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Maximum likelihood factor analysis of discrete data within the structural equation

modeling framework rests on the assumption that the observed discrete responses

are manifestations of underlying continuous scores that are normally distributed. As

maximizing the likelihood of multivariate response patterns is computationally very

intensive, the sum of the log–likelihoods of the bivariate response patterns is maximized

instead. Little is yet known about how to assess model fit when the analysis is based on

such a pairwise maximum likelihood (PML) of two–way contingency tables. We propose

new fit criteria for the PML method and conduct a simulation study to evaluate their

performance in model selection. With large sample sizes (500 or more), PML performs

as well the robust weighted least squares analysis of polychoric correlations.

Keywords: discrete data, pairwise maximum likelihood analysis, weighted least squares analysis, fit statistics

1. INTRODUCTION

Tests and questionnaires usually consist of items with discrete ordinal response scales. In the factor
analysis of discrete item responses, multivariate normally distributed scores are assumed to underly
the discrete item responses (e.g., Wirth and Edwards, 2007; Rhemtulla et al., 2012).

Let X = (X1,X2, . . . ,Xk) denote the vector of the k variables with discrete response scales, with
realizations xi ∈ {1, 2, . . . ,mi}, so that each item i has mi response options. The observed score xi
on item i is related to the unobserved score x∗i on the underlying continuum through

Xi = xi ⇔ τxi−1 < x∗i ≤ τxi , (1)

where τxi−1 and τxi are the threshold parameters for the category of item i. An item with mi

categories really only has mi − 1 thresholds, as τ0 ⇒ −∞ and τmi ⇒ ∞. Herinafter, to simplify
notation, we assume that the number of response options is equal across items,mi = m for all i.

As the underlying continuous variable X∗
i is not observed, its mean and variance are not

identified without further constraints. One can either fix the mean and variance (e.g., zero mean
and unit variance), or one can fix two of the thresholds (e.g., at zero and unity). The latter is not
possible with dichotomous items, because they are associated with just a single threshold.

Various estimation methods have been proposed for the factor analysis of (observed) discrete
responses with (unobserved) underlying continuous scores. Here we discuss the weighted least
squares method, the multivariate maximum likelihood method, and the bivariate maximum
likelihood method.

The weighted least squares method was introduced as a two–step method. In the first step,
the polychoric correlations between the observed variables are estimated. In the second step,
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the parameters of the structural equation model are estimated
on the basis of the polychoric correlations. The general WLS fit
function for discrete data, based on Browne (1984) who described
the WLS fit for continuous data, is given by

FWLS = (q̂− g)′W−1(q̂− g), (2)

where q̂ is a vector with the non–redundant elements of the
k × k matrix of polychoric correlations and g is a vector with
the corresponding elements of the k × k matrix of model–
implied correlations. The weight matrix W is a positive definite
matrix of order v × v, with v = k(k + 1)/2. It contains
consistent estimates of the asymptotic variances and covariances
of the polychoric correlations (e.g., Jöreskog, 1990, 1994). Other
authors also included the observed and model implied threshold
values in the q̂ and g vectors, and the associated asymptotic
covariances of q̂ in matrixW, which resulted in two–step (see Lee
et al., 1995) and three–step approaches (e.g., Muthén, 1984, 1989;
Lee et al., 1990b). As the weight matrix can only be accurately
estimated with large sample sizes (e.g., Rigdon and Ferguson,
1991; Muthén and Kaplan, 1992; Dolan, 1994), it is practically
unfeasible to use the WLS function with the full weight matrix.
An alternative is to use the WLS function with diagonal matrix
WD, containing only the diagonal elements of W to estimate
the parameter estimates. However, for inference, one needs the
full weight matrix as implemented in the so–called robust WLS.
The three–step robust WLS with mean–and–variance corrected
chi-square and standard errors (WLSMV; Muthén et al., 1997;
Asparouhov and Muthén, 2010), also referred to as RDWLS (see
Katsikatsou et al., 2012), has been advocated because of good
performance in simulation studies (e.g., Beauducel andHerzberg,
2006; Barendse et al., 2015).

