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A Lyapunov approach to control of microgrids
with a network-preserved differential-algebraic model

Claudio De Persis Nima Monshizadeh Johannes Schiffer Florian Dörfler

Abstract— We provide sufficient conditions for asymptotic
stability and optimal resource allocation for a network-
preserved microgrid model with active and reactive power
loads. The model considers explicitly the presence of constant-
power loads as well as the coupling between the phase angle
and voltage dynamics. The analysis of the resulting nonlinear
differential algebraic equation (DAE) system is conducted by
leveraging incremental Lyapunov functions, definiteness of the
load flow Jacobian and the implicit function theorem.

I. INTRODUCTION

Driven by considerable societal and political efforts to
reduce carbon emissions, the electric energy grid is un-
dergoing a period of unprecedented changes. One major
turning point is the replacement of conventional bulk power
generation plants by numerous small-scale renewable energy
sources (RES). While the former are interfaced to the high-
voltage network through synchronous generators (SGs), the
latter are usually connected to the distribution networks via
power electronic devices called inverters. As inverters have
very different physical properties from SGs, RES-dominated
networks also exhibit significantly different dynamics than
their conventional counterparts. Consequently, the transition
to an RES-based energy mix calls for fundamental paradigm
shifts in the operation of electric power systems.

In this regard, the microgrid (MG) concept has been
identified as a key element of future power networks [1]–
[3]. A MG is an electrically connected subset of a distri-
bution network that possesses an own control and energy
management infrastructure. Therefore, a MG can also operate
in islanded mode, i.e., disconnected from the larger utility
grid. Hence, by design, MGs offer several promising features
such as reduction in losses, smooth integration of RES, and
increased network resiliency [1], [2].

Another main feature of MGs compared to conventional
distribution networks is that - assuming an adequate MG
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control architecture is in place - they can provide ancil-
lary services (e.g., frequency, voltage and load-generation
control) [1]. These services were traditionally delivered by
large SGs via centralized or fully decentralized control
architectures [4]. Yet, as outlined above, this is not a feasible
option in networks with large share of small-scale RES.

Motivated by this fact, the present paper aims at designing
a MG control architecture that enables MGs to provide
ancillary services. To this end, we focus on the problems of
frequency and voltage stability combined with optimal power
injections and frequency restoration. These problems are
highly relevant in MGs [1] and have thus recently attracted
significant interest. However, existing work is limited by the
facts that it is conducted under the assumption of decoupled
frequency and voltage dynamics [5]–[8], constant impedance
loads [9]–[11] or without explicit representation of electrical
network interconnections and loads [12].

Building upon [10], [13], the present paper overcomes
the abovementioned limitations by considering a heteroge-
neous and structure-preserving differential algebraic equation
(DAE) model of an inverter-based MG. Such model has
several advantages. First, the load buses are explicitly repre-
sented, rather than absorbed into the network impedances
through Kron reduction [9] Second, it allows to suitably
represent constant-power-controlled loads. Third, it does not
rely on the prevalent mathematically convenient assumption
of decoupling voltage magnitude and phase angle dynamics,
(not valid in heavily loaded grids) [5]–[8], [10], [13], [14].

We assume that the grid-forming inverters (i.e., the
units responsible for frequency and voltage regulators) are
equipped with the standard active and reactive primary
droop controllers [3]. Inspired by [5] and recent incremental
Lyapunov and passivity-based methods [11], [15], we aug-
ment this basic control layer with a distributed-averaging PI
controller that permits to restore the grid frequency to its
nominal value while minimizing a quadratic criterion for the
active power injections. Such a distributed architecture could
provide a flexible alternative to the centralized operation
of MGs discussed in [1], [3]. For the resulting closed-
loop system, we derive a sufficient condition for asymptotic
stability that relies on a local definiteness assumption of
the load flow Jacobian common in voltage collapse studies
[16]–[18]. The analysis is inspired by classic DAE analysis
tools in power systems [19], [20], energy function methods
[21], and center-of-inertia coordinates [22] blended with with
some recent DAE extensions [13] and incremental Lyapunov
methods [11] tailored to power systems. The proofs are
omitted due to lack of space and will be presented elsewhere.



