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Altered Wiring of the Human Structural Connectome
in Adults with Mild Traumatic Brain Injury

Harm Jan van der Horn,1 Jelmer G. Kok,1 Myrthe E. de Koning,1 Myrthe E. Scheenen,2

Alexander Leemans,3 Jacoba M. Spikman,2 and Joukje van der Naalt1

Abstract

In this study, structural connectivity after mild traumatic brain injury (mTBI) was examined from a network perspective,

with a particular focus on post-traumatic complaints. Fifty-three patients with and without self-reported complaints at 2

weeks after uncomplicated mTBI were included, in addition to 20 matched healthy controls. Diffusion weighted imaging

was performed at 4 weeks post-injury, and neuropsychological tests measuring processing speed and verbal memory were

administered at 3 months post-injury to determine cognitive outcome. Structural connectivity was investigated using

whole brain tractography and subsequent graph theory analysis. In patients with mTBI, eigenvector centrality within the

left temporal pole was lower than in healthy controls. In patients without complaints, global and mean local efficiency

were lower than in patients with complaints, although no differences were found between either subgroup and the group of

healthy controls. Neuropsychological test scores were similar for patients with mTBI and healthy controls. However,

patients with complaints showed higher processing speed than patients without complaints. Within the total mTBI group, a

trend was found toward a correlation between lower network clustering and higher processing speed. Additionally,

significant correlations were found between higher betweenness centrality values of language areas and lower verbal

memory scores in patients with mTBI. In conclusion, our findings may indicate that global graph measures of the

structural connectome are associated with pre- and/or non-injury-related factors that determine the susceptibility to

developing (persistent) complaints after mTBI. Further, correlations between graph measures and neuropsychological test

scores could suggest early compensatory mechanisms to maintain adequate cognitive performance.

Keywords: cognition; diffusion MRI; graph theory; mTBI; networks; post-traumatic complaints; tractography

Introduction

Mild traumatic brain injury (mTBI) occurs frequently

worldwide, and, in 25% of patients, may result in post-

traumatic cognitive and affective complaints that persist long

beyond the accident.1–5 However, in most cases, cognitive im-

pairments cannot be objectified by neuropsychological testing.6

Moreover, there is an ongoing debate as to whether these com-

plaints are related to structural injury, because, in general, no

correlations have been found with findings from clinical neuroi-

maging modalities, such as CT and conventional MRI.7–9

Diffusion tensor imaging (DTI) has been used in multiple studies

of mTBI to study white matter.10 However, findings so far vary

significantly, especially regarding the anatomical location and

direction of changes in diffusion parameters (e.g., fractional an-

isotropy [FA] and mean diffusivity [MD]).10 A recent DTI study

has shown that diffusion parameters were similar for acute mTBI

and healthy control (HC) subjects.11 Further, in instances of dif-

fusion changes after mTBI, the relationship with post-traumatic

complaints is unclear. Recent DTI studies have not shown differ-

ences in diffusion parameters between patients with and without

complaints,11–13 which casts doubts on the influence of structural

injury on the development of complaints after mTBI.

Most of the conducted DTI studies on mTBI have used methods

that detect changes in diffusion parameters, either in regions of

interest or in white matter skeletons.10,14 It could be argued that

modeling white matter tracts as a network (i.e., connectome) results

in a better approximation of the brain’s complex topological fea-

tures and of interactions between regions.15–17 Especially in a

heterogeneous condition such as mTBI, studying connectivity

of structural networks may be valuable for exposing patterns of

white matter alterations that remain latent with traditional methods

that have been used so far. In this context, networks (or graphs)

are defined by their anatomical regions (nodes) and connections

between regions (edges), which may be weighted, for example, by

the number of reconstructed streamlines. Subsequently, graph
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theory can be applied.18 With this method, various graph measures

can be calculated to study characteristics of the whole network or

its individual nodes. Graph theory measures are subdivided into

three main domains: integration, segregation and influence.17 In-

tegration refers to the overall organization of a network in terms of

connectivity and information transfer. A well-known measure of

integration is global efficiency. Segregation describes the forma-

tion of separate clusters within a network or connectivity at a more

regional level, and an important measure is clustering coefficient.

