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ABSTRACT 

 

The genetic architecture of common, heritable diseases is complex, with 

involvement of both common and rare genetic variants. Association studies for 

rare variants are challenging, as the low frequency of rare variants and large 

multiple-testing correction require large sample sizes. In this study we focused on 

the prioritization of rare variant identified by exome data from 48 Hirschsprung 

disease (HSCR) patients and 212 controls. HSCR is a complex genetic disorder that 

is characterized by incomplete development of the enteric nervous system (ENS) 

in the distal colon.  

 We sampled almost exclusively extreme phenotypes and selected rare, 

pathogenic variants. All variants per gene were collapsed and a meta-analysis was 

performed on data from three centers. The burden test we performed gave every 

gene a nominal p-value and the 48 most promising genes, with a nominal p-value 

<0.01, were subsequently ranked by seven gene prioritization tools.  

CELSR1, CLOCK, FASN and CACNA1H were among the top 5-ranked 

candidate genes based on average ranking and were among the top 13 genes with 

the most significant nominal p-values in the burden test meta-analysis. 

Subsequently, gene expression data from the developing mouse gut and ENS 

progenitor cells were used to assess whether these candidate genes are 

abundantly expressed in the cell types relevant for HSCR. Of these four highly-

ranked candidate genes, Fasn and Cacana1h were expressed by ENS progenitor 

cells, but were not differentially expressed between ENS progenitors, gut and 

controls tissues. Celsr1 and Clock were expressed at lower levels in ENS progenitor 

cells than in the rest of the gut, but Celsr1 expression did increase upon activation 

of RET, a receptor in ENS progenitors and the major risk gene in HSCR. Clock, Fasn 

and Cacna1h expression was not affected by RET signaling.  

In conclusion, we show that burden tests, gene prioritization tools and 

gene expression data from a relevant cell type can be used to identify candidate 

genes for HSCR in an underpowered genetic study. These genes should be studied 

in more detail in further genetic or functional studies to delineate their role in 

HSCR.  
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INTRODUCTION 

 

Both common and rare variants contribute to the onset of complex genetic 

diseases1–4. Common variants (minor allele frequency > 5%) have been found 

associated to complex genetic diseases in genome-wide association studies 

(GWAS)5,6. Although large GWAS generally uncover multiple disease-associated 

loci, the common variants in an associated haplotype contribute but do not cause 

the disease. The common variants in GWAS-associated loci collectively explain only 

20-60% of the observed heritability7. Part of the missing heritability likely is 

explained by rare variants (minor allele frequency < 1%). Resequencing of genes in 

GWAS-associated loci has indeed identified rare variants in these genes8–10. In 

addition, highly heritable forms of complex diseases can present in families and in 

isolated populations, suggesting a role for highly penetrant, rare variants11,12. This 

suggests that both common and rare variants in the same gene(s) can contribute to 

the development of genetically complex diseases13. 

Genome-wide genetic analysis, by array-based genotyping or exome/ 

genome sequencing, provides an unbiased approach to identify disease-associated 

genes. However, this advantage comes at a cost. A multiple-testing correction has 

to be applied to the large number of tested loci, thereby reducing the statistical 

power of the study. With up to 2.5 million genetic markers, the multiple testing 

corrections applied to GWAS are considerable. The number of genotyped bases is 

even larger in sequencing studies, as the exome alone contains ~30 million base 

pairs. Statistical power in sequencing studies further suffers from the low 

frequency of genetic variants. Whereas GWAS make use of common variants to 

increase statistical power, sequencing studies capture all genetic variation, most of 

which is in fact rare14,15. As a result of the large multiple testing correction and low 

allele frequencies, power calculations in exome sequencing studies show that 

10,000 to 100,000 individuals are required to find genetic associations of rare 

variants, especially in complex disorders16–18. 

Several solutions for the lack of statistical power in exome/genome 

sequencing studies have been proposed. First of all, rare variants are 

overrepresented in extreme disease phenotypes, so sampling of patients with 

extreme phenotypes increases the power of finding rare variant associations19,20. 

Secondly, case-control analysis can be restricted to genetic variants that (are 

predicted to) disrupt protein function. Since (predicted) damaging variants are 

likely to be disease-causal, they will be less frequently found in controls due to 
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negative evolutionary selection. Thirdly, all rare variants in a gene or pathway can 

be collapsed into a single variable to increase the variant frequency, reduce the 

number of association tests and thereby increase the power21. It goes without 

saying that meta-analysis of multiple smaller studies can be an effective strategy to 

increase the statistical power22,23.  

Even when the abovementioned strategies are applied to increase 

statistical power, true associations may not reach the significance threshold that is 

dictated by multiple testing for 20,000 genes. It has been postulated that such 

associations may be uncovered in replication cohorts where only a limited number 

of ‘top hits’ are analyzed, leading to a lower multiple testing-corrected significance 

threshold24. Top hits can be specified as the associations with the lowest nominal 

p-value, and biological plausibility can also be taken into account.  

Gene prioritization tools have been developed to identify the disease-

causal gene in a set of candidate genes from genetic studies, using genes that are 

known to be relevant to the phenotype as so-called seed genes25,26. Different 

strategies can be employed to identify plausible seed or candidate genes. For 

example, some gene prioritization tools require the user to specify seed genes27–30, 

whereas other tools extract known disease genes from the Online Mendelian 

Inheritance in Man (OMIM) database31–35. Similarity measurements between 

candidate genes and seed genes can be based on a variety of data sources, such as 

functional annotation, protein interactions, co-expression, sequence similarity and 

text mining. In addition to gene-level information, variant level information such as 

allele frequency and predicted pathogenicity can be used to rank candidate 

genes34,35. 

In this study, we focused on Hirschsprung disease (HSCR) as an example of 

a disease with a complex genetic architecture. HSCR is characterized by the lack of 

neuronal innervation in the distal colon, resulting from incomplete colonization of 

the bowel by enteric neural crest cells (ENCCs), the progenitor cells of the enteric 

nervous system (ENS). The incidence of HSCR is approximately 1 in 3,500 in Asians 

and 1 in 6,500 in Caucasians36. Over 15 genes have been linked to HSCR, but these 

genes explain only around 25% of the heritability13,36. As in many complex genetic 

diseases, identification of new genes in HSCR has initially focused on linkage 

analysis in familial cases and isolated populations and revealed a role for the RET 

and EDNRB pathways in HSCR37–39. More recently, GWAS on sporadic HSCR 

patients have been performed. The genes associated with HSCR in these GWAS are 

RET, NRG1 and the SEMA3 gene locus40,41. In addition to the common variants, rare 
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variants in these genes and other HSCR-associated genes have been reported13,42,43. 

To study the role of rare variants in HSCR on a genome-wide level, we sampled 

extreme phenotypes, selected rare pathogenic variants, collapsed all variants per 

gene, performed a meta-analysis on data from three different centers and used 

gene prioritization tools to analyze exome sequencing data from HSCR patients.  

 

 

METHODS 

 

Patient collection 

Forty-eight sporadic, non-syndromic HSCR patients were selected from five clinical 

centers. Fourteen patients were of Chinese origin and 34 patients were of 

Caucasian ancestry. We prioritized the most severe and most rare HSCR cases for 

this study, namely patients with long segment or total colonic aganglionosis (Table 

1). Sixteen patients had previously tested negative for coding variants in RET. 