Notation For i ∈ {1, 2, . . . , n}, by col(ai) we denote the
vector

[
a1 a2 . . . an

]T
. We also use col(A,B) to denote the

matrix
[
AT BT

]T
for given matrices A and B. For a given

vector a ∈ Rn, the diagonal matrix diag(a1, a2, . . . , an) is
denoted in short by [a]. The symbol 1 denotes the vector of
ones with appropriate dimension.

II. PRELIMINARIES ON DAE SYSTEMS

In this section, based on [13], [19], we briefly recap some
notions from stability theory of differential algebraic systems
used to establish part of the results of the present paper. We
are concerned with autonomous semi-explicit DAE systems
of the form

ẋ = f(x, y), (1a)
0 = g(x, y), (1b)

where x ∈ Rn, y ∈ Rm and f : Rn × Rm → Rn,
g : Rn × Rm → Rm are twice continuously differentiable
functions. The maximal domain of a solution of (1) is
denoted by I ⊆ R≥0. Furthermore, we consider only
solutions

(
x(x0, y0, t), y(x0, y0, t)

)
of (1) with admissible

initial conditions (x0, y0) ∈ Rn×Rm satisfying the algebraic
constraint

0 = g(x0, y0). (2)

We make the following assumptions on the system (1).
Assumption 1: The system (1) possesses an equilibrium

point (x∗, y∗) ∈ Rn × Rm.
Definition 1: Let Ω ⊂ Rn × Rm be an open connected

set. The algebraic equation (1b) is regular if the Jacobian of
g with respect to y has constant full rank on Ω, that is,

rank (∇yg(x, y)) = m ∀(x, y) ∈ Ω.

If (1b) is regular on Ω, then we say that the DAE system (1)
is regular on Ω.

Assumption 2: Let Ω ⊂ Rn × Rm be an open connected
set containing (x∗, y∗). The DAE system (1) is regular on Ω.

By [19, Theorem 1], existence and uniqueness of solutions
of (1) in Ω over an interval I ⊆ R≥0 for any

(
x(x0, y0, t),

y(x0, y0, t)
)
∈ Ω satisfying (2) is guaranteed by Assump-

tion 2. We refer the reader to [13], [19] for Lyapunov-
LaSalle-type stability results of DAE (1).

III. MODEL OF MG, INVERTERS, AND LOADS

A. Modeling of AC MG circuitry

We consider a structure-preserving inverter-based MG
model composed of load and generation buses. We restrict
our attention to a system-level model, in which distributed
power units interfaced to the network via power electronics
are represented as controllable voltage sources, and the
interconnecting circuitry is modeled by constant impedances.
The latter corresponds to the standard quasi-steady model
of power lines and transformers employed in most power
systems and MG analysis; see [23] for a detailed derivation
of this model. The topology of the grid is represented by
a connected and undirected graph G(V, E) with vertex set
(or buses) V = {1, 2, . . . , n}, and the edge set E is the set

of unordered pairs {i, j} of distinct vertices i and j. By
associating an arbitrary ordering to the edges, the node-edge
incidence matrix D ∈ R|V|×|E| is defined element wise as
dil = 1, if node i is the sink of the lth edge, dil = −1,
if i is the source of the lth edge and dil = 0 otherwise.
We assume that the line admittances are purely inductive,
and two nodes {i, j} ∈ E are connected by a nonzero real
susceptance Bij < 0. The set of neighbors of the ith node
is denoted by Ni = {j ∈ V | {i, j} ∈ E}. The voltage phase
angle and magnitude at node i ∈ V are denoted by θi ∈ R
and Vi ∈ R≥0, respectively. The relative phase angles are
denoted in short by θij := θi− θj , {i, j} ∈ E . The electrical
frequency at the ith node is given by θ̇i = ωi ∈ R.