Lastly, influence describes the importance of separate nodes within

a network, which can be captured by computing centrality mea-

sures, such as betweenness and eigenvector centrality. Nodes that

occupy a central position within the network are referred to as hub

nodes.19 Damage to hub nodes, for example as a result of TBI, may

have far-reaching effects on network function.20

Graph theory has proven powerful in revealing many (subtle)

aspects of the pathophysiology of a wide range of neurological and

psychiatric diseases.15,21 Quite recently, graph theory has been

adopted as a method of studying functional and structural connectivity

in patients with TBI.20,22–29 Studies on structural connectivity have

included children and adolescents with acute 29 and chronic mTBI, 22

and adult patients with chronic moderate to severe TBI.23–26 These

studies have shown changes in network integration, segregation and

influence. For example, lower global efficiency and higher clustering

of structural networks was reported,24,29 as well as reduced centrality

of hub nodes, such as the cingulate cortex.25 Further, lower global

efficiency and centrality were found to be related to lower cognitive

performance.24,25 Regarding adults with mild TBI, only one study on

structural networks has been published thus far.30 Using network-

based statistics,31 this study demonstrated reduced, predominantly

frontal, structural connectivity in patients with high levels of self-

reported symptoms. In addition, a graph theory study examined

functional connectivity in patients with mTBI and reported changes in

local measures, predominantly within the frontal and temporal re-

gions, which were associated with post-traumatic complaints.27 De-

spite these interesting results, the structural connectome in patients

with mTBI is still poorly understood.

The present study is the first to perform diffusion tractography

followed by graph theory analysis in adult patients with uncompli-

cated (i.e., without abnormalities on CT) mTBI in the subacute phase

after injury. Given the novelty of graph theory in the field of mTBI,

determining which graph measures are most suitable for studying this

condition is not straightforward. Therefore, an exploratory approach

was used in the current study, and selection of graph measures was

made, based on elaborate reviews of graph theory analysis17,18,21,32

and previously published graph theory literature on TBI.20,22–25,27,29

Graph measures related to integration, segregation and influence

were computed, and the association with the presence or absence of

post-traumatic complaints was examined. Because cognitive and

affective complaints are among the most persistent complaints after

mTBI,1,3 patients were selected who reported complaints within

these domains. An additional research goal was to examine whether

global and local graph measures in the subacute phase were pre-

dictive of cognitive performance at 3 months post-injury. In partic-

ular, it was examined whether global network measures were related

to scores on tasks that measure processing speed.

Methods

Study participants

Data from the patient group described in previously published
fMRI research were used for the current diffusion weighted im-

aging (DWI) study.33 Fifty-three patients (18–65 years of age; 35
male) with mTBI were enrolled between March 2013 and February
2015 in the University Medical Center Groningen, the Netherlands
(a level 1 trauma center). mTBI was defined as a Glasgow Coma
Score of 13–15 and/or loss of consciousness £30 min.34,35 The
following exclusion criteria were used: lesions on admission CT
scans, neurological and psychiatric comorbidity, admission for
prior TBI, drug or alcohol abuse, insufficient comprehension of
Dutch language, mental retardation, and contraindications for MRI
(any implanted ferromagnetic devices and objects, pregnancy, and/
or claustrophobia). Further, 20 HC subjects were recruited among
social contacts and via advertisements, and were group-matched
with the total mTBI group for age, sex, and educational level. HC
had no history of TBI.

Study approval was obtained from the local Medical Ethics
Committee of the University Medical Center Groningen, the
Netherlands, and all participants provided written informed con-
sent after the study and procedure had been fully explained. All
study procedures were conducted according to the declaration of
Helsinki.

Clinical measures

At 2 weeks post-injury, a post-traumatic complaints checklist
composed of 21 frequently occurring complaints was administered
to patients. A detailed description of this questionnaire is available
in previously published material.4,36 For the present study, patients
were selected based on the number of complaints, and divided into
two groups. Having post-traumatic complaints (PTC-present)
(n = 33; 17 male) was defined as reporting three or more complaints
with at least one complaint in the cognitive and/or affective do-
main, and no complaints (PTC-absent) (n = 20; 18 male) was de-
fined as two or fewer complaints.

HC and patients (at –3 months post-injury) also underwent
neuropsychological testing. Because mental fatigue, concentration,
and memory problems are common complaints after mTBI, the
following tests were applied: Trail Making Test A (TMT-A; pro-
cessing speed),37 Stroop I Test (verbal speed),38 Digit-span Test
backward (working memory),39 and the Dutch version of the Rey
Auditory Verbal Learning Test (RALVT; immediate and delayed
verbal memory).40 Three patients did not return for neuropsycho-
logical follow-up. Raw scores, corrected for age and education
level, were used for statistical analyses. To control for task un-
derachievement, participants with a score <85 on the Amsterdam
Short Term Memory Test41 and/or >5 on a brief version (neuro-
logical impairment and amnestic disorders subscales) of the
Structured Inventory of Malingered Symptomatology 42 were ex-
cluded from analyses. These participants included one HC and
nine patients with mTBI (four PTC-absent and five PTC-present
patients).

