

)
cht
(
pK
(
cht, J

t
t′

)
= ch∗t′q

)
= cht′(A)cht

(
pK
(
cht, I

t
t′

)
= cht′q

)
+ ch∗t′(A)cht

(
pK
(
cht, J

t
t′

)
= ch∗t′q

)
= (0.4)(0.5) + (0.6)(0.5)

= 0.5.

Now, let us focus on certain consequences stemming from Chance-Chance

Principle, consequences that are the linchpin of a new justification of Bayesian

Kinematics of Chance. If we define the set of possible later chance functions at

t′ as:

C(t,t′) =
{
cht′ : cht

(
pK
(
cht, I

t
t′

)
= cht′q

)
> 0
}
, (4.25)

then Chance-Chance Principle entails the following principle:

Chance Expectation: For all A ∈ F ,

cht(A) =
∑

cht′∈C(t,t′)

cht
(
pK
(
cht, I

t
t′

)
= cht′q

)
cht′(A).

This principle tells us that the chance function at t ought to be a weighted average

of possible posterior chance functions, where the weights are chances at t assigned

to propositions about those possible posterior chance functions.

In order to show how Chance-Chance Principle entails Chance Expectation,

let us prove the following proposition:

Proposition 4.3. Chance-Chance Principle ⇒ Chance Expectation.

Proof. Suppose that cht satisfies Chance-Chance Principle, and assume that

pK
(
cht, I

t
t′

)
= cht′q ∈ F for all cht′ in C(t,t′). Then,

cht(A) = cht

 ∨
cht′∈C(t,t′)

(
A ∧ pK

(
cht, I

t
t′

)
= cht′q

)
=

∑
cht′∈C(t,t′)

cht
(
A ∧ pK

(
cht, I

t
t′

)
= cht′q

)
=

∑
cht′∈C(t,t′)

cht
(
A|pK (cht, I

t
t′) = cht′q

)
cht
(
pK
(
cht, I

t
t′

)
= cht′q

)
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=
∑

cht′∈C(t,t′)

cht
(
pK (cht, I

t
t′) = cht′q

)
cht′(A)

(by Chance-Chance Principle),

as required.

We can also introduce a generalization of Chance Expectation. To this end,

we define a set of all convex combinations of the possible later chance functions

in C(t,t′), called the convex hull of C(t,t′):

Conv
(
C(t,t′)

)
=

{ ∑
cht′∈C(t,t′)

λcht′ cht′ : 0 ≤ λcht′ ≤ 1,
∑

cht′∈C(t,t′)

λcht′ = 1

}
.

(4.26)

That is, Conv
(
C(t,t′)

)
is the smallest set that (i) contains C(t,t′), and (ii) contains,

for any two later chance functions cht′ and ch∗t′ , every convex combination or mix-

ture of them, i.e. for any 0 ≤ λcht′ ≤ 1, it contains λcht′ cht′ +
(
1− λcht′

)
ch∗t′ .

Alternatively, Conv
(
C(t,t′)

)
may be defined as the intersection of all convex sets

containing C(t,t′). With this notion in mind, we can state the following general-

ization of Chance Expectation:

Generalized Chance Expectation: There are λcht′ ’s, with 0 ≤
λcht′ ≤ 1 and

∑
cht′∈C(t,t′)

λcht′ = 1, such that for all A ∈ F ,

cht(A) =
∑

cht′∈C(t,t′)

λcht′ cht′(A).

That is, Generalized Chance Expectation requires the chance function at t to

be in the convex hull of possible later chance functions. This means that the

chance function at t should lie within the range spanned by possible later chance

functions. It is straightforward to observe that Chance Expectation entails

Generalized Chance Expectation, for 0 ≤ cht
(
pK
(
cht, I

t
t′

)
= cht′q

)
≤ 1 and∑

cht′∈C(t,t′)
cht
(
pK
(
cht, I

t
t′

)
= cht′q

)
= 1. That is, it follows from Chance Ex-

pectation that cht is a convex combination of the elements in C(t,t′). But while

Chance Expectation makes it clear that the coefficients λcht′ are the chances at

time t assigned to propositions about possible later chance functions, Generalized
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Chance Expectation says only that these coefficients are non-negative numbers

that sum to one. The latter thus allows us to stay neutral as to whether chances

can be assigned to propositions about some other chances. But although I focus

only on Generalized Chance Expectation, the coming results can also be applied

to Chance Expectation.

Interestingly, it can be shown that Generalized Chance Expectation—a prin-

ciple that relates chance functions at two different times—is intimately connected

with Bayesian Kinematics of Chance. In fact, under certain assumptions, these

two requirements for chances are equivalent. This relation can be established by

proving the following theorem:

Theorem 4.1. Suppose that cht′
(
Itt′
)

= 1 for all Itt′ ∈ Itt′ . Then, Generalized

Chance Expectation ⇔ Bayesian Kinematics of Chance.

Proof. (⇒) Suppose that Generalized Chance Expectation holds true. For no-

tational convention, assume that K
(
cht, I

t
t′

)
= cht′ . Since Itt′ is a partition and

cht′ is a probability function over F , it follows that if cht′
(
Itt′
)

= 1, then for all

J tt′ ∈ Itt′ such that J tt′ 6= Itt′ , cht′
(
J tt′
)

= 0. Then,

cht
(
Itt′
)

=
∑

cht′∈C(t,t′)

λcht′ cht′
(
Itt′
)

= λcht′ cht′
(
Itt′
)

= λcht′ .

So we have that

cht(A) =
∑

cht′∈C(t,t′)

λcht′ cht′(A)

=
∑

cht′∈C(t,t′)

cht
(
Itt′
)
cht′(A)

=
∑

cht′∈C(t,t′)

cht
(
Itt′
)
K
(
cht, I

t
t′
)(
A
)
.
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Since Itt′ is a partition, we have that cht(A) =
∑
It
t′∈I

t
t′
cht
(
A ∧ Itt′

)
, and hence

∑
It
t′∈I

t
t′

cht
(
A ∧ Itt′

)
=

∑
cht′∈C(t,t′)

cht
(
Itt′
)
K
(
cht, I

t
t′
)(
A
)
.

And, by the assumption that cht′
(
Itt′
)

= 1, we have that

cht
(
A ∧ Itt′

)
= cht

(
Itt′
)
K
(
cht, I

t
t′
)(
A
)
.

Dividing the last equation by cht
(
Itt′
)
, we get

K
(
cht, I

t
t′
)(
A
)

=
cht
(
A ∧ Itt′

)
cht
(
Itt′
)

= cht
(
A|Itt′

)
,

which yields Bayesian Kinematics of Chance.

(⇐) Suppose that Bayesian Kinematics of Chance holds true. For notational

convention, assume that K
(
cht, I

t
t′

)
= cht′ . Then,

cht(A) = cht

 ∨
It
t′∈I

t
t′

(A ∧ Itt′)


=

∑
It
t′∈I

t
t′

cht
(
A ∧ Itt′

)
=

∑
It
t′∈I

t
t′

cht
(
Itt′
)
cht
(
A|Itt′

)
=

∑
It
t′∈I

t
t′

cht
(
Itt′
)
K
(
cht, I

t
t′
)(
A
)

(by Bayesian Kinematics of Chance)

=
∑

cht′∈C(t,t′)

λcht′K
(
cht, I

t
t′
)(
A
)

(for λcht′ = cht
(
Itt′
)
)

=
∑

cht′∈C(t,t′)

λcht′ cht′(A),

as required.
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Thus, given that the later chance function assigns chance 1 to the true element

of the partition containing propositions about the complete intervening histories,

Generalized Chance Expectation leads to Bayesian Kinematics of Chance, and

vice versa. So whenever the relation between chance functions at different times

is governed by Generalized Chance Expectation, Bayesian Kinematics of Chance

follows.

The assumption used in Theorem 4.1 tells us that exactly one of the elements

in Itt′ will be the true complete intervening history of chance events between t

and t′. This assumption, of course, amounts to Chance Certainty, as introduced

in section 4.2. Theorem 4.1 thus can be read as showing that Chance Certainty

and Generalized Chance Expectation are equivalent to Bayesian Kinematics of

Chance. As it is easy to observe in the proof of Theorem 4.1, Bayesian Kinematics

of Chance entails Generalized Chance Expectation without assuming Chance

Certainty.

Interestingly, by using a similar train of thought, we can justify Chance Rigid-

ity as a constraint on any transition from one chance function to another chance

function. This result, which holds independently of Theorem 4.1, can be estab-

lished by the truth of the following proposition:

Proposition 4.4. Suppose that cht′
(
Itt′
)

= 1 for all Itt′ ∈ Itt′ . Then, Generalized

Chance Expectation ⇔ Chance Rigidity.

Proof. (⇒) Suppose that Generalized Chance Expectation holds true. For no-

tational convention, assume that K
(
cht, I

t
t′

)
= cht′ . Since Itt′ is a partition and

cht′ is a probability function over F , it follows that if cht′(I
t
t′) = 1, then for all

J tt′ ∈ Itt′ such that J tt′ 6= Itt′ , cht′
(
J tt′
)

= 0. Then,

cht
(
A|Itt′

)
=
cht
(
A ∧ Itt′

)
cht
(
Itt′
)

=

∑
cht′∈C(t,t′)

λcht′ cht′
(
A ∧ Itt′

)∑
cht′∈C(t,t′)

λcht′ cht′
(
Itt′
)

(by Generalized Chance Expectation)

=
∑

cht′∈C(t,t′)

λcht′ cht′
(
Itt′
)
cht′

(
A|Itt′

)
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(by the fact that cht′(I
t
t′) = 1 and the product rule of probability)

= cht′
(
A|Itt′

)
(by the fact that cht′(I

t
t′) = 1)

= K
(
cht, I

t
t′
)(
A|Itt′

)
(by assumption),

which yields Chance Rigidity.

(⇐) Suppose that Chance Rigidity holds true. For notational convenience,

assume that K
(
cht, I

t
t′

)
= cht′ . Then,

cht(A) = cht

 ∨
It
t′∈I

t
t′

(
A ∧ Itt′

)
=

∑
It
t′∈I

t
t′

cht
(
A ∧ Itt′

)
=

∑
It
t′∈I

t
t′

cht
(
Itt′
)
cht
(
A|Itt′

)
=

∑
It
t′∈I

t
t′

cht
(
Itt′
)
K
(
cht, I

t
t′
)(
A|Itt′

)
(by Chance Rigidity)

=
∑

It
t′∈I

t
t′

cht
(
Itt′
)
K
(
cht, I

t
t′
)(
A
)

(
by the fact that K

(
cht, I

t
t′
)(
Itt′
)

= 1 for all Itt′ ∈ Itt′
)

=
∑

cht′∈C(t,t′)

λcht′K
(
cht, I

t
t′
)(
A
) (

for λcht′ = cht(I
t
t′)
)

=
∑

cht′∈C(t,t′)

λcht′ cht′
(
A
)
,

which yields Generalized Chance Expectation.

From this proposition, it follows that if both Chance Certainty and Generalized

Chance Expectation are satisfied, then Chance Rigidity holds true. Therefore,

Generalized Chance Expectation entails any kinematics rule for chance that obeys

Chance Rigidity. Of course, it is easy to observe that this result follows already

from Theorem 4.1 and Proposition 4.1. That is, since Generalized Chance Expec-

tation and Chance Certainty are equivalent to Bayesian Kinematics of Chance,

then, in view of Proposition 4.1, they are also equivalent to Chance Rigidity. But
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Proposition 4.4 holds independently of the facts established by Theorem 4.1 and

Proposition 4.1.

We have just shown that Bayesian Kinematics of Chance could be justified

without appealing to the Principal Principle: under a fairly plausible assumption,

it is entailed by a principle relating chance functions at different times. This sort

of justification might be called objective, for it relies entirely on facts concerning

the relation between physical probabilities, and not on facts about how physical

probabilities constrain one’s credences. In this way, the argument just given

mitigates the problems surrounding Lewis’s argument that were described in

section 4.4. In the next section, I shall try to bolster the argument just given by

providing additional motivation for Generalized Chance Expectation.

4.6 Motivating Generalized Chance Expectation

Why should Generalized Chance Expectation be a requirement for chances?

While Lewis’s Principal Principle is a widely acceptable constraint on any chance

distribution, it seems that we lack a good motivation for accepting Generalized

Chance Expectation. In this section, I shall try to put Generalized Chance Ex-

pectation on a firm footing by using considerations of resiliency similar to those

presented in chapter 3.

The sort of resiliency considerations that are put forward in this section

amount to chance’s invariance across changes in a chance set-up. That is, we

consider a chance set-up at time t and its possible changes at t′, t′ > t, described

by complete intervening histories. We then ask to what extent a chance function

at t over the chancy events produced by that chance set-up changes under varia-

tion of these intervening histories. Intuitively, if a mechanism producing chancy

outcomes remains unaltered in time, the statistical laws should give chance dis-

tributions over these outcomes that stay unchanged in time. A similar thought

underpins modern theory of stationary dynamical systems. For example, Patrick

Billingsley (1965, pp. 1-2) wrote that “if time does not alter the roulette wheel,

the gambler’s fortunes fluctuate according to constant probability laws”. And

similarly, Donald Ornstein wrote that:

A stationary random process can be thought of as a box that prints out one
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letter each unit of time, where the probability of printing out a given letter may

depend on the letters already printed out, but is independent of time (that is, the

mechanism in the box does not change). (Ornstein 1974, p. 2)

But if a chance set-up changes in time, the idea of chance distributions being

unaltered in time cannot be fully maintained: we should expect that statistical

laws give chance distributions that track these changes. However, we might still

think that, for any time t, statistical laws give chance distributions that maximize

resiliency under variation of complete intervening histories.

One way to unpack this idea is to think of resiliency as a quantity measured

by the extent to which a chance function at t diverges from possible chance

functions at t′. And each possible chance function at t′ is a chance function that

accommodates a possible change in the chance set-up at t′. While here we should

not require a chance distribution at t to remain unaltered as the chance set-up

changes at t′, we however might reasonably require that statistical laws give the

chance function at t that cannot be replaced by a chance function that is less

divergent from the possible chance functions at t′. As will be apparent, within a

resiliency framework to be proposed below, any chance function at t that satisfies

Generalized Chance Expectation maximizes resiliency in the sense just given.

The first component of the resiliency framework is a particular resiliency mea-

sure. This measure is meant to express the resiliency of a chance function cht over

a particular complete intervening history Itt′ ∈ Itt′ . And this kind of resiliency is

measured by the extent to which the chance function cht diverges from a possible

later chance function that accommodates the information encoded by Itt′ ∈ Itt′ .
If that possible later chance function is K

(
cht, I

t
t′

)
, then the resiliency of cht over

Itt′ is given by

R
(
cht, I

t
t′
)

= D
(
K
(
cht, I

t
t′
)
, cht

)
, (4.27)

where D
(
K
(
cht, I

t
t′

)
, cht

)
is a measure of the divergence between two chance

functions. By convention, I take D
(
K
(
cht, I

t
t′

)
, cht

)
to be non-negative, i.e.

D
(
K
(
cht, I

t
t′

)
, cht

)
≥ 0 with equality if and only if cht = K

(
cht, I

t
t′

)
. Further,

I assume that our divergence measure belongs to the class of Bregman diver-

gences. This class encompasses a number of interesting measures of statistical

divergence, e.g. the squared loss function, the Kullback-Leibler divergence, or

the Mahalanobis distance. For the purposes of this chapter, we can introduce
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Bregman divergence as follows. Let x and y be real-valued vectors in [0, 1]
n
,

representing, respectively cht and K
(
cht, I

t
t′

)
. Then:

Bregman divergence: Suppose that [0, 1]
n

is a convex subset of

Rn. Let Φ : [0, 1]
n → R be a strictly convex function whose gradient

∇Φ is defined in the interior of [0, 1]
n

and extends to a bounded, con-

tinuous function on [0, 1]
n
. Then, for all x,y ∈ [0, 1]

n
, the Bregman

divergence DΦ : [0, 1]
n × [0, 1]

n → R from y to x corresponding to Φ

is given by

DΦ(y,x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

where ∇Φ(x) is the gradient vector of Φ evaluated at x and · denotes

the inner product of two vectors. In words, the function DΦ is the dif-

ference between the value of Φ at at y and the tangent to Φ evaluated

at x.

The second component of our framework is an explication of the idea of re-

siliency maximization. To this end, I first introduce two important notions. Let

Ct be a set of chance functions at t that give rise to the same later chance functions

in C(t,t′). Suppose that cht, ch
′
t are in Ct. Assume that R(cht, I

t
t′) = DΦ(y,x).

Then, we say that:

• ch′t strongly resiliency-dominates cht if R(ch′t, I
t
t′) < R(cht, I

t
t′) for all Itt′ ∈

Itt′ ,

• ch′t weakly resiliency-dominates cht if R(ch′t, I
t
t′) ≤ R(cht, I

t
t′) for all Itt′ ∈

Itt′ , and R(ch′t, I
t
t′) < R(cht, I

t
t′) for at least Itt′ ∈ Itt′ .

That is, ch′t strongly resiliency-dominates cht if it is less divergent from every

later chance function in C(t,t′). And ch′t weakly resiliency-dominates cht if it is

at least as divergent as cht is from every later chance function in C(t,t′), and it

is less divergent from at least one later chance function in C(t,t′). Now, we can

explicate the idea of resiliency maximization by the following norm imposed on

every chance function in Ct:

Maximizing Resiliency: Suppose that cht and ch′t are in Ct. If
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(i) ch′t strongly resiliency-dominates cht, and

(ii) there is no other ch′′t in Ct that weakly resiliency-dominates ch′t,

then cht is inadmissible with respect to the resiliency measure.

Thus, the norm of Maximizing Resiliency tells us which chance functions at t in Ct
are inadmissible with respect to our resiliency measure. According to this norm,

an inadmissible chance function at t is one that is strongly resiliency-dominated

by some other chance function at t that itself is not weakly resiliency-dominated

by any other chance function at t from Ct.
Within our resiliency framework, we can establish the following result:

Theorem 4.2. Let R(cht, I
t
t′) = DΦ(y,x). Suppose that Conv

(
C(t,t′)

)
⊆ [0, 1]

n
.

Then:

(i) If cht does not satisfy Generalized Chance Expectation, then there is ch′t

such that it satisfies Generalized Chance Expectation and R(ch′t, I
t
t′) <

R(cht, I
t
t′) for all Itt′ ∈ Itt′ .

(ii) If ch′t satisfies Generalized Chance Expectation, then there is no ch′′t ∈
Ct such that R(ch′′t , I

t
t′) ≤ R(ch′t, I

t
t′) for all Itt′ ∈ Itt′ , and R(ch′′t , I

t
t′) <

R(ch′t, I
t
t′) for at least one Itt′ ∈ Itt′ .

Proof. For the proof:

• we assume that cht, ch
′
t, ch

′′
t , and K

(
cht, I

t
t′

)
are represented as real-valued

vectors v, w, x, y respectively.

• we use a property of Bregman divergence called the extended Pythagorean

property. It can be stated as follows. Let Conv
(
C(t,t′)

)
be a closed convex

non-empty set in [0, 1]
n
. Let w be the DΦ-projection of v ∈ [0, 1]

n −
Conv

(
C(t,t′)

)
into Conv

(
C(t,t′)

)
. Then, for all y ∈ Conv

(
C(t,t′)

)
and v ∈

[0, 1]
n − Conv

(
C(t,t′)

)
,

DΦ(y,w) +DΦ(w,v) ≤ DΦ(y,v). (4.28)
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Conv
(
C(t,t′)

)
v w

y

Figure 4.4: Visualizing the extended Pythagorean property: DΦ(y,w) +
DΦ(w,v) ≤ DΦ(y,v).

For the proof of Theorem 4.2 (i), suppose that cht does not satisfy Gener-

alized Chance Expectation. This means that v ∈ [0, 1]
n − Conv

(
C(t,t′)

)
. Since

ch′t satisfies Generalized Chance Expectation, we have that w ∈ Conv
(
C(t,t′)

)
.

Hence, v 6= w and so DΦ(w,v) > 0. Then, by (4.28), for all y ∈ Conv
(
C(t,t′)

)
,

and hence for y ∈ C(t,t′)
DΦ(y,w) < DΦ(y,v),

and so

R(ch′t, I
t
t′) < R(cht, I

t
t′),

as required.

For the proof of Theorem 4.2 (ii), suppose that ch′t satisfies Generalized

Chance Expectation. This means that w ∈ Conv
(
C(t,t′)

)
. Now, suppose that

DΦ(y,x) ≤ DΦ(y,w) for all y ∈ Conv
(
C(t,t′)

)
, and hence for all y ∈ C(t,t′). Since

w ∈ Conv
(
C(t,t′)

)
, it follows that DΦ(y,x) ≤ DΦ(w,w) = 0. This implies that

DΦ(y,x) = 0 and x = w. But this contradicts the assumption that x 6= w.

Theorem 4.2 says that any chance function at t that does not satisfy General-

ized Chance Expectation will be ruled out as inadmissible with respect to our
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resiliency measure. And if it satisfies Generalized Chance Expectation, it will not

be ruled out as inadmissible with respect to that resiliency measure. In the first

part, the theorem says that if a chance function at t does not satisfy Generalized

Chance Expectation, and so lies outside the convex hull of C(t,t′), then it can be

replaced by some other chance function that satisfies Generalized Chance Expec-

tation, and hence is in the convex hull of C(t,t′) and is more resilient over every

complete intervening history. The second part of the theorem says that once the

chance function at t satisfies Generalized Chance Expectation, its resiliency will

not be improved by replacing it with any other chance function from Ct.
Interestingly, there is a striking analogy between the resiliency-based approach

to chance just applied and Joyce’s accuracy-based approach to credence described

in chapter 1. Like Joyce’s norm of accuracy, the norm of Maximizing Resiliency

is a dominance norm. That is, both norms tell us which options we should rule

out as inadmissible with respect to a certain measure of divergence. Moreover,

much like in Joyce’s approach, the resiliency-based approach enables us to derive

some constraints on chance functions, by appealing to the norm of Maximizing

Resiliency.