In the multivariate maximum likelihood estimation method
(Lee et al., 1990a), the maximum likelihood estimator is used
to estimate the variances, covariances, means, and thresholds
of all X∗ simultaneously, in a single step. The method is also
known as the full information maximum likelihood method, as
one maximizes the likelihoods of the complete response patterns.
This implies that one uses all information in the data, and does
not have to rely on polychoric correlations, like in the WLS
related estimation methods. Let ρ denote the vector containing
the correlations between all pairs of continuous variables X∗

i and
X∗
j with i, j = 1 . . . k, and i < j. The expected proportion π

of response vector x, given correlations ρ and thresholds τ , is
given by

πx1,x2,...,xk (ρ, τ ) = Pr(X1 = x1,X2 = x2, . . . ,Xk = xk|ρ, τ )

=

τx1
∫

τx1−1

τx2
∫

τx2−1

. . .

τxk
∫

τxk−1

f (x∗1, x
∗
2, . . . , x

∗
k |ρ, τ )dx∗1dx

∗
2 . . . dx∗k , (3)

where f denotes the k-dimensional normal density. Let index r
refer to a complete item response pattern (x1, x2, . . . , xk), and let
pr denote the observed proportion of respondents with response
pattern r in the sample. The log–likelihood of response pattern r

is given by

ln L(ρ, τ ) =

mk
∑

r=1

pr ln[πr(ρ, τ )]+ constant, (4)

which is maximized to obtain the estimates for the parameters
ρ and τ . As maximizing this log–likelihood requires numerical
evaluation of high–dimensional integration over x∗ (Equation 3)
in order to obtain the probability function of a response vector,
Jöreskog and Moustaki (2001) already concluded that FIML is
only feasible with a small numbers of variables (e.g., four or less).
This seriously limits the application of FIML in practice.

In the bivariate maximum likelihood estimation method,
high numerical integration is avoided by considering bivariate
information only. In this one–step method, the sum of the
log–likelihoods of all possible bivariate response patterns is
maximized, rather than that of the full multivariate response
patterns.

For two items i and j, the expected proportion of respondents
with scores xi, xj is given by

πxi,xj (ρij, τi, τj) =

τxi
∫

τxi−1

τxj
∫

τxj−1

f (x∗i , x
∗
j |ρij, τi, τj)dx

∗
i dx

∗
j , (5)

for τi = (τ1i , τ2i , . . . , τm−1) and τj = (τ1j , τ2j , . . . , τm−1). In
order to obtain the likelihood estimates of the parameters ρij
and τi, τj, instead of maximizing the multivariate likelihood, we
maximize the sum of all bivariate log–likelihoods:

ln L(ρij, τi, τj) =

k− 1
∑

i= 1

k
∑

j= i+ 1

m
∑

xi = 1

m
∑

xj = 1

pxi,xj ln[πxi,xj (ρij, τi, τj)]

+ constant, (6)

where pxi,xj denotes the sample proportion of responses xi and xj.
Jöreskog and Moustaki (2001) denoted this method the

underlying bivariate normal method. They originally suggested
to use both the univariate and bivariate distributions. Based
on results of their simulation study (Katsikatsou et al., 2012)
concluded that the univariate distributions have no additional
value in the parameter estimation. The estimation method that
only relies on bivariate likelihoods is referred to as the pairwise
maximum likelihood (PML) method.

The PML estimation method has the advantage over FIML
that it is computationally feasible, but it has the disadvantage that
it only uses the bivariate distributions of the observed variables,
and thus does not utilize all available information.

As an overall measure of fit, Jöreskog and Moustaki (2001)
proposed to use the average of all bivariate likelihood ratio
test statistics, but this statistic cannot be used as a goodness–
of–fit test as its distribution is unknown. Maydeu-Olivares
(2006) and Maydeu-Olivares and Joe (2006) introduced a
family of fit statistics for testing composite null hypotheses in
multidimensional contingency tables. As the PML method has
been recognized as a special case of the maximum composite
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likelihood method (Varin, 2008; Varin et al., 2011) and the
bivariate maximum likelihood estimation method, it can be
used to obtain a residual based fit statistics (Maydeu-Olivares,
2006; Maydeu-Olivares and Joe, 2006) and standard errors
(Xi, 2011) for the PML estimation method. In a simulation
study, Xi (2011) found the composite likelihood fit statistic and
standard errors estimates of the bivariate maximum likelihood
estimation method to be appropriate, when compared to a
full information expectation maximization algorithm. However,
these test statistics are not yet readily available, as the have not yet
been implemented in a computer program.