MRI acquisition

Participants underwent MRI scanning (patients at *4 weeks
post-injury) using a 3 T Philips Intera MRI scanner (Philips Med-
ical Systems, Best, The Netherlands) equipped with a 32 channel
SENSE head coil. For anatomical reference, a high resolution
transversal T1-weighted image was acquired with the following
parameters: repetition time (TR) 9 ms, echo time (TE) 3.5ms, flip
angle 8 degrees, field of view (FOV) 256 · 232 mm, and voxel size
1 · 1 · 1 mm). Acquisition of diffusion weighted images was per-
formed using single-shot echo planar imaging with the following
parameters: TR 8884 ms, TE 60 ms, FOV 240 · 240 mm, acquisi-
tion matrix 96 · 95, 55 slices (thickness 2.5 mm), reconstructed
voxel size 2.5 · 2.5 · 2.5 mm, 60 diffusion directions, b-value
1000 sec/mm2. In addition, seven volumes without diffusion
weighting (b = 0 sec/mm2) were acquired and averaged in a single
volume by the MR scanner.
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For detection of post-traumatic lesions, the following sequences
were used: coronal T2*-gradient echo (TR 875 ms, TE 16 ms, FOV
230 · 183 mm, voxel size 0.49 · 1.12 · 4 mm) and transversal sus-
ceptibility weighted imaging (TR 35 ms, TE 15 ms, FOV
230 · 183 mm, voxel size 0.90 · 0.90 · 2 mm). These sequences
were examined for microbleeds (1–10 mm) by an experienced
neuroradiologist. Within the control group, no microbleeds were
detected. Within the patient group, 28% showed one or more mi-
crobleeds. Seventy percent of all lesions were located within the
frontal regions, 14% within the temporoparietal regions, 14%
within other regions, and 2% within the corpus callosum. No sta-
tistical differences in the presence (v2 = 0.046, p = 0.831) or number
(U = 327, p = 0.936) of lesions were found between the PTC-present
(median 0 lesions, range 0–37) and PTC-absent (median 0, range
0–26) groups.

Imaging data processing

Figure 1 shows the DWI and T1 processing pipeline. The T1-
weighted scans were preprocessed using the recon-all function of
FreeSurfer version 5.3 on a cluster of processors running Linux
(Ubuntu 12.04.5 LTS, CPU model AMD Opteron Processor 6272).
FreeSurfer starts with removing the non-brain tissue 43 followed by
automated Talairach transformation, segmentation of the subcor-
tical white matter and deep gray matter volumetric structures,44,45

and intensity normalization.46 It then proceeds with tessellation of
the gray matter–white matter boundary, automated topology cor-
rection,47,48 and surface deformation following intensity gradients to
optimally place the gray/white and gray/cerebrospinal fluid borders
at the location where the greatest shift in intensity defines the tran-
sition to the other tissue class.49–51 Finally, registration to a spherical
atlas based on individual cortical folding patterns is performed 52

followed by parcellation of the cerebral cortex into units with respect
to gyral and sulcal structures,53,54 which has been shown to be a
reliable way of defining subject-specific regions of interest (ROIs).
Default parameters were used for all processing steps. The quality of
FreeSurfer results was examined in each subject by overlaying the
subcortical segmentation and the white and pial surfaces on coronal,
sagittal, and axial T1 slices. The T1.mgz (i.e. the FreeSurfer T1

image) and aparc+aseg.mgz (i.e. image containing ROIs constructed
by the FreeSurfer pipeline) files were converted to the Neuroimag-
ing Informatics Technology Initiative (NIfTI) format (T1.nii and
aparc+aseg.nii) to be used in further analyses.

Diffusion data were processed using ExploreDTI,55 version
4.8.5, using MATLAB (MATLAB Release 2014b, The Math-
Works, Inc., Natick, MA), which was run on a cluster of processors
running Linux (CentOS 6.6, CPU model Intel Xeon E5 2680v3).
First, the FreeSurfer T1.nii files were processed using the mask
function from ExploreDTI, applying a kernel size of morphological
operators of 5 and a threshold of 0.05. Subsequently, diffusion data
were corrected for motion and eddy currents,56 and susceptibility
distortions 57 with the masked T1.nii files as undistorted (target)
scans, followed by constrained spherical deconvolution (CSD)
tractography,58–60 resulting in one streamline file per subject. De-
fault parameters were used for all processing steps in ExploreDTI,
except for the aforementioned masking of the T1.nii file (because
the applied parameters resulted in producing proper masking re-
sults). The corrected diffusion results were quality checked in every
subject by 1) viewing all three planes of the diffusion weighted
images in a movie loop, 2) viewing the axial slices of the color
coded FA map, and 3) viewing all three planes of the color-coded
FA map overlaid on the T1 volume.