The main result of this section shows that Generalized Chance Expectation

enforces chance functions that maximize resiliency. If experimental arrangements,

like the marble-selecting device described in section 4.2, change in time, resiliency

requires chance functions attached to these arrangements to be maximally stable,

or robust, under these changes. If we impose Generalized Chance Expectation as

a constraint on any chance function at t, it follows that this chance function maxi-

mizes resiliency under possible changes that the experimental arrangements might

undergo between t and t′, t′ > t. Hence, not only does Generalized Chance Ex-

pectation support Bayesian Kinematics of Chance; it is also resiliency-conducive

in the sense explicated in our framework.

4.7 The Scope of Bayesian Kinematics of Chance

The foregoing shows that Bayesian Kinematics of Chance can be supported by a

well-motivated principle relating prior and posterior chances. Still, however, one

might wonder whether Bayesian Kinematics of Chance, and hence Generalized
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Chance Expectation, can be applied to all cases in which chances evolve through

time. This section makes some headway in addressing this issue.

In section 4.2, to illustrate how Bayesian Kinematics of Chance works, I have

presented an example in which the changes in a chance distribution were due to

changes in the categorical properties of the marble-selecting device. This prompts

a more general observation: Bayesian Kinematics of Chance seems to work in

cases where the distribution of chances over a set of outcomes depends upon

the specifics of the chance set-up that produces these outcomes. For example,

if we change the mass distribution of a coin, we will alter the parameter value

of the binomial distribution associated with the coin flipping. Or, if we change

the atomic number of a radioactive atom, we will change the parameter of the

exponential distribution, and hence the atom’s chance of decaying within t years.

But in recent years philosophers have advanced at least two different ways of

thinking about how chance distributions depend on the instantiation of a chance

set-up. These two ways are closely tied to two different metaphysical views about

chance, to wit, reductionism and non-reductionism about chance. While the for-

mer takes facts about chances to be reducible to facts about categorical-property

instantiations, the latter takes facts about chances to be ontologically on a par

with facts about categorical-property instantiations. The question arises: could

Bayesian Kinematics of Chance fit in with these two metaphysical views about

chance? In what follows, I first show how Bayesian Kinematics of Chance fits in

with, and moreover underpins, reductionism about chance. For concreteness, in

discussing this issue I will focus on Lewis’s version of reductionism. Second, I

shall argue that Bayesian Kinematics of Chance could also work under some non-

reductive accounts of chance: according to these accounts of chance, chances are

not brute features of a chance set-up, but are closely tied to non-modal, physical

properties of that chance set-up. Finally, I shall briefly point out some cases that

are beyond the scope of Bayesian Kinematics of Chance.

According to Lewis’s (1994, p. 478) version of reductionism about chance,

a chance assignment at time t is logically entailed by the probabilistic laws of

nature together with the history of categorical-property instantiations up to and

including t. That is, for each proposition A in the domain of a chance function,

the probabilistic laws of nature entail what Lewis calls a history-to-chance con-
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ditional. This conditional says that: if the history up to and including t is Ht,

then cht(A) = x. And together with the history Ht, the conditional entails the

fact that cht(A) = x. Lewis’s view might well be read as follows: for any A, the

chance of A at t is determined by the laws of nature and the history through time

t. This view, in fact, is an expression of Lewis’s reductionist view about chance:

facts about chances are ontologically nothing more than facts about categorical-

property instantiations. For the probabilistic laws of nature are also reducible to

patterns of categorical-property instantiations. In Lewis’s words:

In general, probabilistic laws yield history-to-chance conditionals. For any given

moment, these conditionals tell us the chance distribution over alternative future

histories from that moment on, as a function of the previous history of particular

facts up to and including that moment. The historical antecedents are of course

given by the arrangement of qualities. The laws do the rest. (...). What pattern

in the arrangement of qualities makes the chances? In part, features of history

up to the moment in question. For the rest, it is the pattern that makes the

probabilistic laws, whatever that is. (Lewis 1994, p. 478)

The question of how the probabilistic laws of nature reduce to the patterns of cat-

egorical property-instantiations is answered by Lewis’s (1994) best-system anal-

ysis of laws and chances. That is, they are reducible to the patterns that are

described by theorems of the best system for a given world. And this system is

a system that strikes the best balance between informativeness, simplicity, and

fit. But one needs not to adopt Lewis’s best-system analysis of chance to be a

reductionist about chance. For example, a frequency theorist takes chances to be

reducible to patterns of categorical-property instantiations, but does not regard

these patterns as being described by theorems of the best system.

Not only does Bayesian Kinematics of Chance fit well with Lewis’s brand of

reductionism, but also shows how the chance distribution depends on the history

of categorical-property instantiations. To see this, suppose that the probabilis-

tic laws of nature fix an “ur-chance” function, i.e. the chance function at the

beginning of the history of categorical-property instantiations.2 Then, Bayesian

Kinematics of Chance tells us how a chance function at any time t relates to the

2The phrase “ur-chance” comes from Hall (2004).
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ur-chance function and the history through t. That is,

cht(·) = urch(·|Ht), (4.29)

providing urch(Ht) > 0. Thus, Bayesian Kinematics of Chance shows clearly

that the chance distribution at any time t is a function of two things: the history

through t and the ur-chance distribution conditional on that history. Since the

ur-chance function is given by the laws of nature that are reducible to the patterns

of categorical-property instantiations, the chance distribution at any particular

time is a function of the categorical-property instantiations. And this is exactly

what Lewis’s reductionism about chance amounts to. A neat illustration of this

idea comes from Hoefer (2007, pp. 564-565):

For Lewis, a non-trivial time-indexed objective probability Chtw(p) is, in effect,

the chance of p occurring given the instantiation of a big setup: the entire history

of the world up to time t.

Could Bayesian Kinematics of Chance play a similar role in the case of non-

reductionism about chance? For concreteness, let us focus on propensity theories

of chance. In general, under propensity theories, chance is a physical tendency,

or disposition, of an experimental set-up or a physical situation to produce a

certain kind of outcome. Although this disposition is not reducible to categorical-

property instantiations, it is often taken to be closely tied to the chance set-

up or experimental arrangement that produces chancy outcomes (e.g. Popper

1959; Milne 1987). After all, it is a disposition of a chance set-up to produce

a certain kind of outcome. And though propensity theorists often disagree over

what a chance set-up is, they agree that propensities should be relativized to

chance set-ups. For example, Donald Gillies (2000, p. 126-129) distinguishes two

understandings of the notion of a chance set-up. According to the first view, a

chance set-up is the complete state of the universe at a given time. On the second

view, a chance set-up is the complete set of (nomically and/or causally) relevant

conditions at a given time. But, given this distinction, it seems plausible to think

that propensities are relativized either to a global chance set-up pertaining to

the entire history of the universe (presumably, the light cone) up to a given time,

or to a more local chance set-up pertaining to some relevant test conditions at a
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given time.

Importantly, whatever characterization of the chance set-up we choose, it

seems that we could use a slightly modified version of Bayesian Kinematics of

Chance to fit in with the idea of chances as propensities being relativized to

chance set-ups. That is, if we take St to denote a proposition describing a chance

set-up at time t, then, under propensity theories, the chance distribution at t is

given by

cht(·) = ch(·|St), (4.30)

providing ch(St) > 0. That is, if chances can be conditioned on propositions

describing chance set-ups, Bayesian Kinematics of Chance shows that the chance

distribution at t is a function of the chance set-up instantiated at t and the

chance distribution conditional on the instantiation of that chance set-up. And

since the chance set-up changes as t changes, so will the chance distribution that

results from conditioning on that chance set-up. Thus, Bayesian Kinematics of

Chance seems to sit well with the idea that, under propensity theories, chances

are intimately related to chance set-ups.

To sum up, not only does Bayesian Kinematics of Chances underpin reduc-

tionism about chance; it also resonates well with non-reductive accounts of chance

once we recognize that propensity chances should be conditioned on propositions

describing chance set-ups.

But it seems that Bayesian Kinematics of Chance cannot be the whole story

about how chances evolve through time. There are cases where the posterior

chance distribution does not depend on a prior chance distribution conditional

on the instantiation of a chance set-up. For example, a chance set-up may undergo

a discontinuous change, so that it might suddenly acquire some chance of being

in a given state, having had no such chance before. Similarly, as it has been

argued by Lange (2006), certain scenarios involving higher-order chances cannot

be dealt with conditionalization on complete intervening histories. Scenarios of

this sort involve what Fisher (2006) calls free-floating chances, i.e. chances that

do not evolve in lock-step with complete intervening histories. Cases of this sort

show that even if a given complete intervening history materializes at time t, the

chance at t has no determinate value. Such cases purport to show that chances

do not depend on changes in a chance set-up.
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4.8 Concluding Remarks

Bayesian Kinematics of Chance is a particular application of the rule of condi-

tionalization to the domain of chances or physical probabilities. Lewis showed

how this kinematical model for chances follows from his Principal Principle. I

have shown that in fact the Principal Principle is much more powerful: it en-

tails each of the conditions, to wit Chance Certainty and Chance Rigidity, whose

conjunction is equivalent to Bayesian Kinematics of Chance.

But one might reasonably ask what any kinematics of chance has to do with

the way chances constrain one’s credences. Or, one might ask whether there are

other requirements for chances from which Bayesian Kinematics of Chance could

follow. In reaction to these considerations, I have presented an alternative argu-

ment for Bayesian Kinematics of Chance, an argument that relies on Generalized

Chance Expectation—a principle that relates chance functions at different times.

In addition, I have shown that this principle places a well-motivated constraint

on chances, in the sense that it is an essential feature of resilient chance functions.

It is an open question of what kind of kinematics rule for chances could be

devised in the case of free-floating chances. Lange (2006), for example, has sug-

gested that we could retain the essence of Bayesian Kinematics of Chance by pro-

viding a different account of the history upon which chances are conditioned: such

history would include not only the instantiations of categorical properties, but

also the instantiations of first-order chances of these properties. Consequently,

Lange’s Bayesian Kinematics of Chance allows second-order chances to be con-

ditioned on information about first-order chances. It is a question for further

research of whether, and if so how well, Lange’s Bayesian Kinematics of Chance

sits with principles relating chance functions at different times like Generalized

Chance Expectation.





Chapter 5

Legal Proof, Naked

Statistical Evidence, and

Accuracy: Why Should

Chances Constrain Judges’

Credences?

This chapter introduces a Bayesian model to tackle the issue of using naked or

bare statistical evidence in the context of legal proof, i.e. the problem of whether

naked statistical evidence is adequate to support a verdict in a court of law. In

doing so, the chapter highlights a way of coordinating a fact-finder’s credences

with evidence about chance, and shows how a particular chance-credence coordi-

nation policy can be supported by appealing to a fairly plausible idea of accuracy

in legal fact-finding.

Within the model to be given, the chapter presents two accuracy-based argu-
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ments for the thesis that chances should constrain a fact-finder’s credences about

factual hypotheses discussed in courts of law. The first argument says that the

fact-finder’s credences informed by chances cannot lead to a decrease of subjective

expected verdict accuracy : the subjective expected accuracy of verdicts cannot

decrease when credences are expected to match chances. The second argument

shows that the fact-finder’s credences informed by chances maximize objective

expected credence accuracy : it shows that when the fact-finder, who strives to

hold objectively accurate credences, is asked what she should do with information

about chance, her optimal answer is to set her credences equal to chances.

5.1 Introduction

The question of whether a fact-finder’s (a judge’s or juror’s) belief informed by

exclusively statistical evidence could support a verdict of liability or guilt has

been a long-running controversy among legal scholars. Consider the following

version of a hypothetical case known among legal scholars as the Blue Bus:1

The Blue Bus. Late at night in some city Mrs. Smith was run over

by a bus. As a matter of fact, 80 percent of the buses causing accidents

in the city belong to the Blue Bus Company, 20 percent of them belong

to the Red Bus Company, and no other companies operate bus lines

in the city. Mrs. Smith appears to be able to establish 0.8 chance

that the accident was caused by a blue bus. She sues the Blue Bus

Company. For simplicity, let us assume that other elements of the

case, that is, the fact of the injury, negligence, causation, are also

established. Could the defendant be found liable solely on the basis

of this statistical evidence?

1For slightly different versions of this case, see Tversky and Kahneman (1977), Tversky and
Kahneman (1982), Thomson (1986), Schauer (2003). Although this case is typically regarded
as hypothetical, it resembles some actual court cases. For example, Thomson (1986) draws a
parallel between the Blue Bus case and the American court case of Smith v. Rapid Transit,
Inc, in which the plaintiff was run over by a negligently-driven bus on Main Street and the
defendant’s bus company owned the entire franchise for operating buses on Main Street. Hamer
(1994) shows that the Blue Bus case is similar to the American court case of Kaminski v. Hertz,
in which the plaintiff was injured by a yellow truck with a Hertz logo on the side and Hertz
owned 90% of the trucks with such logo.
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In civil cases, the plaintiff, who has the burden of proof, has to establish her

case by the “preponderance of the evidence” or on the “balance of probabilities”.

Explained in probabilistic terms, the legal standard of proof in civil cases means

that, for the plaintiff to win, the fact-finder needs to have a subjective probability

(a degree of belief or credence) of just over 0.5 that her case is true. And in the

Blue Bus, since there is a 0.8 chance that the accident was caused by a blue bus,

it appears that the fact-finder would believe that it is more probable than not

that a blue bus was responsible for the accident, and so the plaintiff would win

the case. But, as the vast majority of legal scholars and commentators claim, if

the case reached a court, judges would regard their credences informed by sta-

tistical evidence as insufficient for imposing liability on Blue Bus Company, and

so the plaintiff would not win her case. The point this hypothetical case makes

is that though the fact-finder’s credence in plaintiff’s case based on statistical

information satisfies the proof requirement, there is something intuitively wrong

about ascribing liability on the basis of credences informed by naked statistical

evidence, i.e. statistical evidence that is not accompanied by more conventional

evidence like eyewitness testimony. But what is really wrong with basing legal

decisions on naked statistical evidence?

According to the predominant view among legal scholars, the use of naked

statistical evidence in legal settings is problematic because naked statistical evi-

dence lacks an important quality that “individualized” evidence (e.g. eyewitness

testimony) allegedly possesses. Just add the following story to the Blue Bus.

Suppose that there is an eyewitness who identifies the bus as belonging to the

Blue Bus Company. Even though the eyewitness is not perfectly reliable, say

her visual identification ability is accurate eight times out of ten, advocates of

this tradition hold that it is rather uncontroversial that a fact-finder’s credence

informed by such individualized evidence could license a verdict of liability. They

claim that this could be so, even if the risk of erroneous finding for the plaintiff

based on individualized and naked statistical evidence appears to be the same.

But why should we treat statistical and individualized evidence differently? Sev-

eral explanations have been proposed in the literature to answer this question.

Most notably, it has been argued that statistical evidence, unlike individualized

evidence, (i) lacks an appropriate causal connection with a given disputed fact at
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a legal trial (Thomson 1986; Wright 1988), (ii) does not have appropriate weight

(Cohen 1977; Stein 2005; Nance 2008; Hamer 2012), (iii) is susceptible to the

reference class problem (Colyvan et al. 2001; Allen and Pardo 2007), or (iv) does

not make credences sensitive to the truth (Enoch et al. 2012).

In the first part of this chapter, I argue that the aforementioned explanations

either fail to pin down the crucial difference between statistical and individual-

ized evidence or fail to show why statistical evidence is problematic, even if they

identify that difference correctly. Although the discussion in section 5.2 does not

cover all the possible explanations, it casts doubt on whether we could provide

a viable understanding of the crucial difference between statistical and individ-

ualized evidence. This discussion brings also reason to suggest that instead of

focusing on how to explain the problematic value of naked statistical evidence

in legal settings, we should rather try to explain why naked statistical evidence

might be valuable in such settings.

In the second part of this chapter, I provide an answer to the aforementioned

question. More specifically, I show that, within a particular framework and under

certain assumptions, naked statistical evidence in courts of law is conducive to the

achievement of accuracy, which appears to be a fundamental objective of legal

fact-finding. A similar idea has already been expressed in the legal literature.

Most notably, Jonathan Koehler and Daniel Shaviro (1990) have argued, albeit

in an informal way, that using statistical evidence, regardless of how problematic

it might be, enhances the accuracy of legal fact-finding. To make the idea of

accuracy in legal proceedings more precise, I introduce, in section 5.3, a simple

Bayesian model of the epistemology of legal fact-finding, and explicate a way in

which a Bayesian fact-finder’s credences are constrained by statistical evidence in

the form of information about chance (physical probability). In section 5.4, I show

how the accuracy in legal fact-finding could be understood within this framework:

I distinguish between verdict accuracy and credence accuracy. Armed with these

formulations, I present two arguments supporting the idea that the Bayesian

fact-finder’s credences should match chances. The first argument, presented in

section 5.5, shows that credences informed by chances cannot lead to harmful

verdicts: the expected accuracy of verdicts cannot decrease when credences are

expected to match chances. The second argument, given in section 5.6, shows
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that the objective expected inaccuracy of credences informed by chances can

only decrease. In particular, it shows that, with respect to objective expected

credence accuracy, a particular policy for coordinating credences with chances

cannot be inferior, and could be superior, to the policy of ignoring information

about chance.

Before continuing, let me mention another robust tradition explaining why

the use of purely statistical evidence in courts of law seems problematic. This

tradition puts emphasis on the specifics of legal trial. Advocates of this tradition

share the belief that while naked statistical evidence may be useful in contexts

such as science and policy-making, its use in courts of law should be restricted

because it conflicts with important features of legal context or with fundamental

values of the law. For example, David Wasserman (1992) has argued at great

length that statistical evidence fails to respect the individuality and the autonomy

of the defendant. This is so because it treats the defendant as a predetermined

mechanism or a randomly selected member of a given reference class. According

to Wasserman, individuality and autonomy are two important moral dimensions

of legal fact-finding: they emphasize a commitment of the legal system to “treat

the defendant as an autonomous individual, free to determine and alter his con-

duct at each moment” (Wasserman 1992, p. 943). The merits of such arguments

notwithstanding, the approach in this chapter is purely epistemological and does

not concern law-specific considerations that might be invoked in the debate about

the use of statistical evidence in legal context. It thus does not provide an exhaus-

tive defence of the value of statistical evidence in courts of law. Furthermore,

the approach is epistemological insofar as the notion of credence or subjective

probability covers a fact-finder’s epistemic attitude towards some propositions.

But what I do hope to accomplish is to show that a fairly natural idea of accu-

racy in legal fact-finding, applied to the fact-finder’s epistemic attitude covered

by credences, can be invoked to support the use of statistical evidence in courts

of law.

Concomitantly, I do not claim that considerations of accuracy alone show

that credences based on bare statistical evidence suffice to license court verdicts.

As it has been pointed out above, there are other central desiderata of a legal

adjudication besides accuracy. There are also law-specific and ethical reasons



162 CHAPTER 5. LEGAL PROOF, CHANCE, AND ACCURACY

that judges need to take into account when reaching a verdict. Importantly, as

will be claimed in section 5.4, some of these reasons may stand in a marked

tension with accuracy.

Also, two other disclaimers are in order. First, it is not my goal to argue that

naked statistical evidence is no less valuable than individualized evidence when

accuracy considerations are invoked. Arguments of this sort have been given by

Ferdinand Schoeman (1987). In particular, he has argued that though statistical

evidence is perhaps not so persuasive, it is no less reliable than individualized

evidence: there is no principal way to differentiate statistical evidence that is 80

percent reliable from a witness testimony that is also 80 percent reliable. But

accuracy-based arguments presented here provide a different rationale for using

statistical evidence in courts of law: considerations of accuracy show that it is

better to use statistical evidence than to ignore it.

Second, the idea of this chapter is orthogonal to the philosophical debate con-

cerning the use of cases like the Blue Bus to argue against the so-called Lockean

thesis, i.e. the thesis that one has a belief in a proposition just in case one has

a sufficiently high credence in it. In recent years, some authors have argued that

the Blue Bus-style cases indicate why belief cannot be reduced to a sufficiently

high credence. For example, a recent analysis of Lara Buchak’s (2013) shows that

one’s credence based on bare statistical evidence, though high, cannot justify as-

criptions of blame, and so cannot be called one’s belief. According to Buchak,

it seems that I can’t blame the Blue Bus Company for causing harm, even if 80

percent of the buses causing harm in the city belong to that company, and so

my credence based on this information is quite high. But, arguably, I can blame

this company if I believe that it caused harm. The approach presented in this

chapter neither supports nor undermines such arguments.

5.2 The Legal Debate about Naked Statistical

Evidence

The predominant view among legal scholars is that we can vindicate the prob-

lematic value of naked statistical evidence by showing how this sort of evidence
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differs from what they call individualized evidence, e.g. eyewitness testimony or

confession.2 That is, they claim that there is some fundamental difference be-

tween naked statistical evidence and individualized evidence, and the existence

of this difference explains why fact-finders are so reluctant to rely on naked sta-

tistical evidence. In this section, I discuss some of the explanations advanced

to pin down the difference between naked statistical evidence and individualized

evidence. It is not my goal to present and discuss an exhaustive list of these

explanations.3 This section only discusses what I take to be the most influential

explanations offered in the legal literature.

5.2.1 Causal Connection

According to Judith Jarvis Thomson (1986), the principal difference between

naked statistical and individualized evidence concerns an appropriate causal con-

nection to a given fact for which they are taken as evidence. While individualized

evidence is causally linked in the appropriate way to that fact, there is no appro-

priate causal link between that fact and naked statistical evidence. For example,

the fact that the bus causing the accident was blue is causally linked in the ap-

propriate way to the fact that the witness testified that the bus looked blue to

her. That is, as Thomson points out, the former fact causally explains the latter.

But the fact that the bus causing the accident was blue cannot causally explain

the fact that 80 percent of the buses involved in the accidents in the city belong

to the Blue Bus Company. Thomson suggests that this difference between indi-

vidualized and naked statistical evidence justifies why judges express resistance

to the latter.

It is not my goal to fully assess Thomson’s account. What is important in the

context of this chapter is that Thomson’s account does not seem to succeed in

singling out the difference between individualized and naked statistical evidence.

Let me give two reasons for this claim. First, there seems to be a sense in which

a given fact causally explains naked statistical evidence. And, importantly, by

using this understanding of causal explanation we can show that the fact that

2A good discussion of this view is to be found in Redmayne (2008), Pundik (2011), and
Blome-Tillmann (2015).