Control individuals without neurological or psychological disorders were selected 

in each center to match ethnicity and sequencing technology. Parental informed 

consent was obtained from all participants.  

 

Exome sequencing 

DNA samples were subjected to exome sequencing at four sequencing centers 

using local, in-house technologies. The exome-capture kits and sequencing 

platforms used per center are summarized in Table 1. Sequencing data from 

 

 

Table 1. Patient collection and sequencing technologies. 

Cohort 

Patients 

Controls Ethnicity 
Sequencing 

platform 
Exome 
capture 

10X 
coverage 

Rare 
variants Short 

segment 

Long 
segment 

Total 

HK 6 8 14 73 
Han-

Chinese 
Illumina GAII 

Illumina 
Truseq 

79% 194 

SP 10 5 15 100 European ABI Solid 4 NimbleGen V2 85% 205 

NL 0 19 19 39 European Illumina HiSeq2000 
Agilent 

SureSelect V4 
95% 296 

Meta-
analysis 

16 32 48  212 
     

Overview of the numbers of patients and controls that were sequenced by each center and the 

sequencing technologies that were used. 
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two centers with identical sequencing platforms were analyzed together in 

downstream analyses. Alignment of Illumina sequencing reads were mapped to the 

genome using BWA and Solid sequencing reads were mapped using Bfast44. All 

sequencing reads were mapped to the human reference genome version 19 (hg19). 

Quality Control (QC) of sequencing data was carried out using the FastQC toolbox, 

Picard’s metric summary and the GATK Depth-of-Coverage module. After QC, 

sequencing data were preprocessed for local indel realignment, PCR duplicate 

removal and base quality recalibration45. SNPs and Indels were called using the 

GATK unified Genotyper 2.046 and stored in standard VCF files. Each sequencing 

center performed variant calling simultaneously on their respective HSCR patients 

and control subjects. KGGSeq47 was used to extract variants that 1) had a 

sequencing quality score ≥ 50; 2) mapping quality ≥20; 3) Fisher strand bias score 

≤60; 4) genotype quality score ≥20; 5) sequencing depth ≥8; 6) reference allele 

ratio <0.75; 7) are exonic; 8) are non-synonymous SNPs or indels; 9) have minor 

allele frequency <1% in dbSNP137, 1000 Genomes and NHLBI Exome Sequencing 

Project; 10) were successfully genotyped in ≥80% of patients and ≥80% of 

controls; 11) were predicted deleterious by KGGSeq’s logistic regression analysis 

of dbNSFP v3.0 functional impact scores48.  

 

Burden test 

The number of rare variants per gene in patients and controls was analyzed by 

three different centers individually, using the same protocol. The Combined 

Multivariate and Collapsing (CMC) test in Rvtests package was used to collapse all 

variants identified within the same gene21. P-values were calculated by asymptotic 

chi-square distribution. Meta-analysis of the summary statistic of three centers 

was performed using sample-size weighted z-score. 

 

Candidate gene prioritization 

Genes with a nominal association p-value <0.01 in the burden test were selected as 

seed genes for downstream candidate gene prioritization. Gene prioritization was 

performed in Endeavour Web Server (http://www.esat.kuleuven.be/ 

endeavour)27,28, ToppGene (http://toppgene.cchmc.org)29, ToppNet (part of the 

ToppGene suite29), GPSy (http://gpsy.genouest.org)30, FunSimMat (http:// 

funsimmat.bioinf.mpi-inf.mpg.de)31–33, Exomiser (http://www.sanger.ac.uk/ 

science/tools/exomiser)34 and ExomeWalker (http://compbio.charite.de/ 

ExomeWalker)35. The gene prioritization tools differ in the data sources that are 

http://www.esat.kuleuven.be/endeavour
http://www.esat.kuleuven.be/endeavour
http://toppgene.cchmc.org/
http://gpsy.genouest.org/
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used to compare candidate genes to seed genes. For gene prioritization in 

Endeavour all 19 available databases in Endeavour were used. ToppGene was run 

using default parameters, with ‘Interaction’ as additional training feature and 

ToppNet was run using default settings. Moreover, Endeavour, ToppGene and 

ToppNet require the user to select a set a genes (specific seed genes) that are 

known to be relevant to the disease. For this we assembled a list of 45 seed genes 

that are either genetically linked to HSCR in humans, or loss of these genes causes 

aganglionosis in mouse models (Supplementary Table 1).  

In contrast to a self-made list of genes as required for Endeavour, 

ToppGene and ToppNet, GPSy was run using ‘Nervous system’ and ‘Homo sapiens‘ 

as selected topic and species, respectively, with otherwise default parameters. The 

‘disease candidate prioritization’ function in FunSimMat was run using OMIM term 

#142623 (Hirschsprung disease) and were ranked by Biological Pathway (BP). 

Gene prioritization in Exomiser was performed using the hiPHIVE prioritiser and 

Orphanet ID 388 (Hirschsprung disease). OMIM term #142623 (Hirschsprung 

disease) was selected as phenotype in ExomeWalker. No variant quality filters 

were applied in Exomiser and ExomeWalker, since these were applied in the 

upstream filtering and annotation by KGGSeq. Overall gene ranking was based on 

the average rank per gene in the different prioritization tools.  

 

Gene expression analysis 

Publically available expression data from E14.5 mouse embryos and was combined 

with in-house expression data from embryonic mouse gut and ENCCs isolated from 

E14.5 mouse embryos that expressed YFP under control of the Wnt1 promoter. 

Expression data from control tissues were extracted from the Gene Expression 

Omnibus49: testis and ovary (GSE6881), kidney (GSE4230)50, gonad (GSE6916)51 

and cardiac tissue (GSE1479)52. Moreover, additional intestinal tissue expression 

sets were obtained: stomach, pylorus and duodenum (GSE15872)53. Probe set 

summaries from the raw Affymetrix data (cel files) were calculated using BRB-

ArrayTools version 4.5.0 - Beta_2 (http://linus.nci.nih.gov/BRB-ArrayTools.html). 

The probes were annotated by Bioconductor (www.bioconductor.org), R v3.2.2 

Patched (2015-09-12 r69372) and the annotation package mouse4302.db (version 

3.0.0). ‘Just GCRMA’ (GC content – Robust Multi-Array Average) was used from the 

‘GCRMA’ package available in Bioconductor. The just GCRMA algorithm adjusts for 

background intensities (optical noise and non-specific binding), normalizes each 

array using quantile normalization and includes variance stabilisation and log2 

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://www.bioconductor.org/
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transformation. Replicate spots within an array were averaged. Genes showing 

minimal variation across the set of arrays were excluded from the analysis (if less 

than 10% of expression data had at least a 1.5 fold change in either direction from 

gene's median value, or at least 50% of arrays had missing data for that gene). 

Probes were present on the Affymetrix mouse4302.db chip for 45 of the 48 

candidate genes (DEFB132 and OR10K1 do not have a mouse orthologue and Or2d2 

does not have probes on the chip). Genes whose expression differed by at least 1.5 

fold from the median in at least 20% of the arrays were retained. The minimum 

fold change for the class comparisons was set at 1.5, statistics were performed 

using a two-sample T-test with random variance model. The permutation p-values 

for significant genes were computed based on 10,000 random permutations and 

the nominal significance level of each univariate test was set at 0.05. 