In the present paper, we propose three new fit statistics. We
investigate these test statistics in a simulation study and compare
them with the overall goodness–of–fit that is associated with
robust WLS estimation. The new fit statistics have been made
available in the open source SEM software lavaan (see Appendix
in Supplementary materials; Rosseel, 2012).

2. METHODS

To evaluate the three new fit statistics (explained in Section 2.2)
for the PML estimationmethod, we conduct a simulation study in
which we vary sample size (200, 500, and 1,000) and the number
of response options (2, 3, and 4) in a fully crossed design, yielding
nine conditions.With 1,000 replications, we obtain 9,000 datasets
that are analyzed using the PML and robust WLS estimation
methods.

2.1. Data Generation
We partly replicate the simulation study conducted by
Katsikatsou et al. (2012). They generated item scores on six
items according to a two factor model with factor loadings

3 =

















0.9 0
0.8 0
0.7 0
0.5 0.6
0 0.7
0 0.8

















, (7)

common factor variances and covariances

8 =

[

1 0.5
0.5 1

]

, (8)

and residual variances

2 = I− diag(383′). (9)

Continuous item scores are drawn from a multivariate normal
distribution with variances and covariances

6 = 383′ + 2, (10)

and zero means. For each sample size (200, 500, and 1000), we
generate 1000 datasets of continuous scores. These scores are
categorized into two categories (threshold 0, yielding expected
proportions 0.50 and 0.50), three categories (thresholds –0.6 and

0.6, yielding expected proportions of 0.27, 0.45, and 0.27), and
four categories (thresholds –1.2, 0, and 1.2, yielding expected
proportions 0.11, 0.39, 0.39, and 0.11; in line with Katsikatsou
et al., 2012).

2.2. Model Fit Statistics
In the PML method, model parameters are estimated by
maximizing the sum of the log–likelihoods of all bivariate
responses patterns, for all pairs of items. As the distribution
of this sum is not known, we propose three measures of fit
that are based on likelihood ratios: CF , CM , and CP. The CF

and CM fit statistics compare the model–implied proportions of
response patterns with, respectively, the observed proportions of
full response patterns (signified by subscript F) and the expected
proportions under the assumption of multivariate normality
(signified by subscript M). The CP fit statistic compares the
model–implied proportions of pairs of item responses to the
observed proportions of pairs of item responses (signified by
subscript P).

Specifically, CF compares the log–likelihood of the expected
proportions of the multivariate response patterns (Equation 4)
with the observed proportions of response patterns. Multiplied
by two times the sample size, we obtain

CF = 2N

mk
∑

r= 1

pr ln[pr/π̂r], (11)

that is asymptotically chi–square distributed with degrees of
freedom equal to the difference between the number of possible
response patterns and the number of model parameters to be
estimated minus one (Agresti, 2002, pp. 590–591),

dfF = mk − n− 1, (12)

where n is the number of parameters to be estimated. As
the number of possible response patterns mk is usually much
larger than sample size N, most response patterns will not be
observed at all, yielding many empty cells in the multivariate
mk table, thereby causing bias in the CF statistic. As a possible
solution (Jöreskog and Moustaki, 2001) considered the number
of response patterns that is actually observed only, and calculated
degrees of freedom as

dfF∗ = ur − n− 1, (13)

where ur denotes the number of observed response patterns.
The fit statistic CM compares the log–likelihood of the the

model–implied proportions of response patterns of the model–
of–interest with the model–implied proportions of the model
that only assumes an underlyingmultivariate normal distribution
(without any further restrictions):