3For a good survey of the existing explanations, see Koehler (1991) and Ho (2008, pp.
136-140).
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the bus causing the accident was blue causally explains why 80 percent of the

buses involved in the accidents in the city belong to the Blue Bus Company. Just

consider a simple counterfactual account of causal explanation. According to this

account, c causally explains e just in case had c not occurred, e would not have

occurred. Now, we might say that if the bus causing the accident had not been

blue, it would not have been the case that 80 percent of the buses involved in

the accidents in the city belong to the Blue Bus Company. After all, the relative

frequency of buses involved in the accidents in the city would have been slightly

different.

Secondly, it is not evidently clear that, in cases like the Blue Bus, the fact

that the bus causing the accident was blue constitutes a causal explanation of

the fact that the witness testified that the bus looked blue to her. Since the

witness is not fully reliable, it might well be that the fact of her testimony was

caused by something else, say by the fact that she dislikes the Blue Bus Company

for having high ticket prices. We might then think that if the blue bus had not

caused the accident, the witness would still have testified that the blue bus caused

the accident. But again, according to a simple counterfactual account of causal

explanation, this possibility shows that the fact that the bus causing the accident

was blue does not causally explain the fact about eyewitness testimony.

To conclude, unless Thomson’s explanation is augmented with a substantive

account of causal explanation, it seems that both individualized and naked statis-

tical evidence might be causally linked in an appropriate way to a fact disputed

at a legal trial. Moreover, it is quite plausible that individualized evidence may

fail to be causally linked in an appropriate way to that fact.

5.2.2 Weight

Some authors argue that naked statistical evidence lacks an appropriate weight

that individualized evidence possesses. For example, David Hamer (2012, p. 136)

suggests that “proof at trial requires a body of evidence that not only delivers

a high enough probability assessment, but one that is also sufficiently complete

or weighty”. He notes that, in cases like the Blue Bus one, “if there are obvious

categories of missing evidence, one’s existing level of certainty may appear fragile”

(Hamer 2012, p. 150). That is, it might well be that further evidence such as an
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admission of a particular bus driver would tell us that it was in fact a red bus

that caused the accident.

But while it is true that naked statistical evidence is often not sufficiently

resilient relative to further evidence, it is hard to see in what sense individualized

evidence might be immune to this problem. As more evidence is brought at trial,

individualized evidence like eyewitness testimony is likely to become less weighty,

and even become irrelevant to a given case. When judges gather evidence related

to the credibility of the witness, say by cross-examination, it is quite plausible

that the witness testimony might lose the appropriate level of weight. Hence, it

seems that individualized evidence is not necessarily less prone to the problem of

appropriate weight.

5.2.3 Sensitivity

According to David Enoch, Levi Spectre, and Talia Fisher (2012), the funda-

mental difference between naked statistical and individualized evidence can be

explained by appealing to a particular requirement for belief called sensitivity.

They define this requirement as follows:

Sensitivity: A subject’s belief that P is sensitive just in case had

it not been the case that P , the subject would (most probably) not

have believed that P .

Enoch, Spectre, and Fisher claim that when the requirement of sensitivity is

satisfied, the subject’s belief is appropriately connected to the truth. That is, its

satisfaction rules out a situation in which the fact that the subject’s belief is true

is a matter of epistemic luck.

But how does the requirement of sensitivity explains the difference between

naked statistical and individualized evidence? Enoch, Spectre and Fisher argue

that while one’s belief based on individualized evidence is sensitive, one’s belief

based naked statistical evidence is not, and thus is epistemically defective. Con-

sider again the Blue Bus. Suppose that the judge finds against the Blue Bus

Company based solely of the eyewitness testimony. Is judge’s belief that a blue

bus caused the accident sensitive? Armed with the requirement of sensitivity, we

need to answer the following question: had it not been a blue bus, would the
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judge have believed that a blue bus caused the accident? Since the eyewitness is

pretty reliable, we might reasonably think that had it not been a blue bus, she

would not have testified seeing a blue bus. Hence, based on her testimony, the

judge would not have believed that a blue bus caused the accident. Thus, the

judge’s belief is sensitive.

Now, suppose that the judge finds against the Blue Bus Company based solely

on naked statistical evidence, i.e. on the fact that 80 percent of the buses causing

accidents in the city belong to the Blue Bus Company. Again, we need to answer

the following question: had it not been a blue bus, would the judge have believed

that a blue bus caused the accident? It is plausible to think that had it not been

a blue bus, the statistical evidence concerning the relative frequency of accident-

causing blue buses would not have been significantly different. If so, the judge

would still have believed that a blue bus caused the accident. Hence, her belief

is not sensitive.

Although Enoch, Spectre, and Fisher’s sensitivity account appears to be ini-

tially promising, it fails to pin down the fundamental difference between indi-

vidualized and naked statistical evidence. To see this, consider two versions of

another hypothetical case known among legal scholars as the Gatecrasher:

The Gatecrasher:4 John, a rodeo enthusiast, is accused of gate-

crashing. It is known that 100 people paid for admission to the rodeo

while 1,000 spectators were counted on the seats, of whom John is

one. Suppose that there is no testimony as to whether John paid for

admission or climbed over the fence. In this scenario, the only avail-

able evidence against John is statistical, and concerns the relative

frequency of those who did not pay for admission to rodeo among all

the spectators, which equals 0.9.

Suppose that the judge finds against John. Then, it seems that the judge’s

belief that John crashed the gate, based solely on the relative frequency of those

spectators who crashed the gate, is not sensitive: if John had not crashed the

gate, then the judge would still have believed that John did it. This is so because

if John had not crashed the gate, still 899 spectators would have crashed the

4This classic case has been presented in Cohen (1977).
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gate, and the relative frequency of gatecrashers would stay almost unchanged.

But consider another version of the Gatecrasher:5

The Gatecrasher∗: Bob, a rodeo enthusiast, decides to crash the

gate of a rodeo stadium. It is well known that he has the power to

inspire others to follow him. As he climbs the fence, a great majority

of people in the ticket line get the same idea and follow him in climbing

the fence. The organizers of the rodeo decide to count the people in

the stadium. It turns out that only 100 people paid for admission to

the rodeo while 1,000 spectators were counted on the seats, of whom

Bob is one. Bob is accused of gatecrashing. There is no testimony

as to whether Bob paid for admission or climbed over the fence. The

only available evidence against him is statistical, and concerns the

relative frequency of those who did not pay for admission to rodeo

among all the spectators, which equals 0.9.

Now, the question arises: is the judge’s belief that Bob crashed the gate, which

is based solely on naked statistical evidence, sensitive? The answer seems to be:

Yes, it is. Notice that if Bob had not crashed the gate, others in the ticket line

would most probably not have climbed the fence, and so nobody would have

crashed the gate. Hence, the judge would not have believed that Bob crashed the

gate. So we seem to have a clear case in which naked statistical evidence makes

one’s belief sensitive in the same way as individualized evidence does.

5.2.4 Reference Class Problem

Consider the following version of the Blue Bus case:

The Blue Bus∗: Late at night in some city Mrs. Smith was run

over by a bus. The following three facts can be established. First, 80

percent of the buses causing accidents in the city belong to the Blue

Bus Company, 20 percent of them belong to the Red Bus Company,

and no other companies operate bus lines in that city. Second, 50

percent of the buses causing accidents on the road where Mrs. Smith

5A similar example is to be found in Blome-Tillmann (2015).
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was run over belong to the Blue Bus Company, 50 percent of them

belong to the Red Bus Company, and no other companies operate bus

lines on that road. Third, 30 percent of the buses causing accidents at

night on the road where Mrs. Smith was run over belong to the Blue

Bus Company, 70 percent of them belong to the Red Bus Company,

and no other companies operate bus lines at night on that road. Mrs.

Smith appears to be able to establish 0.8, 0.5, and 0.3 chance that

the accident was caused by a blue bus. But which information about

chance should she use?

The Blue Bus∗ illustrates the so-called reference class problem. The relative

frequency of accident-causing blue buses changes with the reference class. That

is, a blue bus causing the accident may be classified as belonging to the class of

buses causing accidents in the city, or to the class of buses causing accidents on the

road where Mrs. Smith was run over, or to the class of buses causing accidents at

night on the road where Mrs. Smith was run over. But each way of classifying the

blue bus gives a different relative frequency of causing the accident. The question

arises: which reference class is correct? There seems to be no clear answer to this

question. The observation that there is no uniquely correct reference class appears

to be particularly troubling when the relative frequencies differ significantly, as

in the Blue Bus∗.

Even if we endorse the view that the correct reference class should be the

narrowest one6 or the broadest homogeneous one7, we might still face the problem

of whether such classes will be always available.

To see this, assume again that 80 percent of the buses causing accidents on

the road where Mrs. Smith was hit belong to the Blue Bus Company, 20 percent

of them belong to the Red Bus Company, and no other companies operate bus

lines on that road. But suppose that it is also true that 30 percent of the buses

causing accidents at night belong to the Blue Bus Company, 70 percent of them

6According to Hans Reichenbach (1949), we should choose the narrowest reference class for
which reliable statistics is available.

7This view was defended by Wesley Salmon (1967, pp. 91-124). He argued that we should
choose not the narrowest, but the broadest, available reference class. In addition, the reference
class should be homogeneous. And a reference class R is homogeneous with respect to some
property if there is no set of properties in terms of which R can be partitioned in a way that
would change the relative frequency of that property in R.
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belong to the Red Bus Company, and no other companies operate bus lines at

night on that road. Mrs. Smith appears to be able to establish 0.8 and 0.3 chance

that the accident was caused by a blue bus. But which information about chance

should she use?

It seems that neither the narrowest reference class nor the broadest homo-

geneous reference class could be selected in the scenario given above. How can

we compare the “narrowness” of the class of buses causing accidents on the road

where Mrs. Smith was hit and the class of buses causing accidents at night?

Even if they were comparable, they would, arguably, be equally narrow. Simi-

larly, neither class of the buses seems to be the broadest homogeneous one: if we

take the intersection of the two classes, the relative frequency of accident-causing

blue buses would change significantly.

Importantly, the reference class problem does not only afflict naked statisti-

cal evidence concerning the relative frequency of an event or attribute in some

reference class. Consider, for example, Laurence J. Cohen’s (1981) suggestion

that naked statistical evidence in a legal context should concern evidence about

propensities or causal tendencies. But since propensities are features of chance

set-ups or experimental arrangements, it is quite plausible that the value of

propensity would change, depending on how we describe a given chance set-up.

For example, the propensity of a blue bus operating in the city and the propensity

of a blue bus operating on a particular road in that city to cause accidents might

be entirely different. Here the reference class problem is again fully present: there

is no principled way of choosing the correct description of the chance set-up.

Though naked statistical evidence is susceptible to the reference class prob-

lem, and individualized evidence seems to be immune to it, it does not seem this

difference could explain why naked statistical evidence is so problematic in the

legal context. Let me give two reasons for this claim. First, it has to be noticed

that individualized evidence might face a problem that closely resembles the ref-

erence class problem. As it has been argued by Frederick Schauer (2003, chapter

3), any evidence in courts of law should be supported by some generalization.

For example, the eyewitness testimony can be used to support a finding against

the Blue Bus Company via a generalization that most eyewitness are reliable.

But, typically, we would have various classes of eyewitnesses with different levels
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of reliability. Which class should we choose as a basis for the generalization?

Clearly, we seem to face a problem similar to the reference class problem. But

though judges often face it, it is clear that the fact that there might be different

classes of eyewitnesses does not block the generalizations that judges make in

courts of law.

Secondly, rather than seeing the reference class problem as a problem, we

could embrace it. A view of this sort has been defended at length by Alan

Hájek (2007). Its core idea is that instead of seeking some privileged reference

class, we should accept that there are only relative probabilities, i.e. probabilities

relativized to certain conditions or reference classes. Seen in this light, we may

say that what the Blue Bus∗ really illustrates is that the relative frequencies of

accident-causing blue buses are, by their very nature, relativized to a reference

class. The judge thus does not need to choose the correct relative frequency

assignment, for all the relative frequency assignments in that case are equally

correct.

Naturally, the judge will have to give some sort of justification for why she

has chosen a particular relative frequency assignment as a guide to her belief.

But again this does not show why naked statistical evidence should differ from

individualized evidence. After all, the judge will also have to give a justification

for why she thinks the eyewitness testimony is reliable.

The issue of which chance assignment should guide a fact-finder’s credence

will resurface in section 5.6, where I introduce the notion of objective expected

credence accuracy. There, it will be pointed out that not every conditional chance

assignment could be used to determine the objective expected credence accuracy

in legal proceedings.

5.2.5 Summary

Neither of the views discussed in this section seems to succeed in explaining why

the use of naked statistical evidence is so problematic in the legal context. The

explanations appealing to causal connection, weight, and sensitivity fail to pin

down the fundamental difference between naked statistical and individualized

evidence. Although the explanation that appeals to the reference class prob-

lem identifies that difference correctly, it does not succeed in showing that the
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reference class problem explains why fact-finders are reluctant to rely on naked

statistical evidence.

Of course, my examination of the existing explanations of why naked sta-

tistical evidence is problematic cannot be complete. Most notably, I have not

discussed the views that invoke some law-specific considerations to explain why

the use of naked statistical evidence in courts of law is problematic. At best,

then, the discussion in this section shows how the search for a crucial distinction

between naked statistical and individualized evidence might fail to succeed.

In the next part of this chapter, I suggest that instead of seeking a crucial

difference between naked statistical and individualized evidence, we should try

to show why the use of naked statistical evidence might be valuable for legal

adjudication. To this end, I introduce a Bayesian model of legal fact-finding and

then show how a fact-finder’s credences informed by naked statistical evidence in

courts could have some value that is important to the law.

5.3 Bayesianism in Legal Fact-Finding

Bayesianism is a popular philosophy of probability employed in the philosophy

of science, epistemology, decision theory, and statistics. Bayesians endorse the

degree-of-belief interpretation of mathematical theory of probability as contrasted

with various frequency or propensity interpretations. But Bayesianism has also

a long tradition in theorizing about evidence law and fact-finding at legal trial.

In particular, Bayesian statistics has been used to evaluate and interpret vari-

ous types of evidence at legal trial (e.g. evidence relating to DNA or character

evidence used to impeach a witness), and Bayesian decision theory has been em-

ployed to argue that the “the preponderance of the evidence” standard in civil

case (understood as a degree of belief of just over 0.5 in the plaintiff’s claim)

and the “beyond a reasonable doubt” (understood as a degree of belief of just

over 0.9 in the defendant’s guilt) standard in criminal case minimize, respectively,

the expected number of errors made by the fact-finder and the expected cost of

wrongful convictions.8

8A good analysis of the uses of Bayesianism in the legal context is to be found in Kaye
(1988). Most specifically, Kaye discusses three main uses of Bayesianism in legal fact-finding:
(i) Bayesian interpretation of probability, (ii) Bayesian statistical or inductive inference, and
(iii) Bayesian decision theory.
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In this section, I introduce a simple Bayesian model of the epistemology of

legal fact-finding.9 The model portrays a fact-finder’s, e.g. a judge’s, doxastic at-

titude towards propositions, whose truth is disputed at legal trial, as credences or

degrees of belief suitably constrained. The fact-finder’s credence in a proposition

measures the strength of her belief in that proposition. The constraints imposed

on her credences are meant to govern her credences in propositions about the

facts at issue, given the evidence presented in the courtroom. With this model in

mind, I explicate (i) a way in which fact-finders evaluate the truth of hypotheses

in the light of evidence and (ii) a way in which naked statistical evidence bears

on the truth of hypotheses.

5.3.1 A Bayesian Model

For simplicity’s sake, I consider a civil case of a single defendant and plaintiff,

and a single factual hypothesis (hypothesis about a single disputed fact) at trial.

Let P stand for the plaintiff’s factual hypothesis, say, the proposition that a bus

belonging to the Blue Bus Company caused the accident. Let ¬P stand for the

defendant’s factual hypothesis (the negation of the plaintiff’s hypothesis), that

is, the proposition that a bus belonging to the Blue Bus Company did not cause

the accident. We assume that the fact-finder’s epistemic attitude towards the

two-element set {P,¬P} is represented by a credence function cr: it takes each

proposition in that set and returns a number in [0, 1] that measures her credence

in that proposition.

Bayesianism provides precise constraints under which the fact-finder’s cre-

dence function at legal trial should be regarded as rational. A minimal version

of Bayesianism requires the fact-finder to satisfy two constraints. The first con-

straint runs as follows:

Probabilism∗: At every stage of legal trial, it ought to be the

case that the fact-finder’s credence function over the two-element set

{P,¬P} is such that

cr(P ) + cr(¬P ) = 1.
9Similar Bayesian models of legal fact-finding are given in Lempert (1977), Dawid (2002),

and Redmayne (1998).
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This constraint may also be read as follows: if the fact-finder has credence 1 in

one proposition, she should have credence 0 in the other. Notice that Probabilism

is a consequence of a more general constraint that applies to the case in which the

propositions P and ¬P are elements of a set F which is an algebra of propositions.

In such a case, the fact-finder’s credence function takes each proposition in that

algebra and returns a number in [0, 1]. This more general constraint then may

be given as follows:

Probabilism: At every stage of legal trial, it ought to be the case

that the fact-finder’s credence function over F is such that

1. cr is normalized, i.e. cr(>) = 1 and cr(⊥) = 0, for any tauto-

logical proposition > and any contradictory proposition ⊥,

2. cr is additive, i.e. cr(X ∨ Y ) = cr(X) + cr(Y ) for any mutually

exclusive X, Y ∈ F .

It is easy to see that Probabilism entails Probabilism∗. Notice, first, that because

P ∨ ¬P is a tautological proposition, we have that cr(P ∨ ¬P ) = 1 by the

fact that cr is normalized. And since P and ¬P are mutually exclusive, we

have that cr(P ∨ ¬P ) = cr(P ) + cr(¬P ) by the fact that cr is additive. So

cr(P ) + cr(¬P ) = 1, as required. In order to model a way in which the fact-

finder responses to the evidence at trial, I will focus mainly on Probabilism.

That is, I will consider situations in which the fact-finder assigns credences not

only to P and ¬P .

The second constraint endorsed by minimal Bayesianism relates the fact-

finder’s credence function at the beginning of a legal trial (her initial credence

function) to her credence function after the total evidence E at that trial has

been introduced (her end-point credence function). This constraint, known as

Bayesian Conditionalization or Bayes’s rule, tells the fact-finder how she should

update her initial credence function upon the receipt of total evidence at trial.

It can be stated as follows:

Bayesian Conditionalization: If E is the total evidence presented

at legal trial and E ∈ F , then the fact-finder’s end-point credence in
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every X ∈ F , denoted by cr′(X), should be given by

cr′(X) = cr(X|E),

provided that cr(E) > 0.

That is, the fact-finder’s end-point credence in X should be set equal to her prior

conditional credence in X given E. Using Bayes’ theorem—a theorem of the

probability calculus—we can calculate her prior conditional credence in X given

E as follows:

cr(X|E) =
cr(E|X)

cr(E)
cr(X), (5.1)

where cr(E|X) is the subjective likelihood of X relative to E, cr(X) is the initial

credence in X, and cr(E) is the initial credence about the total evidence in court.

Various arguments can be given to show that the two constraints presented

above make the fact-finder’s credences rational. Specifically, so-called synchronic

Dutch book arguments (see, e.g. Ramsey 1931) show that if an agent violates

Probabilism, she is not pragmatically rational: she is susceptible to a collection

of bets ensuring a negative net payoff, come what may. Similarly, so-called di-

achronic Dutch book, or Dutch strategy, arguments show that any agent who

violates Bayesian Conditionalization is vulnerable to a set of bets which ensure

that she suffers a net loss (see Teller 1973; Skyrms 1987b; Lewis 1999). An im-

portant assumption of these arguments says that what is for the agent to be

pragmatically irrational is to assign credences that leave her willing to accept a

collection of bets—a Dutch book—that guarantees to produce a loss. Of course,

this sort of arguments is not directly applicable to legal settings: legal scholars

are rather reluctant to the idea of identifying a fact-finder’s credence in a propo-

sition about some disputed fact with her willingness to accept a bet.10 But still

these arguments could retain their force in the legal context in the form of “de-

pragmatized” Dutch book arguments. Most notably, Brian Skyrms (1984) and

Brad Armendt (1993) have claimed that Dutch book vulnerability flags an un-

derlying inconsistency (called by Armendt the “divided mind” inconsistency): it

10For example, it might be argued that if a judge’s credence is identified with her willingness
to accept a bet, then the legal system runs the risk of having the judge that takes her duty less
seriously than desirable.
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manifests the fact that an agent whose credences violate Probabilism really does

two different evaluations of the same betting option. For example, a credence in

X ∨ Y determines one evaluation as a fair bet on X ∨ Y and credences in X and

Y determine another evaluation of essentially the same betting option. Now, we

get compatible evaluations only if credences satisfy the additivity axiom: if the

credence in X ∨ Y is the sum of the credences in X and Y .11

What is, however, more important in the context of this chapter is that various

accuracy-based arguments can be devised to show that a fact-finder’s credences

satisfying these two constraints maximize actual or expected accuracy, and thus

are epistemically rational (see Joyce 1998; Leitgeb and Pettigrew 2010b). Exactly

how these arguments work will be discussed in more detail in section 5.6, when

I introduce the notion of accuracy for the fact-finder’s credences.

Could the minimal version of Bayesianism just given tell us how the fact-

finder’s credences should incorporate information about chances, in cases like

the Blue Bus? It is easy to observe that the model presented so far does not

discriminate between various types of evidence that the fact-finder might receive

in the course of a trial. It just says that she should conditionalize her credences

upon receipt of her total evidence whatever that might be. But if the fact-finder

knows the chance of P ’s coming out true, and knows that this evidence is most

pertinent to P ’s truth, how should this information constrain her credence in P?

To answer this question, we can extend our version of Bayesianism by adding

another constraint on the fact-finder’s credences. In general, this constraint says

how the fact-finder’s credence concerning the chance of P ought to relate to her

credence in P . Below I introduce two constraints of this type: one applying to

the fact-finder’s credences at the initial stage of legal trial, and the other applying

to her credences at the end-point stage of that trial.