 

Power calculations 

The Genetic Power Calculator54 was used to calculate the statistical power of the 

present study and the number of patient required in a future replication study. The 

prevalence of HSCR was set to 0.0002 (1:5000 live born individuals36). D-prime 

was set to 0.8, assuming that the sensitivity of detecting variants in exome 

sequencing data is 80% (Table 1). Calculations for cohort sizes assumed the same 

case : control ratio as for the 48 HSCR cases and 212 controls (1 : 4.417). 

Significance levels were set at 0.05 and were not adjusted for multiple testing. 

Dominant inheritance was assumed.  

 

 

RESULTS 

 

Sampling of extreme phenotypes 

Rare variants have a relatively large contribution to disease in patients with an 

extreme phenotype19,20. Therefore we prioritized the most severe form of HSCR for 

exome sequencing. A variable segment of the gut can be aganglionic in HSCR. In 

80% of the cases, only a short-segment of the colon is affected, whereas a long-

segment of the colon is aganglionic in the remaining 20%36. Long-segment HSCR 

has a high heritability and a dominant mode of inheritance with reduced 

penetrance55. Moreover, in long-segment HSCR there is a relative large 

contribution of rare variants in RET, the major HSCR gene55,56. Therefore, the 

highest contribution of rare variants is expected in patients with long-segment 
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HSCR. In three different cohorts, a total of 32 cases of long-segment HSCR were 

sampled for exome sequencing and were supplemented with 16 cases of short-

segment HSCR, resulting in 66.7% long-segment cases in our cohort (Table 1).  

 

Exome sequencing and variant filtering 

Exome sequencing was performed on 48 sporadic HSCR patients in three different 

centers using different sequencing technologies (Table 1). The average 10X 

coverage per center ranged from 79% to 95% (Table 1). Rare variants were 

selected from the exome sequencing data that lead to a loss of function (nonsense, 

splice site and frameshift mutations) or are missense mutations that were 

predicted to be deleterious. This yielded between 194 and 296 rare variants per 

individual on average per center.  

 

Gene burden test and meta-analysis 

The low frequencies of individual rare variants hamper the statistical power to 

find a significant association to a disease. Therefore, all rare variants per gene that 

were predicted to be pathogenic were collapsed into a single variable; the number 

of variants per gene. The statistical power of finding disease-associated genes 

depends on frequency at which mutations are found in comparison to a control set 

of samples. This frequency varies among genes: 2.4% of all genes carried rare, 

damaging variants in ≥5% of the controls, 20.8% of the genes had a variant 

frequency of 1-5% in control samples and 27.5% a frequency <1% in our controls. 

No rare, damaging variants were found in the controls in the remaining 49.3% of 

all genes (Figure 1A).  

Given the mutation frequencies per gene, the power of detecting true 

associations was calculated for different genotype relative risks. For genes with a 

high variant frequency of 5% our study with 48 patients and 212 controls could 

detect true associations (at nominal p-value), even at low relative risk (Figure 1B). 

Also for genes with a 0.5-1% variant frequency there was sufficient power to 

detect damaging variants with a moderate or high relative risk. For genes that 

carried rare, damaging variants less frequently in controls, there was limited 

statistical power, even at a high relative risk. Increasing the size of the study to for 

instance 100 cases and 442 controls would increases the statistical power, but up 

to 1000 cases and 4417 controls are required to obtain sufficient power to detect 

associations for genes that carry variants in 0.01% of the controls (at nominal p-

value) (Figure 1C,D).  



CHAPTER 5  

 
138 

The variant frequency per gene was compared between patients and 

controls in three independent centers. A meta-analysis was performed on data 

from three different sequencing centers, representing different ethnicities and 

sequencing technologies. A quantile-quantile plot (QQ-plot) showed that the  

 

 

 
Figure 1. Frequency distribution of rare, damaging variants per gene and its effect on statistical 

power. A) Histogram displaying the number of genes that carry rare, damaging variants at a specified 

frequency in the control population. B) Statistical power of detecting a significant association (at a 

nominal p-value of 0.05) in our cohort of 48 HSCR cases and 212 controls, given the genotype relative 

risk and frequency of variants in the gene. C,D) Statistical power of detecting significant associations if 

cohort sizes would have been increased to 100 cases and 442 controls (C) or 1000 cases and 4417 

controls (D).  
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observed distribution of p-values followed the expected distribution, for individual 

case-controls studies as well as for the meta-analysis (Figure 2). This suggests that 

there were no confounding factors producing artificial associations. The most 

significant associations in the meta-analysis were found for KLHDC4 (p=1.43x10-5) 

and CR1 (p=2.07x10-5), but didn’t reach genome-wide significance (2.5x10-6, after 

Bonferroni correction for 20,000 genes) (Table 2).  

 

Candidate gene prioritization 

Due to the low power of the rare variant association study, there may have been 

real pathogenic variants in genes that did not reach genome-wide significance. 

Small-scale replication studies have greater power to detect true associations, but 

require a selection of candidate genes to follow up on24.  

Gene prioritization tools have been developed to identify plausible genes 

in a set of candidate genes and can therefore be used to select the best candidate 

genes for follow-up studies25,26. Forty-eight genes had a nominal p-value <0.01 and 

were selected to be ranked by seven gene prioritization tools to identify the best 

candidate HSCR gene among them. CELSR1 achieved the highest average rank 

across seven gene prioritization tools, followed by CLOCK, GRM4, FASN and 

CACNA1H (Figure 3A). The overall ranking by the gene prioritization tools was 

compared to the nominal p-value of the genes in the burden test meta-analysis and 

four of the five highest-ranked genes (CELSR1, CLOCK, FASN and CACNA1H) were 

among the 13 most significantly associated genes (Figure 3B). Although these 

genes have no known functions in ENS development, biological functions and 

expression in neural cells has been reported for CELSR1, CLOCK, FASN and 

CACNA1H57–60.  

The correlation between ranking results from different gene prioritization 

tools varied substantially (Figure 3C). The highest correlation coefficient was 

found between Exomiser and ExomeWalker (r = 0.54), but ExomeWalker showed 

no correlation to any other tool. Endeavour and ToppGene showed a moderate 

correlation with all other tools, except ExomeWalker.  

 

 

Expression in the gut and in ENCCs 

Gene prioritization tools use a variety of data sources to rank candidate genes, 

including gene expression data. However, the expression data used in gene 

prioritization tools is generally not derived from the cell type studied. As HSCR 
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results from incomplete colonization of the bowel by ENCCs (the progenitor cells 

of the ENS), the expression levels of the mouse orthologues of the 48 candidate 

HSCR genes obtained in the burden test were analyzed in the developing mouse 

gut, and more specifically in the ENCCs. Two genes (DEFB132 and OR10K1) do not 

have a mouse orthologue and for one mouse orthologue (Or2d2) there were no 

 

 

 
Figure 2. Quantile-quantile plot of the association p-values. The observed p-values follow the 

expected distribution, for individual centers and for the meta-analysis. The highest associated genes in 

the meta-analysis, KLHDC4 (p=1.43x10-5) and CR1 (p=2.07x10-5), are indicated. 
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probes on the chip. Of the 45 candidates genes for which expression data were 

available, all but one (Cr1) were expressed by ENCCs. Clock, Grm4, Fasn and 

Cacna1h, whose human orthologues were highly ranked by the gene prioritization 

tools, were not abundantly expressed by ENCCs compared to control tissues 

(testis, ovary, heart and kidney), or in the intestinal samples. Celsr1 was not highly 

expressed in ENCCs or the gut, but its expression level was increased by activation 

of the RET receptor with its ligand GDNF.  