CM = CF1 − CF0, (14)

where CF1 is CF for Model 1, the model of interest, and CF0 is
CF for Model 0, the model that assumes underlying multivariate
normality and that has all polychoric correlations ρ and all
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thresholds τ as its parameters. Statistic CM has asymptotically
a chi–square distribution with degrees of freedom equal to the
difference in the numbers of parameters of Models 0 and 1,

dfM = k(k− 1)/2+ k(m− 1)− n1, (15)

where k(k − 1)/2 is the number of polychoric correlations,
k(m − 1) is the number of thresholds, and n1 is the number of
parameters of the model of interest. If the bias in CF1 and CF0

caused by empty cells in themk table cancels out in CM , then CM

may outperform CF .
The fit statistic CP is based on pairs of responses only, by

comparing the observed andmodel–implied proportions of those
pairs. For items i and j (Agresti, 2002),

CPij = 2N

m
∑

xi = 1

m
∑

xj = 1

pxi,xj ln[pxi,xj/π̂xi,xj ], (16)

which has an asymptotic chi–square distribution with degrees of
freedom equal to the information (which is (m2 − 1)) minus
the number of parameters [i.e., 2(m − 1) thresholds and 1
correlation],

dfP = m2 − 2m. (17)

To test the overall goodness-of-fit of the model, we consider
all CPij and select CP = maximum (CPij ). As there are k(k −

1)/2 possible pairs of items, this CP should be applied with a
Bonferroni adjusted level of significance α∗, with

α∗ =
2α

k(k− 1)
, (18)

to keep the family–wise error rate at α. The hypothesis of overall
goodness-of-fit is tested at α and rejected when CP is significant
at α∗. Notice that with dichotomous items, m = 2, dfP = 0, so
that the hypothesis of an underlying bivariate normal distribution
cannot be tested. So, statistic CP can only be applied when there
are more than two response options.

We will compare the performance of these statistics with the
chi-square measure of overall goodness–of–fit that is associated
with robust WLS estimation, which we will refer to as CW . To
account for the violation of distributional assumptions, this CW

statistic is subject to a scaling correction (Muthén et al., 1997;
Satorra and Bentler, 2001; Asparouhov and Muthén, 2010). Here
we will use the mean–and–variance corrected chi–square statistic
(Asparouhov and Muthén, 2010).

2.3. Analysis
We fit three models to each of the 9,000 datasets: a baseline
model, a one–factor model, and a two–factor model. The baseline
model includes all polychoric correlations and thresholds. If the
baseline model does not fit then we must reject the hypothesis of
an underlying multivariate normal distribution. The one–factor
model has a free 6 × 1 matrix 3 and the 1 × 1 matrix 8 is
fixed at unity. The two-factor model corresponds to the data
generation model and has a 6× 2 matrix 3 with a pattern of free
factor loadings that corresponds with3 above, a 2× 2 symmetric

matrix 8 with diagonal elements fixed at unity and a free off–
diagonal element. In both the one–factor and two–factor model
2 is a 6× 6 diagonal matrix equal to I− diag(383′).

We use two estimationmethods: PML and robustWLS.Model
fit will be evaluated with measures CF , CM , and CP after PML
estimation and with measure CW after robust WLS estimation.
The computer program Mx (Neale et al., 2002) is used for PML
estimation, and the computer program Mplus 6.11 (Muthén
and Muthén, 2010) for robust WLS estimation. The computer
program R is used to calculate the fit measures CF , CM , and CP

(using the “mvtnorm” package; R version 2.12.0; R Development
Core Team, 2010).

The performance of the four fit measures will be evaluated
by calculating the proportions of model rejection in each of the
conditions. The baseline model and the two–factor model should
fit. When testing at a 5% level of significance, these two models
should be rejected in 5% of all cases. The one–factor model
should not fit and should always be rejected.

3. RESULTS

Before presenting the results of the different methods for the
evaluation of model fit, we briefly comment on the accuracy
and efficiency of parameter estimation through PML. The
accuracy is evaluated by calculating the absolute differences
between the parameter estimates and the population values.
The standard deviations indicate the efficiency of the parameter
estimates.

