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Background and purpose: The aim of this study was to develop and validate a method to select head and
neck cancer patients for adaptive radiotherapy (ART) pre-treatment. Potential pre-treatment selection
criteria presented in recent literature were included in the analysis.

Materials and methods: Deviations from the planned parotid gland mean dose (PG ADmean) were esti-
mated for 113 head and neck cancer patients by re-calculating plans on repeat CT scans. Uni- and mul-
tivariable linear regression analyses were performed to select pre-treatment parameters, and ROC curve
analysis was used to determine cut off values, for selecting patients with a PG dose deviation larger than
3 Gy. The patient selection method was validated in a second patient cohort of 43 patients.

Results: After multivariable analysis, the planned PG Dmean remained the only significant parameter for
PG ADmean. A sensitivity of 91% and 80% could be obtained using a threshold of PG Dmean of 22.2 Gy, for
the development and validation cohorts, respectively. This would spare 38% (development cohort) and
24% (validation cohort) of patients from the labour-intensive ART procedure.

Conclusions: The presented method to select patients for ART pre-treatment reduces the labour of ART,
contributing to a more effective allocation of the department resources.

© 2016 The Author(s). Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 120 (2016) 36-40
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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nd/4.0/).

During the course of head and neck radiotherapy, anatomical
changes such as body weight and/or tumour volume may result
in underdosage or dose inhomogeneity in targets, and overdosage
in organs at risk (OARs) [ 1-4]. The largest dose differences between
(estimated) delivered and planned OAR dose that have been
reported are for the parotid glands (PGs). However there is a sub-
stantial difference in findings between studies, the median of the
mean dose difference over 25 studies is 1.7 [interquartile range -
1.9;10.4] Gy [5]. A larger PG dose than planned will increase the
risk of xerostomia with subsequent deterioration of quality of life
[6]. Adaptive radiotherapy (ART) is a strategy used to limit or even
decrease the dose to the PGs. ART, however, comprises a labour
intensive procedure, requires additional imaging and does not lead
to a clinically relevant benefit for all patients [7]. It would therefore
be helpful if the patients with expected clinically relevant PG dose
deviations could be selected prior to radiotherapy. With such a
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Medical Center Groningen, P.O. Box 30001, 9300 RB Groningen, The Netherlands.
E-mail address: c.l.brouwer@umcg.nl (C.L. Brouwer).
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0167-8140/© 2016 The Author(s). Published by Elsevier Ireland Ltd.

method in place, the selected patients would receive an ART proce-
dure to monitor and/or minimize the delivered PG dose. The non-
selected patients would be spared from this extensive procedure.
Many attempts have been made to find parameters associated with
anatomical and dosimetric changes of PGs [5], but there is no gen-
eral consensus yet on how to select patients for ART to decrease
xerostomia.

The aim of this study is therefore to develop a method using
pre-treatment parameters to predict dose deviations from the
planned PG mean dose, which can be used to select patients for
ART pre-treatment. Two different patient cohorts were used to
develop and validate the method, respectively.

Materials and methods

Patient cohort A

One-hundred and thirteen head and neck cancer patients were
enrolled in a previous prospective cohort study [8-11]. All patients
were treated between 2008 and 2012 with curative intent. They

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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received primary conventional three-dimensional conformal RT
(3D-CRT) or intensity-modulated RT (IMRT) up to a dose of 70 Gy
in fractions of 2 Gy delivered over 6-7 weeks (5 or 6 fractions
per week), following ICRU recommendations, either alone or in
combination with concomitant chemotherapy (chemoradiation)
or cetuximab (bio-radiation). All patients received a planning com-
puted tomography scan (plan-CT) as well as a post-radiotherapy
response CT scan (post-CT) in the treatment position, acquired
6 weeks after RT with a slice thickness of 2 mm. This cohort was
used to develop the patient selection method.