With the above notation, the active and reactive power
flows at each node i ∈ V are given by

Pi =
∑
j∈Ni

|Bij |ViVj sin(θij), (3a)

Qi = |Bii|V 2
i −

∑
j∈Ni

|Bij |ViVj cos(θij), (3b)

with Bii =
∑
j∈Ni

Bij + B̂ii and where B̂ii≤0 is the shunt
susceptance at the ith node. This shunt susceptance repre-
sents either a constant impedance load or the magnetizing
susceptance of a transformer. As we are mainly concerned
with dynamics of generation units, we express all power
flows in generator convention [24]. In this paper we do not
make the prevalent decoupling assumption separating active
power and phase angles from reactive power and voltage
magnitudes [5]–[8], [13]. This mathematically convenient
assumption is valid near an operating point with a flat voltage
profile but only poorly justified otherwise.

B. Modeling of MG devices

We consider a MG model consisting of inverter-interfaced
units at buses VI and PQ loads with a constant demand
of active and reactive power at buses VL = V \ VI . The
inverters follow the standard droop control equations trading
off frequency and active power and voltage and reactive
power (after filtering power measurements) [9]

θ̇i = ωi,

TP,iω̇i = −(ωi − ω∗)−KP,i(Pi − P ∗i ) + uP,i,
(4)

TQ,iV̇i = −(Vi − V ∗i )−KQ,i(Qi −Q∗i ),

for each i ∈ VI := {1, 2, . . . , nI}. Here, ω∗ ∈ R>0

is the nominal (synchronous) frequency and Pi and Qi,
given by (3a), (3b), are the active, respectively reactive,
power drawn from node i. Similarly, P ∗i and Q∗i denote the
(positive) active and reactive power setpoints. The term uP,i
accounts for a secondary control input to be designed later
in Section V. The parameters KP,i, KQ,i, TP,i, and TQ,i are
strictly positive gains. Consider constant power loads that
satisfy the following algebraic power balance equations

0 =Pi − P ∗i , (5)
0 =Qi −Q∗i , (6)



where Pi and Qi, given by (3a), (3b), denote the active and
reactive power demand at node i ∈ VL = V \ VI . Again P ∗i
and Q∗i are generally nonzero constant setpoints for active
and reactive power demand; e.g., a resistive-inductive load
has P ∗, Q∗ < 0. The cardinality of VL is denoted by nL.

C. Specifications on optimal synchronous motion

We are interested in a motion of a MG evolving exactly
at nominal frequency and possessing an optimal resource
allocation with regards to active power generation. We define
a synchronous motion of the ith bus by

θi(t) = θi = θ0i + ω∗t , i ∈ V,
ωi(t) = ωi = ω∗ , i ∈ VI ,
Vi(t) = V i , i ∈ V,

where θ0i ∈ R is the initial condition of θi and V i ∈ R>0 is
the constant voltage magnitude. Recall that ω∗ ∈ R>0 is the
synchronous frequency. Along any synchronous motion, the
dynamics of the inverter at the ith node, i ∈ VI , satisfy

θ̇i = ω∗ , (7)

0 = −KP,i(P i − P ∗i ) + uP,i , (8)

0 = −(V i − V ∗i )−KQ,i(Qi −Q∗i ) , (9)

where P i =
∑
j∈Ni

|Bij |V iV j sin(θij). In addition to an
operation at the nominal frequency ω∗, it also is desirable to
allocate the synchronized power injections P i in an optimal
manner, e.g., to ensure a cost-efficient system operation.
From (8), it is clear that the latter can be achieved via a
suitable choice of uP,i. Observe that by summing over all
equations (5) for i ∈ VL and (8) for i ∈ VI , and leveraging∑
i∈V P i = 0, we obtain the supply-demand balancing

condition

0 =
∑
i∈VI

uP,i
KP,i

+
∑
i∈VI

P ∗i +
∑
i∈VL

P ∗i . (10)

Clearly, from (10), along any synchronized motion the
secondary control inputs uP,i have to balance the mismatch
between power injections P ∗i , i ∈ VI , and load demands
P ∗j , j ∈ VL. Observe that, as soon as |VI | ≥ 2, there is no
unique assignment of source injections uP,i to achieve this
objective. Here we aim for an optimal resource allocation
such that the synchronized control signals uP = col(uP,i)
minimize the quadratic cost function

uP = arg minu∈RnI

∑
i∈VI

1

2
riu

2
i , (11)

subject to the power balance constraint given by (10) and
where ri ∈ R>0 is the cost coefficient of the ith inverter.