Across all conditions, the average absolute difference of the
factor loadings is 0.001 and the average standard deviation is
0.052. The average absolute difference of the correlation between
the latent variables across all conditions is 0.002 and the standard
deviation across all conditions is 0.069. Noteworthy, PML shows
a slightly higher accuracy than robust WLS in terms of the
estimates of the factor loadings and the correlation, with average
absolute differences of 0.001 for PML and 0.003 for robust
WLS. The efficiency is about the same. Katsikatsou et al. (2012)
already reported on the accuracy and efficiency of the parameter
estimates in the case of four point response options. Our results
are consistent with the results of Katsikatsou et al. (2012).

3.1. The CF Fit Statistic
Table 1 gives the results of fit evaluation with the CF statistic for
the baseline model, the one–factor model, and the two–factor
model. For each condition, the means and standard deviations of
the fit statistic are calculated across 1,000 replications. Rejection
rates and 95% confidence intervals are given two times: Once
with degrees of freedom based on the number of possible
response patterns (dfF , Equation 12) and with degrees of freedom
based on the number of observed response patterns (dfF∗ ,
Equation 13). Means and standard deviations of dfF∗ are given
as well.

The fit of the baseline model is a test of the assumption of
underlying multivariate normality, so we would expect rejection
rates that equal the level of significance (5%). The overall
rejection rates with the df based on the number of possible
response patterns (dfF) in conditions with two-point response
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TABLE 1 | CF Rejection rates.

Conditions CF CF with dfF CF with df
F*

N Scale M(CF ) SD(CF ) df RR 95% CI M(df) SD(df) RR 95% CI

Q2.5 Q97.5 Q2.5 Q97.5

BASELINE MODEL

200 2-point 48.079 8.584 42 0.135 0.114 0.156 25.099 2.827 0.838 0.815 0.861

3-point 292.774 21.491 701 0.000 - - 91.058 5.436 1.000 - -

4-point 495.966 29.052 4,062 0.000 - - 114.035 5.493 1.000 - -

500 2-point 47.921 10.052 42 0.154 0.132 0.176 36.733 1.918 0.356 0.326 0.386

3-point 396.944 25.581 701 0.000 - - 173.271 7.140 1.000 - -

4-point 757.367 37.709 4,062 0.000 - - 249.046 8.657 1.000 - -

1000 2-point 44.524 9.815 42 0.088 0.070 0.106 40.354 0.786 0.139 0.118 0.160

3-point 470.109 27.018 701 0.000 - - 243.532 8.069 1.000 - -

4-point 982.595 41.825 4,062 0.000 - - 389.423 10.847 1.000 - -

ONE-FACTOR MODEL

200 2-point 90.359 15.587 51 0.919 0.902 0.936 34.099 2.827 0.999 0.997 1.000

3-point 363.119 25.975 710 0.000 - - 100.058 5.436 1.000 - -

4-point 580.380 33.606 4,071 0.000 - - 123.035 5.493 1.000 - -

500 2-point 140.112 23.840 51 1.000 - - 45.733 1.918 1.000 - -

3-point 561.390 34.551 710 0.000 - - 182.271 7.140 1.000 - -

4-point 957.356 46.486 4,071 0.000 - - 258.046 8.657 1.000 - -

1000 2-point 221.741 31.113 51 1.000 - - 49.354 0.786 1.000 - -

3-point 790.216 45.708 710 0.633 0.603 0.663 252.532 8.069 1.000 - -

4-point 1,374.973 59.976 4,071 0.000 - - 396.423 10.847 1.000 - -

TWO-FACTOR MODEL

200 2-point 55.817 9.096 49 0.120 0.100 0.140 32.099 2.827 0.796 0.771 0.821

3-point 300.436 21.524 708 0.000 - - 98.058 5.436 1.000 - -

4-point 503.774 29.109 4,069 0.000 - - 121.035 5.493 1.000 - -

500 2-point 55.420 10.588 49 0.160 0.137 0.183 43.733 1.918 0.332 0.303 0.361

3-point 404.481 25.652 708 0.000 - - 180.271 7.140 1.000 - -

4-point 765.212 37.649 4,069 0.000 - - 256.046 8.657 1.000 - -

1000 2-point 52.086 10.773 49 0.096 0.078 0.114 47.354 0.786 0.135 0.114 0.156

3-point 477.726 27.308 708 0.000 - - 250.532 8.069 1.000 - -

4-point 990.351 41.933 4,069 0.000 - - 398.423 10.847 1.000 - -

Means (M) and standard deviations (SD) of the fit statistic, rejection rates (RR) at a 5% level of significance, and 95% confidence intervals (CI) of the rejection rates are calculated across

the 1000 simulated datasets.