Network construction

First, it was ascertained that every ROI that was planned to be
used in the analysis was present (i.e., ‘‘dissected’’) in the aparc+aseg
files of all subjects. The cerebellum, which was not fully covered
in all scans, and the ventricles were excluded from the analysis,
resulting in 85 ROIs in each subject (see Table S1) (see online
supplementary material at http://www.liebertpub.com). These
comprised all cortical ROIs from the Desikan Killiany atlas (34
areas), plus thalamus-proper, caudate, putamen, pallidum, hippo-
campus, amygdala, accumbens-area and ventral diencephalon (all
of them bilateral) and brainstem. For each subject, these ROIs were
combined with the information in the streamline file. For all pos-
sible ROI pairs, the number of streamlines (>0) between two ROIs
was counted as all streamlines that had an end-point in both ROIs

FIG. 1. Data processing pipeline.
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(i.e., the ‘END’ option in ExploreDTI was used). The resulting
number of streamlines was converted to square, symmetrical ma-
trices (85 rows and 85 columns for all ROIs) and the main diago-
nal was set to zeros. These matrices were stored for subsequent
network analysis.

Image quality assurance

Visual quality assurance of the FreeSurfer results yielded 12
scans that had to be (partially) rerun after some slight manual
modifications. The final result was a proper delineation of all sur-
faces and subcortical ROIs in all subjects. Quality checking of the
results of the ExploreDTI pipeline yielded no extra concerns in this
regard; therefore, all subjects could be used in further analyses.

Network analyses

Graph analysis was performed on weighted streamline matrices
using the Brain Connectivity Toolbox (BCT) version 2016-16-0118

in combination with in-house developed MATLAB (v2011b) scripts.
Graph measures were selected based on previously conducted graph
theory studies on TBI. The following global (i.e., computed for the
total network) measures were computed: global efficiency (Eglob),
mean local efficiency (Eloc), normalized mean clustering coefficient
(c), and modularity (Q). Also, the following local (i.e., for individual
nodes) measures were computed: nodes’ degree (Ki), local efficiency
(Eloci), clustering coefficient (Ci), betweenness centrality (BCi), and
eigenvector centrality (ECi). Table 1 provides a description of all
measures used in the current study, categorized by domain of net-
work organization (integration, segregation, and influence17,18). For
a detailed description of these measures we refer the reader to the
article by Rubinov and Sporns.18

Because inter-individual variations exist in the whole brain
number of reconstructed streamlines, for example as a result of sex
and age differences,61 prior to graph analysis connectivity ma-
trices were normalized using the BCT weight conversion function.
Subsequently, graph measures were computed over a range of
network density thresholds (0.01–0.28, with increments of 0.01,

obtained using the BCT threshold proportional function), aimed at
reducing the influence of spurious connections. A range of
thresholds was used to avoid unwanted modifications of graph
measures that may occur when using a fixed threshold.62 The
upper limit was set at 0.28, at which all participants’ connectivity
matrices showed maximum density (i.e., unthresholded matrices).
To obtain a scalar that was independent of selecting a single
threshold, the area under the curve (AUC) was calculated across
thresholds for every subject. These values were used for statistical
group analyses.

Statistical analyses

Analyses of demographics and clinical measures were con-
ducted using the statistical package for Social Sciences (SPSS;
version 22.0; Armonk, NY: IBM Corp). Data were assessed for
normality using Shapiro–Wilk tests. Normally distributed contin-
uous variables were analyzed using one way analysis of variance
(ANOVA) and two-sample t tests. Non-normally distributed con-
tinuous variables were analyzed using Kruskal–Wallis and Mann–
Whitney U tests. Pearson’s v2 tests were used for categorical
variables. Group comparisons of neuropsychological test scores
were performed using analysis of covariance with inclusion of age
and education level as covariates.

Permutation tests (10,000 random permutations) were con-
ducted in MATLAB (v2011b) to assess differences in the AUC
values of global and local graph measures between mTBI patients
and HC, between patients with and without PTC, and between
each of the patient subgroups separately and HC. Group differ-
ences in global measures were considered significant at a false
discovery rate (FDR) of 0.05 (number of global measures was
four).63 Each of the local measures were deemed significant at the
same FDR of 0.05 (number of nodes was 85). In addition, the
common language effect size indicator (CL) was calculated to
estimate effect sizes.64 Because there was a difference in the ratio
of male to female subjects between patients with and without
complaints, global and/or local graph measures that were signif-
icantly different between these groups were also compared

Table 1. Graph Measures

Measure Description

Integration:
Global efficiency (Eglob) This global measure is calculated by taking the mean inverse shortest path length in the

network. Eglob is inversely related to the characteristic path length of the total network
(i.e., networks with high Eglob have short path lengths between nodes).