Patient cohort B

Data from 43 patient plans were used to validate the patient
selection method. This patient group was treated in our depart-
ment in 2014-2015 with definitive radiotherapy or concurrent
chemoradiation or bio-radiation using IMRT or Volumetric Modu-
lated Arc Therapy (VMAT). The dose prescription was up to 70 Gy
in fractions of 2 Gy delivered over 6-7 weeks (5 or 6 fractions
per week) according to ICRU recommendations. For each patient,
the plan quality was monitored during treatment by recalculation
on weekly repeated CT scans. In cases of relevant dose deviation
(repeat-CT with respect to the plan-CT, as judged by the treating
physician), the treatment plan was adapted. All CT scans were
acquired in the treatment position, with a slice thickness of 2 mm.

Parotid gland dose deviations

For both cohort A and B, the PGs were delineated on the plan-CT
by a dedicated radiation therapist, and were warped to the post-
and repeat-CTs respectively by deformable image registration
using Mirada RTx (Mirada Medical Ltd., Oxford, UK). The warped
PG contours were manually corrected if necessary. For cohort B,
2 ipsilateral PGs were excluded because of tumour invasion.

For cohort A, the clinical treatment plan was re-calculated on
the post-CT. Subsequently, ADmean[A] of the PG for each patient
was the mean dose of the PG on the post-CT minus that of the
planned mean dose: ADmean[A]=Dmean_post[A] — Dmean_plan
[A]. Since previous studies showed that the volume of the parotid
gland does not significantly change after the last fraction of RT
[12,13], we assume that ADmean[A] is an accurate estimate of
the dose deviation between end and start of treatment.

For cohort B, the delivered dose was estimated by dose accumu-
lation of the re-calculated dose distribution on weekly repeat-CT
scans using deformable image registration (Raystation, Raysearch
Laboratories AB, Stockholm, Sweden). Next, ADmean[B] for the
PG per patient was calculated by subtracting the planned mean
dose from the accumulated mean dose: ADmean[B]=Dmean_ac-
cumulated|[B] — Dmean_plan[B].

Candidate pre-treatment factors

Previously identified candidate pre-treatment factors [4,14]
that were considered in the analysis were: initial weight, BMI,
age, chemotherapy (yes/no), surgery (yes/no), T-stage (T3+ vs.
T3-), N-stage (N2+ vs. N2—), planned dose to the PG (mean dose
and V20, V30 and V40), initial PG volume, initial gross tumour vol-
ume (GTV), tumour location (pharynx vs. other) as well as overlap
volume (OV) of the PG with the target (high dose) and elective (low
dose) planning target volume (PTV); OVPG-PTVp,, and OVPG-
PTVlow-

Statistical analysis

The endpoint for the linear regression analysis was defined as
the absolute value of ADmean, since anatomic changes can result

in positive as well as negative dose deviations (see Fig. S1), which
are both of importance for a correct prediction of xerostomia.

To test whether pre-treatment parameters and endpoints sig-
nificantly differed between cohort A and B, independent samples
t-tests, Mann-Whitney U tests and Fisher’s exact tests were per-
formed for normally distributed continuous variables, for continu-
ous variables with skew distribution and for categorical variables,
respectively. A p-value of <0.05 was considered statistically
significant.

Univariable and multivariable linear regression analyses were
applied to the endpoint |[ADmean|[A]| for the contralateral and
the ipsilateral parotid gland. For the continuous explanatory vari-
ables we checked for linear relationship with the endpoint using
scatter plots of the variables vs. the endpoint, for the final model,
we checked normality and constant variance of the residuals.
Pre-treatment factors with a p-value < 0.2 in the univariable anal-
yses were included in the multivariable analysis using forward
selection (Likelihood ratio test, threshold p <0.05). If the pre-
treatment factors had a Pearson mutual correlation (R) > 0.80, only
the factor with the highest correlation to the endpoint was
included in multivariable analysis. Model performance was scored
with the coefficient of determination (R?).

The pre-treatment factor(s) from the final multivariable linear
regression model were applied to the data to select patients for
ART, i.e. patients with a |PG ADmean| > 3 Gy (both ipsi- and con-
tralateral PGs included), which was assumed to be the minimum
level of clinical relevance. Three Gy would result in NTCP differ-
ences of 3-10% for xerostomia (depending on the applied model
and the steepness of the curve for the particular dose value) which
is assumed as a clinical relevant threshold to select patients for
advanced treatments [15]. Cut off values were determined by
means of receiver operating characteristic (ROC) curve analysis,
for sensitivities of 70%, 80%, 90% and 100%. The cut off values found
were applied to dataset B. The sensitivity, specificity, and positive
and negative predictive value were calculated and used to assess
the performance and efficiency of the method.