Let cr be the fact-finder’s credence function at the initial stage of legal trial,

and let cr′ be her credence function at the end-point of that trial. Further, let Cch

be the proposition that chances over F are assigned by the chance function ch.

Call this proposition the chance hypothesis. That is, ch takes each proposition in

11For a defence of “depragmatized” Dutch book arguments, see also David Christensen (2004).
He argues that assigning a credence to a proposition commits an agent to viewing as fair certain
bets on that proposition. So Dutch book vulnerability shows that the agent has doxastic
attitudes that commit her to accept a bad combination of bets.
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F and returns a number in [0, 1] which is the chance of that proposition to come

out true. The chance hypothesis might concern both propositions about a type-

and token-event. For example, it might assign a chance to the proposition that

a blue bus caused an accident or to the proposition that the accused crashed the

gate. It is assumed that ch is a probability function. Further, it is assumed that

Cch ∈ F and Cch is the only evidence at the initial stage of legal trial. Given

these assumptions, the following two constraints can be introduced:

Initial Chance-Credence Principle (IP): At the initial stage of

legal trial, the fact-finder ought to have a credence function such that

for all X ∈ F and all ch,

cr(X|Cch) = ch(X).

End-Point Chance-Credence Principle (EP): At the end-point

stage of legal trial, the fact-finder with total evidence E ought to have

a credence function such that for all X ∈ F and all ch,

cr′(X|Cch) = ch(X|E),

provided ch(E) > 0.

That is, IP applies to the fact-finder who knows the chances and nothing more

at the initial stage of a legal trial. It says that in such a situation her cre-

dences should match those chances. This constraint is a close cousin of David

Lewis’s Principal Principle (Lewis 1986), which is, arguably, the most developed

chance-credence principle. Recall that Lewis’s constraint applies to an agent’s

“reasonable initial credence function”—her credence function at the beginning of

her epistemic life. The Principal Principle says that if the agent started with a

reasonable initial credence in some proposition X and learned that the chance of

X at time t is x, and if the rest of her evidence is admissible at t, then one would

have credence in X equal to x. By analogy, IP shows how chances constrain the

fact-finder’s credences at the initial stage of a legal trial—prior to acquiring any

evidence pertinent to the disputed facts in the courtroom.

By contrast to IP, EP applies to the fact-finder’s epistemic situation at the
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end-point of a legal trial. It is a requirement for the fact-finder who knows chances

and who has total evidence E presented at that trial. It says that in that case

the fact-finder’s credence in X should match the conditional chance of X given

evidence E, provided that the chance of E is positive. Of course, this constraint

can be applied if the conditional chance is defined.

There is also another angle from which one might look at the two constraints

introduced above. Recall Hall’s (2004) distinction between a database- and an

analyst-expert function given in chapter 1. That is, while we defer to database-

experts because of the evidence they have, we defer to analyst-experts because

they are good at analysing evidence they are given. With this distinction in

mind, we may think of IP as saying that the fact-finder ought to defer to chance

because chance conveys more information than she has at the initial stage of a

legal trial. Intuitively, when little evidence is available at the beginning of a trial,

chance conveys more information than the fact-finder has, and so is worthy of

deference. Similarly, one may think of EP as saying that the fact-finder ought to

defer to chance because chance comes to the right conclusions once it is provided

with the fact-finder’s total evidence at that trial. For example, suppose that the

total evidence at trial concerns the age, gender, and ethnicity of the defendant.

Given this evidence, the fact-finder may defer to the so-called propensity-for-

crime evidence, which concerns the relative frequency of those who commit the

crime with which the defendant is charged in the class of people who share the age,

gender, and ethnicity that also characterize the defendant. This is so because it is

likely that the information about relative frequency is correct, given the evidence.

Three observations concerning the two chance-credence principles just given

are important to notice. First, if the fact-finder satisfies IP and Bayesian Condi-

tionalization, then she satisfies EP. That is, if the fact-finder’s credences at the

initial stage match the chances, and they are updated in the course of a legal

trial by conditionalization on her total evidence, then at the end-point of that

trial they match the conditional chances, given the total evidence. Formally:

cr′(X|Cch) =
cr′(X ∧ Cch)

cr′(Cch)

=
cr(X ∧ Cch|E)

cr(Cch|E)
(by Bayesian Conditionalization)
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=

cr(X∧Cch∧E)
cr(E)

cr(Cch∧E)
cr(E)

=
cr(Cch)cr(X ∧ E|Cch)

cr(Cch)cr(E|Cch)

=
cr(Cch)ch(X ∧ E)

cr(Cch)ch(E)
(by IP)

=
ch(X ∧ E)

ch(E)

= ch(X|E), (5.2)

as required.

The second observation is straightforward: if Cch is the only evidence gathered

at a legal trial, then EP reduces to IP. This is so because E is a tautological

proposition, and hence cr(E) = 1 and cr′(X) = cr(X|E) = cr(X). The reduction

of EP to IP can be presented more formally as follows:

cr′(X|Cch) =
cr′(X ∧ Cch)

cr′(Cch)

=
cr(X ∧ Cch|E)

cr(Cch|E)
(by Bayesian Conditionalization)

=
cr(X ∧ Cch)

cr(Cch)
(by the fact that cr(E) = 1)

= cr(X|Cch)

= ch(X) (by IP).

(5.3)

The third observation concerns the situation in which, though there are other

items of evidence pertinent to the truth of X, Cch is the most pertinent among

them. That is, other pieces of evidence are “trumpable” by evidence about

chance: they give no information about the truth of X that does not go through

the chance of X. This situation can be understood in our framework as follows:

E and X are stochastically independent according to ch. Then, cr′(X|Cch) =

ch(X|E) = ch(X). That is, the fact-finder’s credences at the end-point of legal

trial should match not conditional, but unconditional chances.
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How can we use our Bayesian model to give precise expression of the Blue

Bus? To answer this question, some preliminary clarifications are needed. We

need to acknowledge that the notion “excusively statistical evidence” used in this

case is ambiguous. It seems that two quite different things might be meant by this

phrase. First, it could mean “the only available evidence pertinent to the truth

of P”. Second, it could mean “the evidence most pertinent to the truth of P”. In

the first case, E is a tautological proposition: there is no further evidence except

statistical evidence. In the second one, A and E are stochastically independent

according to ch. For example, the fact of the injury in the Blue Bus is trumped by

chance, for it gives information about P that does not go beyond the chance of P .

But the eyewitness testimony stating that a blue bus caused the accident would

not be trumpable by chance: since this evidence entails P , it conveys information

that does not go through the chance of P . If so, then the statistical evidence in

such a case would not be exclusive.

Importantly, EP can encompass the two interpretations of exclusively statis-

tical evidence in the Blue Bus. If Cch is the only available evidence pertinent

to the truth of P , EP reduces to IP. And if Cch is the evidence which is most

pertinent to the truth of P , EC recommends the fact-finder to set her credence in

P equal to the unconditional chance of P . More precisely, given that the chance

of P is 0.8, EP requires the fact-finder’s end-point credence in P to be

cr′(P |Cch) = ch(P ) = 0.8. (5.4)

In what follows, I provide a more general support to the thesis that the

Bayesian fact-finder at trial should obey EP. That is, I show that the Bayesian

fact-finder who is an expected accuracy maximizer at trial should use naked

statistical evidence in the manner prescribed by EP.

5.4 Legal Fact-Finding and the Goal of Accuracy

Numerous authors have claimed that accuracy is a principal goal of legal fact-

finding (Dworkin 1985, chapter 3; Stein 2005; Goldman 1999, chapter 9; Goldman

2002). Some authors have even tried to explicate what accuracy at a legal trial



180 CHAPTER 5. LEGAL PROOF, CHANCE, AND ACCURACY

could mean. One robust tradition explains accuracy as a certain value that should

be maximized at the trial process. For example, Edmund Morgan (1948) writes

that the court should try to get

as close an approximation of the truth as is possible. (Morgan 1948, pp. 184-185)

In a similar vein, Alvin Goldman (1999) claims that

it is a vital and central desideratum of a legal adjudication system that it promotes

the rendering of accurate verdicts. No system can be perfect, in part because

parties to law suits are commonly prone to deception, and deception is hard to

detect. Nonetheless, accuracy is certainly to be sought, as far as is feasible and

subject to other constraints. (Goldman 1999, p. 279)

And in a more elaborate way, Koehler and Shaviro (1990) write:

Verdict accuracy is one of the principal goals of the trial process. Even in the

absence of separte policy concerns that infuence the conduct of trials, however,

accuracy cannot be guaranteed. Gaps and mistakes in fact-finding inevitably will

occur in some cases and thus lead to inaccurate verdicts. Given this problem, along

with the lack of a truth criterion even after trial, the best that can be accomplished

in relation to verdict accuracy is to minimize the number of inaccurate verdicts

that one reasonably expects. (Koehler and Shaviro 1990, p. 250)

In adducing considerations of accuracy to legal fact-finding, it is important not

to commit a confusion. As stated explicitly in Koehler and Shaviro (1990), accu-

racy is attributed to verdicts or findings of facts that are formal decisions made

by the fact-finders. In the context of this chapter, verdicts can be understood

as public judgements. This type of accuracy might be called verdict accuracy.

But accuracy can well be attributed to fact-finders’ doxastic attitudes towards

factual hypotheses disputed in courts. Since the basic doxastic attitudes we fo-

cus on are fact-finders’ credences, we might call this type of accuracy credence

accuracy. Both types of accuracy may be understood as cognitive or epistemic

values attached, respectively, to decisions like verdicts and to belief states like

credences.

Typically, verdicts as findings for the plaintiff or defendant are based on the

fact-finder’s credences in parties’ factual hypotheses. But it does not mean that

the accuracy of credences is always correlated with the accuracy of verdicts. It is

perfectly possible that credences that maximize accuracy have no impact on the
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accuracy of verdicts. The first reason for thinking this is so is that an investigation

may lead to a more accurate credence in some proposition, even if it does not

lead to judging this proposition as true. The second reason is that credence and

verdict accuracy are importantly different when we think of them as measurable

cognitive values. That is, these quantities are measured by using different scales.

Consider the following observation made by Ho (2008):

‘Accuracy’ is a measure of proximity to the truth. The closer the estimate is to

the real age or weight, the nearer it approaches correctness. But a positive finding

by the court carries a categorical assertion. It is not an estimate. It is either true

or false (Ho 2008, p. 66)

Ho’s point may be explained as follows: the accuracy of verdicts neither in-

creases nor decreases, but verdicts are either accurate or inaccurate. However,

Ho’s observation does not preclude a gradual notion of accuracy in legal proceed-

ings. Moreover, there seems to be a natural place to locate this notion within

legal context. That is, while verdict accuracy is measured on a categorical scale,

credence accuracy can be measured on a gradational scale. A measure of cre-

dence accuracy tells us how “distant” credences are to the truth-values of factual

hypotheses: accuracy increases with the fact-finder’s credences in truths and de-

creases with her credences in falsehoods. A measure of verdict accuracy tells us

about the cognitive consequence of a verdict, given the truth of a factual hy-

pothesis: if a verdict is for the plaintiff and the facts are such that the plaintiff

deserves to win, then the verdict is accurate. And if the verdict is for the plain-

tiff and the facts are such that the defendant deserves to win, then the verdict

is inaccurate. Thus, verdict accuracy neither increases nor decreases. However,

this is not to say that the accuracy of a verdict for the plaintiff when the plain-

tiff deserves to win is as valuable as the accuracy of a verdict for the defendant

when the defendant deserves to win. Likewise, the accuracy of a verdict for the

plaintiff when the defendant deserves to win may not be as valuable as the accu-

racy of a verdict for the defendant when the plaintiff deserves to win. Typically,

in criminal cases these accuracies are not equally valuable (or equivalently, the

inaccuracies are not equally regrettable). The most famous illustration of this

thought is Blackstone’s maxim which says that “it is better that ten guilty per-

sons escape than that one innocent should suffer” (Blackstone 2002, p. 358). But
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civil litigation is importantly different: the situation of the parties is symmetri-

cal. That is, the parties at civil litigation are equal before the law: it is as easy

for the plaintiff to prove her case as it is for the defendant to disprove it. So the

verdict accuracies should be equally valuable. Since this chapter deals only with

civil litigation, I will consider, in section 5.5, a model in which these accuracies

are equally valuable.

Although accuracy might be regarded as a fundamental goal of trial process,

we need to emphasize that it is neither ultimate nor even fully attainable in all

models of legal trial. It is not ultimate, since legal trials also aim at achieving

justice, reaching evidence-responsive verdicts, protecting defendant’s rights, or

procuring and preserving public acceptance of verdicts. It seems plausible that

some of these goals can be reconciled with accuracy. Just consider procedural

justice that seems to be important for any legal adjudication. We may say that

a legal decision is procedurally just if it satisfies some standard for procedural

rightness. Now, it seems that one appropriate standard is the accuracy standard.

That is, one may argue that a legal decision is procedurally just to the extent

that it promotes accurate judgements (see Goldman 1999, chapter 9). However,

some of these goals may stand in marked tension with accuracy. Just consider

the rule, common in legal systems, according to which an accused person cannot

be compelled to testify, even if his testimony could maximize verdict accuracy.

Here accuracy is suppressed in order to protect the defendant’s rights. Thus, if

accuracy does not have a merit that elevates it over the other goals, legal trials

would typically aim at striking the optimal balance between accuracy and these

other objectives.

Also, accuracy may not even be fully attainable in all models of legal trial.

Crucial in this context is the distinction between inquisitorial (dominant in the

civil law tradition) and adversarial (dominant in the common law tradition)

models of legal trial.12 In the former model, a neutral fact-finder undertakes the

task of managing the legal process, developing and presenting the evidence. The

fact-finder, a neutral inquisitor, is motivated solely by the goal of accuracy rather

than by parties’ interests in winning. In the latter model, it is parties not the

fact-finder that control investigation and presentation of the evidence. Parties,

12For a more elaborate analysis of these two models, see Damaska (1975).
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motivated by a desire to win rather than a quest for approximating the truth,

present their evidence and versions of a case. The fact-finder plays a passive

role in receiving the evidence and evaluating parties’ versions of the case. Unlike

the inquisitorial model, the adversary model is prone to suppress accuracy for

the sake of a definite winner in a courtroom battle. Clearly, the adversarial

model has accuracy-obstructing features: for strategic reasons, each adversary

may withhold evidence that provides strong support for a given hypothesis.

In sum, accuracy is one of the fundamental goals of legal trial. But it also

appears to be a multi-faceted notion. I have distinguished two senses in which

accuracy might be considered in legal settings: these are verdict and credence

accuracy. Also, accuracy should not be regarded as the ultimate goal of legal trial.

There are models of legal trial that suppress accuracy for the sake of different

law-specific values.

5.5 A Bayesian Fact-Finder and Verdict Accu-

racy

How could the idea of verdict accuracy be represented in the Bayesian model

given in section 5.3? In this section, I extend this model by adding to it a

simple decision-theoretic component whose basic idea is that a Bayesian fact-

finder ought to maximize subjective expected verdict accuracy. Thus, in this

extended framework, the Bayesian fact-finder not only adopts credences, but

also makes judgements or finds for the parties under uncertain circumstances.

With this extended Bayesian model in mind, I first show how the civil standard

of proof, called the proof by a preponderance of the evidence, can be supported

by appealing to the idea of expected verdict accuracy maximization. Second, I

show that the Bayesian fact-finder’s credences informed by chances in the manner

prescribed by EP cannot result in a decrease of her expected verdict accuracy.

5.5.1 Verdict Accuracy

Our extended Bayesian model employs the following assumptions:

• F is a finite set of factual hypotheses describing possible states of the world.
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The elements of F are mutually exclusive and jointly exhaustive.

• cr′ : F → [0, 1] is the credence function of a Bayesian fact-finder with total

evidence E. It takes each member of F and returns a credence cr′(X).

• V is a finite set of propositions describing verdicts that are understood as

public judgements.

• a is a verdict accuracy function. It takes each conjunction V ∧ X, where

V ∈ V and X ∈ F , and returns the accuracy a(V ∧X) of the verdict V if

X describes the true state of the world. More generally, a(V ∧X) captures

the cognitive or epistemic value of each conjunction V ∧X. Conjunctions

of the form V ∧X may be called outcomes relative to V and F .

• the Bayesian fact-finder with total evidence E is an expected verdict ac-

curacy maximizer. That is, she judges V that maximizes her expected

accuracy relative to cr′ and a given by

Expa,cr′(V ) =
∑
X∈F

cr′(X)a(V ∧X). (5.5)

That is, the subjective expected accuracy of judging V is a weighted sum of

its accuracies in every possible state of the world, where the weight assigned

to a particular state is given by the credence function cr′.

The extended Bayesian model of legal fact-finding just given can be used to

evaluate acts understood as fact-finder’s verdicts or public judgements. As this

model assumes, verdicts can be evaluated in terms of their cognitive or epistemic

consequences. That is, it is assumed that the fact-finder has a verdict accuracy

function that assigns an epistemic value called verdict accuracy for each outcome

V ∧X. This epistemic value depends only on (i) which factual hypothesis is true

and (ii) what the fact-finder’s verdict is. Accuracy, so understood, has nothing

to do with practical gain or cost. Moreover, it is attached to the act of judging,

and not to the act endorsing a particular belief state.

For concreteness, recall the Blue Bus. In this case, F = {P,¬P}, where P

describes a state of the world in which a bus belonging to the Blue Bus Company
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caused the accident, and ¬P describes a state of the world in which a bus be-

longing to the Blue Bus Company did not cause the accident. The set of actions

that the fact-finder considers is given by V = {Vp, V¬p}, where Vp is a verdict for

the plaintiff and V¬p is a verdict for the defendant. Then, the accuracies assigned

to the fact-finder’s possible judgements are given by:

• a(Vp∧P ) is the accuracy of a verdict for the plaintiff when a bus belonging

to the Blue Bus Company caused the accident.

• a(Vp∧¬P ) is the accuracy of a verdict for the plaintiff when a bus belonging

the Blue Bus Company did not cause the accident.

• a(V¬p ∧ ¬P ) is the accuracy of a verdict for the defendant when a bus

belonging the Blue Bus Company did not cause the accident.

• a(V¬p ∧ P ) is the accuracy of a verdict for the defendant when a bus be-

longing to the Blue Bus Company caused the accident.

It is important to emphasize that the accuracy of a verdict for the plaintiff when

the plaintiff deserves to win is as valuable as the accuracy of a verdict for the

defendant when the defendant deserves to win. Likewise, the accuracy of a verdict

for the plaintiff when the defendant deserves to win is as valuable as the accuracy

of a verdict for the defendant when the plaintiff deserves to win. The main reason

for thinking that these accuracies are equally valuable is that the plaintiff and

the defendant in a civil case have an equal stake in the proceedings.

Now, in order to calculate the expected accuracy of Vp, the fact-finder needs

to weigh the epistemic risk of judging Vp when P is false against the epistemic

gain of judging Vp when P is true. Similarly, to calculate the expected accuracy

of V¬p she has to weigh the epistemic risk of judging V¬p when P is true against

the epistemic gain of judging V¬p when P is false.

5.5.2 Preponderance of the Evidence and Verdict Accuracy

Legal fact-finding is a rule-governed process. In the tradition of common law, one

important category of rules governing legal fact-finding are standards of proof.

Typically, a standard of proof is understood as a requirement that a party ought
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to satisfy in order to win its case. The standard of proof in civil cases says that

in order to win the plaintiff has to establish her case by the preponderance of the

evidence. Roughly, it means that the plaintiff, who bears the burden of proof,

must prove that her case is more probable than not.

There are at least two robust traditions in analysing the civil standard of

proof: the external and the internal analysis. According to the external analysis,

the civil standard of proof is a decisional threshold imposed on the fact-finder’s

credences at the end-point stage of the process of evaluating a given factual

hypothesis in the light of evidence. If the fact-finder’s credence in P meets this

threshold, she must accept P ; otherwise, she must reject P . According to the

internal analysis, the civil standard of proof is an instruction on the fact-finder’s

deliberative attitude in the whole process of evidential evaluation. On this view,

the civil standard is not a decisional threshold, but rather a standard of caution

which reflects resistance to persuasion on the truth of a factual hypothesis.13 In

order to fit in with the Bayesian model of legal fact-finding given in this chapter,

I will focus on the external analysis of the civil standard of proof.

In our Bayesian model, the civil standard of proof can be introduced as follows:

Preponderance of The Evidence (PE): The plaintiff’s factual

hypothesis P meets the preponderance of the evidence standard just

in case the fact-finder’s credence in P is

cr′(P ) >
1

2
,

where cr′(P ) = cr(P |E) and E is the total evidence presented at a

legal trial.

That is, the plaintiff’s factual hypothesis P satisfies the preponderance of the ev-

idence standard just in case the fact-finder’s end-point credence in P conditional

of the total evidence E is greater than 1
2 .

Why should we believe that PE imposes the correct decisional threshold on

the fact-finder’s credence in P? Interestingly, it can be shown that PE follows

from the injunction to maximize subjective expected verdict accuracy. That is,

13For a thorough analysis of external and internal approaches to the standards of proof, see
Ho (2008, chapter 4).
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if the fact-finder is a subjective expected accuracy maximizer, then the threshold

imposed on cr′(P ) that warrants acceptance of P is the one given by PE.

To show this, first notice that the fact-finder who maximizes her expected

verdict accuracy will judge Vp if

Expa,cr′(Vp) > Expa,cr′(V¬p). (5.6)

By expanding inequality (5.6), we get

cr′(P )a(Vp ∧P ) + cr′(¬P )a(Vp ∧¬P ) > cr′(P )a(V¬p ∧P ) + cr′(¬P )a(V¬p ∧¬P ).