Segregation:
Clustering coefficient (Ci) Fraction of triangles around a node (i.e., fraction of neighbors of node i that are neighbors

of each other). This measure reflects the tendency of nodes to cluster together.
Mean clustering coefficient (C) This global measure is calculated by taking the mean of clustering coefficients of all

individual nodes in the network.
Normalized clustering coeficient (c) Mean clustering coefficient divided by the clustering coefficient of a random null network

with preserved degree distribution.
Local efficiency (Eloci) Efficiency of connections between (first degree) neighbors of a node (i.e., Eloci reflects

the global efficiency of the neighborhoods of node i).
Mean local efficiency (Eloc) This global measure is calculated by taking the mean of local efficiency values of all nodes

in the network.
Modularity (Q) This global measure quantifies the degree to which a network may be subdivided into

modules (i.e., subnetworks consisting of non-overlapping groups of nodes).
Influence:
Degree (Ki) Number of edges connected to a node.
Betweenness centrality (BCi) Fraction of all the shortest paths in the network that pass through a certain node. Nodes

with high BCi are said to be hub nodes.
Eigenvector centrality (ECi) Self-referential measure that reflects how strongly a node’s neighbors are connected.

High ECi indicates that node i is connected to important nodes.
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between male and female patients (with an FDR of 0.05). This
comparison was made within the PTC-present group only, because
the PTC-absent group contained only two female patients. To
account for a potential influence of microbleeds, global and local
graph measures were also compared between patients with and
without lesions (with an FDR of 0.05).

Using MATLAB, partial Spearman’s rank correlations were
computed between graph AUC values and neuropsychological test
scores in the total group of mTBI patients with correction for age
and education level. For the global network measures (Eglob, mean
Eloc, c and Q), correlations were computed between AUC values
and scores on tests measuring processing speed (TMT-A and
Stroop I). In addition, the issue of whether local graph measures of
specific nodes were associated with scores on verbal memory
(RALVT) and verbal working memory (Digit-span backward) tests
was assessed. Nodes were selected based on the cognitive domains
that were assessed by the specific tests. Hence, correlations were
computed between graph AUC values of temporal nodes + the
opercular and triangular parts of the inferior frontal gyri (i.e.,
Broca’s area) and RAVLT scores, and between AUC values of
frontoparietal nodes and Digit-span Test backward scores (node
selections are listed in Table S1). Again, results were considered
significant at an FDR of 0.05 (i.e., corrected for the number of
global measures or nodes).

Results

Demographics and clinical characteristics

Demographics and clinical characteristics of this study popula-

tion are listed in Table 2. The total group of patients with mTBI was

matched with HC on age, sex, education level, and handedness.

Injury and other characteristics were similar for PTC-present

and PTC-absent patients, except for sex (v2 = 8.224; p = 0.004).

Regarding neuropsychological tests, no differences were found

between patients with mTBI and HC when adjusting for age and

education level. However, PTC-present patients had lower scores

(indicating better performance) on TMT-A than PTC-absent pa-

tients (F = 5.94, p = 0.02). Regarding cognitive complaints, fatigue

was reported by 91% of the PTC-present group, forgetfulness and

(mental) slowness by 78%, and poor concentration by 73%. One

patient in the PTC-absent group reported fatigue, and no cognitive

complaints were reported in this group.

Group differences in global network measures

In Figure 2, global measures are depicted across thresholds for

the two patient subgroups and HC. There were no differences in

AUC values between patients with mTBI and HC. Significantly

lower AUC values were found in PTC-absent patients than in PTC-

present patients for Eglob ( puncorrected = 0.0074; pFDR = 0.0258;

CL = 0.71) and Eloc ( puncorr. = 0.0129; pFDR = 0.0258; CL = 0.69).

A trend was found toward higher values of c in PTC-absent patients

( puncorr. = 0.08; CL = 0.36). Regarding Q, AUC values did not differ

significantly between patient subgroups ( puncorr. = 0.45). Differ-

ences were not found for any of the global measures when com-

paring patient subgroups separately with HC.