Statistical analysis was performed using Statistical Program for
Social Sciences (SPSS Inc., Chicago, IL, USA) and the Statistics Tool-
box in Matlab R2014a (MathWorks, Natick, MA, USA).

Results

Patient characteristics of cohort A and B were significantly dif-
ferent regarding gender, weight, BMI, T-classification, N-
classification, tumour location, use of chemotherapy, Dmean of
the contra- and ipsilateral PG, GTV volume, and |ADmean| of the
contralateral PG (Table 1).

The endpoint |ADmean| and the pre-treatment factor GTV vol-
ume were transformed by the natural logarithm to improve linear-
ity and normality. In the univariable analysis, all pre-treatment
factors were significantly associated (o = 0.05) with the endpoint
In|]ADmean| of the parotid glands (Table 2), with the exception of
the initial patient weight (for the ipsilateral PG), age, surgery and
initial PG volume.

The parameters included in the multivariable linear regression
for both the contra- and ipsilateral PG were BMI (weight excluded
due to the mutual correlation), chemotherapy, T-stage, N-stage, PG
Dmean (PG V20, V30, V40 excluded due to the mutual correlation),
tumour location, In (GTV volume) and overlap PG-PTV56 (overlap
PG-PTV70 excluded due to mutual correlation). From the multi-
variable linear regression analysis, the planned mean dose to the
PG was the only significant factor (Table 3 and Fig. S2). The coeffi-
cient of determination for the final model was R? = 0.59 (contralat-
eral PG) and R? = 0.39 (ipsilateral PG).

For 20% of the parotids in cohort A, |ADmean| of the parotid
gland was higher than 3 Gy (Fig. 1 and Table 4). The results of
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Table 1

Patient characteristics of cohort A and B (percentages for categorical variables, means
(sd) for normally distributed continuous variables and medians [inter quartile range]
for continuous variables with skew distributions). PG = parotid gland, GTV = gross
tumour volume, ipsi=ipsilateral, contra = contralateral. P-Values resulting from
independent samples t-test ([1], normally distributed continuous variables), Mann-
Whitney U test ([2], continuous variables with skew distributions) and Fisher’s exact
test ([3], categorical variables). Statistically significant values presented in bold.

Cohort A Cohort B p-Value
Gender 0.001(3)
Male 87% 63%
Female 13% 37%
Age (y) 61.0 (10.4) 59.8 (9.8) 0.489(1)
Initial weight (kg) 85.7 (16.1) 77.0 (21.1) 0.010(1)
BMI (kg/m?) 27.2 (4.6) 24.5 (6.4) 0.029(1)
Tumour classification <0.001(3)
T1-T2 69% 29%
T3-T4 31% 71%
Node classification 0.001(3)
NO-N1 67% 36%
N2a-N3 33% 64%
Tumour location/primary site <0.001(3)
Pharynx 35% 70%
Other 65% 30%
Chemotherapy <0.001(3)
Yes 20% 58%
No 80% 42%
PGcontra Dmean (GY) 19.9 (14.1) 25.6 (11.0) 0.008(1)
PGipsi Dmean (GY) 28.9 (20.4) 36.0 (13.2) 0.012(1)
Initial volume PGcongra (cm?) 31.3(9.2) 30.0 (11.5) 0.398(1)
Initial volume PGipsi (cm?) 30.7 (10.1) 30.5 (12.6) 0.738(1)
Initial GTV volume (cm?) 8.8 (18.3) 24.5 (33.9) 0.002(2)
PGeontra Avolume (%) -17.4(13.1) -15.4(12.5) 0.398(1)
PGipsi Avolume (%) -18.0(13.5) -17.1(13.2) 0.738(1)
|PGcontra ADmean| 0.8 (1.9) 14 (2.1) 0.008(2)
|PGipsi ADmean| 1.3(2.7) 1.6 (1.0) 0.633(2)

" difference in volume between start and final week of radiotherapy.

the ROC curve analysis for sensitivities of 100, 90, 80 and 70% are
shown in Table 4. The Supplemental Material provides full details
on the ROC curve analysis. For a sensitivity of 91%, the specificity
was 45%, and 62% of the parotids would be selected for the ART
procedure. The positive predictive value was 29%, meaning that
29% of the parotids that were selected for ART with our method
were correctly classified. The negative predictive value was 95%.