scales are too high (13.5%, 15.4%, 8.8%). With three-point
and four–point response scales, dfF is very large so that the
baseline model never gets rejected. The same is true for the
two–factor model that should fit the data, but is rejected
too often in the conditions with two-point response scales
(12.0%, 16.0%, 9.6%) and never rejected in the other conditions.
The one-factor model is not correct and should be rejected,
which is the case in conditions with two-point response scales
but not in conditions with three-point scales and four-point
scales.

We attribute the bad results in conditions with three-point
scales and four-point scales to the large numbers of empty cells
in the multivariate contingency tables. In the cases of three-point
response scales and four-point response scales the numbers of
possible response patterns are 729 and 4096, whereas the total
numbers of observations are only 200, 500, or 1000, rendering the

CF statistic unsuitable. The overall rejection rates of the baseline
model with degrees of freedom based on the number of observed
response patterns (i.e., dfF∗ ) are consistently much too high, in all
conditions, showing that the use of dfF∗ is not justified.

3.2. The CM Fit Statistic
Table 2 gives the results of fit evaluation with the CM statistic
for the one–factor model and the two–factor model. The one–
factor model is almost always rejected, except in the condition
with sample size 200 and two–point response scales (with 0.987
rejection rate). The rejection rates for the two–factor model
should be about equal to the level of significance (5%), but vary
from 6.8% to 9.6%.

Overall, we consider the CM results satisfactory. Apparently,
the sparseness of data and (almost) empty cells that invalidate
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TABLE 2 | CM Rejection Rates.

Conditions CM df RR (CM) 95% CI

N Scale M(CM) SD(CM) Q2.5 Q97.5

ONE–FACTOR MODEL

200 2-point 42.280 13.885 9 0.987 0.980 0.994

3-point 70.344 18.109 9 1.000 - -

4-point 84.415 21.178 9 1.000 - -

500 2-point 92.191 20.965 9 1.000 - -

3-point 164.446 28.851 9 1.000 - -

4-point 199.989 31.577 9 1.000 - -

1000 2-point 177.217 28.776 9 1.000 - -

3-point 320.107 40.680 9 1.000 - -

4-point 392.379 43.946 9 1.000 - -

TWO–FACTOR MODEL

200 2-point 7.738 4.260 7 0.091 0.073 0.109

3-point 7.661 4.099 7 0.072 0.056 0.088

4-point 7.808 4.173 7 0.083 0.066 0.100

500 2-point 7.499 3.870 7 0.068 0.052 0.084

3-point 7.537 4.170 7 0.081 0.064 0.098

4-point 7.845 4.387 7 0.096 0.078 0.114

1000 2-point 7.561 4.143 7 0.085 0.068 0.102

3-point 7.617 4.164 7 0.082 0.065 0.099

4-point 7.756 3.958 7 0.080 0.063 0.097

Means (M) and standard deviations (SD) of the fit statistic, rejection rates (RR) at a 5%

level of significance, and 95% confidence intervals (CI) of the rejection rates are calculated

across the 1000 simulated datasets.

the use of the CF statistic does not seem to affect the CM statistic
much.

3.3. The CP Fit Statistic
The CP results are given in Table 3. As explained above, the CP

statistic cannot be used with two-point response scales. For all
other conditions Table 3 gives the means, standard deviations,
and rejection rates of the highest CP among the 15 bivariate tests
that are conducted with each dataset. To guard against inflation
of the family–wise error rate, the level of significance is adjusted
to 5% / 15= 0.33%.