(5.7)

By rearranging the terms, inequality (5.7) comes down to

cr′(P )

cr′(¬P )
>
a(V¬p ∧ ¬P )− a(Vp ∧ ¬P )

a(Vp ∧ P )− a(V¬p ∧ P )
. (5.8)

Notice that the numerator of the right side of inequality (5.8) reflects a difference

between the accuracy of a right verdict for the defendant and the accuracy of

a wrong verdict for the plaintiff. Similarly, the denominator of the right side of

inequality (5.8) reflects a difference between the accuracy of a right verdict for

the plaintiff and the accuracy of a wrong verdict for the defendant. I assume

that the ratio of these differences has a positive value. Now, after noting that

cr′(¬P ) = 1− cr′(P ), inequality (5.8) boils down to

cr′(P ) >
1

1 +
a(Vp∧P )−a(V¬p∧P )

a(V¬p∧¬P )−a(Vp∧¬P )

. (5.9)

Since we deal with a civil case, and so a(Vp∧P ) = a(V¬p∧¬P ) and a(V¬p∧P ) =

a(Vp ∧ ¬P ), we have that

a(Vp ∧ P )− a(V¬p ∧ P )

a(V¬p ∧ ¬P )− a(Vp ∧ ¬P )
= 1, (5.10)

and so, by inequality (5.9), we get

cr′(P ) >
1

2
, (5.11)
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as required.

Note, however, that the result given above holds if (i) the accuracy of a right

verdict for the plaintiff is equal to the accuracy of a right verdict for the defendant,

and (ii) the accuracy of a wrong verdict for the plaintiff is equal to the accuracy of

a wrong verdict of the defendant. If we drop the assumption and allow for some

accuracies to be greater than other, a different decisional threshold may follow

from the injunction to maximize subjective expected verdict accuracy. This stems

from the fact that, as shown in inequality (5.9), cr′(P ) is a function of verdict

accuracies.

5.5.3 Verdict Accuracy and End-Point Chance-Credence

Principle

How could the idea of expected verdict accuracy maximization support the use

of naked statistical evidence in courts? In this subsection, I show that if the

fact-finder coordinates her credences with chances in accordance with EP, then

her expected verdict accuracy after such coordination never decreases, and could

increase. The result to be given may be understood as follows: the act of judg-

ing (reaching a verdict) before coordinating credences with chances cannot have

greater expected accuracy than the act of judging after coordinating credences

with chances.

To begin with, suppose that the fact-finder with total evidence E has to

decide between two options: either ignore information about chance and judge,

or coordinate her credences with chances in accordance with EP and then judge.

Importantly, the fact-finder values these two options from her current perspective,

i.e. relative to her end-point credence function cr′ and to a finite partition of

possible chance hypotheses, {Cch1 , ..., Cchn}, with cr′(Cchi ∧ Cchj ) = 0 for all

i 6= j, and cr′(Cch1 ∨ ... ∨ Cchn) = 1.

In order to compare these two options, let us first consider a situation in which

the fact-finder decides to coordinate her credences with chances in accordance

with EP, and then judges verdict V . That is, she sets her credences in such a

way that, for all ch, cr′(X|Cch) = ch(X|E), and then judges V . Since she is an
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expected verdict accuracy maximizer, she judges V with the value given by

max
V ∈V

∑
X∈F

cr′(X|Cch)a(V ∧X) = max
V ∈V

∑
X∈F

ch(X|E)a(V ∧X). (5.12)

But she values option (5.12) from her current perspective, and hence her expec-

tation of (5.12) relative to cr′ is given by∑
ch

cr′(Cch) max
V ∈V

∑
X∈F

ch(X|E)a(V ∧X), (5.13)

which is the prior expectation of the act of judging V that has the highest ex-

pected verdict accuracy after coordinating credences with chances.

Now, consider a situation in which the fact-finder decides to judge V before

coordinating her credences with chances. Again, since she is an expected accuracy

maximizer, she judges V that has the value given by

max
V ∈V

∑
X∈F

cr′(X)a(V ∧X). (5.14)

By probability theory and EP, (5.14) comes down to

max
V ∈V

∑
X∈F

cr′

(∨
ch

(X ∧ Cch)

)
a(V ∧X) = max

V ∈V

∑
X∈F

∑
ch

cr′(X ∧ Cch)a(V ∧X)

= max
V ∈V

∑
X∈F

∑
ch

cr′(X|Cch)cr′(Cch)a(V ∧X)

= max
V ∈V

∑
ch

∑
X∈F

ch(X|E)cr′(Cch)a(V ∧X),

(5.15)

which is the maximum of the prior expectation of the expected verdict accuracy

after coordinating credences with chances.

Importantly, it can be shown that (5.13) is greater or equal to (5.15). To

show this, let us use the following mathematical result:

Jensen’s inequality: For any random variable X and any convex
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function φ,

Exp [φ(X)] ≥ φ(Exp [X]),

where Exp stands for expectation.

With this inequality in mind, let us write

φ(V ) = max
V ∈V

∑
X∈F

ch(X|E)a(V ∧X), (5.16)

where φ is a convex function of V . Also, we can write

Exp [φ(V )] =
∑
ch

cr′(Cch) max
V ∈V

∑
X∈F

ch(X|E)a(V ∧X), (5.17)

and

φ(Exp [V ]) = max
V ∈V

∑
ch

∑
X∈F

ch(X|E)cr′(Cch)a(V ∧X). (5.18)

Then, it follows, by Jensen’s inequality, that∑
ch

cr′(Cch) max
V ∈V

∑
X∈F

ch(X|E)a(V ∧X) ≥

max
V ∈V

∑
ch

∑
X∈F

ch(X|E)cr′(Cch)a(V ∧X), (5.19)

as required. This result shows that the expected verdict accuracy after coordinat-

ing credences with chances is not less than the expected verdict accuracy before

coordinating credences with chances, and may be greater. So if we consider the

consequences of fact-finder’s credences on her verdicts, then EP cannot lead the

fact-finder to expect to reach less accurate verdicts, and may lead her to expect

to reach more accurate ones. Since EP captures a way of using naked statistical

evidence in courts of law, one may understand this result as saying that expecting

this sort of evidence at trial should not lead the fact-finder to get less accurate

verdicts.

The argument just given needs qualifying in a number of ways. First, whether

or not the fact-finder coordinates her credences with chances, the elements of F ,

V, and the accuracies assigned to conjunctions of the form V ∧X stay unchanged.
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That is, the fact of coordinating credences with chances does not by itself alter the

states of the world nor the verdicts. Second, the fact of coordinating credences

with chances does not by itself alter the fact-finder’s credences about the states of

the world. But setting credences equal to chances in accordance with EP would

typically alter the fact-finder’s credence about the states of the world. Third, the

act of judging does not give any information about the truth of factual hypotheses.

Third, the argument concerns the fact-finder who expects or plans to obey EP,

and not the fact-finder who actually satisfies this constraint. The result does not

say that information about chance is never harmful to the accuracy of verdicts: it

only says that this information is never harmful with respect to the fact-finder’s

prior expectation.

5.6 A Bayesian Fact-Finder and Credence Accu-

racy

Naked statistical evidence can affect both verdict and credence accuracy. In the

previous section, I have shown how the idea of expected verdict accuracy maxi-

mization lends support to the use of naked statistical evidence in courts of law. In

this section, I explore a connection between the use of naked statistical evidence

and the idea of expected credence accuracy maximization. First, I show how

the idea of credence accuracy maximization could be represented precisely in our

Bayesian model of legal fact-finding. To this end, I employ the resources of epis-

temic utility theory, developed by James M. Joyce (1998) and Richard Pettigrew

(2013a; 2013c). Second, I present an argument showing that a Bayesian fact-

finder’s credences that match chances in accordance with EP minimize objective

expected inaccuracy (or equivalently, maximize objective expected accuracy).

More precisely, the result shows that the Bayesian fact-finder’s credences that

obey EP minimize objective expected inaccuracy relative to any possible chance

function and a proper inaccuracy measure. So when the Bayesian fact-finder is

asked what she should do with information about chance, this argument shows

that EP is an optimal response for her.
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5.6.1 Credence Accuracy

According to the epistemic utility theory, the accuracy of cr′ at some possible

world w is its “distance” from the truth at w. Accuracy, so understood, is a

measurable property: an accuracy measure tells us how close cr′ is to the “ideal”

credence function at w. And the ideal credence function at w, denoted by vw, is

the one that assigns credence 1 to propositions that are true at w, and credence

0 to propositions that are false at w. Following Joyce (1998), I will talk about

the inaccuracy measure and will treat the accuracy measure as the negative of

the inaccuracy measure.

The idea of inaccuracy measure then can be understood more precisely as

follows. For our Bayesian fact-finder, we consider two possible worlds: w1 in

which P is true (and hence ¬P is false), and w2 in which P is false (and hence

¬P is true). Then, for each of these worlds, the inaccuracy of her credence

function cr′ at that world is some function of the values that cr′ assigns to P

and ¬P and the truth values of P and ¬P at that world. More precisely, the

inaccuracy of cr′ at world w, denoted by I(cr′, w), is given by

I(cr′, w) =
∑
X∈F

s(cr′(X), vw(X)), (5.20)

where s : [0, 1] × {0, 1} → [0,∞] is a scoring rule. It is important to notice that

while s(cr′(X), vw(X)) measures the divergence of a particular credence cr′(X)

from a particular truth value vw(X) at w,
∑
X∈F s(cr

′(X), vw(X)) measures the

divergence of a credence function cr′ over F from a truth-value distribution vw

over F at w. That is, while the former measures the “local” inaccuracy, the latter

measures the “global” inaccuracy. In what follows, I will be concerned only with

the measure of “global” inaccuracy.

It appears that the idea of inaccuracy measure captures crucial features of

legal fact-finding. Fact-finders adopt doxastic attitudes towards factual hypothe-

ses discussed in court under circumstances of uncertainty: evidence presented in

court does no provide conclusive reasons for believing or disbelieving hypotheses.

Rather, when evidence accumulates during the trial the fact-finder’s degree of

uncertainty fluctuates. Along that, the accuracy of these degrees increases or
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decreases. It might well be that these degrees of uncertainty do not reach the

categorical level of belief or disbelief. Rather, if a fact-finder’s degree of uncer-

tainty in a proposition reaches some appropriate level, the substantive law tells

us that the fact-finder should accept that proposition, by appealing to the legal

standards of proof.

Since there are many plausible inaccuracy measures, I will focus only on a par-

ticular class of these measures called proper inaccuracy measures. To introduce

these measures, let me first define the notion of expected inaccuracy of a credence

function cr′′ relative to the inaccuracy measure I and the credence function cr′.

Suppose that {w} is the singleton proposition that is true only at world w, and

let W be a finite set of possible worlds. Then, the expected inaccuracy of cr′′

relative to I and cr′ can be defined as follows:

ExpI,cr′(cr
′′) =

∑
w∈W

cr′({w})I(cr′′, w). (5.21)

That is, the expected inaccuracy of cr′′ relative to I and cr′ is the sum of its

inaccuracies at each possible world w, weighted by the credence cr′ assigned

to that world. With this notion in mind, we can define the proper inaccuracy

measure as follows:

Propriety: An inaccuracy measure I is proper if, for any cr′ and

cr′′,

ExpI,cr′(cr
′) ≤ ExpI,cr′(cr

′′).

That is, I is proper if cr′ does not expect that any other cr′′ is better at mini-

mizing inaccuracy. The rationale behind this condition is obvious: a fact-finder’s

ought not to have a credence function that expects itself to be worse at minimiz-

ing inaccuracy than it expects any other credence function to be. Someone who

holds credences that expect themselves to be epistemically inferior to some other

credences undermines her own epistemic state, for she expects that she could do

better. Moreover, credences scored by a proper inaccuracy measure are protected

from unjustified changes. For if I were not a proper inaccuracy measure, the fact-

finder could change, whenever she wants, her end-point credence function cr′ to

some cr′′ such that ExpI,cr′(cr
′′) < ExpI,cr′(cr

′).
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Armed with these notions, my task is to provide an answer to the following

question: how could the idea of credence accuracy be utilized to argue for EP? But

before doing so, I will briefly show how the idea of credence accuracy can be used

to argue for Probabilism and Bayesian Conditionalization—the two constraints

that characterize the minimal Bayesian model of legal fact-finding introduced in

subsection 5.3.1.

As it has been argued in Joyce (1998; 2009), we can derive Probabilism by ap-

pealing to the idea of credence accuracy and a particular dominance norm which

says that one should not have a credence function that is accuracy-dominated by

some other credence function, which itself cannot be accuracy-dominated. The

crucial result of Joyce’s shows that, for a certain class of inaccuracy measures,

(i) if one’s credence function violates Probabilism, then there is another credence

function that satisfies Probabilism and is strictly less inaccurate in every possi-

ble world, and (ii) if one’s credence function satisfies Probabilism, then there is

no other credence function that is less inaccurate in at least one possible world.

By combining this result with the dominance norm, Joyce concludes that one’s

credence function should obey Probabilism, on pain of being accuracy-dominated.

Similarly, Hilary Graves and David Wallace (2006) show how Bayesian Con-

ditionalization follows from the idea of credence accuracy and a norm which says

that one should have a credence function that maximizes expected accuracy given

a situation in which one is to receive a piece of information. Their crucial re-

sult is that if an agent updates her credences by any rule other than Bayesian

Conditionalization, she does not maximize her expected accuracy relative to her

current credence function. That is, she expects that credences updated by some

other rule are less accurate than credences updated by Bayesian Conditionaliza-

tion. They conclude that any expected accuracy maximizer should obey Bayesian

Conditionalization.

In what follows, I give an argument for EP that also appeals to the idea of

credence accuracy, and utilizes a particular norm which says what credences the

fact-finder should have.
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5.6.2 Credence Accuracy and End-Point Chance-Credence

Principle

To begin with our credence accuracy-based argument for EP, let us define the

notion of objective expected inaccuracy of cr′ relative to an inaccuracy measure

I and any conditional chance function ch(·|E) as follows:

ExpI,ch(·|E)(cr
′) =

∑
w∈W

ch({w} |E)I(cr′, w). (5.22)

That is, the objective expected inaccuracy of a fact-finder’s credence at the end-

point stage of a legal trial is the sum of its accuracies at each possible world,

weighted by the chance function conditional on the total evidence. Note that

the expectation is objective, since it is calculated relative to the chance of {w}
conditional on E.

Importantly, it does not seem right to think that every chance of {w} con-

ditional on E can be used to calculate the objective expected inaccuracy of cr′.

As discussed in subsection 5.2.4, even if we endorse the view that chances are

always relativized to the total evidence, we still need to decide which of them

are well suited for calculating the objective expected inaccuracy. By way of sug-

gesting, we may require such chances to be sufficiently resilient in the sense that

no further evidence could alter their values. It also seems true that such chances

should be conditioned on sufficiently specific total evidence.

Now, we can introduce the following norm:

Minimizing Objective Expected Inaccuracy: A Bayesian fact-

finder with total evidence E ought to have a credence function cr′

such that for any other cr′′ and all possible ch,

ExpI,ch(·|E)(cr
′) ≤ ExpI,ch(·|E)(cr

′′).

This norm requires the Bayesian fact-finder with total evidence E not to adopt

a credence function that is objectively expected to be worse at minimizing inac-

curacy than some other credence function. In other words, the fact-finder who

adopts credences that do not minimize objective expected inaccuracy is irrational.
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This norm appears to be fairly plausible: if the chance function ch conditional on

E “expects” cr′′ to have a lower inaccuracy than it “expects” cr′ to have, then

the fact-finder should not adopt cr′ as her credence function.

To run the credence accuracy-based argument for EP, I need first to empha-

size that EP is not the only answer to the question of how credences should be

coordinated with chances. Clearly, there are other chance-credence principles

that could tell us how to coordinate credences with chances. Just consider the

following:

No-Chance-Credence Principle (NP): At the end-point stage

of legal trial, the fact-finder with total evidence E ought to have a

credence function such that for all X ∈ F and all ch,

cr′(X|Cch) = cr′(X).

Anti-Chance-Credence Principle (AP): At the end-point stage

of legal trial, the fact-finder with total evidence E ought to have a

credence function such that for all X ∈ F and all ch,

cr′(X|Cch) = 1− ch(X|E),

provided ch(E) > 0.14

The two principles do not recommend the fact-finder to set her credences equal

to chances. While NP requires the Bayesian fact-finder to ignore the information

about chance and stick to her credences, AP recommends to set her credence in

X equal to the difference between the truth value 1 of X and the chance of X.

Thus, their recommendations are different from the one given by EP. But which

one of these principles should govern the fact-finder’s credences?

If we assume that the fact-finder adopts credences in accordance with Min-

imizing Objective Expected Inaccuracy, then it is EP that should govern her

credences. To show this, suppose that the accuracy of her credences is scored

by a proper scoring rule I. Further, suppose that cr′(·|Cch) = ch(·|E) and

14This policy is a slight reformulation of the Anti-Principal Principle presented in Loewer
(2004).
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cr′′(·|Cch) = ch∗(·|E), where ch(·|E) 6= ch∗(·|E). In particular, cr′′(·|Cch) might

obey NP, and so ch∗(·|E) = cr′′(·). Then, since I is proper, we have that, for all

possible ch,

ExpI,ch(·|E)(ch(·|E)) ≤ ExpI,ch(·|E)(ch
∗(·|E)). (5.23)

And by the assumption that cr′(·|Cch) = ch(·|E) and cr′′(·|Cch) = ch∗(·|E), we

get

ExpI,ch(·|E)(cr
′(·|Cch)) ≤ ExpI,ch(·|E)(cr

′′(·|Cch)). (5.24)

But the left-hand side of (5.24) is the objective expected inaccuracy of a cre-

dence function that obeys EP, and the right-hand side is the objective expected

inaccuracy of a credence function that obeys any other chance-credence princi-

ple. Hence, we conclude that EP is a chance-credence principle that recommends

credence functions that are optimal with respect to objective expected inaccu-

racy. In particular, if the fact-finder were to ignore information about chance in

accordance with NP, she would adopt credences that do not minimize objective

expected inaccuracy.

To bring this argument home, recall the Blue Bus. For concreteness, let

us apply a particular proper inaccuracy measure called the Brier score. In the

context of this chapter, the Brier score can be presented as follows:

Brier score: The inaccuracy I of credence function cr′ at world w is

I(cr′, w) =
1

|F|
∑
X∈F

(cr′(X)− vw(X))2.

That is, the Brier score measures the inaccuracy of cr′ at w by taking a weighted

average of the sum over the squared differences between credences and truth-

values assigned to each proposition in F at w.

In the Blue Bus, there are two relevant worlds: world wB at which a bus

belonging to the Blue Bus Company caused the accident, and world wR at

which a bus belonging to the Red Bus Company caused the accident. Sup-

pose that cr′(·|Cch) obeys EP and, for simplicity, assume that E is a tautological

proposition. Then, cr′({wB} |Cch) = ch({wB} |E) = 0.8 and cr′({wR} |Cch) =

ch({wR} |E) = 0.2. Further, let us stipulate that cr′′({wB} |Cch) = cr′′({wR}) =
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0.5 and cr′′({wR} |Cch) = cr′′({wR}) = 0.5. Thus, cr′′(·|Cch) obeys NP. Then,

ExpI,ch(·|E)(cr
′(·|Cch)) = ch({wB} |E)I(ch(·|E), wB)

+ ch({wR} |E)I(ch(·|E), wR)

= 0.8× 0.5
[
(0.8− 1)2 + (0.2− 0)2

]
+ 0.2× 0.5

[
(0.8− 0)2 + (0.2− 1)2

]
= 0.16. (5.25)

And,

ExpI,ch(·|E)(cr
′′(·|Cch)) = ch({wB} |E)I(cr′′, wB)

+ ch({wR} |E)I(cr′′, wR)

= 0.8× 0.5
[
(0.5− 1)2 + (0.5− 0)2

]
+ 0.2× 0.5

[
(0.5− 0)2 + (0.5− 1)2

]
= 0.25. (5.26)

Since ExpI,ch(·|E)(cr
′(·|Cch)) < ExpI,ch(·|E)(cr

′′(·|Cch)), the Bayesian fact-finder,

who minimizes objective expected inaccuracy, will choose to coordinate her cre-

dences with chances in accordance with EP, rather than in accordance with the

alternative principle NP.

5.7 Conclusions

In this chapter, I have shown how the use of naked statistical evidence might be

valuable in legal settings. In the first part of this chapter, I have criticized those

views, according to which there is some fundamental difference between naked

statistical evidence and individualized evidence, and the existence of this differ-

ence explains why legal fact-finders are so reluctant to rely on naked statistical

evidence.

In the second part of this chapter, I have developed a connection between

accuracy and the use of naked statistical evidence in legal fact-finding. I have

extricated two possible ways of understanding the notion of accuracy in legal fact-
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finding, to wit, verdict accuracy and credence accuracy. These notions have been

then formalized within a simple Bayesian model of legal fact-finding. Also, within

this model, I have formulated a particular constraint on the fact-finder’s credences

that requires them to match chances. I have shown that with this constraint in

place we can capture an interesting way of using exclusively statistical evidence in

courts of law. As it has been shown in sections 5.5 and 5.6, the Bayesian model

of legal fact-finding can be used to provide accuracy-based arguments for the

claim that the fact-finder’s credences should line up with chances. The linchpin

of these arguments is that a particular chance-credence principles could always

be conducive to the achievement of both credence and verdict accuracy. Hence,

there is something epistemically defective about the fact-finder’s credences that

do not line up with chances.

Importantly, I have not claimed that the Bayesian model describes adequately

the process of legal fact-finding. As it is well known, there are many difficult prob-

lems associated with the use of Bayesian models in legal proof.15 In particular,

one might doubt whether jurors or judges assign precise numerical credences to

factual hypotheses, and whether they actually employ policies like Bayesian Con-

ditionalization and EP, or employ them correctly. Our Bayesian model, however,

may be understood as a regulative ideal: insofar as the fact-finders depart from

this model, this is to be taken as a departure from some ideal.

15A good survey of these conceptual problems is to be found in Allen (1997).





Chapter 6

Maximum Relative Entropy

Updating and the Value of

Learning

This chapter examines the possibility of justifying the principle of maximum rel-

ative entropy (MRE), considered as an updating rule, by looking at the value of

learning theorem established in classical decision theory. This theorem captures

an intuitive requirement for learning: learning should lead to new credences that

are expected to be helpful, and never harmful in making decisions. This require-

ment is called the value of learning. The chapter analyses the extent to which

learning ruled by MRE could satisfy this requirement, and so could be a ratio-

nal means for pursuing practical goals. First, by representing MRE updating

as a conditioning model, it is shown that MRE satisfies the value of learning in

cases where learning prompts a complete redistribution of one’s credences over

a partition of propositions. Second, it is argued that the value of learning may

This chapter is based on the paper “Maximum Relative Entropy Updating and the Value
of Learning” (Dziurosz-Serafinowicz 2015) that appeared in Entropy.
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not be generally satisfied by MRE updates in cases of updating on a change in

one’s conditional credence. The analysis given in this chapter points towards a

more general moral: that the justification of MRE updating in terms the value

of learning may be sensitive to the context of a given learning experience. In

addition, it lends support to the idea that MRE is not a universal or mechani-

cal updating rule, but rather a rule whose application and justification may be

context-sensitive.