Of the 48 candidate genes selected from the burden test, Clstn2, Cdk12, 

Cpxm2, Ghdc, D8Ertd82e (mouse orthologue of SGK223) and Mrps34 were higher 

expressed in ENCCs than in control tissues. These ENCC-expressed genes, with the 

addition of Pprc1 and Ddc, were also expressed at higher levels in intestinal 

samples compared to control tissues (Table 3). The remaining candidate genes 

from the burden test were expressed by ENCCs (with the exception of CR1), but 

were not differentially expressed between ENCCs and the gut. Of the genes that are 

highly expressed in the gut, the human orthologue of Ghdc was the seventh most 

significantly associated gene to HSCR in the burden test meta-analysis (nominal p-

value: 1.87x10-4). GHDC (GH3 domain containing) only ranked at position 35 of the 

48 candidate genes in the overall gene prioritization. The biological function of 

GHDC is unknown and the gene could therefore not be linked to the known ENS 

genes. However, Exomiser and ExomeWalker, both taking into account the 

pathogenicity score of the identified variants, ranked GHDC at position 6 and 3, 

respectively, suggesting that the identified variants in GHDC are highly pathogenic. 

Combined with the expression of Ghdc in the developing mouse ENS and the high 

rank in the burden test, this makes GHDC an excellent candidate gene for HSCR. 

These data indicate that the use of tissue-specific gene expression data is a 

complementary approach to identify candidate genes that were not picked up by 

the gene prioritization tools due to lack of functional characterization of the gene.  

Another potentially interesting candidate gene that was highly expressed 

by ENCCs is Cdk12. Cdk12 was ranked as the 10th best candidate gene by the gene 

prioritization tools and is involved in neuronal differentiation in the murine CNS61. 

Given its high expression in ENCCs, Cdk12 may also be involved in ENS 

development and contribute to HSCR. Clstn2, Cpxm2, Mrps34 and D8Ertd82e 

(orthologue of SGK223) were highly expressed by ENCCs, but did not rank high in 

the gene prioritization and were not among the most significantly associated genes 

in the burden test. 
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Table 2. Genes with a nominal p-value of association <0.01. 

Gene Description HK SP NL Meta 

KLHDC4 kelch domain containing 4 1.09E-03 2.30E-04 1 1.43E-05 
CR1 complement component (3b/4b) receptor 1 0.022 9.51E-03 0.011 2.07E-05 
ATP13A5 ATPase type 13A5 0.015 0.067 0.011 1.31E-04 
FASN fatty acid synthase 0.022 2.30E-04 1 1.58E-04 

GPRIN1 
G protein regulated inducer of neurite 
outgrowth 1 

0.059 9.51E-03 0.044 1.63E-04 

CLOCK clock homolog (mouse) 0.019 9.51E-03 0.148 1.68E-04 
GHDC GH3 domain containing 0.022 9.51E-03 0.148 1.87E-04 
ZNF76 zinc finger protein 76 (expressed in testis) 0.022 9.51E-03 0.148 1.87E-04 
XPO6 exportin 6 1.09E-03 9.51E-03 1 3.01E-04 
ZFAND4 Zinc Finger, AN1-Type Domain 4 0.408 2.30E-04 0.148 3.05E-04 
ERN2 ER to nucleus signaling 2 0.022 9.51E-03 0.446 6.43E-04 

CELSR1 
cadherin, EGF LAG seven-pass G-type 
receptor 1 

0.408 5.20E-03 0.039 9.30E-04 

CACNA1H 
calcium channel, voltage-dependent, T type, 
alpha 1H 

1 5.20E-03 2.98E-03 1.11E-03 

NINL ninein-like 0.721 1.43E-03 0.062 1.34E-03 
POLR1A polymerase (RNA) I polypeptide A, 194kDa 1 1.80E-04 0.148 1.51E-03 
ALX3 ALX homeobox 3 0.022 9.51E-03 1 2.26E-03 
CDK12 Cdc2-related kinase, arginine/serine-rich 0.022 9.51E-03 1 2.26E-03 
DDC dopa decarboxylase 0.022 9.51E-03 1 2.26E-03 
HOGA1 4-Hydroxy-2-Oxoglutarate Aldolase 1 0.022 9.51E-03 1 2.26E-03 

HSD3B2 
hydroxy-delta-5-steroid dehydrogenase, 3 
beta- and steroid delta-isomerase 2 

0.022 9.51E-03 1 2.26E-03 

IMPG1 interphotoreceptor matrix proteoglycan 1 0.022 9.51E-03 1 2.26E-03 

OR10K1 
olfactory receptor, family 10, subfamily K, 
member 1 

0.022 9.51E-03 1 2.26E-03 

APOBEC1 
apolipoprotein B mRNA editing enzyme, 
catalytic polypeptide 1 

1 5.85E-06 1 2.58E-03 

GPR179 G protein-coupled receptor 179 0.022 0.290 0.039 2.65E-03 
RNF17 ring finger protein 17 0.022 0.016 1 3.33E-03 

MCM8 
minichromosome maintenance complex 
component 8 

1 9.51E-03 0.011 3.41E-03 

ACADL 
acyl-Coenzyme A dehydrogenase, long 
chain 

0.408 9.51E-03 0.148 3.91E-03 

CPXM2 carboxypeptidase X (M14 family), member 2 0.408 9.51E-03 0.148 3.91E-03 
CLSTN2 calsyntenin 2 0.022 5.20E-03 0.481 4.31E-03 
P4HA3 prolyl 4-hydroxylase, alpha polypeptide III 0.019 0.067 0.597 4.78E-03 

ACSM5 
acyl-CoA synthetase medium-chain family 
member 5 

0.022 0.025 1 4.89E-03 

LMOD3 leiomodin 3 (fetal) 0.022 0.025 1 4.89E-03 

OR2D2 
olfactory receptor, family 2, subfamily D, 
member 2 

0.022 0.025 1 4.89E-03 

DEFB132 defensin, beta 132 0.187 0.697 1.82E-06 5.80E-03 

DAAM1 
dishevelled associated activator of 
morphogenesis 1 

0.187 9.51E-03 0.597 6.18E-03 

VTI1B 
vesicle transport through interaction with t-
SNAREs homolog 1B 

0.022 9.51E-03 0.481 6.51E-03 

TMEM67 transmembrane protein 67 0.022 0.290 0.148 6.64E-03 

GABPB1 
GA binding protein transcription factor, beta 
subunit 1 

1 9.51E-03 0.039 6.96E-03 

MRPS34 mitochondrial ribosomal protein S34 1 9.51E-03 0.039 6.96E-03 
NCKAP5L NCK-Associated Protein 5-Like 1 9.51E-03 0.039 6.96E-03 
SGK223 homolog of rat pragma of Rnd2 0.620 9.51E-03 0.148 7.05E-03 
ZSWIM5 zinc finger, SWIM-type containing 5 0.015 0.637 0.039 7.12E-03 

TRPM2 
transient receptor potential cation channel, 
subfamily M, member 2 

1 0.025 0.011 7.16E-03 

KNTC1 kinetochore associated 1 0.968 9.51E-03 0.062 8.57E-03 

PPRC1 
peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

0.187 5.20E-03 1 8.74E-03 

DMRT3 
doublesex and mab-3 related transcription 
factor 3 

1.09E-03 0.117 0.481 9.36E-03 

PRDM7 PR domain containing 7 0.408 2.30E-04 0.481 9.44E-03 
GRM4 glutamate receptor, metabotropic 4 0.022 9.51E-03 0.315 9.92E-03 
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Statistical power of a replication study for selected genes 