Following the standard Lagrange multipliers method, the
optimal control uP,i that minimizes (11) subject to the
constraint (10) is computed as

u?P,i = −
(

1

riKP,i

) ∑
j∈V P

∗
j∑

j∈VI
1

rjK2
P,j

.

By substituting the above expression into (8), we obtain the
steady-state injection as

P i−P ∗i =
u?P,i
KP,i

= −

(
1

riK2
P,i

) ∑
j∈V P

∗
j∑

j∈VI
1

rjK2
P,j

, i ∈ VI .

To simplify the notation in the forthcoming analysis, we
select the droop gains as KP,i = 1

ri
for all i ∈ VI so that

u?P,i = ū?P = −
∑
i∈V P

∗
i∑

i∈VI
1

KP,i

∀i ∈ VI . (12)

Under this choice of gains, we observe that all steady-state
secondary control inputs need to be identical: u?P,i = ū?P for
all ∈ VI . We will later on make explicit use of this criterion
in our design of a dynamic feedback controller for uP,i(t).

IV. CHOICE OF COORDINATES, REGULARITY, &
LYAPUNOV FUNCTION CANDIDATES

A. Compact model formulation

The MG model (3), (4), (5) and (6) reads compactly as

θ̇I = ωI , (13a)

TP ω̇I = −(ωI − ω∗I )−KP (PI − P ∗I ) + uP , (13b)

TQV̇I = −(VI − V ∗I )−KQ(QI −Q∗I), (13c)

0 = PL − P ∗L, (13d)

0 = QL −Q∗L, (13e)

where θI = col(θi), ωI = col(ωi), PI = col(Pi), QI =
col(Qi), P ∗I = col(P ∗i ), Q∗I = col(Q∗i ), VI = col(Vi), uP =
col(uP,i), TQ = diag(TQ,i), TP = diag(TP,i), and KP =
diag(KP,i) for i ∈ VI . In addition, PL = col(Pi), QL =
col(Qi), P ∗L = col(P ∗i ), and Q∗L = col(Q∗i ) for i ∈ VL.
Finally, θ = col(θi) for i ∈ V . For simplicity, in the sequel,
we set TP and TQ to the identity matrix.

For the subsequent analysis, it is useful to derive
compact representations for both the active and reactive
power flows P and Q. To this end, we set Γ(V ) =
diag(γ1(V ), . . . , γm(V )), γk(V ) = |Bij |ViVj , with k ∈
{1, 2, . . . ,m} being the index corresponding to the edge
{i, j}. Then, the vector of the active power flows reads as

P = DΓ(V )sin(DT θ), (14)

where D = [dij ] is the incidence matrix of G (see Subsec-
tion III-A), and sin(·) is defined element-wise. By partition-
ing the incidence matrix as D = col(DI , DL) we obtain
from (14)

PI = DIΓ(V )sin(DT θ), PL = DLΓ(V )sin(DT θ).

To write the reactive power in a compact form, let the matrix
A be defined as

Aij =

{
−|Bij | cos(θij) i 6= j

diag(|Bii|) i = j.



For clarity, we use the more informative notation
A(cos(DT θ)) rather than A, where cos(·) is defined
element-wise. Then it is easy to observe that

Q = [V ]A(cos(DT θ))V, (15)

The vector Q of reactive injections can be partitioned as[
QI
QL

]
=

[
[VI ] 0
0 [VL]

] [
AII(·) AIL(·)
ALI(·) ALL(·)

] [
VI
VL

]
.