The rejection rates for the baseline model vary between 4.4%
and 5.5%, and for the two–factor model between 3.5% and 6.0%,
which is reasonably close to the significance level of 5%. The one–
factor model is almost always rejected in conditions with sample
sizes of 500 and 1,000. However, in the small sample conditions
rejection rates are only 67.0% and 53.9%.

3.4. The CW Fit Statistic
For the purpose of comparison, Table 4 gives the CW results after
analysing all data sets with the robustWLSmethod of estimation.
The one-factor model is almost always rejected. The rejection
rates for the two-factor model vary between 3.9% and 6.4%.

TheCW results with the two-factormodel are somewhat better
(closer to 5% rejection rates) than the CM results. The CW results
are about similar to the CP results, except for the rejection rates

TABLE 3 | CP Rejection rates.

Conditions CP df RR (CP) 95% CI

N Scale M(CP) SD(CP) Q2.5 Q97.5

BASELINE MODEL

200 3-point 8.653 2.783 3 0.050 0.036 0.064

4-point 16.044 3.656 8 0.046 0.033 0.059

500 3-point 8.393 2.893 3 0.055 0.041 0.069

4-point 15.953 3.740 8 0.050 0.036 0.064

1000 3-point 8.419 2.846 3 0.049 0.036 0.062

4-point 16.141 3.640 8 0.044 0.031 0.057

ONE–FACTOR MODEL

200 3-point 16.577 5.307 3 0.670 0.641 0.699

4-point 24.338 6.159 8 0.539 0.508 0.570

500 3-point 31.554 9.173 3 0.996 0.992 1.000

4-point 42.918 10.273 8 0.995 0.991 0.999

1000 3-point 58.083 12.343 3 1.000 - -

4-point 76.562 14.507 8 1.000 - -

TWO–FACTOR MODEL

200 3-point 8.918 2.789 3 0.057 0.043 0.071

4-point 16.306 3.675 8 0.052 0.038 0.066

500 3-point 8.626 2.908 3 0.060 0.045 0.075

4-point 16.190 3.744 8 0.049 0.036 0.062

1000 3-point 8.672 2.844 3 0.054 0.040 0.068

4-point 16.409 3.659 8 0.054 0.040 0.068

Means (M) and standard deviations (SD) of the fit statistic, rejection rates (RR) at a 5%

level of significance, and 95% confidence intervals (CI) of the rejection rates are calculated

across the 1000 simulated datasets.

of the one-factor model in small sample size conditions, in which
the CW statistic seems to have more power.

4. DISCUSSION

We proposed three new statistics for goodness of overall fit of
models that are fitted through the pairwise maximum likelihood
(PML) method. With the CF statistic we test the difference
between the model–implied proportions of multivariate response
patterns and the observed proportions of multivariate response
patterns. With the CM statistic we test the difference between
model–implied proportions of multivariate response patterns
and the proportions of response patterns that are implied by
the assumption of underlying multivariate normally distributed
continuous variables. With the CP statistic we test the difference
between model–implied proportions of bivariate response
patterns and observed proportions of bivariate response patterns.

The CF statistic appeared unsuitable for the evaluation of
model fit. The performance of theCM statistic was good, although
the rejection rates for the two factor model were consistently a
little too high (varying between 6.8% and 9.6% instead of 5%).
The CP statistic showed the best results with rejection rates close
to the expected values (around 5% for models that should fit, and
close to 100% for models that should not fit), except for relatively
small sample sizes of 200 with which the rejection rates for the
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TABLE 4 | CW Rejection rates.