Using gene prioritization tools and gene expression data from the developing ENS, 

we identified CELSR1, CLOCK, FASN, CACNA1H and GHDC as the best candidate 

genes for HSCR. However, follow-up experiments are required to establish 

whether these genes are involved in HSCR, as our study was underpowered to find 

genome-wide significant associations. The data presented in this study were used 

to calculate the power of a replication study. Using the variant frequencies per 

gene in patients and controls, relative risks were calculated per gene. These ranged 

from 7.4 for CLOCK to 26.5 for CACNA1H. Consequently, 14 to 33 unrelated patients 

are required to find a significant association of these genes to HSCR with 80% 

power and 23 to 41 patients are required for 95% power54 (Table 4). Since no 

mutations were found in FASN and GHDC in our control cohort, it was not possible 

to calculate the relative risk and required number of patients in a replication study 

for these genes.  

 

 

DISCUSSION 

 

Resequencing studies on GWAS-associated genes or candidate genes from 

functional studies has revealed a role for rare, coding variants in complex genetic 

diseases, including HSCR41,62. However, the contribution of rare variants to 

complex genetic diseases is difficult to study, as statistical power is negatively 

affected by locus heterogeneity, low allele frequency and large multiple-testing 

correction17. Using HSCR as a model of a complex genetic disease, we combined 

several strategies to perform a rare variant (gene) association study.  

 

Burden test 

To maximize the statistical power of our rare variant association test, we 

prioritized long-segment HSCR cases, collapsed all rare, damaging variants per 

gene and performed a meta-analysis on three case-control studies. This approach 

gave our study sufficient power to detect associations at nominal p-value for genes 

in which variants are relatively abundant or have a high relative risk. However, the 

meta-analysis was underpowered to reach genome-wide significance.  

Mutations in RET, the main HSCR gene, are normally found in 15-35% of 

sporadic HSCR patients63,64. However, we did not find RET or any other known 

HSCR genes among the highest associated genes in the burden test. The most  
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Figure 3. Candidate gene ranking results from the gene prioritization tools. A) Gene prioritization 

results from the seven tools. Highly ranked genes are shown in dark blue and genes with a low rank in 

light blue. Genes are shown by overall rank. B) Relationship between the p-value of association in the 

burden test and the overall rank in the gene prioritization. C) Heatmap showing the correlations 

between the ranking results of the different tools.  
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significantly associated known HSCR gene was NRG1, with a nominal p-value of 

0.015. The reason for not finding the HSCR genes is due to the fact that we selected 

mainly patients without mutations in the known HSCR genes, this increases the 

likelihood of identifying new HSCR genes. Coding mutations in all HSCR genes 

other than RET are rare and are mainly associated with syndromic rather than 

isolated HSCR13,42,43. Lack of association of these genes with HSCR in our data was 

therefore also not unexpected.  

 

Gene prioritization tools 

The 48 genes with a nominal p-value <0.01 in the burden test performed, were 

selected to be prioritized by seven gene prioritization tools. Different prioritization 

tools use seed genes from different sources to look for similarity with candidate 

genes. Endeavour, ToppGene and ToppNet require the user to specify genes that 

are known to be involved in the disease or underlying biological process27–29. The 

benefit of this approach is that the seed genes are very specific for the phenotype. 

Other tools lack this user specific input and do not use all known genes that are 

critical for ENS development. For example, Hlx65 and Hoxb566,67 are not included as 

general ‘nervous system development’ seed genes by GPSy30. GPSy therefore 

misses connections with these seed genes. User-specific input also has its 

drawbacks as the focus is on ‘known’ genes. GPSy may therefore uncover novel 

pathways in ENS development as many genes that are involved in neuronal 

development in the CNS might also be relevant to the ENS. FunSimMat, Exomiser 

and ExomeWalker extract seed genes from OMIM31–35. Although this yields seed 

 

 

Table 3. Differentially expression of the 48 candidate genes in E14.5 mouse embryo. 

Case Control High expression Low expression 

Mouse whole gut 
Testis, ovary, 

heart and kidney 

Cdk12, Mrps34, D8Ertd82e, 

Ghdc, Zfand4 

Gabpb1, Trpm2, Celsr1, 

Polr1a, Hoga1, Clock, Grm4, 

Daam1, Rnf17 

Mouse ENCC Mouse whole gut 
Cpxm2,D8Ertd82e, Ghdc, 

Cdk12, Clstn2, Mrps34 

Celsr1, Polr1a, Gabpb1, Grm4, 

Kntc1, Clock, Mcm8, Hoga1 

Mouse ENCC 
Testis, ovary, 

heart and kidney 

Cpxm2, D8Ertd82e, Ghdc, 

Cdk12, Clstn2, Mrps34 

Celsr1, Polr1a, Gabpb1, Grm4, 

Kntc1, Clock, Mcm8, Hoga1 

Mouse ENCC + 

GDNF 

Testis, ovary, 

heart and kidney 

Cpxm2, Ghdc, D8Ertd82e, 

Vti1b, Celsr1, Clstn2, Cdk12, 

Mrps34 

Kntc1, Gabpb1, Polr1a, Clock, 

Hoga1, Grm4, P4ha3, Mcm8 

Mouse ENCC + 

GDNF 
Mouse ENCC Celsr1 Ddc 

Of the top candidate genes from the gene prioritization tools, Celsr1 and Clock were less abundantly 

expressed by ENCCs than in the gut or in control tissues, but Celsr1 expression was upregulated in 

ENCCs after activation of the RET receptor by its ligand GDNF. 
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genes that are well established in the disease, the number of disease genes in 

OMIM may be an underrepresentation of the number of genes involved. In the case 

of HSCR, only four genes can be retrieved from OMIM (RET, GDNF, EDNRB and 

EDN3), whereas the manually assembled list of ENS development genes that was 

used in Endeavour, ToppGene and ToppNet, contained 45 seed genes.  

The gene prioritization tools also differ in the data sources that are used to 

compare candidate genes to seed genes. Endeavour, ToppGene and GPSy use a 

wide range of data sources, such as functional annotation, expression, interaction 

and sequence similarity. ToppNet, FunSimMat, Exomiser and ExomeWalker rely on 

a single data source to connect candidate genes to seed genes (protein interaction, 

functional annotation, phenotypic similarity to mouse models and protein 

interaction, respectively). Exomiser and ExomeWalker are specifically designed for 

exome sequencing studies, and take the frequency and predicted pathogenicity of 

the identified genetic variants into account. The different strategies implemented 

by gene prioritization tools are reflected by the differences in gene ranking results. 

Correlations between prioritization results from different tools varied 

substantially. Endeavour and ToppGene showed moderate correlation with all 

other tools, except ExomeWalker. ExomeWalker combines variant level 

information from exome sequencing with protein interactions between candidate 

genes and disease genes derived from OMIM. However, no interactions with the 

known HSCR genes RET, GDNF, EDNRB and EDN3 were found for any of the 

candidate genes. Gene ranking by ExomeWalker was therefore solely based on the 

frequency and predicted pathogenicity of the identified variants. The variant level 

 

 

Table 4. Calculation of cohort size for a replication study on selected candidate genes. 