The chapter covers one of the main themes of this thesis, to wit, the use of

higher-order probabilities. Specifically, it exploits a particular condition which

relates an agent’s first- and second-order credences in the context of probabilistic

updating.

6.1 Introduction

Let the functions cr and cr′ represent, respectively, an agent’s prior and posterior

credence functions over an algebra of propositions F generated by a set of possible

worlds W. Assume that both functions are probability functions over F . A rule

for changing the agent’s prior credence function cr over F in light of new evidence

(hereafter, an updating rule) aims to provide an answer to the following problem:

given cr and some constraint χ imposed on cr′, which cr′ should the agent choose

from the set of her posterior credence functions that satisfy χ? A given constraint

χ imposed on cr′ is supposed to represent a learning experience, and we associate

with every learning experience a set Cχ of posterior credence functions singled

out by χ, i.e. Cχ = {cr′ : cr′ satisfies χ}. We take it that Cχ is a closed convex

set, i.e. it is determined by a constraint χ such that if cr′1 and cr′2 satisfy χ, then

also any convex combination of them, λcr′1 +(1−λ)cr′2 with λ ∈ [0, 1], will satisfy

χ. This type of constraint is called affine.

An updating rule that is subject to considerable discussion among philoso-

phers is the principle of maximum relative entropy (MRE), also known as the

rule of minimizing cross-entropy, the principle of minimum discrimination infor-

mation, or Kullback–Leibler divergence. It says that, given P , the partition {Si}
of minimal elements in F , and some constraint χ on cr′, the agent should choose

cr′, so as to satisfy χ, while minimizing the relative entropy with respect to cr
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as measured by the following function:

RE(cr, cr′) =
∑
i

cr′(Si)log
cr′(Si)

cr(Si)
. (6.1)

That is, by MRE, an updater should adopt as her posterior credence function,

from those defined over F and satisfying χ, the one that is RE-closest to her

prior credence function defined over F . RE thus can be seen as a measure of

the “distance” between cr and the possible cr′’s that satisfy χ. Additionally,

RE = 0 just in case cr = cr′. Of course, RE is not a distance measure in the

mathematical sense, for it is not symmetric.

Much of the controversy surrounding MRE concerns its status. At least

four main views on this issue can be distinguished. According to the first view

(Williams 1980), MRE is a generally valid rule of updating one’s credences from

which the two well-known conditionalization rules, to wit, Bayes’s rule and Jef-

frey’s rule, can be derived. The second view denies the very idea of MRE’s

universal validity. Within this camp, some (Friedman and Shimony 1971; Shi-

mony 1985; Seidenfeld 1986) argue that in certain situations, it conflicts with

Bayes’s rule; others (van Fraassen 1981; van Fraassen et al. 1986) argue that it

leads to counter-intuitive consequences in the Judy Benjamin case, which is a

case of updating on a conditional proposition; and some (Bradley 2005; Douven

and Romeijn 2011) argue, quite generally, that MRE is just one of many updating

rules and, as such, is applicable in the right circumstances. On the third view

(Skyrms 1985), MRE can be regarded, under certain conditions, as a special case

of Bayes’s rule. Finally, on the fourth view (Skyrms 1987b), MRE is not a rule

for updating one’s credences, but rather a rule for statistical supposing. These

views have their merits, although none have achieved widespread acceptance.

However, there is yet another foundational question concerning MRE, a ques-

tion that might be posed independently of the aforementioned concern. This is

the question of whether, and if so, how, MRE can be justified as a method of

updating one’s credences. Surprisingly, there have been relatively few attempts

to answer this question. The most notable among them are Edwin T. Jaynes’s

(1957) attempt to show that this method gives a probability assignment that is

maximally non-committal with regard to missing information, John E. Shore and
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Rodney Johnson’s (1980; 1981) justification by consistency, and Peter Grünwald’s

(2000) minimax decision-theoretic justification. In contrast, there are several ex-

isting justifications of the two most prominent updating rules, to wit, Bayes’s rule

and Jeffrey’s rule. Bayes’s rule is justified on the grounds that it is both a prag-

matically and epistemically rational way of updating. The pragmatic rationality

of this rule is established by the diachronic Dutch book argument, which shows

that if you update your degrees of beliefs other than by Bayes’s rule, then you are

susceptible to a collection of bets ensuring a negative net pay-off, come what may

(Teller 1973; Lewis 1999). Various accuracy-based arguments show that Bayes’

rule is also epistemically rational. In particular, they show that Bayesian updat-

ing minimizes the expected inaccuracy (Leitgeb and Pettigrew 2010b). Similarly,

various Dutch book arguments support Jeffrey’s rule by establishing its pragmatic

rationality (Skyrms 1987b).

The aim of this chapter is to examine the possibility of justifying MRE updat-

ing by linking it to the value of learning theorem, introduced to the philosophical

literature by Leonard Savage (1954) and Irving J. Good (1967). The value of

learning theorem may be viewed as capturing an intuitive requirement of ratio-

nality for learning. The requirement says that learning should lead to new degrees

of belief that are expected to be helpful and never harmful in making decisions.

Call this requirement the value of learning. The notion of rationality that it al-

ludes to is essentially pragmatic: we consider whether an opinion shift ruled by

MRE is rational for an agent who always chooses that act that maximizes her

expected utility. However, as recently argued in Huttegger (2014), we can also

think of the value of learning as a necessary requirement for one’s opinion shift

to count as genuine learning. Of course, on this view, there might be other fea-

tures of genuine learning that are not captured by the value of learning, e.g. that

genuine learning leads to more accurate credences. Therefore, it might not be a

sufficient condition. Importantly, it has been shown that the value of learning

holds for both Bayes’s rule (Good 1967) and Jeffrey’s rule (Graves 1989).

I show that updating by MRE satisfies the value of learning in cases where

the constraint reporting one’s learning experience concerns a complete redistri-

bution of one’s credences over a partition of propositions. My strategy will be

to exploit a link between a particular generalized model of Bayesian conditioning
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and updating by MRE on a partition of propositions. The generalized model

of conditioning allows us to assign second-order credences to propositions about

first-order ones, and to condition the former on propositions concerning the lat-

ter. If we interpret the second-order credences as one’s priors and the first-order

ones as one’s posteriors, then the model allows for conditioning prior credences

on propositions about the posterior ones. In this set-up, we can represent, under

certain conditions, updating by MRE on a partition as a form of conditioning on

a proposition specifying posterior credences for each member of that partition.

However, there are other types of constraints to which MRE updating can be

applied. In particular, these might involve a constraint to the effect that one

should assign a conditional posterior credence to some proposition, given an-

other proposition. I show that whether or not MRE updating leads to the value

of learning theorem in response to such a constraint crucially depends on how

broadly the constraint is described. If this constraint can be described effectively

as a complete redistribution of one’s credences over a partition of propositions,

the value of learning theorem holds. However, if it cannot be so formulated,

then the value of learning theorem cannot be established. I explain why this is

so: contrary to what the value of learning theorem requires, in such cases, the

MRE updater’s prior credences are not equal to the expectation of her possible

posterior credences.

There is yet another angle from which we might look at the main result of this

chapter. It is often said that MRE is an updating rule that prescribes modesty or

minimal revision for the agent’s opinion shifts. As characterized in van Fraassen

(1981, p. 376), MRE is “the rule that one should not jump to unwarranted

conclusions, or add capricious assumptions, when accommodating one’s belief

state to the deliverances of experience”. Minimizing RE under some constraints

imposed on posterior credences is a way, but by no means the only way, to

make the idea of modesty more precise: the agent adopts the posterior credence

function that meets the constraints reporting her learning experience and is RE-

closest to her prior credence function. Under this procedure, the existence of a

uniquely maximally modest cr′ satisfying a given constraint is guaranteed, since

Cχ is a closed convex set. But why should we value such modest opinion shifts? Of

course, modesty might itself be a virtue that does not require further justification.
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Be that as it may, modesty might also be viewed as a rational tool for pursuing

other goals. What this chapter shows is that it is not always true that revising

credences by dint of MRE leads to modest new credences that are expected to

be helpful and never harmful for one’s decisions.

6.2 The Value of Learning and Bayes’s Rule

It is rather uncontroversial to say that a change in one’s credences may bring

consequences for one’s decisions. Suppose that you have to decide now whether to

act on the basis of your current information or to perform a cost-free experiment

to obtain further information, update your credences, and then act. For example,

you have to decide whether to submit your paper to a journal now or to pursue

some line of research, update your credences about the content of your paper,

and then decide whether to submit it. What should you do?

There is a striking result in decision theory, due originally to Frank P. Ram-

sey and revived by Savage (1954) and Good (1967), that gives an answer to the

aforementioned concern. Informally put, the theorem states that the prior expec-

tation of making an informed decision is at least as great as the expected utility

of making an uninformed decision, and is strictly greater if it is not the case that

the maximum expected utility of an act is the same for all possible experimental

results (or equivalently, if at least one of the experimental results could alter the

choice of one’s actions). This theorem is known in the literature as the value of

knowledge theorem or the value of learning theorem.

In its original form, the theorem has been proven in the context of Bayes’s

rule of conditioning. As shown by Good, Bayes’s rule implies the value of learning

theorem. To present Good’s argument, let us introduce the following assump-

tions:

• Let A = {A1, ..., Am} be a finite set of actions, and let S = {S1, ..., Sn} be

a finite set of states of the world.

• For each combination of Ai and Sj , we assign a utility U(Ai ∧ Sj).

• Let E = {E1, ..., Ek} be a finite partition of experimental outcomes.



6.2. THE VALUE OF LEARNING AND BAYES’S RULE 207

• Assume that the agent is an expected utility maximizer, that is, she chooses

the act Ai that maximizes her expected utility given by∑
j

cr(Sj)U(Ai ∧ Sj),

where cr(Sj) is the agent’s prior credence in Sj .

• The agent’s learning experience is reported by the constraint χ saying that

one should assign the posterior credence 1 to some Ek. Then, the associated

set of posterior credence functions is Cχ = {cr′ : cr′(Ek) = 1}. Bayes’s rule

prescribes you to choose from that set the posterior credence function cr′

that satisfies the constraint and is defined as follows:

Bayes’s rule: For all j,

cr′(Sj) = cr(Sj |Ek),

provided that cr(Ek) > 0.

That is, your posterior credence in Sj equals your prior credence in Sj

conditional on Ek.

• The experiment is costless.

For simplicity’s sake, we consider only finite sets of states. It is worth noticing

that the value of learning theorem carries over to infinite sets of states if the

credence function is countably additive.

Suppose that the agent is faced with the following decision problem. She has

to decide whether to act now or to wait until the experiment is performed, update

her degrees of belief by Bayes’s rule, and then act. Since the agent is an expected

utility maximizer, the present value of her deciding now, without performing the

experiment, is:

max
i

∑
j

cr(Sj)U(Ai ∧ Sj) = max
i

∑
k

∑
j

cr(Sj |Ek)cr(Ek)U(Ai ∧ Sj)

= max
i

∑
k

∑
j

cr(Ek|Sj)cr(Sj)
cr(Ek)

cr(Ek)U(Ai ∧ Sj)
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= max
i

∑
k

∑
j

cr(Sj)cr(Ek|Sj)U(Ai ∧ Sj), (6.2)

which is the expected value of act Ai with the highest expected utility.

The present value of making an informed decision is given as follows. Suppose

that E is the true member of E . Then, the posterior value of making a decision

informed by E is the value of act Ai with the highest expected utility with respect

to the conditional credence cr(Sj |E):

max
i

∑
j

cr(Sj |E)U(Ai ∧ Sj). (6.3)

Given (6.3), the present value of making a decision conditional on E is calculated

by∑
k

cr(Ek) max
i

∑
j

cr(Sj |Ek)U(Ai∧Sj) =
∑
k

max
i

∑
j

cr(Sj)cr(Ek|Sj)U(Ai∧Sj),

(6.4)

which is the prior expectation of the posterior value of making an informed deci-

sion.

To see that equation (6.4) is at least as great as equation (6.2), note first

that equations (6.2) and (6.4) differ only in the order of the maxi and the
∑
k

operations. Now, observe that for any real-valued function f(k, i) of k and i:∑
k

max
i
f(k, i) ≥

∑
k

f(k, i∗)

≥ max
i

∑
k

f(k, i), (6.5)

where i∗ is the value of i that maximizes
∑
k f(k, i). Then, it follows that∑

k

max
i

∑
j

cr(Sj)cr(Ek|Sj)U(Ai∧Sj) ≥ max
i

∑
k

∑
j

cr(Sj)cr(Ek|Sj)U(Ai∧Sj),

(6.6)

which establishes the value of learning theorem.

The value of learning theorem carries an important philosophical message for

someone who evaluates learning and updating rules in terms of their potential



6.2. THE VALUE OF LEARNING AND BAYES’S RULE 209

consequences for decisions. The message is that, from the perspective of maxi-

mizing expected utility, a change in one’s credences could make one’s decisions

better and never worse. That is, acquiring information by way of an update is

expected to be helpful and never harmful. Of course, this result does not hold

unconditionally. It rests on a few substantial assumptions. First of all, it is set

up in the framework of Savage’s decision theory in which states of the world and

acts are stochastically independent in the sense that choosing an act does not give

you information about which state of the world is true. Likewise, one’s decision

whether to perform an experiment is stochastically irrelevant to the states of the

world. Notice, however, that updating on experimental outcomes may alter your

credences about the states. Second, the states, acts, and utilities are the same

before and after updating your credences. Third, it is assumed that you are an

expected utility maximizer before and after updating.

It is important to recognize that the agent assesses the value of making an

informed decision from her current perspective, without knowing which of the

experimental outcomes is true. To assess this value, she takes the expectation of

equation (6.3) with respect to the unknown Ek. This, in turn, shows how her

prior credences must be related to her possible posterior credences. Since she

knows that she will update by Bayes’s rule, it follows that, for each j, her prior

credence in Sj must be equal to the expectation of her conditional prior credence,

cr(Sj |Ek); that is,

cr(Sj) =
∑
k

cr(Ek)cr(Sj |Ek), (6.7)

where the sum extends over all k such that cr(Ek) > 0. This is an elementary

observation. However, what happens if Bayes’s rule is not assumed? In the next

section, I will suggest a more general answer to the question of how the agent’s

prior credence function should be related to her possible posterior credence func-

tions for the value of learning to be satisfied. This answer requires to focus on

Brian Skyrms’s condition M, which relates one’s prior and posterior credences.
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6.3 Condition M and the Value of Learning

Does the value of learning imply a particular way in which one’s prior and one’s

possible posterior degrees of belief are related? In this section, we give an affir-

mative answer to this question by exploring Skyrms’s condition M. I will present

this condition within the framework of an unstructured and opaque degrees-of-

belief change called by Skyrms (1990) the black-box learning. It is unstructured

in the sense that we do not know how the agent updates her credences, i.e. we do

not know what rule she adopts as her updating policy and what the constraint

that prompts the shift in her credences is. The only thing we know is the effect

of her learning experience on her posterior credences.

Black-box learning is a generalized model of learning. According to it, an

epistemic agent starts with a prior credence function, passes through a black-box

learning experience, and ends up with a posterior credence function. Thus, the

agent only knows the input (prior credence function) and the output (posterior

credence function). Here the learning process is not transparent: the agent cannot

go into the black-box and see what is inside. In particular, she cannot say whether

she learned a proposition with certainty or redistributed her degrees of belief over

a partition of propositions. That is, she cannot specify a constraint that prompts

the shift in her degrees of belief. Likewise, she cannot specify a rule of updating

that would deal with her learning episode. For example, she does not expect that

she would learn a proposition as a result of her interaction with the environment,

yet she might think about this experience and revise her opinion on the basis

of her thoughts. More precisely, black-box learning may be described as follows.

Let an agent’s degrees-of-belief space be a triple (W,F , cr), where W is a set of

worlds that the agent considers possible, the elements in F are propositions about

which the agent has an opinion, and cr is the agent’s credence function. Suppose

that the agent is in a learning situation, where she expects her credence function

over F to change from cr to one of the posterior credence functions in the set

{cr′}, resulting from her interaction with the environment. Since her learning is

described only by the effect on her possible posterior credence functions, we can

enlarge her degrees-of-belief space by adding the posterior credence function as a

random variable. As a result, the agent might have second-order degrees of belief
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over propositions about the first-order ones, where the first-order credences are

her possible posterior credences. By doing so, we get a higher-order probability

structure in the sense proposed in Gaifman (1988). Such a structure may be

represented by (W,F , cr, cr′), where F is an algebra of propositions, subsets from

W, cr is one’s prior credence function over F , and cr′ is a measurable function

defined as cr′ : F×[0, 1]→ F . Let the proposition about one’s posterior credences

be denoted by Xcr′ . The proposition says that the posterior credence function

over F is given by cr′.

Could a black-box learner satisfy the value of learning? Recall that the black-

box learner has no updating rule at his disposal and no constraint that prompts

his degrees-of-belief shift. One might thus be suspicious as to whether black-

box learning could be even justified. After all, we deal with a situation where

one expects one’s credences will change as a result of an interaction with the

environment without being confident that the change will be prompted by some-

thing learned. Additionally, a black-box learning situation does not exclude the

possibility that reasons other than learning might prompt one’s degrees-of-belief

change. In particular, one might expect that one’s credences will change by tak-

ing a drug that makes one confident that one can fly, by memory loss, or by being

brainwashed.

Skyrms (1990) shows convincingly that a sufficient condition for one’s degrees-

of-belief change in black-box learning to satisfy the value of learning is the fol-

lowing:

M: An agent’s prior credence function ought to be such that, for all

j and for any possible posterior credence function cr′,1

cr(Sj |Xcr′) = cr′(Sj),

providing that cr(Xcr′) > 0.

That is, condition M requires one’s prior credence in Sj conditional on the propo-

sition about Sj ’s posterior degree of belief to be equal to that posterior degree of

belief. A similar condition, known as the Reflection Principle, has been defended

in van Fraassen (1984).

1In Skyrms (1990), M stands for Martingale.
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Let me now show that a degrees-of-belief shift that satisfies condition M leads

to the value of learning theorem. The agent’s present value of deciding now is

the maximum of her prior expectation of posterior expected utility. In symbols,

max
i

∑
j

cr(Sj)U(Ai ∧ Sj) = max
i

∑
cr′

∑
j

P (Sj |Xcr′)cr(Xcr′)U(Ai ∧ Sj)

= max
i

∑
cr′

∑
j

cr′(Sj)cr(Xcr′)U(Ai ∧ Sj).
(6.8)

The posterior value of making a decision informed by Xcr′ is given by

max
i

∑
j

cr(Sj |Xcr′)U(Ai ∧ Sj) = max
i

∑
j

cr′(Sj)U(Ai ∧ Sj). (6.9)

Now, we can calculate the present value of making an informed decision as one’s

prior expectation of the value given by equation (6.9). That is,∑
cr′

cr(Xcr′) max
i

∑
j

cr′(Sj)U(Ai ∧ Sj). (6.10)

To see that the value given by equation (6.10) is at least as great as the value given

by equation (6.8), let me first introduce the following formulation of Jensen’s

inequality:

Jensen’s inequality: For any random variable X and any convex

function φ,

Exp [φ(X)] ≥ φ(Exp [X]),

where Exp stands for expectation.

With this inequality in mind, let us write

φ(Ai) = max
i

∑
j

cr′(Sj)U(Ai ∧ Sj), (6.11)

where φ is a convex function of Ai. Also, we can write

Exp [φ(Ai)] =
∑
cr′

cr(Xcr′) max
i

∑
j

cr′(Sj)U(Ai ∧ Sj), (6.12)
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and

φ(Exp [Ai]) = max
i

∑
cr′

∑
j

cr′(Sj)cr(Xcr′)U(Ai ∧ Sj). (6.13)

Then, it follows, by Jensen’s inequality, that∑
cr′

cr(Xcr′) max
i

∑
j

cr′(Sj)U(Ai ∧ Sj) ≥ max
i

∑
cr′

∑
j

cr′(Sj)cr(Xcr′)U(Ai ∧ Sj),

(6.14)

as required. Hence, condition M satisfies the value of learning.

What happens if condition M does not hold? Skyrms (1997) shows that if

the black-box learner fails to satisfy condition M, then the expected utility of

her informed decision could be lower than the expected utility of her uninformed

decision. Thus, condition M is both sufficient and necessary for the value of

learning to hold. Similarly, Huttegger (2014) argues that condition M and the

value of learning are in fact equivalent. Assuming Skyrms’s result, Huttegger

shows, quite generally, that if updating one’s credences satisfies the value of

learning, then condition M must hold. Thus, condition M is all we need for the

value of learning to hold.

To explain the necessity of condition M, suppose that cr(Sj |Xcr′) = 1
3 and

cr′(Sj) = 2
3 . Hence, you violate condition M. Consider a bet on Sj conditional

on the proposition that cr′(Sj) = 2
3 ; it costs you $5 and pays you $5 if both Sj

and the proposition that cr′(Sj) = 2
3 are true. Since you violate condition M,

you are vulnerable to a Dutch book, i.e. a set of bets that guarantee you a net

loss, come what may. You have to decide now whether to accept this bet or to

update your credence in Sj and then decide. Since your decision to reject this

bet now has greater expected utility than your decision to act later, and possibly

to risk acceptance of this bet, the value of learning theorem fails to hold.

Now, if condition M alone is all that is required for the value of learning to

hold, we can determine, by focusing solely on that condition, the way in which

one’s prior and posterior credences should be related for one’s opinion shift to

satisfy the value of learning. Additionally, since we deal with a black-box learning

situation, this way of relating priors and posteriors must be independent of which

updating rule the agent endorses as her updating policy.