Secondary analyses showed no significant differences between

male and female patients in the PTC-present group for AUC values

Table 2. Participant Characteristics

PTC-present (n = 33) PTC-absent (n = 20) HC (n = 20) p value

Age, median (range), years 33 (19–63) 34 (20–64) 30 (18–61) 0.935a

Sex, % male 52 90 70 0.015b

Education level, median (range)c 6 (4–7) 6 (2–7) 6 (5–7) 0.350b

Handedness, % right 91 80 85 0.524b

Interval injury to MRI, median (range), days 32 (22–56) 33 (22–69) N/A 0.526d

Interval injury to 2 week questionnaire, median (range), days 14 (10–31) 13 (10–58) N/A 0.830d

GCS score, median (range) 14 (13–15) 15 (13–15) N/A 0.072b

Post-traumatic amnesia, % yes 91 70e N/A 0.097b

Injury mechanism, % of group:
Traffic, % 52 50 N/A 0.915b

Falls, % 39 45 N/A 0.547b

Sports, % 3 0 N/A 0.420b

Assault, % 3 0 N/A 0.420b

Other, % 3 5 N/A 0.727b

Neuropsychological tests n = 24 n = 17 n = 19

TMT-A, mean (range) 22.8 (14–44) 30.5 (14–57) 26.5 (12–43) 0.043f

Stroop I, mean (range) 42.6 (30–58) 45.4 (31–72) 45.2 (26–71) 0.552f

Digit-span backward, mean (range) 5.3 (3–9) 5.2 (2–8) 5.3 (3–8) 0.936f

RAVLT
Immediate recall, mean (range) 48.8 (17–65) 46 (31–69) 48.6 (32–71) 0.746f

Delayed recall, mean (range) 10.1 (2–15) 10.1 (6–14) 10.2 (3–15) 0.985f

aKruskal-Wallis test.
bPearson’s v2 test.
cEducation level was based on a Dutch classification system, according to Verhage (Verhage, [1964]: Intelligence and age: Study with Dutch people

from age 12 to 77. Dissertation Van Gorcum, Assen, The Netherlands.), ranging from 1 to 7 (7 being highest).
dMann–Whitney U test.
ePost-traumatic amnesia was documented for 95% of the PTC-absent patients.
fANCOVA with covariates age and education level.
ANCOVA, analysis of covariance; GCS, Glasgow Coma Score; HC, healthy controls; PTC, post-traumatic complaints; RALVT, Rey Auditory Verbal

Learning Test; TMT, Trail Making test.
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of Eglob and Eloc. Further, no differences were found between

patients with and without microhemorrhagic lesions.

Group differences in local network measures

Regarding most of the local measures, no significant differences

were present between patients with mTBI and HC, or between

patient subgroups. However, AUC values for ECi of the left tem-

poral pole were found to be significantly lower in both the total

group of patients with mTBI ( puncorr. = 0.0001; pFDR = 0.0085;

CL = 0.31) and the PTC-present subgroup separately ( puncorr. =
0.0002; pFDR = 0.0170; CL = 0.3) compared with HC (Fig. 3). A

trend towards lower ECi of the orbital part of the left inferior frontal

gyrus was found in mTBI patients compared with HC ( puncorr. =
0.0013, pFDR = 0.055; CL = 0.3).

No differences in local measures were found between patients

with and without microhemorrhagic lesions.

Associations between graph measures
and neuropsychological tests

Within the mTBI group there was a partial correlation observed

at trend level between higher c values and higher TMT-A scores

corrected for age and education level (q = 0.31, puncorr. = 0.05;

pFDR = 0.22). In other words, lower network clustering corre-

sponded higher processing speed. Regarding local measures in the

mTBI group, there was a significant negative partial correlation

between BCi values of the opercular part of the left inferior fron-

tal gyrus and immediate recall scores on the RAVLT (q = -0.57,

puncorr. = 0.0001; pFDR = 0.006); and between BCi values of left

superior temporal gyrus and delayed recall scores on the RAVLT

FIG. 2. Global network measures across density thresholds for patients with (PTC-present) and without (PTC-absent) post-traumatic
complaints, and healthy controls (HC).
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(q = -0.49, puncorr.. = 0.002; pFDR = 0.03). Thus, higher between-

ness centrality of these nodes corresponded with lower memory

performance.

Discussion

This is the first study that has applied graph theory analysis

to structural networks (reconstructed from DWI data) in a large

sample of adult patients with uncomplicated mTBI. Global mea-

sures were similar when comparing the total mTBI group with HC.

Within the mTBI group, PTC-absent patients had lower global

measures (Eglob and Eloc) than PTC-present patients. For local

measures, lower eigenvector centrality within the left temporal pole

was found in patients with mTBI compared with HC, possibly

reflecting temporal lobe injury. Neuropsychological performance

was similar for patients with mTBI and HC. Nevertheless, in pa-

tients with mTBI, a trend was found toward a relationship between

lower network clustering and higher processing speed, and this

finding was associated with post-traumatic complaints. More spe-

cifically, our findings might indicate a (compensatory) shift toward

a more random network configuration in PTC-present patients,

possibly facilitating faster information transfer throughout the

network. Additionally, higher betweenness centrality of areas in-

volved in language processing was related to poorer memory per-

formance, which may suggest a possible compensatory role for

language hubs in patients with post-mTBI memory problems.