The cut off values of PG Dmean (Gy) found for cohort A were
applied to cohort B to validate the selection method, resulting in
the performance measures for cohort B (Fig. 1 and Table 4).

Table 3
Results of the multivariable linear regression analysis for the endpoint InJADmean| of
the contralateral (contra) and ipsilateral (ipsi) parotid gland.

Regression Standard error p-Value

coefficient

Contra Ipsi Contra Ipsi Contra Ipsi
Intercept -2.78 -2.22 0.231 0.264 <0.001 <0.001
PG Dean 0.107 0.063 0.009 0.007 <0.001 <0.001

For 18% of the parotids in cohort B, |[ADmean| of the parotid
gland was higher than 3 Gy (Fig. 1 and Table 4). Applying the cut
off value for PG Dmean of 22.2 Gy, the sensitivity was 80% and
76% of the parotids would be selected for the ART procedure
(Table 4). The positive predictive value was 19% and the negative
predicted value 81%.

Discussion

In univariable analysis, many of the pre-treatment parameters
were significantly associated with the change in mean dose to
the parotid gland (Table 2). Still, Pearson correlation with the end-
point was low for most of the parameters. Also, many parameters
were tested with an alpha level of 0.05, which increased the overall
alpha, requiring validation of these results in another, large, cohort.
The only parameter that remained significant in a multivariable
analysis was the planned mean dose to the parotid gland. By
selecting only patients with a planned PG mean dose >22.2 Gy
for an ART procedure, 80% of patients in the validation cohort
who needed replanning (i.e. having PG |ADmean| > 3 Gy) were
selected (Table 4). This would spare 24% of patients in the valida-
tion cohort from the ART procedure, which would contribute to a
more effective allocation of the department resources.

In our previous review study [14] we found a number of candi-
date pre-treatment parameters to identify patients that might ben-
efit from ART. In seven studies, the PG mean dose was significantly
associated with PG volume loss [12,16-21], suggesting its potential
as a predictor for dose changes. In the multivariable analysis of the
current study, the direct relationship between the planned PG
mean dose and deviations from the planned PG mean dose was
confirmed (R? = 0.59 and 0.39 for contra- and ipsilateral PG, respec-
tively). The BMI [19] and initial parotid volume [16] were previ-
ously significantly associated with PG volume loss in
multivariable analysis. In the current study these factors were only
significantly correlated to PG volume loss in univariable analysis
(Table 2), but not in multivariable analysis.

Table 2

Univariable linear regression for the endpoint In|]ADmean| of the contralateral (contra) and ipsilateral (ipsi) parotid glands. Statistically significant values (o = 0.05) presented in

bold.
Pre-treatment factor Regression coefficient Standard error p-Value Pearson R

Contra Ipsi Contra Ipsi Contra Ipsi Contra Ipsi

BMI —0.136 -0.172 0.041 0.043 0.0015 0.0001 -0.317 —0.380
Weight —0.030 0.558 0.011 0.465 0.0136 0.2336 —0.240 0.121
Age -0.018 —0.031 0.017 0.018 0.3053 0.0959 —0.096 -0.157
Chemotherapy 1.604 1.397 0.441 0.463 0.0004 0.0030 0.323 0.275
Surgery —-0.234 0.670 0.615 0.679 0.7044 0.3257 —0.036 0.094
T-stage 1.426 1.200 0.371 0.392 0.0002 0.0027 0.340 0.279
N-stage 1.685 1.678 0.356 0.371 <0.0001 <0.0001 0.407 0.395
PG Dmean 0.107 0.063 0.009 0.007 <0.0001 <0.0001 0.759 0.621
PG Vyo 0.029 0.038 0.004 0.004 <0.0001 <0.0001 0.531 0.691
PG V3o 0.037 0.039 0.004 0.004 <0.0001 <0.0001 0.638 0.644
PG V4o 0.041 0.037 0.007 0.005 <0.0001 <0.0001 0.483 0.569
PG volume -0.017 —0.002 0.020 0.019 0.3899 0.9331 —0.080 —0.008
Ln(GTV volume) 0.781 0.698 0.121 0.134 <0.0001 <0.0001 0.529 0.453
Tumour location 1.720 1.325 0.362 0.391 <0.0001 0.0010 0.408 0.306
Overlap PG-PTVq 0.502 0.120 0.205 2.154 0.0159 0.0335 0.226 0.203
Overlap PG-PTVs¢ 0.270 0.160 0.062 0.033 <0.0001 <0.0001 0.384 0.419
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Fig. 1. Deviation from the planned parotid gland mean dose (|JADmean|) vs. the planned parotid gland mean dose. Selection of patients for |[ADmean| > 3 Gy with 91 and 80%