Next, we write the synchronous motion with the optimal
injections (12) compactly as θ = 1ω∗ + θ0, ωI = 1ω∗ =

ω∗I , V = col(V i), and uP = −1 1TP∗

1TK−1
P 1

. We also call the

solution ((θ, ωI , V ), uP ) with uP given by (12) the optimal
synchronous motion which together with (13) satisfies

θ̇I = 1ω∗, (16a)

0 = −KP (P I − P ∗I )− 1 1TP ∗

1TK−1P 1
, (16b)

0 = −(V I − V ∗I )−KQ(QI −Q∗I), (16c)
0 = PL − P ∗L, (16d)
0 = QL −Q∗L, (16e)

where V = col(V I , V L) and

P = DΓ(V )sin(DT θ0), Q = [V ]A(cos(DT θ0))V ,

with P = col(P I , PL), and Q = col(QI , QL). We recall
that the (optimal) synchronous motion is identified by any
solution (θ, ωI = 1ω∗, V ) satisfying (16). For the existence
of such motion we refer the reader to Assumption 3 below.

B. Choice of coordinates

For our analysis it is convenient to map the synchronous
motion to an equilibrium of the system thereby transform-
ing the synchronization problem into a standard stability
problem. Inspired by the center-of-inertia coordinates in
classic power system multi-machine stability studies [22],
we define the average of the phase angles of the inverters as
the reference, i.e., θref = 1

nI
1T θI . Let δi := θi − θref for

each i ∈ V . In addition, let δI , δL, and δ denote the vector
notation of δis with i ∈ VI , i ∈ VL, and i ∈ V , respectively.
Equivalently, in compact formulation

δI = θI − 1θref = ΠθI ,

δL = θL − 1θref = θL −
1

nI
11T θI ,

where Π := (I − 1
nI
11T ). Hence, we have that

δ̇I = ΠωI . (17)

Note that the expressions for active and reactive power only
depend on the relative phase angles, namely DT θ. Since

DT θ = DT (δ + 1θref) = DT δ, (18)

equations (14) and (15) can be equivalently expressed as

P = col(PI , PL) = DΓ(V )sin(DT δ), (19a)

Q = col(QI , QL) = [V ]A(cos(DT δ))V. (19b)

By replacing (13a) with (17), the system (13) becomes in
the new coordinates

δ̇I = ΠωI , (20a)
ω̇I = −(ωI − ω∗I )−KP (PI − P ∗I ) + uP , (20b)
V̇I = −(VI − V ∗I )−KQ(QI −Q∗I), (20c)
0 = PL − P ∗L, (20d)
0 = QL −Q∗L, (20e)

where the power injections P and Q are given by (19).
Furthermore, a synchronous motion (θ, ωI , V ) will be then

mapped to the point (δ, ωI , V ) with a constant phase angle
vector δ = col(δI , δL) satisfying

δI = ΠθI = Πθ0I ,

δL = θL −
1

nI
11T θI = θ0L −

1

n
11T θ0I .

The phase angle vector δ satisfies (due to (18))

DT δ = DT θ = DT θ0 . (21)

Thus, in the new coordinates the desired synchronous motion
(θ, ωI , V ) is mapped to the point (δ, ωI , V ) where ωI =
1ω∗, and δ as well as V are constant vectors.

Clearly, for uP = uP , (δ, ωI , V ) is an equilibrium point
of the system (20). Henceforth we focus on the stability of
(δ, ωI , V ) for system (20). To this end, we introduce:

Assumption 3: Fix ω∗. There exist DT δ ∈ (−π2 ,
π
2 )m and

V ∈ Rn>0 such that (16b)–(16e) hold with

P = col(P I , PL) = DΓ(V )sin(DT δ), (22a)

Q = col(QI , QL) = [V ]A(cos(DT δ))V (22b)

C. Regularity of the algebraic equations

In this section, we investigate the regularity of the alge-
braic equations (20d)-(20e) of the system (20), where the
active and reactive power injections are expressed as in (19).
As discussed in Section II, regularity of the algebraic con-
straints (20d)-(20e) is a crucial property both to investigate
the existence/uniqueness of solutions and to study stability
properties of the overall system.

Let δij := δi − δj = θij and define the function

Z(δ, V ) =
∑
i∈V

Qi = V TA(cos(DT δ))V,

and observe that its gradient satisfies

∂Z

∂δL
= PL,

∂Z

∂VL
= [VL]−1QL.