Candidate 
gene 

Frequency 
in patients 

Frequency 
in controls 

Relative 
risk 

80% power 90% power 95% power 

cases/controls cases/controls cases/controls 

CELSR1 0.125 0.014 8.83 25 110 33 146 41 181 

CLOCK 0.104 0.014 7.36 33 146 44 194 54 239 

FASN 0.063 0.000 ∞ 
      

CACNA1H 0.125 0.005 26.5 14 62 19 84 23 102 

GHDC 0.063 0.000 ∞ 
      

Power calculations for a rare-variant association replication study on selected candidate genes. Given 

the frequencies of rare, damaging variants in the candidate genes in the burden test, the relative risk 

and number of cases and controls were calculated.  
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information is also used by Exomiser, explaining why ExomeWalker results 

correlated with those from Exomiser, but to no other tools tested in this study.  

Despite the variable correlations between ranking results, several genes 

were consistently highly ranked by the gene prioritization tools. CELSR1, CLOCK, 

FASN and CACNA1H were among the top 5-ranked candidate genes based on 

average rank and were among the 13 most significant nominal p-values in the 

burden test meta-analysis.  

 

Function of the proposed top 4 candidate genes 

CELSR1 (Cadherin, EGF LAG Seven-Pass G-Type Receptor 1) is an adhesion 

molecule that is involved in planar cell polarity; the organization of cells in a plane 

or sheet68. CELSR1 mutations have been associated with the neural tube defect 

craniorachischisis in humans, a finding that is corroborated by improper closure of 

the neural tube in Celsr1 mouse models68–70. Additionally, Celsr1 is involved in the 

directional migration of facial branchiomotor neurons71. Planar cell polarity genes 

are involved in ENS development, where Celsr3 and Fzd3 regulate guidance and 

growth of neuronal projections72. Ablation of Celsr3 in ENS progenitor cells causes 

constriction of colonic segments, distention of the proximal segment, and reduced 

gut transit time, symptoms that are all hallmarks of HSCR72. These results 

demonstrate a role for planar cell polarity genes in ENS development, making 

CELSR1 an excellent candidate gene for HSCR.  

CLOCK encodes a core component of the circadian clock. Gastrointestinal 

motility follows a circadian rhythm and neurotransmitters that regulate gut 

contractility, such as Vip and nNos, are rhythmically expressed in the distal murine 

colon73,74. Clock genes are expressed in intestinal epithelial cells and enteric 

neurons in mice and may well be responsible for the rhythmic innervation of the 

gut73.  

FASN (fatty acid synthase) is an enzyme that catalyzes fatty acid synthesis. 

In the murine CNS, Fasn is highly expressed in neurogenic areas and is required for 

maintenance of neural stem cell pools75. As the development of the ENS depends 

on propagation of stem cells, FASN may be involved in ENS development.  

The mouse homologue of CACNA1H (Calcium channel, voltage-dependent, 

T type, alpha 1H subunit) is expressed by migrating ENCCs76. Although Cacna1h 

and other Ca2+ channels are expressed by ENCCs at different developmental time 

points, blockage of Ca2+ channels in gut explants does not impair ENCC migration 

or neurite outgrowth76.  
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Additional candidate genes  

Combining different strategies as proposed in this study reduces the number of 

candidate genes dramatically. Ending up with a small number of candidate genes 

makes genetic studies surveyable and amenable for functional analysis. However, 

it also raises the question whether we do not exclude potentially valid candidates. 

For instance, GHDC and to a lesser extent CDK12 are excellent candidates for HSCR 

because of their high expression in ENCC, pathogenicity of identified variants and 

low nominal p-value in the burden test. Therefore, one should be critical in 

excluding genes too easily.  

 

Conclusions  

Although our rare variant association study was underpowered to detect genome-

wide associations to HSCR, the study serves as a pilot study to direct future 

research. Power calculations for genetic studies rely on prior knowledge of variant 

frequencies and effect size, and these parameters can be estimated from the data 

presented here. It should be noted that the frequency of variants in a gene is 

variable between genes, meaning that for some genes there is higher statistical 

power than for others. Therefore our approach will be useful only for genes that 

carry relatively many rare, damaging variants in the general population. In 

addition to calculating the statistical power for such genes in a small-scale 

replication study, we prioritized the top hits from our burden test to select the 

most promising candidate genes to follow up on. Only a limited number of 

unrelated patients are required in such a follow-up study.  
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SUPPLEMENTARY INFORMATION 

 

Supplementary Table 1. List of seed genes used in Endeavour, ToppGene and ToppNet. 

Gene Gene name Human phenotype Refs 

ALDH1A2 aldehyde dehydrogenase 1 family, member A2 
 

1 
ASCL1 achaete-scute complex homolog 1 CCHS 2,3 
DCC DCC Netrin 1 Receptor 

 
4 

DSCAM Down Syndrome Cell Adhesion Molecule HSCR-associated 5,6 

ECE1 endothelin converting enzyme 1 
Hirschsprung disease, cardiac 
defects and autonomic dysfunction 

7,8 

EDN3 endothelin 3 
Hirschsprung disease Waardenburg 
syndrome type 4 

9–11 

EDNRB endothelin receptor type B 
Hirschsprung disease 
Waardenburg syndrome type 4 

12–15 

ERBB2 
v-erb-b2 erythroblastic leukemia viral oncogene 
homolog 2  

16 

ERBB3 
v-erb-b2 erythroblastic leukemia viral oncogene 
homolog 3  

17,18 

FOXD3 Forkhead Box D3 
 

19 
GDNF glial cell derived neurotrophic factor Hirschsprung disease 20–25 
GFRA1 GDNF family receptor alpha 1 Hirschsprung disease 26,27 
GFRA2 GDNF family receptor alpha 2 

 
28 

GLI1 GLI family zinc finger 1 
 

29,30 
GLI2 GLI family zinc finger 2 

 
29,30 

GLI3 GLI family zinc finger 3 
 

29,30 
HAND2 Heart And Neural Crest Derivatives Expressed 2 

 
31,32 

HLX H2.0-like homeobox 
 

33 
HOXB5 Homeobox B5 

 
34,35 

IHH Indian hedgehog homolog 
 

36 

IKBKAP 
inhibitor of kappa light polypeptide gene 
enhancer in B-cells, kinase complex-associated 
protein 

Familial dysautonomial  37,38 

ITGB1 integrin beta 1 
 

39,40 
KIF1BP KIF1 Binding Protein Goldberg-Shprintzen syndrome 41–43 
L1CAM L1 cell adhesion molecule Partial agenesis of corpus callosum 44–47 
NKX2-1 NK2 Homeobox 1 Single HSCR patient 48 
NRG1 neuregulin 1 Hirschsprung disease 49,50 
NRG3 neuregulin 3 Hirschsprung disease CNVs 51,52 
NRTN neurturin Hirschsprung disease 53–55 
NTF3 Neurotrophin 3 

 
56 

NTRK3 neurotrophic tyrosine kinase, receptor, type 3 
 

56,57 

PAX3 paired box 3 
Waardenburg syndrome type 1 and 
type 3 

58 

PHOX2B paired-like homeobox 2b 
Neuroblastoma with Hirschsprung 
disease 

59–61 

PSPN Persephin Single HSCR patient 54 
PTCH1 patched homolog 1 

 
62,63 

RET ret proto-oncogene Hirschsprung disease 64–66 
SALL4 sal-like 4 Duane-radial ray syndrome 67 