sensitivity could be performed by using a threshold of Dmean =

Table 4

Performance of the classification of patients for |[ADmean| of the parotid glands >
3 Gy by using the planned mean dose of the parotid glands (PG Dmean). N.a. = not
applicable.

Cut off value PG Dpean (GY) 0 3.6 22.2 24.7 27.0
Cohort A (n=226)

Sensitivity (%) 100 100 91 80 71
Specificity (%) 0 33 45 50 60
% selected for ART 100 74 62 56 46
Positive predictive value (%) 20 27 29 29 30
Negative predictive value (%) n.a. 100 95 91 89
Cohort B (n=84)

Sensitivity (%) 100 100 80 60 40
Specificity (%) 0 0 25 38 46
% selected for ART 100 100 76 62 51
Positive predictive value (%) 18 18 19 17 14
Negative predictive value (%) n.a. n.a. 81 81 78

The inferior performance of the linear model for the ipsilateral
PG compared to the contralateral PG could be explained by the fact
that the ipsilateral PGs are often encompassed by an (elective) tar-
get volume. Consequently, the ipsilateral PGs are more often
receiving a high, homogenous dose, and are located further away
from high dose gradients. Anatomical changes will therefore have
little or no dosimetric impact for the ipsilateral PGs receiving high
doses (>~50 Gy). Furthermore, we found that PG volume loss was
linearly associated with the PG mean dose up to a level of ~60 Gy,
but for PG doses >60 Gy, little or no PG volume loss (i.e. anatomical
changes) occurred (Fig. S3).

Brown et al. [4] also attempted to predict the need for ART in
head and neck cancer patients. The authors concluded from their
multivariable analysis that oropharyngeal and nasopharyngeal
patients with N2-3 disease, an initial weight >100 kg and larger
initial nodal sizes have a probability >80% of requiring replanning.
In our multivariable analysis, only the mean dose to the PG per-
sisted. While Brown et al. did not include this factor in their anal-
ysis, in our data the PG mean dose was significantly associated
with N2-3 disease (R=0.51) and larger initial nodal sizes
(R=0.43). Furthermore, the difference in findings between our
study and those reported by Brown et al. can be explained by a
number of reasons. First, Brown et al. used a different endpoint,
i.e. ‘the need for replan’, which was defined by the treating radia-
tion oncologist. As the authors stated in their discussion, the need

22.2 Gy, for cohort A and B, respectively (for more information refer to Table 4).

for replan was mostly defined by the dose to the optic structures
and brachial plexus. In our study, the need for replan was deter-
mined by the dose to the parotid gland. Secondly, our study cohort
contained fewer patients with oro- and nasopharyngeal cancer.
Thirdly, our patients with pharyngeal cancer had lower initial
weights, not exceeding the 100 kg threshold described by Brown
et al. [4]. It will be necessary to repeat the multivariable analyses
in sufficiently large, properly selected patient cohorts, in order to
untangle the confounding factors.