As we are interested in solutions satisfying V i > 0 in steady
state, the latter identity above is well-defined as long as
VL,i(t) > 0. Under this positivity condition, the algebraic
equations (13d) and (13e) can be written as

0 =
∂Z

∂δL
− P ∗L,

0 =
∂Z

∂VL
− [VL]−1Q∗L,

⇔ 0 = g(x, y). (23)



with x = (δI , ωI , VI) and y = (δL, VL). Now let |D| denote
the matrix obtained from D by replacing all the elements
dik of D with |dik| [15]. Also let |D| be partitioned as
col(|DI |, |DL|). Then, we have the following lemma.

Lemma 1: Consider the system (20). The algebraic
equations (13d)-(13e) are regular in a neighbourhood of
(δ, ωI , V ) if

G(DT δ, V ) > 0, (24)

where G(DT δ, V ) is given by[
Γ(V )[cos(DT δ)] [sin(DT δ)]Γ(V )|DL|T [VL]−1

[VL]−1|DL|Γ(V )[sin(DT δ)] ALL(cos(DT δ)) + [VL]−2[Q∗
L]

]
.

For the remaining analysis, we assume the following.
Assumption 4: Consider the system (20) with Assump-

tion 3. The desired synchronous motion is such that (24)
is satisfied.

In view of (18), (21), condition (24) is the same as
condition G(DT θ, V ) > 0, which implies regularity of (13d),
(13e) in a neighborhood of (θ, ωI , V ). Hence, recalling from
Section II, Assumption 4 implies that the DAE system (13),
and therefore the DAE system (20), admits a unique solution
over an interval I ⊆ R≥0.

D. Storage function candidate

In this section, we carry out a dissipativity analysis of
the system (20). The dissipativity of (20), besides being an
interesting property per se, is used in Section V to show
that the solutions of (20) interconnected with a suitable
controller converge to the optimal synchronous motion. For
this purpose, we introduce the function

U(δ, ωI , V ) =
1

2
ωTI K

−1
P ωI + Z(δ, V ).

Observe that the first term is associated with a virtual
kinetic energy, and the second term is equal to Z given
by V TA(cos(DT δ))V corresponding to the electromagnetic
energy stored in the lines. For these reasons, this type of
storage function candidate is typically referred to as energy
function in the literature [21]. Note that its gradient satisfies

∂U

∂ωI
= K−1P ωI ,

∂U

∂δ
= P,

∂U

∂V
= [V ]−1Q.

For the later convergence/stability analysis of an optimal
synchronized motion, it is convenient to shift the critical
points of U to (δ, ωI , V ). Hence, an appropriate incremental
extension of U can be constructed as the Bregman distance
between a point (δ, ωI , V ) and an optimal synchronous point
(δ, ωI , V ) [11]. To this end, we define the incremental
storage function U as follows

U(δ, ωI , V ) = U(δ, ωI , V )− U(δ, ωI , V )

− ∂U

∂δ

∣∣∣∣T
−

(δ − δ)− ∂U

∂ωI

∣∣∣∣T
−

(ωI − ωI)− (Q∗I)
T ln(VI)

+ 1TK−1Q VI − (V ∗I )TK−1Q ln(VI)− (Q∗L)T ln(VL).

(25)

The following result establishes a crucial dissipation property
of the system (20).

Lemma 2: Consider the MG model (20), (19a), (19b) with
Assumption 4. The time derivative of U along the solution
(δ, ωI , V ), initialized in a neighborhood of (δ, ωI , V ), satis-
fies the following dissipation equality

U̇(δ, ωI , V ) = − ∂U
∂ωI

T

KP
∂U
∂ωI

− ∂U
∂VI

T

[VI ]KQ
∂U
∂VI

+
∂U
∂ωI

T

(uP − uP ), (26)

for a nonzero interval of time I ⊆ R≥0.
Note that the above dissipation inequality (26) as an

algebraic identity is independent of the choice of uP (t), it
is oblivious regarding the regularity of the algebraic equa-
tions, and can be stated whether trajectories actually remain
bounded or not. In Section V, we leverage the dissipation
inequality (26), with the input-output pair (uP − uP , ∂U∂ω ) =
(uP−uP , ωI−ωI), to design an optimal frequency controller.