SEMA3A 
sema domain, immunoglobulin domain (Ig), 
short basic domain, secreted, (semaphorin) 3A  

68,69 

SEMA3C 
sema domain, immunoglobulin domain (Ig), 
short basic domain, secreted, (semaphorin) 3C 

Hirschsprung disease 68 

SEMA3D 
sema domain, immunoglobulin domain (Ig), 
short basic domain, secreted, (semaphorin) 3D 

Hirschsprung disease 68,69 

SHH sonic hedgehog homolog 
 

36,70 
SOX10 SRY (sex determining region Y)-box 10 Waardenburg syndrome, type 4C 71–74 
SPRY2 sprouty homolog 2 

 
75 

TCF4 Transcription Factor 4 Pitt-Hopkins syndrome 76–78 
ZEB2 zinc finger E-box binding homeobox 2 Mowat-Wilson syndrome 79,80 
ZIC2 Zic family member 2 

 
81 

 
  



 COMBINED STRATEGIES TO IDENTIFY GENES FOR RARE COMPLEX DISEASES; HSCR AS A MODEL 

 
153 

5 

1. Niederreither, K. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential 
for the development of posterior pharyngeal arches and the enteric nervous system. 
Development 130, 2525–34 (2003). 

2. de Pontual, L. et al. Noradrenergic neuronal development is impaired by mutation of the 
proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse). 
Hum. Mol. Genet. 12, 3173–80 (2003). 

3. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development 
of olfactory and autonomic neurons. Cell 75, 463–76 (1993). 

4. Jiang, Y., Liu, M. T. & Gershon, M. D. Netrins and DCC in the guidance of migrating neural crest-
derived cells in the developing bowel and pancreas. Dev. Biol. 258, 364–384 (2003). 

5. Jannot, A. S. et al. Chromosome 21 Scan in Down Syndrome Reveals DSCAM as a Predisposing 
Locus in Hirschsprung Disease. PLoS One 8, 1–8 (2013). 

6. Yamakawa, K. et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a 
Down syndrome region and is involved in the development of the nervous system. Hum. Mol. 
Genet. 7, 227–37 (1998). 

7. Hofstra, R. M. et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) 
associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am. J. Hum. 
Genet. 64, 304–8 (1999). 

8. Yanagisawa, H. et al. Dual genetic pathways of endothelin-mediated intercellular signaling 
revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125, 
825–836 (1998). 

9. Edery, P. et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease 
(Shah-Waardenburg syndrome). Nat. Genet. 12, 442–4 (1996). 

10. Hofstra, R. M. et al. A homozygous mutation in the endothelin-3 gene associated with a 
combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). 
Nat. Genet. 12, 445–7 (1996). 

11. Baynash, A. G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for 
development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285 (1994). 

12. Puffenberger, E. G. et al. A missense mutation of the endothelin-B receptor gene in multigenic 
hirschsprung’s disease. Cell 79, 1257–1266 (1994). 

13. Amiel, J. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung 
disease. Hum. Mol. Genet. 5, 355–357 (1996). 

14. Auricchio, A. Endothelin-B receptor mutations in patients with isolated Hirschsprung disease 
from a non-inbred population. Hum. Mol. Genet. 5, 351–354 (1996). 

15. Hosoda, K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor 
gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276 
(1994). 

16. Crone, S. A., Negro, A., Trumpp, A., Giovannini, M. & Lee, K.-F. Colonic Epithelial Expression of 
ErbB2 Is Required for Postnatal Maintenance of the Enteric Nervous System. Neuron 37, 29–
40 (2003). 

17. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 
receptor. Nature 389, 725–730 (1997). 

18. Chalazonitis, A., D’Autréaux, F., Pham, T. D., Kessler, J. a & Gershon, M. D. Bone morphogenetic 
proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev. Biol. 350, 64–79 
(2011). 

19. Teng, L., Mundell, N. a, Frist, A. Y., Wang, Q. & Labosky, P. a. Requirement for Foxd3 in the 
maintenance of neural crest progenitors. Development 135, 1615–1624 (2008). 

20. Angrist, M., Bolk, S., Halushka, M., Lapchak, P. A. & Chakravarti, A. Germline mutations in glial 
cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat. 
Genet. 14, 341–344 (1996). 

21. Ivanchuk, S. M., Myers, S. M., Eng, C. & Mulligan, L. M. De novo mutation of GDNF, ligand for the 
RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum. Mol. Genet. 5, 2023–2026 
(1996). 

22. Hofstra, R. M. et al. RET and GDNF gene scanning in Hirschsprung patients using two dual 
denaturing gel systems. Hum. Mutat. 15, 418–29 (2000). 

23. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. 
Nature 382, 73–76 (1996). 

24. Sánchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. 



CHAPTER 5  

 
154 

Nature 382, 70–73 (1996). 
25. Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–

79 (1996). 
26. Borrego, S. et al. Investigation of germline GFRA4 mutations and evaluation of the involvement 

of GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease. J. Med. Genet. 
40, e18 (2003). 

27. Enomoto, H. et al. GFR alpha1-deficient mice have deficits in the enteric nervous system and 
kidneys. Neuron 21, 317–324 (1998). 

28. Rossi, J. et al. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF 
family receptor α2. J. Clin. Invest. 112, 707–716 (2003). 

29. Liu, J. A.-J. et al. Identification of GLI Mutations in Patients With Hirschsprung Disease That 
Disrupt Enteric Nervous System Development in Mice. Gastroenterology (2015). 
doi:10.1053/j.gastro.2015.07.060 

30. Yang, J. T. et al. Expression of human GLI in mice results in failure to thrive, early death, and 
patchy Hirschsprung-like gastrointestinal dilatation. Mol. Med. 3, 826–35 (1997). 

31. Hendershot, T. J. et al. Expression of Hand2 is sufficient for neurogenesis and cell type-specific 
gene expression in the enteric nervous system. Dev. Dyn. 236, 93–105 (2007). 

32. Lei, J. & Howard, M. J. Targeted deletion of Hand2 in enteric neural precursor cells affects its 
functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing 
functional aganglionosis. Development 138, 4789–4800 (2011). 

33. Bates, M. D., Dunagan, D. T., Welch, L. C., Kaul, A. & Harvey, R. P. The Hlx homeobox 
transcription factor is required early in enteric nervous system development. BMC Dev. Biol. 6, 
33 (2006). 

34. Carter, T. C. et al. Hirschsprung’s disease and variants in genes that regulate enteric neural 
crest cell proliferation, migration and differentiation. J. Hum. Genet. 57, 485–93 (2012). 

35. Lui, V. C. H. et al. Perturbation of hoxb5 signaling in vagal neural crests down-regulates ret 
leading to intestinal hypoganglionosis in mice. Gastroenterology 134, 1104–15 (2008). 

36. Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple 
aspects of gastrointestinal development. Development 127, 2763–2772 (2000). 

37. Tang, C. S. et al. Fine mapping of the 9q31 Hirschsprung’s disease locus. Hum. Genet. 127, 675–
683 (2010). 

38. Cheng, W. W.-C. et al. Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung 
disease-like phenotype. World J. Gastroenterol. 21, 2040–6 (2015). 