In the study by Brown et al. [4], only 5 of 110 patients (4.5%)
were selected for replanning. In our study, 18-20% of the patients
were selected for replanning if their difference in mean dose to the
PG was larger than 3 Gy. The question arises whether the arbitrary
threshold of 3 Gy is the most clinically relevant threshold. In the
linear range of the mean dose NTCP model (from a mean dose of
~25 up to 55 Gy) [22], a difference of 1 Gy in mean dose to the
PG corresponds to a difference of about 3% in NTCP. For dose values
<25 or >55 Gy however, a difference of 1 Gy in mean dose to the PG
corresponds to a difference of about 1% in NTCP. Still, it is hard to
prove that a dose increase of 3 Gy will result in more complica-
tions. Some authors [23,24] compared the intensity of side effects
and global quality of life of a group of patients selected for replan-
ning with those without replanning. They found significantly fewer
side effects and improved quality of life for the replanned group.
However, it should be noted that in these studies patients were
not randomly allocated to the different strategies. Therefore the
differences found in these studies can also be explained by other
factors, such as differences in socioeconomic status between the
two populations [25].

The strengths of our study are the relatively large number of
patients included and the use of two independent patient groups
for development and validation of the selection method. We were
therefore able to perform multivariable analysis to select the most
important pre-treatment parameter(s) related to the endpoint, and
eventually to validate this approach in an independent subsequent
patient cohort.

A limitation of our study is the absence of imaging during the
course of RT for cohort A. Therefore, the approximated delivered
dose to the PG for cohort A may be overestimated. However, we
expect the post-CT scan acquired six weeks after RT to be a valid
approximation for the anatomy of the parotid gland, since previous
research showed no significant change in volume of the parotid
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glands 6-8 weeks after treatment in relation to the end of treat-
ment [12,13]. We choose to calculate ADmean|B] using all avail-
able imaging during the course of radiotherapy, to obtain the
best approximation of the actual given dose. This approach is
expected to result in lower values of ADmean than the approach
taken in cohort A. The fact that resulting ADmean values for cohort
B are even higher than the values in cohort A can be explained by
the differences between the cohorts, i.e. tumour location and initial
GTV volume (cohort B having a larger amount of pharynx patients,
and a larger initial GTV volume).

The focus of this study was the dose deviations of the PG, for
two reasons. The first is that previous studies have shown that this
organ receives the largest dose deviations [1-3]. The second is
because the dose to the PG is related to one of the most important
long term side effects of head and neck radiotherapy i.e. xerosto-
mia. At present, we are conducting studies investigating the conse-
quences of dose inhomogeneities of target volumes, and potential
overdosage of other organs at risk due to anatomical changes.
The same method as described in this study could be used to study
pre-treatment parameters associated with dose changes and to
classify patients suitable for ART.

Absolute changes from the planned PG mean dose were consid-
ered in this study, i.e. positive as well as negative dose changes. If
the dose change to the PG is positive, a plan adaptation is needed
to prevent a higher risk of xerostomia than predicted at the plan-
ning stage. Although negative dose changes result in a lower risk
of xerostomia, it is also important to monitor since the original
treatment plan might become compromised, requiring further
optimization of the target volume or other organs at risk.

The patient characteristics of patient cohort A and B showed
several significant differences, with regard to tumour location,
tumour and node classification, chemotherapy, GTV volume and
planned PG mean dose and |ADmean| of the contralateral PG
(Table 1). The performance of the classification of patients for PG
|ADmean| > 3 Gy was moderate for cohort B (Table 4). With the
low threshold of 3.6 Gy, all patients were selected for ART (the
minimum PG mean dose was 5.4 Gy). With high thresholds how-
ever (24.7 and 27.0 Gy), the sensitivity was only 60% and 40%
respectively, which would generally not be accepted in clinic. Nev-
ertheless, the threshold of 22.2 Gy is applicable to both cohort A
and B with sensitivities of 91% and 80%, respectively. Therefore a
threshold for the mean dose to the parotid gland of 22.2 Gy seems
optimal for the selection of head and neck cancer patients for ART,
with reasonable overall performance (Table 4). The sensitivity level
accepted is obviously discussable, and depends on the desired level
of accuracy and the availability of resources for ART. The somewhat
disappointing performance of the selection tool in general pleads
for future studies using more specific patient populations, i.e. with
focus on a specific tumour location.

In summary, we have presented a method to select patients for
ART pre-treatment by using the planned mean dose to the parotid
gland. Additional studies focusing on dosimetric changes to target
volumes and organs at risk in large specific patient cohorts could help
to further specify appropriate parameters to select patients for ART.
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