Conditions CW df RR (CW ) 95% CI

N Scale M(CW ) SD(CW ) Q2.5 Q97.5

ONE–FACTOR MODEL

200 2-point 46.014 14.775 9 0.994 0.989 0.999

3-point 73.982 19.193 9 1.000 - -

4-point 88.832 22.784 9 1.000 - -

500 2-point 102.986 23.243 9 1.000 - -

3-point 177.773 30.827 9 1.000 - -

4-point 213.134 34.428 9 1.000 - -

1000 2-point 201.828 33.761 9 1.000 - -

3-point 348.523 43.996 9 1.000 - -

4-point 421.149 47.477 9 1.000 - -

TWO–FACTOR MODEL

200 2-point 7.032 3.780 7 0.044 0.031 0.057

3-point 6.933 3.557 7 0.041 0.029 0.053

4-point 6.992 3.686 7 0.060 0.045 0.075

500 2-point 7.028 3.557 7 0.053 0.039 0.067

3-point 6.804 3.604 7 0.039 0.027 0.051

4-point 7.186 3.530 7 0.044 0.031 0.057

1000 2-point 7.114 3.967 7 0.064 0.049 0.079

3-point 7.056 3.803 7 0.054 0.040 0.068

4-point 7.012 3.548 7 0.046 0.033 0.059

Means (M) and standard deviations (SD) of the fit statistic, rejection rates (RR) at a 5%

level of significance, and 95% confidence intervals (CI) of the rejection rates are calculated

across the 1000 simulated datasets.

wrong one–factor model were substantially too low. For all fit
statistics, we only reported results of testing at the 5% level of
significance, as the results at the 1% level of significance were very
similar.

As an aside, we note that in the condition with four response
options and sample size 500, we have reported the results of a
second drawing of 1,000 datasets. The first drawing produced
by chance unexpected low CP rejection rates for the baseline
model (i.e., 0.032 with a confidence interval of 0.021–0.043) and
one–factor model (i.e., 0.035 with a confidence interval of 0.025–
0.046) that did not seem representative. No other statistics were
affected.

The performance of the PML fit statistics is only partly
dependent on sample size. TheCF statistic is not suitable with any
sample size, as we observe the negative consequences of very large
contingency tables affected by sparseness of data (e.g., Agresti and
Yang, 1987; Reiser and VandenBerg, 1994; Reiser and Lin, 1999;
Jöreskog and Moustaki, 2001; Bartholomew and Leung, 2002).
The alternative way of calculating degrees of freedom of Jöreskog
and Moustaki (2001) on the basis of the number of observed
response patterns instead of the number of possible response
patterns, appeared unsuitable. In practice, one can deal with
sparseness by for example combining cells, reducing the number
of categories, or eliminating the most offending variables (see
Agresti and Yang, 1987; Jöreskog and Moustaki, 2001). However,
it was not possible to implement this in this simulation study.

The CM statistic seems not that much affected by sparseness
of data. The CP statistic uses bivariate tables only, but its power
for rejecting the one–factor model is mediocre when the sample
size is small. Still, the CP rejection rates for the correct models are
not affected by small sample size. In our simulation study we also
varied the number of response options, but this manipulation did
not affect the results of the CM and CP fit statistics much.

We compared the results of the PML fit statistics results with
results of robust weighted least squares (WLS) with the adjusted
chi–square statistic CW . The performance of CW was very similar
to the performance of CP, and in small sample conditions CW

outperformed CP in rejecting the one–factor model. Still, robust
WLS estimation is very different from PML estimation. Robust
WLS is a multiple–step method that relies on the estimated
polychoric correlations. The model–implied correlations are
then fitted to fixed polychoric correlations, so there is no
direct relation between the model–implied correlations and the
observed discrete responses. That is why we really expected
PML to behave better than robust WLS. However, in the present
simulation study of six variables measuring two common factors,
robust WLS did at least as well as PML.

We still do not know how robust WLS and PML compare in
larger datasets, with more variables, and more complex models.
As WLS relies on a two-step procedure in which summary
statistics are calculated first, we would expect the single-step PML
procedure to outperform the WLS procedure. PML may also
show advantages over WLS in case of incomplete data. Finally,
we think that the PML method is a feasible alternative to FIML
in case of larger data sets. Overall, the PML method seems a
promising method that can be used to estimate all structural
equation models, such as exploratory factor analysis models,
multigroup models and longitudinal models (Moustaki, 2003;
Vasdekis et al., 2012). We used Mx to apply the PMLmethod, but
the PML fit estimates can also be obtained with OpenMX (Boker
et al., 2011) and lavaan (Rosseel, 2012). To facilitate their use, the
CF , CM , and CP statistics have been implemented in lavaan (see
Appendix in Supplementary materials; Rosseel, 2012).
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