39. Breau, M. A. et al. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-
like phenotype. Development 133, 1725–1734 (2006). 

40. Breau, M. A., Dahmani, A., Broders-Bondon, F., Thiery, J.-P. & Dufour, S. Beta1 integrins are 
required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. 
Development 136, 2791–801 (2009). 

41. Brooks, A. S. et al. Homozygous nonsense mutations in KIAA1279 are associated with 
malformations of the central and enteric nervous systems. Am. J. Hum. Genet. 77, 120–6 
(2005). 

42. Drévillon, L. et al. KBP-cytoskeleton interactions underlie developmental anomalies in 
Goldberg-Shprintzen syndrome. Hum. Mol. Genet. 22, 2387–99 (2013). 

43. Dafsari, H. S. et al. Goldberg-Shprintzen megacolon syndrome with associated sensory motor 
axonal neuropathy. Am. J. Med. Genet. A 167, 1300–4 (2015). 

44. Okamoto, N., Wada, Y. & Goto, M. Hydrocephalus and Hirschsprung’s disease in a patient with 
a mutation of L1CAM. J. Med. Genet. 34, 670–671 (1997). 

45. Parisi, M. A. et al. Hydrocephalus and intestinal aganglionosis: is L1CAM a modifier gene in 
Hirschsprung disease? Am. J. Med. Genet. 108, 51–6 (2002). 

46. Okamoto, N. et al. Hydrocephalus and Hirschsprung’s disease with a mutation of L1CAM. J. 
Hum. Genet. 49, 334–7 (2004). 

47. Jackson, S.-R. et al. L1CAM mutation in association with X-linked hydrocephalus and 
Hirschsprung’s disease. Pediatr. Surg. Int. 25, 823–5 (2009). 

48. Garcia-Barcelo, M. et al. TTF-1 and RET promoter SNPs: regulation of RET transcription in 
Hirschsprung’s disease. Hum. Mol. Genet. 14, 191–204 (2005). 

49. Garcia-Barcelo, M.-M. et al. Genome-wide association study identifies NRG1 as a susceptibility 
locus for Hirschsprung’s disease. Proc. Natl. Acad. Sci. U. S. A. 106, 2694–9 (2009). 

50. Luzón-Toro, B. et al. Comprehensive Analysis of NRG1 Common and Rare Variants in 



 COMBINED STRATEGIES TO IDENTIFY GENES FOR RARE COMPLEX DISEASES; HSCR AS A MODEL 

 
155 

5 

Hirschsprung Patients. PLoS One 7, e36524 (2012). 
51. Tang, C. S.-M. et al. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. 

PLoS Genet. 8, e1002687 (2012). 
52. Yang, J. et al. Exome sequencing identified NRG3 as a novel susceptible gene of Hirschsprung’s 

disease in a Chinese population. Mol. Neurobiol. 47, 957–66 (2013). 
53. Doray, B. et al. Mutation of the RET ligand, neurturin, supports multigenic inheritance in 

Hirschsprung disease. Hum. Mol. Genet. 7, 1449–1452 (1998). 
54. Ruiz-Ferrer, M. et al. Novel mutations at RET ligand genes preventing receptor activation are 

associated to Hirschsprung’s disease. J. Mol. Med. (Berl). 89, 471–80 (2011). 
55. Heuckeroth, R. O. et al. Gene targeting reveals a critical role for neurturin in the development 

and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22, 253–63 
(1999). 

56. Chalazonitis, A. et al. Neurotrophin-3 is required for the survival-differentiation of subsets of 
developing enteric neurons. J. Neurosci. 21, 5620–5636 (2001). 

57. Fernández, R. M. et al. A novel point variant in NTRK3, R645C, suggests a role of this gene in 
the pathogenesis of Hirschsprung disease. Ann. Hum. Genet. 73, 19–25 (2009). 

58. Lang, D. et al. Pax3 is required for enteric ganglia formation and functions with Sox10 to 
modulate expression of c-ret. J. Clin. Invest. 106, 963–71 (2000). 

59. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox 
gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 33, 459–61 (2003). 

60. Garcia-Barceló, M. et al. Association study of PHOX2B as a candidate gene for Hirschsprung’s 
disease. Gut 52, 563–7 (2003). 

61. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. The homeobox gene Phox2b is 
essential for the development of autonomic neural crest derivatives. Nature 399, 366–70 
(1999). 

62. Ngan, E. S.-W. et al. Hedgehog/Notch-induced premature gliogenesis represents a new disease 
mechanism for Hirschsprung disease in mice and humans. J. Clin. Invest. 121, 3467–78 (2011). 

63. Wang, Y. et al. Common Genetic Variations in Patched1 (PTCH1) Gene and Risk of 
Hirschsprung Disease in the Han Chinese Population. PLoS One 8, 1–8 (2013). 

64. Edery, P. et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367, 
378–380 (1994). 

65. Romeo, G. et al. Point mutations affecting the tyrosine kinase domain of the RET proto-
oncogene in Hirschsprung’s disease. Nature 367, 377–378 (1994). 

66. Schuchardt, A., D’Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the 
kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 
367, 380–383 (1994). 

67. Warren, M. et al. A Sall4 mutant mouse model useful for studying the role of Sall4 in early 
embryonic development and organogenesis. Genesis 45, 51–58 (2007). 

68. Jiang, Q. et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic 
interaction with ret are critical to Hirschsprung disease liability. Am. J. Hum. Genet. 96, 581–96 
(2015). 

69. Luzón-Toro, B. et al. Mutational spectrum of semaphorin 3A and semaphorin 3D genes in 
Spanish Hirschsprung patients. PLoS One 8, e54800 (2013). 

70. Fu, M. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric 
neural crest cells in gut. J. Cell Biol. 166, 673–684 (2004). 

71. Pingault, V. et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat. 
Genet. 18, 171–173 (1998). 

72. Touraine, R. L. et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with 
novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet. 66, 
1496–503 (2000). 

73. Sánchez-Mejías, A. et al. Involvement of SOX10 in the pathogenesis of Hirschsprung disease: 
report of a truncating mutation in an isolated patient. J. Mol. Med. (Berl). 88, 507–14 (2010). 

74. Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest 
development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64 (1998). 

75. Taketomi, T. et al. Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and 
esophageal achalasia. Nat. Neurosci. 8, 855–7 (2005). 

76. Amiel, J. et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, 
are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with 



CHAPTER 5  

 
156 

autonomic dysfunction. Am. J. Hum. Genet. 80, 988–993 (2007). 
77. Zweier, C. et al. Haploinsufficiency of TCF4 causes syndromal mental retardation with 

intermittent hyperventilation (Pitt-Hopkins syndrome). Am. J. Hum. Genet. 80, 994–1001 
(2007). 

78. Peippo, M. M. et al. Pitt-Hopkins syndrome in two patients and further definition of the 
phenotype. Clin. Dysmorphol. 15, 47–54 (2006). 

79. Wakamatsu, N. et al. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of 
Hirschsprung disease. Nat. Genet. 27, 369–70 (2001). 

80. Van de Putte, T. et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-
1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-
mental retardation syndrome. Am. J. Hum. Genet. 72, 465–70 (2003). 

81. Zhang, Y. & Niswander, L. Zic2 is required for enteric nervous system development and 
neurite outgrowth: a mouse model of enteric hyperplasia and dysplasia. Neurogastroenterol. 
Motil. 25, 538–41 (2013). 

 

 