V. SECONDARY CONTROL AND CONVERGENCE TO THE
OPTIMAL SYNCHRONOUS MOTION

The optimal control u∗P given in (12) requires each inverter
to know all the active power setpoints P ∗i , i ∈ VI , active
power demands P ∗i , i ∈ VL, and gains KP,i, i ∈ VI .
This global knowledge of parameters is unpractical and one
would like to design controllers that converges to the optimal
control in spite of a lack of knowledge of these parameters.
Integral controllers are known to provide feedforward control
actions in spite of unknown constant terms, but are typically
not able to guarantee convergence to a specific optimal
solution, as it is of interest here. To asymptotically provide
the optimal control uP given in (12), we consider a modified
integral control law [15], [5], [10]

ξ̇ = −Lcξ −K−1P (ωI − ω∗I ), uP = ξ, (27)

where Lc is the Laplacian matrix of a connected communi-
cation graph, say Gc = (V, Ec). The term ωI −ω∗I regulates
the frequency to the nominal frequency, while the consensus
based algorithm −Lcξ aims at steering the input to the
optimal one given by (12). As a matter of fact, the consensus
part of the controller enforces an equilibrium where all the
components of the state ξ, and hence of u are the same, in
accordance with the optimal control (12).

Inspired by classic energy functions in power systems [21]
and their incremental interpretations in [10], [11], [15], we
propose the following incremental Lyapunov function

W(δ, ωI , V, ξ) = U(δ, ωI , V ) +
1

2
(ξ − ξ)T (ξ − ξ)

+
1

2
(δI − δI)11T (δI − δI) (28)

where U is given by (25), the second term of W accounts
for the controller dynamics with ξ = u∗P given by (12),
and the third term is added to render W strictly convex
in a neighborhood of the equilibrium point. In order to



establish convergence results, some suitable properties of W
are shown next.

First, following the calculations in the previous section,
it is easy to see that the partial derivatives of W vanishes
along the optimal synchronous motion (δ, ωI , V , ξ). Next,
the following lemma investigates strict convexity of W .

Lemma 3: Let W be given by (28). Then, we have

∂2W
∂(δ, ωI , V, ξ)

∣∣∣∣
(δ,ωI ,V ,ξ)

> 0 (29)

if and only if the matrix Γ(V )[cos(DT δ)] [sin(DT δ)]Γ(V )|D|T [V ]−1

[V ]−1|D|Γ(V )[sin(DT δ)] A(cos(DT δ)) + h(V )


(30)

is positive definite, where

h(V ) =

[
[VI ]

−2[Q∗I +K−1Q V ∗I ] 0

0 [VL]−2[Q∗L]

]
. (31)

Notice that so far we have made two explicit assumptions
on the vectors V and DT δ = DT θ = DT θ0. The first one is
given by (24) which guarantees the regularity of the algebraic
equations, and the second one is provided by Lemma 3 and
implies strict convexity of the Lyapunov function W . We
now remark the following important implication relating the
two conditions:

Lemma 4: The inequality (29) implies the inequality (24).

Now the main result of this section is stated in the
following:

Theorem 1 (Main result): Consider the system (20),
(19a), (19b), in closed-loop with (27). Suppose that Assump-
tions 3 holds, and the matrix in (30) is positive definite.
Then any solution (δ, ωI , V, ξ) with δI(0) ∈ im(Π) locally
converges to (δ, ωI , V , ξ).

By the theorem above, the controller (27) regulates the
frequency to ω∗I , and provides the optimal secondary control
inputs (12) at steady-state .

VI. CONCLUSIONS

The paper proposed a dissipativity-inspired Lyapunov
based analysis of inverter-based MGs with constant active
and reactive power loads. The inverters follow the standard
droop control equations and secondary controllers are added
to achieve zero steady state frequency deviation jointly with
optimal resource allocation at steady state. We envision that
the method can be used to analyze and design other closed-
loop differential-algebraic systems covering novel voltage
regulation algorithms for heterogeneous and nonlinear mi-
crogrid models and also power transmission systems.
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