It is an immediate consequence of condition M that one’s prior credences are
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the expectation of one’s anticipated posterior credences, i.e. for all j,

cr(Sj) =
∑
cr′

cr′(Sj)cr(Xcr′). (6.15)

In other words, the agent’s prior credence in Sj is a convex combination of her

possible posterior credences in Sj . Given that equation (6.15) is a consequence

of condition M, if equation (6.15) fails to hold, then condition M cannot be sat-

isfied, and hence the value of learning theorem cannot be established. Note that

equation (6.15) does not tell us how the agent arrives at her posterior credences.

After all, equation (6.15) characterizes a black-box learner. The basic idea be-

hind equation (6.15) is that no matter how the agent arrives at her posterior

credences, her prior credences are required to be the expectation of her posterior

ones.

It is not hard to observe that a Bayesian conditionalizer satisfies equation

(6.15). If you know that you will update by dint of Bayes’s rule, your prior

credences are the expectation of your anticipated posterior ones that are given

by the conditional prior credences. Of course, the important question here is:

how could one’s conditional credences, the cr(Sj |Ek)’s, capture one’s anticipated

credences that figure in equation (6.15)? Two interesting answers to this question

are given in the literature. First, as pointed out in Weisberg (2007), one might

believe with credence one that one will update by Bayes’s rule on Ek. Then, one’s

anticipated future credences are just the cr(Sj |Ek)’s. Second, following Easwaran

(2013), one might view the cr(Sj |Ek)’s as “plans” to update one’s credences

after learning which member of E is true. Then, the agent’s anticipated future

credences are simply her credences that she plans to have. In my view, both

of these answers are plausible ways to find a bridge between one’s conditional

credences and one’s anticipated future credences.

In what follows, I show that updating by MRE on a constraint prompting

a complete redistribution of credences over a partition of propositions agrees

with a Bayesian model of learning from experience that satisfies equation (6.15).

This, in turn, leads straightforwardly to the value of learning theorem for MRE.

However, I also show that MRE updates on a constraint prompting a change in

one’s conditional credences might not lead to the value of learning theorem. I
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explain that this is because such MRE updates might not coincide with a model

of learning that satisfies equation (6.15).

6.4 The Value of Learning and MRE

In general, MRE updating can be applied to a learning situation reported by

an affine constraint on posterior credences. An affine constraint can always be

formulated as saying that one’s expectation of a random variable, computed

relative to one’s posterior credence function, has a given value. Examples of

such constraint include: (i) a constraint to the effect that one should assign

posterior credences to a partition of propositions without conferring certainty on

any of them, or (ii) a constraint to the effect that one should assign a conditional

posterior credence for some proposition given another proposition.

For example, to see how constraint (i) can be expressed as one’s expectation

of a random variable, suppose that X is a F-measurable random variable, i.e. a

function fromW to the real numbers R. Suppose that the elements of a partition

E = {E1, ..., Ek} of W are represented as 0,1-valued random variables or indicator

functions. The indicator function of Ei, denoted by IEi(w), can be understood

as the truth value of Ei at world w, that is, IEi(w) = 1 if w ∈ Ei, and IEi(w) = 0

otherwise. Since posterior credences over the members of that partition are equal

to the posterior expectations of the indicator functions, (i) may be reformulated

as a constraint to the effect that the expectations of these indicator functions,

computed with respect to the posterior credence function, get some values in R.

In this section, I show that an MRE update in response to constraint (i) leads to

the value of learning theorem.

To this end, I first introduce the following well-known result. Suppose that

the agent’s learning experience is reported by the following constraint. Let E =

{E1, ..., Ek} be a partition of W, and let q1, ..., qk ∈ R+ be such that q1 + ... +

qk = 1. Then, χ is a constraint to the effect that upon learning experience, the

agent redistributes her credences over {E1, ..., Ek} such that cr′(Ei) = qi, for

i = 1, ..., k. The agent’s set of posterior credences that satisfy this constraint is

given by Cχ = {cr′ : cr′(Ei) = qi, i = 1, ..., k}, which is a closed and convex set.

Given that the agent updates her credences by MRE, she chooses from the set
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Cχ her posterior credence function that minimizes the distance measured by RE.

There is a result showing that if the constraints on posterior credences concern a

whole partition of propositions, RE is uniquely minimized just in case the agent’s

posterior credence function comes by Jeffrey’s rule on the partition {E1, ..., Ek}
(see Williams 1980; Diaconis and Zabell 1982). That is, cr′ should be such that,

for all j,

cr′(Sj) =
∑
i

cr(Sj |Ei)qi. (6.16)

That is, cr′ is a weighted average of the agent’s prior conditional credence in Sj

given Ei, for all i, where the weights are the values of posterior credences for the

Ei’s. This result may be summarized by the following proposition:

Proposition 6.1. Suppose that Cχ = {cr′ : cr′(Ei) = qi, i = 1, ..., k}. Then,

RE(cr, cr′′) ≥ RE(cr, cr(·|Ei)qi) for all cr′′ ∈ Cχ, with equality just in case

cr′′ = cr(·|Ei)qi.

As shown by Jeffrey (1983), the agent’s posterior credence function is equal to

the one given by formula (6.16) if and only if the following condition holds:

Rigidity: For all j and all i,

cr′(Sj |Ei) = cr(Sj |Ei).

Rigidity says that the agent’s conditional credences given members of {E1, ..., Ek}
remain intact as she shifts her credences from cr to cr′. Since MRE updating on

a whole partition {E1, ..., Ek} is also rigid, there is no surprise that it coincides

with Jeffrey’s rule. We may look at Rigidity in the case of MRE updating as

follows: under RE-minimization, for each member E of {E1, ..., Ek}, the ratios of

one’s posterior to one’s prior credences about propositions that imply E do not

change, i.e. if Si and Sj , i 6= j, imply E, then
cr′(Sj)
cr′(Si)

=
cr(Sj)
cr(Si)

.

With this result in hand, we can introduce a way to represent MRE updating

in response to constraint (i) as Bayesian conditioning in an enlarged degrees-of-

belief space. This move is mobilized by a general result, due to Persi Diaconis

and Sandy Zabell (1982), which says when a shift from cr to cr′ in the original

smaller space agrees with Bayesian conditioning in some bigger space. A related
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result, though somewhat different in detail, is defended by Peter Grünwald and

Joseph Halpern (2003). For a two-element partition of propositions, a similar

result is given in Skyrms (1980b). Roughly, the idea is as follows. Suppose that

the agent shifts from cr to cr′ by MRE updating on a partition of propositions.

Given the agent’s learning experience reported by a complete redistribution of

her credences over that partition, we can enlarge the original space by adding the

proposition that describes the agent’s learning experience and the proposition

that describes its absence. The proposition that describes the agent’s learning

experience is about the values that her posterior credence function assigns to

each member of the partition. Then, under certain conditions, we can show that

the MRE update in the original smaller space agrees with Bayesian conditioning

in the bigger space.

More precisely, to enlarge the agent’s degrees-of-belief space, we add to the

algebra F a proposition Xqi for each member i of the partition E . Thus, we re-

quire that the underlying space (W,F) is sufficiently rich. In fact, each element

of W specifies a value for qi, which, in turn, may be regarded as a random vari-

able. Xqi says that the agent’s posterior credence assigned to the i-th member

of E equals qi. This proposition may be understood as a set of worlds from W
at which the posterior credence in Ei equals qi. Denote the algebra extended by

adding such propositions by F∗. The agent’s prior credence function cr over F∗

may be viewed as a second-order credence function, since it assigns credences to

her other credences assigned to the propositions in the smaller original algebra

F . Propositions about which the agent has an opinion and that belong to the ex-

tended algebra are the propositions that describe her learning experience reported

by constraint (i), to wit, a learning experience that prompts a complete redistri-

bution over the partition E . Such propositions specify the agent’s credences for

every member of the partition E . They may be understood as conjunctions, the∧k
i=1Xqi ’s, of the Xqi ’s. For ease of exposition, denote such a conjunction by D.

Now, if the agent learns D with certainty, she can Bayes condition in the

enlarged algebra. In fact, when she conditions in the enlarged algebra, she assigns

second-order credences to propositions about her first-order ones. Denote such

Bayesian conditioning in the enlarged algebra by BC∗. It can be put as follows:
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BC∗: For all j and any D ⊆ W,

cr′(Sj) = cr(Sj |D),

provided that cr(D) > 0.

The following theorem states that under certain conditions, updating by MRE

on a partition E is representable as BC∗.

Theorem 6.1. Suppose that the agent’s prior credence function cr obeys the

following two conditions:

(1) For all i, cr(Ei|D) = qi, provided that cr(D) > 0.

(2) For all j and all i, cr(Sj |Ei∧D) = cr(Sj |Ei), provided that cr(Ei∧D) > 0.

Then, for all j, cr(Sj |D) =
∑
i cr(Sj |Ei)qi.

Proof. Suppose that cr satisfies conditions (1) and (2), D ⊆ W, and Ei ⊆ W for

all i. Then,

cr(Sj |D) =
∑
i

cr(Sj |Ei ∧D)cr(Ei|D)

=
∑
i

cr(Sj |Ei ∧D)qi (by condition (1))

=
∑
i

cr(Sj |Ei)qi (by condition (2)),

as required.

In fact, the theorem says that Bayesian conditioning in the enlarged algebra

of propositions is in agreement with updating by MRE on a whole partition of

propositions that belongs to some subalgebra of the enlarged one. This agreement

rests on two conditions, originally introduced in Skyrms (1980b). Condition (1)

is an application of condition M, whereas condition (2) is a kind of probabilistic

independence called by Skyrms sufficiency. Both conditions have an intuitive

appealing. Condition (1) says that the agent’s prior credence in Ei, conditional

on the proposition specifying posterior credences over the members of E , should

be equal to the posterior credence in Ei. This condition can be understood as
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saying that learning described by D is legitimate or justified. For example, it

indicates that such a learning is not a result of memory loss. Sufficiency tells us

that Sj is conditionally independent of D given each member of E . Intuitively, if

the agent knows which member of E is true, then her knowledge about credences

assigned to each member of that partition should have no bearing on her credence

in A.

However, we should not regard the conditions given above as universally cor-

rect. Clearly, condition (1) does not hold in epistemically “pathological” situa-

tions. Just consider the example of Ulysses and the sirens. Before hearing the

siren’s song, Ulysses has a high credence that sailing among the rocks is dan-

gerous. However, he is also sure that after hearing the sirens, he would cease to

believe (wrongly as he now thinks) that sailing among the rocks is dangerous. If

he were to obey condition (1), he would have to cease to believe now that sail-

ing among the rocks is dangerous. However, he now believes that this is not so,

and so condition (1) is violated. Likewise, sufficiency does not hold in situations

where Sj is a proposition Xqi . Then, since D implies Xqi , it is Ei, not D, that is

irrelevant to Sj . However, whenever these two conditions hold, which seems to

be fairly common, Bayesian conditioning in an enlarged degrees-of-belief space

yields the same result as the MRE shift over a whole partition in the original

smaller degrees-of-belief space.

Where does this result leave us vis-à-vis the question of whether a MRE shift

on a whole partition satisfies the value of learning? To address this question,

we first need to face a potential difficulty. Recall that in Good’s argument,

the experiment is represented by a finite partition of propositions, whose mem-

bers are measurable subsets in W. However, the outputs of learning experiences

represented by constraint (i) are the values of posterior degrees of belief, not

propositions. If this is so, how could the MRE updater assign credences to them?

Furthermore, how could she determine the values of informed and uninformed

decisions? By virtue of the representation introduced above, this difficulty can

be mitigated by acknowledging that such values of posterior credences can be

expressible as proposition D, which is a measurable subset in W. That is, from

the point of view of the enlarged degrees-of-belief space, what we learn from the

experiment reported by constraint (i) is a proposition about the values of poste-
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rior credences over the members of a partition. Now, by moving to an enlarged

degrees-of-belief space, we can think of a cost-free experiment as r possible results

prompting r possible redistribution of the agent’s credences over E . Denote the

m-th redistribution of the kind by the proposition Dm.

Now, it is easy to observe that by virtue of the representation captured in

Theorem 6.1, the MRE updater on E satisfies condition M, and thus the value of

learning theorem can be established. Since she can be represented as a Bayesian

conditionalizer in the enlarged degree-of-belief space, in which the Dm’s are mea-

surable subsets, her prior credence in each state of the world S will be the ex-

pectation of her posterior credence in each S. These posteriors are given by the

conditional prior credences, the cr(A|Dm)’s, defined in the enlarged degrees-of-

belief space. More precisely, a demonstration that such an MRE update satisfies

the value of learning may proceed as follows. The present value of making an

uninformed decision is:

max
i

∑
j

cr(Sj)U(Ai ∧ Sj) = max
i

∑
m

∑
j

cr(Sj |Dm)cr(Dm)U(Ai ∧ Sj)

= max
i

∑
m

∑
j

cr(Dm|Sj)cr(Sj)
cr(Dm)

cr(Dm)U(Ai ∧ Sj)

= max
i

∑
m

∑
j

cr(Sj)cr(Dm|Sj)U(Ai ∧ Sj).

(6.17)

The posterior value of making a decision informed by Dm is given by

max
i

∑
j

cr(Sj |Dm)U(Ai ∧ Sj). (6.18)

Given Equation (6.18), the present value of making a decision conditional on Dm

is calculated by ∑
m

cr(Dm) max
i

∑
j

cr(Sj |Dm)U(Ai ∧ Sj)

=
∑
m

cr(Dm) max
i

∑
j

cr(Dm|Sj)cr(Sj)
cr(Dm)
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=
∑
m

max
i

∑
j

cr(Sj)cr(Dm|Sj)U(Ai ∧ Sj), (6.19)

which is the prior expectation of the posterior value of making an informed de-

cision. Now, it is easy to notice that, on the same mathematical grounds as in

Good’s argument, the value given by equation (6.19) is at least as great as the

value given by equation (6.17). Hence, MRE updating on E represented as BC∗

is expected to be helpful, and never harmful to one’s decisions.

6.5 When the Value of Learning May Not Hold

for MRE Updating

In this section, I examine the question of whether MRE updating in response to

constraint (ii) leads to the value of learning theorem. As will be apparent, the

answer to this question is: it depends on how broadly one’s learning experience

reported by constraint (ii) is described. More specifically, I show that whether

the value of learning can be established in this case may be dependent on whether

or not the contextual information, not reported by constraint (ii), is taken into

account in addition to the explicit information. If only the explicit information

is taken into account in this case, then the value of learning theorem may not

hold. By taking the contextual information into account, the constraint is made

complete in the sense explicated below, and the value of learning theorem holds.

In general, consider a learning experience in which the agent learns the fol-

lowing conditional information “If A, then the odds for B are σ/(1− σ) : 1”, for

σ ∈ [0, 1]. This information may prompt a change in the agent’s conditional prior

credences. That is, after learning this conditional information, her conditional

prior credence, cr(B|A), changes to her conditional posterior credence, cr′(B|A),

which should be set equal to σ. With this constraint, we associate a closed and

convex set of posterior credence functions Cχ = {cr′ : cr′(B|A) = σ}. In order to

answer the question of whether a shift from cr to cr′, which belongs to this set

and minimizes RE, leads to the value of learning theorem, we examine whether

such a shift satisfies condition M.

For concreteness, we focus on the famous Judy Benjamin case, originally
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introduced in van Fraassen (1981). In this case, private Judy Benjamin is dropped

in an area that is divided into two territories, the red territory (R) and the

blue territory (¬R). Each of these territories is further divided into the second

company area (S) and headquarters company area (¬S). These divisions form

four quadrants. Initially, Judy assigns to each of the four quadrants a credence

of one quarter: cr(R ∧ S) = cr(R ∧ ¬S) = cr(¬R ∧ S) = cr(¬R ∧ ¬S) = 1
4 .

Judy, then, receives the following radio message: “I don’t know where you are.

If you are in the red territory, the odds are 3:1 that you are in the headquarters

company area”. That is, the radio message prompts a change in one of Judy’s

conditional credences by setting cr′(¬S|R) = 3
4 . Suppose further that Judy is an

MRE updater, and let R ∧ S,R ∧ ¬S,¬R ∧ S,¬R ∧ ¬S be the minimal elements

of F . Now, we may distinguish two ways of describing the constraint on Judy’s

posterior credence function:

(i∗) The constraint pertains to all propositions in {R ∧ S,R ∧ ¬S,¬R},

(ii∗) The constraint pertains to some propositions {R ∧ S,R ∧ ¬S,¬R}.

Let us consider each of these in turn. Case (i∗) rests on the assumption that

the MRE updater can obtain additional information about her posterior cre-

dences over the members of the entire partition by looking at the context of the

Judy Benjamin case. The only explicit information she gets is the information

about her posterior conditional credence in ¬S given R, i.e. cr′(¬S|R) = 3
4 .

Given this information, she knows how to set her posterior conditional credence

in S given R: since all of her conditional credences must sum to one, we have

that cr′(S|R) = 1
4 . However, this does not yet provide a redistribution over

the entire partition. What about her shift from cr(¬R) to cr′(¬R)? This infor-

mation is not given explicitly. However, this information can be gleaned from

the context of the case: since the radio message does not say whether Judy is

in the red or in the blue territory, it follows that her credence in ¬R remains

unchanged, i.e. cr′(¬R) = cr(¬R) = cr(¬R ∧ S) + cr(¬R ∧ ¬S) = 1
2 . This

completes her redistribution over the entire partition of propositions. Let us as-

sume that Judy’s learning experience does not lead her to the revision of her

credence in R. We thereby assume a condition called independence (see Bradley

2005). Then, the sum of Judy’s posterior credences in R ∧ ¬S and R ∧ S equals
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her prior credence in R, i.e. cr′(R ∧ ¬S) + cr′(R ∧ S) = cr′(¬S|R)cr(R) +

cr′(S|R)cr(R). Now, Judy’s task is to find the posterior credence function

cr′ ∈
{
cr′ : cr′(R ∧ ¬S) = 3

8 , cr
′(R ∧ S) = 1

8 , cr
′(¬R) = 1

2

}
that minimizes RE

relative to cr. As shown in Douven and Romeijn (2011) in a more general set-

ting, RE is minimized if and only if, for all A ∈ F :

(1) cr′(A|R ∧ ¬S) = cr(A|R ∧ ¬S),

(2) cr′(A|R ∧ S) = cr(A|R ∧ S),

(3) cr′(A|¬R) = cr(A|¬R).

That is, Judy’s new credence function minimizes RE relative to her prior credence

function if and only if the shift in her credences is rigid, and thus goes in accord

with Jeffrey’s rule on the partition {R ∧ S,R ∧ ¬S,¬R}.
As emphasized in Douven and Romeijn (2011), by using the contextual in-

formation in the Judy Benjamin case, we can complete the constraint reporting

Judy’s experience in a way that allows us to redistribute her credences over the

entire partition of propositions and to apply Jeffrey’s rule. Where does this result

leave us vis-à-vis the question of whether an MRE shift in response to constraint

(ii) leads to the value of learning theorem? If constraint (ii) pertains to the entire

partition of propositions to which Jeffrey’s rule can be applied, then, in view of

the representation given in section 6.4, the MRE updater may be represented as

a Bayesian conditionalizer in a degrees-of-belief space in which this constraint is

a measurable subset of W. Consequently, she satisfies condition M, and thus the

value of learning holds for this case.

Things change if we turn to case (ii∗). Here the radio message received by Judy

prompts an incomplete redistribution of her credences over {R ∧ S,R ∧ ¬S,¬R}.
Here I assume that no information that makes the redistribution complete can

be gleaned from the context of this case. The radio message is the sole constraint

imposed on her posterior credence function. This explicit constraint causes her

redistribution over R ∧ S and R ∧ ¬S, leaving her posterior credence in ¬R un-

known. However, as shown in van Fraassen (1981), by using MRE updating, we

can determine Judy’s posterior credence in this proposition. However, this de-

termination leaves us with a highly counter-intuitive consequence: cr′(¬R) > 1
2 ,
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and hence cr′(¬R) > cr(¬R). That is, Judy’s new degree of belief in ¬R is

greater than her prior credence ¬R, even if the radio message yields no informa-

tion relevant to whether she is in the red rather than in the blue territory. More

generally, for any value of σ, one’s posterior credence in ¬R that minimizes RE

would be greater than one’s prior credence in ¬R, and it remains unchanged only

if σ = 1
2 . However, apart from being counter-intuitive, this observation shows

that the MRE updater cannot satisfy condition M.

To show this, I explore a result, due to Seidenfeld (1986) and rehearsed by

Uffink (1996), which shows that MRE updating cannot be represented as Bayesian

conditioning in an enlarged space in which an incomplete constraint (ii) is a

measurable subset ofW unless the constraint is irrelevant to one’s prior credence

in ¬R. Suppose that Γσ (in the Judy Benjamin case, σ = 3
4 ) is a measurable

subset of W. Since, for any value of σ, the posterior credence in ¬R increases

unless cr(¬R) = cr′(¬R), we have that in the enlarged degrees-of-belief space:

cr(¬R) ≥
∫ 1

0

cr(¬R|Γσ)cr(Γσ) dσ, (6.20)

with strict inequality when there is some probability mass function on Γσ for

σ 6= 1/2. That is, the prior credence in ¬R cannot be a convex combination of

the conditional credences, the P (¬R|Γσ)’s, for σ 6= 1/2. Not only does it show

that MRE updating in case (ii∗) cannot be represented as Bayesian conditioning

in the enlarged space, but also it shows that MRE updating in that case fails to

satisfy condition M unless cr(¬R) = cr′(¬R). If the conditional credences, the

cr(¬R|Γσ)’s, are understood as possible posterior credences, the cr′(¬R)’s, then

we have that

cr(¬R) ≥
∑
cr′

P ′(¬R)cr(Xcr′). (6.21)

Consequently, cr(¬R|Xcr′) ≥ cr′(¬R), and so condition M does not hold in

general. Additionally, given that condition M is both necessary and sufficient for

the value of learning to hold, it follows that MRE updating does not in general

lead to the value of learning theorem. That is, MRE updating may lead to a

decrease in expected utility.