The use of graph theory to study structural brain networks ob-

tained from DWI has increased rapidly over the past few years in

the field of TBI as well. Studies have reported differences in various

graph measures between patients with chronic moderate to severe

TBI and HC, showing that lower global efficiency and centrality

values were associated with worse cognitive performance.24–26

These studies suggest that changes in structural network configu-

ration may explain deficits following more severe TBI. To date,

only one study has investigated the structural connectome in adult

patients with mTBI using network-based statistics.30 In this study,

whole brain structural connectivity (number of streamlines) was

found to be similar for both patients with acute mTBI (with on

average three symptoms) and HC. In the present study, several

graph measures were compared between patients with mTBI and

HC, which to our knowledge was done here for the first time. One

local measure, namely eigenvector centrality of the left temporal

pole, was lower in patients with mTBI than in HC. Eigenvector

centrality is a self-referential measure that reflects the level of

importance (hub status) of the neighbors of a node. This could mean

that connectivity of hub nodes adjacent to the temporal pole was

disturbed in patients with mTBI, which can be explained given the

vulnerability of this area to TBI.65 Although eigenvector centrality

of other vulnerable areas, such as the frontal lobes, was similar for

patients and HC, we did find a trend toward lower eigenvector

centrality of the left inferior frontal gyrus in the mTBI group. In

patients with moderate to severe TBI, reduced eigenvector cen-

trality of hub regions, such as the cingulate cortex, has been re-

ported.25 However, this was not found in the current study.

Moreover, global measures were also similar in the total group of

patients with mTBI and HC, which might indicate that mTBI

causes minor local network changes that do not affect global net-

work functioning. Another possible explanation for these findings

may be the time interval between injury and scanning, which in the

current study was *30 days. A study by Yuan and coworkers has

shown that global efficiency of structural networks in children and

adolescents with mTBI (within 96 h post-injury) was lower com-

pared with HC, which may suggest that changes in structural net-

works are more prominent in the acute phase.29 However, it also

has to be taken into account that the brains of young patients with

mTBI may be more vulnerable to injury than those of adult patients,

considering ongoing developmental processes.66

Recent studies using non-graph theory methods on DTI data did

not demonstrate differences between adult patients with and with-

out complaints in the acute and subacute stages after mTBI.11–13 The

present study showed that, using CSD tractography and graph

theory, it is possible to discern differences in structural network

connectivity between patients with and without post-traumatic

complaints in the subacute phase post-mTBI. PTC-absent patients

had lower values on global measures of network integration

(Eglob) and segregation (Eloc) than PTC-present patients, although

local measures did not differ. Contrary to our results, a recent study

has shown that reduced frontal structural network connectivity

(number of streamlines) was associated with higher levels of

symptoms reported acutely after mTBI.30 Moreover, one graph

theoretical study on functional networks showed only a relationship

between local graph measures of frontotemporal regions and post-

traumatic complaints in mTBI, without any significant findings

regarding global measures.27 Remarkably, our findings also dem-

onstrated that network measures in both PTC-present and PTC-

absent patients did not differ significantly from those of HC, which

might imply that the injury itself does not cause major perturbations

in the structural network in patients with mTBI. An exciting idea is

that differences in structural connectivity may be related to pre/

non-injury-related factors, such as personality characteristics,

which may explain differences in susceptibility to developing

(persistent) complaints. In healthy subjects, for example, it has

been demonstrated that a more random functional network in terms

of higher global efficiency was related to higher scores on a neu-

roticism questionnaire.67 As it was found that PTC-present patients

had higher global efficiency than PTC-absent patients, it could be

hypothesized that neuroticism also plays a role in developing

complaints after mTBI.

Although several cognitive complaints were reported by patients

with mTBI, performance scores on neuropsychological tests at

follow-up fell within the normal range, which is consistent with the

existing literature.6,68,69 Mental fatigue is commonly reported after

mTBI, also in the current patient sample, and this complaint has

FIG. 3. Eigenvector centrality of the left temporal pole across
density thresholds in healthy controls (HC) and patients with
(PTC-present) and without (PTC-absent) complaints.
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been found to be related to processing speed in patients with acute

and chronic mTBI.70,71 In the present study, a trend was found

toward a moderate correlation between better (faster) performance

on the TMT-A and lower network clustering in the group of

mTBI patients, which might be reflective of an early compensatory

process to ensure adequate cognitive performance in the long

term. Interestingly, PTC-present patients performed better on the

TMT-A than PTC-absent patients, which might be related to

(compensatory) increased mental effort and subsequent mental

fatigue. Our results also show a trend toward lower network clus-

tering in PTC-present patients, compared with PTC-absent patients.