The above analysis has an interesting philosophical import. Whether MRE
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updating leads to the value of learning theorem in the case of constraint (ii)

crucially depends on whether or not the agent takes into account the contextual

information. However, this should not strike us as odd, for there is nothing in the

machinery of MRE updating that could determine the unique way of describing

one’s learning experience. This opens the possibility of using both explicit and

contextual information in order to determine a given constraint. More to the

point, MRE does not suffice to guarantee the value of learning when the new

information comes as constraints over conditional credences. It has been shown

that to guarantee the value of learning, MRE must be supplemented by some

additional rule, which tells us how to add extra constraints gleaned from the

context.

Note, however, that case (ii∗) also points towards another notion of context

sensitivity. This has to do with how MRE determines the lacking information

about one’s posterior credence in ¬R. Though this information is not given

explicitly, MRE could fill in the blanks for us. However, whether it does this

adequately depends on the details of a given learning situation, which also include

the context. On the widespread view, in the Judy Benjamin case, MRE does

not fill in the blanks adequately, for it leads to counter-intuitive results: after

updating, Judy’s credence in ¬R increases, while intuitively it should remain

unchanged. However, it is perfectly possible to add to the Judy Benjamin case a

story indicating that the choice of the blue or red territory is dependent on the

choice of the red headquarters company area or the red second company area.

However, this type of context-sensitivity should be distinguished from the one

described above. For whatever story we plot in the Judy Benjamin case, MRE

may provide us with the lacking information in a way that violates condition M,

as indicated in Grünwald (2000). In contrast, the type of context sensitivity we

alluded to above has consequences for whether or not condition M is satisfied by

the MRE updater.

Let me point out some consequences of our analysis. The fact that, in some

cases, the application of MRE and its justification in terms of the value of learn-

ing is context-sensitive both lend credence to the idea that updating rules are

essentially tools in the “art of judgment”, rather than universally valid inductive

rules. In this spirit, Bradley (2005, p. 362) points out that even Bayes’s rule
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“should not be thought of as a universal and mechanical rule of updating, but

as a technique to be applied in the right circumstances, as a tool in what Jeffrey

terms the ‘art of judgment’ ”. Similarly, Douven and Romeijn (2011, p. 660)

stress that adopting an updating rule based on minimizing distance between cre-

dences to cover updating on conditional information “may be an art, or a skill,

rather than a matter of calculation or derivation from more fundamental epis-

temic principles”. The analysis just given shows that even a justification of MRE

updating in terms of the value of learning cannot proceed mechanically. Rather,

it requires a careful consideration of the entire learning experience that the agent

undergoes.

It is important to emphasize that our analysis should not be regarded as

providing a support to yet another idea, widely discussed within the degrees-of-

belief dynamics, called by van Fraassen (1989) voluntarism. According to this

idea, deliverances of experience should be understood as commands that constrain

the agent’s posterior credences. These commands reflect the agent’s decision

to accept whatever her learning experience reveals. It is not hard to observe

that voluntarism may lead to the idea that belief change is sensitive to what

the agent accepts as her constraint. After all, two agents may accept different

constraints on their posterior degrees of belief, even if they undergo the same

learning experience. However, this is different from saying that the way in which

we respond to a constraint depends on the context of our learning experience;

for the context is not a feature of the agent’s epistemic attitudes, but rather, it

is a part of the learning experience that bears on the agent’s epistemic attitudes.

Hence, whether or not the context of a given case contributes to one’s learning

experience is not a matter of one’s voluntary decision. Of course, according

to voluntarism, the agent might voluntarily decide not to take the contextual

information as her constraint. However, our analysis does not force us to accept

this possibility.

6.6 Concluding Remarks

Clearly, the analysis given in this chapter is not a full story on the justification

of MRE in terms of the value of learning. I have discussed this issue with respect
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to only two types of constraints: the first pertaining to a redistribution of one’s

degrees of belief over the entire partition of propositions; the second pertaining

to a change in one’s conditional degrees of belief. Despite this limitation, I have

shown that the justification of MRE updating is not so simple a task as one

might think. By fitting MRE updating and Bayesian conditioning together in an

enlarged space, I have shown that in cases involving the first constraint, MRE

leads to the value of learning. However, I have argued that this might not be

so in cases involving the second type of constraint. In such cases, whether or

not the value of learning holds crucially depends on whether the context of one’s

learning experience is taken into account.

We may transfer the insights of our analysis to the discussion about the status

of MRE updating. Recall that initially, I have distinguished, from various views

on this issue, the view on which MRE updating is universally valid and the views

that deny its universal validity. It is tempting to think that if this rule of updating

were universally valid, it would be neutral with respect to how a given learning

experience is described. Moreover, it seems that if it were universally valid, its

justification would not depend on whether or not the contextual information is

reported by a given constraint. The findings of this chapter show that neither the

application of MRE nor its justification are so neutral. Hence, they lend credence

to the claim that MRE is not a universal or mechanical updating rule.





Chapter 7

Conclusions

The thesis is by no means the whole story about the double life of probability.

My goal has not been that of those who set out to draw maps of the seas and who

have to record all their shipping routes, ports, and islands. Rather, the goal has

been to look for some well navigable channels to reach some destinations. As the

navigable channels, I have used various principles relating chances to credences,

prior chances to posterior chances, and prior credences to posterior credences.

Although the results established in this thesis do not settle once and for all the

questions that were listed in chapter 1, I believe that some interesting answers

to them have been given by employing these principles.

Having reached the destinations, it is worth to summarize the main achieve-

ments and to look at some unexplored territories.

7.1 Chance and its Roles

One of the overarching themes of this thesis is that we can master the concept

of chance by trying to understand what chance does, or what functional roles it

plays. Unlike various frequency and propensity theories, this view does not force

us to analyse the concept of chance in terms of allegedly more graspable concepts.

Although I have not given an exhaustive list of the roles that chance plays in

our life, I hope I have shown how this view provides a viable understanding of
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chance. As shown in chapter 2, focusing on the expert role of chance, along with

the condition that chances, conceived as experts, should be weakly predictively

accurate, allows us to show that chance is a finitely additive probability function.

It is worth emphasizing that there need not be a conflict between the view

that focuses on the roles of chance and the traditional philosophical theories

of chance like frequency and propensity theories. That is, one might ask the

following question: which, if any, of the philosophical theories of chance gives an

analysans of chance that satisfies the principles capturing various roles of chance?

A question of this sort was asked by Lewis (1986) in connection with his Prin-

cipal Principle. Initially, Lewis claimed that only a reductionist about chance, for

example a proponent of a frequency theory like Lewis’s best-system theory, could

show that chance should constrain an agent’s credence, on pain of irrationality.

For Lewis, it was unacceptably mysterious how a non-reductionist about chance,

for example a propensity theorist, could show that chance should constrain the

agent’s credence. He expressed this claim by writing:

Be my guest—posit all the primitive unHumean whatnots you like. (...) But play

fair in naming your whatnots. Don’t call any alleged feature of reality ”chance”

unless you’ve already shown that you have something, knowledge of which could

constrain rational credence. I think I see, dimly but well enough, how knowledge

of frequencies and symmetries and best systems could constrain rational credence.

I don’t begin to see, for instance, how knowledge that two universals stand in a

certain special relation N∗ could constrain rational credence about the future

coinstantiation of those universals. (Lewis 1994, p. 489)

Lewis, however, quickly realized that even a reductionist about chance cannot

provide an account of chance that perfectly occupies the expert role of chance

captured by the Principal Principle. For Lewis, the Big Bad Bug, which has

been discussed in chapter 3, was a way to show that reductionism about chance

contradicts the Principal Principle.

In exploring the expert role of chance, I left unanswered the question of

whether both reductionist and non-reductionist accounts of chance could show

that chance plays the expert role given by the Principal Principle. But whether

or not the result established in chapter 2 will be adjacent to this issue is a matter

of further research.
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7.2 Resilient Chances

I have argued that it is not only the chance-credence principles that inform our

understanding of chance. The thesis has also defended and put to work principles

relating prior and posterior chances. But while it is widely agreed that the chance-

credence principles capture the epistemic role of chance in guiding one’s credences,

it might initially be hard to see what role of chance is captured by these chance-

chance principles. The result established in chapter 3 shows that these principles

follow from a plausible norm for chances, viz. the norm of maximizing resiliency.

If, as I have argued there, resilient chances play a prominent role in probabilistic

explanation and prediction, then these chance-chance principles appear to tell

us, albeit implicitly, a great deal about the role of chance in explanation and

prediction.

Although the idea of resilient chance was not fully exploited in this thesis, I

have shown already that it provides some interesting applications. It sheds new

light on the debate concerning the plausibility of Humean accounts of chance

(chapter 3), and also helps us justify a kinematics of chance based on Bayesian

conditionalization (chapter 4).

We might reasonably expect that there is a close connection between the idea

of chances as experts, explored in chapter 2, and the idea of resilient chances

put forward in chapters 3 and 4. Of course, this topic demands a much fuller

discussion than I can enter into here. By way of suggesting, one might try

to reconcile these two ideas by requiring chances to be resilient over the agent’s

evidence. Then, by means of some sort of chance-credence principle, the resiliency

of chances will be carried over to the resiliency of credences. That is, if resilient

chances constrain the agent’s credences, then they “lock” one’s credences in a

robust way: if one knows that the chance of a coin landing heads is 1
2 , then one’s

credence in the coin landing heads should be 1
2 , and should remain unchanged

upon the receipt of additional evidence (Lyon 2010). A similar idea was already

suggested by Lewis:

If the evidence somehow fails to diminish your certainty that the coin is fair,

then it should have no effect on the distribution of credence about outcomes that

accords with that certainty about chance. To the extent that uncertainty about

outcomes is based on certainty about their chances, it is a stable, resilient sort of
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uncertainty—new evidence won’t get rid of it. (Lewis 1986, p. 85)

While this suggestion opens a venue for further exploration, I also believe that

the idea of resilient chances and the idea of chances as experts can be understood

as independent navigable channels leading to distinct places in the philosophy of

probability.

In employing a particular resiliency measure for chances, I have left unan-

swered the question of how we can justify it. One might want to tackle this

issue by isolating certain postulates for a resiliency measure and showing that

the Bregman divergence, which underpins the resiliency measure, satisfies them.

A similar strategy has been pursued in Joyce (1998) and in Pettigrew (2016,

chapter 4) in relation to the accuracy measure for credences. Naturally, a project

of this sort would require a careful consideration of what the postulates for a

resiliency measure should be. I leave this project for another time.

7.3 Legal Bayesianism

Chapter 5 has shown how we can utilize a Bayesian model of legal fact-finding

in order to shed new light on the topic of “naked” statistical evidence in legal

proceedings. In so doing, my ambition has not been to answer the vexing question

of whether this sort of evidence could license verdicts in courts of law. My

view is that this question is immersed in complex issues pertaining not only to

epistemology and philosophy of probability, but also to ethics and policy making.

Instead, I have only argued, within a particular probabilistic model of legal proof

process, that there is something epistemically defective about the fact-finder’s

credences that do not line up with chances.

Although it may be seen that this limitation reduces the force of the results

offered in chapter 5, I believe that it enables us to make the discussion and the

results far more precise. In particular, it allows us to provide a precise account of

credence and verdict accuracy, and it helps us model formally the idea of using

“naked” statistical evidence in legal settings.

In devising a Bayesian model in legal settings, I have left open the question of

whether judges actually are Bayesians. Perhaps they are on Mondays, Wednes-

days, and Fridays, but are more critical of Bayesianism on the remaining days
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of the week.1 Or, it actually might be the case that Bayesianism is not a good

model, for it does not encompass all the intricacies of legal fact-finding (see, e.g.

Cohen 1977 and Allen 1997). To mitigate this issue, I have used the Bayesian

model as a regulative ideal in the sense that the Bayesian norms should be re-

garded as goals toward which legal fact-finders should strive. However, it still

remains to be specified how much of this ideal can by attained in actual legal

proceedings.

7.4 Probabilistic Updating

In chapter 6, I have asked whether the principle of maximum relative entropy,

conceived as an updating rule, leads to new credences that are expected to be

helpful, and never harmful in making decisions. In answer to this question, we are

left with a rather weak “it depends”. Although this is not the sort of answer one

might have hoped for, it points to some general lessons concerning probabilistic

updating.

Among these general lessons is the thought that often a more detailed anal-

ysis of the learning situation is required to apply probabilistic updating rules.

Whether or not probabilistic updating leads to the value of learning theorem

depends to a large extent on how we think of our learning experience. Con-

comitantly, the results of chapter 6 caution against a mechanical and uncritical

application of maximum relative entropy updating. Even if this updating rule

promises to cover a variety of learning experiences, it should be applied only in

the right circumstances.

Throughout the discussion in chapter 6, I have focused on the principle of

maximum relative entropy as applied only to some types of learning experience.

Naturally, one might want to obtain a more general result covering other types

of learning. Specifically, one might want to define the conditions under which the

principle of maximum relative entropy leads to the value of learning theorem in

the most general learning setting suitable for that principle.

1Much like Earman (1992, p. 1).





Samenvatting

Dit proefschrift betreft een filosofische studie van twee concepten van waarschijnli-

jkheid en hun onderlinge relatie. Het gaat om een subjectief/persoonlijk concept

genaamd ‘overtuiging’ en een objectief/fysisch concept genaamd ‘kans’. In dit

proefschrift worden verschillende principes en condities gëıntroduceerd en benut

die gaan over relaties tussen kansen en overtuigingen, a priori kansen en a posteri-

ori kansen, en a priori overtuigingen en a posteriori overtuigingen. Het hoofddoel

is om aan te tonen dat een studie van deze principes een vruchtbare manier is

om over kansen en overtuigingen na te denken. Het tweede doel is om aan te

tonen hoe deze principes gecombineerd kunnen worden met enkele gevestigde ar-

gumentatieve strategieën, om zodoende inzicht te verschaffen in beide concepten

van waarschijnlijkheid.

In hoofdstuk 2 wordt een antwoord ontwikkeld op de vraag of kansen ‘formeel

adequaat’ zijn. Dit is het criterium dat kansen moeten voldoen aan bepaalde

axioma’s van waarschijnlijkheid. Het hoofddoel van dit hoofdstuk is om te

laten zien hoe beschouwingen van kans-overtuigingsinteracties gebruikt kunnen

worden om de formele adequaatheid van kansen te rechtvaardigen. Hiertoe

wordt een kader gëıntroduceerd waarbinnen, onder redelijke aannames, aange-

toond kan worden dat de expertrol, die op zichzelf bewerkstelligd wordt door

een kans-overtuigingsrelatie vereist dat kansen gerepresenteerd worden door een

genormeerde eindig-additieve maat.

Hoofdstuk 3 handelt over twee principes betreffende de relatie tussen a priori

en a posteriori kansen. Hiertoe wordt een benadering van kansen gëıntroduceerd

op basis van robuustheidsprincipes. Het basisidee achter deze benadering is

dat iedere kansverdeling maximaal invariant moet zijn onder wisselende experi-
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mentele factoren. Deze benadering wordt gebruikt om de twee kans-kans-principes

te verdedigen. Er wordt aangetoond dat iedere kansfunctie die in strijd is met

de twee principes vervangen kan worden door een robuustere kansfunctie die

wel voldoet aan de principes. Vervolgens wordt er aangetoond dat, onder een

Humeaanse interpretatie van kansen, deze principes gevolgen hebben die moeil-

ijk aanvaardbaar zijn. Uitgaande van de opvatting van kansen gebaseerd op

robuustheid, is het zeer de vraag of deze principes behouden dienen te worden

binnen de Humeaanse benadering.

Hoofdstuk 4 handelt over de dynamica van kansen: hoe dienen kansen te ve-

randeren over tijd? Ten eerste worden de condities onderzocht die noodzakelijk

zijn voor ieder dynamisch model voor kans om te voldoen aan de Bayesiaanse

dynamica voor kansen. Ten tweede wordt Lewis’ argument voor Bayesiaanse dy-

namica bestudeerd en wordt er aangetoond dat deze dynamica volgt uit Lewis’

‘principal principle’ (PP). Ten derde wordt een alternatief argument voor Bayesi-

aanse dynamica gëıntroduceerd dat geen gebruik maakt van het PP, maar van een

principe dat een relatie legt tussen a priori en a posteriori kansen. Dit principe

wordt gemotiveerd door een beschouwing van kansen op basis van robuustheid-

sprincipes, verwant aan die uit hoofdstuk 3.

Hoofdstukken 5 en 6 gaan over het overtuigingsconcept van waarschijnli-

jkheid. In hoofdstuk 5 wordt een eenvoudig Bayesiaans model toegepast op

gerechtelijke besliskunde om te beargumenteren dat statistisch bewijs bijdraagt

aan het bereiken van nauwkeurigheid, hetgeen een fundamenteel doel is binnen

het recht. Er worden twee argumenten gëıntroduceerd, beide op basis van het

vereiste dat overtuigingen accuraat zijn, voor de stelling dat die kansen beperkin-

gen opleggen aan de overtuigingen aangaande feitelijke hypothesen, zoals die be-

discussieerd worden in de rechtszaal. Het eerste argument stelt dat wanneer

de overtuigingen, na gëınformeerd te zijn over kansen, niet een lagere subjec-

tieve verwachting van de nauwkeurigheid van een oordeel kan hebben dan vooraf.

Het tweede argument laat zien dat de overtuigingen, na gëınformeerd te zijn

over kansen, de objectieve verwachte nauwkeurigheid van overtuigingen maxi-

maliseert. De begrippen ‘subjectieve verwachting van de nauwkeurigheid van

een oordeel’ en ‘objectieve verwachte nauwkeurigheid van overtuigingen’ worden

nauwkeurig uitgelegd binnen een Bayesiaans model voor gerechtelijke beslissin-
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gen. Dit model induceert bovendien een kans-overtuigingsprincipe dat het idee

om statistisch bewijs in een rechtszaak te gebruiken van een kader voorziet.

In hoofdstuk 5 wordt geconcentreerd op synchronische eisen voor overtuigin-

gen (dat wil zeggen, er wordt gekeken naar verscheidene beperkingen op over-

tuigingen van een agent op een gegeven punt in de tijd). In hoofdstuk 6 wordt

daarentegen de nadruk gelegd op de dynamica van overtuigingen (dat wil zeggen,

er wordt gekeken naar de verscheidene manieren waarop een een agent na ver-

loop van tijd haar overtuigingen zal moeten aanpassen). De mogelijkheid voor

een rechtvaardiging van het principe van maximale relatieve entropie als een regel

om overtuigingen aan te passen op basis van nieuwe informatie wordt onderzocht.

Hiertoe wordt gekeken naar een stelling uit de klassieke beslistheorie over het

bepalen van conditionele overtuigingen. Deze stelling behelst een intüıtieve eis

voor leren: leren zou moeten leiden tot nieuwe overtuigingen waarvan verwacht

wordt dat ze behulpzaam zijn bij het maken van keuzes. In dit proefschrift wordt

deze eis de ‘waarde van leren’ genoemd. Er wordt onderzocht in hoeverre het

principe van maximale relatieve entropie voldoet aan de waarde van leren en of

het een rationele methode is voor het navolgen van praktische doelen. Gaan-

deweg wordt een langdurig dispuut in de waarschijnlijkheidstheoretische kenleer

besproken, namelijk, de vraag of er een universele regel is voor het aanpassen van

overtuigingen op basis van nieuwe informatie.
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Briggs, R. (2009b). The Big Bad Bug Bites Anti-Realists about Chance. Synthese,

167(1):81–92.

Brown, P. M. (1976). Conditionalization and Expected Utility. Philosophy of

Science, 43(3):415–419.

Buchak, L. (2013). Belief, Credence, and Norms. Philosophical Studies, 169(2):1–

27.

Carnap, R. (1962). Logical Foundations of Probability. Chicago: University of

Chicago Press.

Christensen, D. (2004). Putting Logic in its Place: Formal Constraints on Ra-

tional Belief. Oxford: Oxford University Press.

Cohen, L. J. (1977). The Probable and the Provable. Oxford: Clarendon Press.

Cohen, L. J. (1981). Subjective Probability and the Paradox of the Gatecrasher.

Arizona State Law Journal, 12(2):627–634.



BIBLIOGRAPHY 243

Colyvan, M., Regan, H. M., and Ferson, S. (2001). Is It a Crime to Belong to a

Reference Class. Journal of Political Philosophy, 9(2):168–181.

Damaska, M. (1975). Presentation of Evidence and Factfinding Precision. Uni-

versity of Pennsylvania Law Review, 123(1):1083–1106.

Dawid, A. P. (2002). Bayes’s Theorem and Weighing Evidence by Juries. Pro-

ceedings of the British Academy, 113:71–90.

De Finetti, B. (1970). Theory of Probability, volume 1. New York: John Wiley.

DeGroot, M. H. and Fienberg, S. E. (1983). The Comparison and Evaluation of

Forecasters. The Statistician, 32(1/2):14–22.

Diaconis, P. and Zabell, S. L. (1982). Updating Subjective Probability. Journal

of the American Statistical Association, 77(380):822–830.

Domotor, Z. (1981). Higher Order Probabilities. Philosophical Studies, 40(1):31–

46.

Douven, I. and Romeijn, J.-W. (2011). A New Resolution of the Judy Benjamin

Problem. Mind, 120(479):637–670.

Dworkin, R. (1985). A Matter of Principle. Cambridge, MA: Harvard University

Press.

Dziurosz-Serafinowicz, P. (2015). Maximum Relative Entropy Updating and the

Value of Learning. Entropy, 17(3):1146–1164.

Eagle, A. (2004). Twenty-One Arguments Against Propensity Analyses of Prob-

ability. Erkenntnis, 60(3):371–416.

Earman, J. (1992). Bayes or Bust? Cambridge, MA: Bradford MIT.

Easwaran, K. (2011). Bayesianism I: Introduction and Arguments in Favor.

Philosophy Compass, 6(5):312–320.

Easwaran, K. (2013). Expected Accuracy Supports Conditionalization—and

Conglomerability and Reflection. Philosophy of Science, 80(1):119–142.



244 BIBLIOGRAPHY

Eells, E. (1983). Objective Probability Theory Theory. Synthese, 57(3):387–442.

Elga, A. (2007). Reflection and Disagreement. Noûs, 41(3):478–8211.
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Hájek, A. (2007). The Reference Class Problem is Your Problem Too. Synthese,

156(3):563–585.
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