Although speculative, these findings may complement fMRI

studies that have found higher activation during working memory

processing in patients with mTBI compared with HC, which was

also thought to be associated with enhanced mental effort to

maintain normal task performance.72,73 In addition, we found a

significant association between lower scores on a verbal memory

task and higher BCi of language areas in the left hemisphere, which

might also reflect a compensatory process via increased usage of

the phonological loop in patients with mTBI.74 Perhaps more im-

portant, hub status of these nodes appears to be predictive of

memory processing at follow-up. Further studies are required to

elucidate the association between structural networks and cognitive

outcome after mTBI.

Most of the DTI studies on mTBI so far have used voxel-based or

ROI analyses and none have used graph theory. A systematic re-

view of the literature has shown that results of these studies vary

significantly regarding the presence or absence of diffusion ab-

normalities, direction (e.g., increased or decreased FA or MD) and

anatomical location of abnormalities, and associations with neu-

ropsychiatric complaints in patients with mTBI.10 The authors re-

port that these mixed results may be partly attributed to the

heterogeneous nature of mTBI itself and of patient samples in-

cluded in these studies (e.g., number of patients, injury severity,

and time post-injury). Further, they found that data acquisition

parameters are of influence. For example, a low number of diffu-

sion weighted images (<20) may lead to more variable results. The

current study has several methodological strengths that deal with

these concerns. First, in comparison with several other studies,

sufficient sample size was used and attempts were made to reduce

heterogeneity (e.g., matching injury-to-scanning intervals of mTBI

subgroups). Second, a high number of diffusion weighted images

was acquired (i.e., 60). Third, whereas many studies so far have

used DTI tractography, here, CSD tractography was used, which is

capable of identifying crossing fiber tracts, resulting in fewer ‘‘false

negative tracts.’’58

There are also some limitations that should be mentioned. First,

the b-value applied (1000 sec/mm2) in the present study is rela-

tively low for CSD, in which higher b-values are able to resolve

crossing fibers at even lower angles. Second, readers should not

delude themselves that by weighting the connectivity matrices for

streamline count, the number of axons was directly investigated

(which could be considered a measure of white matter connection

strength). The number of streamlines can be affected by a multitude

of uninteresting and biologically irrelevant factors in addition to the

actual number of underlying axons/tracts.75,76 Rather, streamline

sets were constructed in the diffusion field, of which it is known that

‘‘false positive tracts’’ (i.e., streamlines that were found, but should

not have been reconstructed if it were for the underlying white

matter) and ‘‘false negative tracts’’ are present in addition to ‘‘true

positive tracts,’’ leading to the proper conclusion that we were at

best investigating indirect measures of connection strength.

Nevertheless, it has been shown that within-subject similarity of

diffusion tractography network measures is higher than between-

subject similarity; 77 therefore, current findings are probably re-

flective of various biological processes. To date, no other methods

have been developed that come near the method of diffusion trac-

tography regarding the reconstruction of ‘‘fiber tracts’’ in vivo,

especially when it comes to whole brain connectivity. Third, there

is no consensus regarding many of the choices that have to be made

with (DWI) graph analysis (e.g. regarding parcellation of the brain,

selection of streamlines that pass through or end in an ROI, nor-

malization of weighted matrices, graph thresholding, and multiple

comparison correction32,78), and results may vary accordingly.

Fourth, imaging was performed in the subacute phase post-injury

only, and not acutely after injury as well. Therefore, we were not

able to determine whether our findings (also) reflected possible

compensatory processes to acute injury. Lastly, although the cur-

rent study provides novel perspectives on mTBI, replication studies

are needed to demonstrate the reliability of our findings.

Conclusion

In conclusion, this study has demonstrated relatively minor

differences in graph properties of the structural connectome in

patients with uncomplicated mTBI when compared with HC. In-

terestingly, within the mTBI group, values of global and local ef-

ficiency were lower in PTC-absent patients than in PTC-present

patients, whereas both patient subgroups did not differ from HC.

Possible indications were found for early compensatory mecha-

nisms in patients with mTBI involving network clustering and

betweenness centrality of language areas, to ensure adequate cog-

nitive performance at follow-up. Diffusion weighted structural

graph analysis in neuroscience is still in its infancy; however, it is a

promising tool in further disentangling the role of structural injury

in uncomplicated mTBI, possibly leading to clinically relevant

clues for future diagnostics and treatment of patients with mTBI.
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