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Abstract—A common practice when writing Smalltalk source
code is to name method arguments in a way that hints at their
expected type (i.e., aString, anInteger, aDictionary). This practice
makes code more readable, but the prevalence of this practice
is unknown, thus its reliability is questionable. Tools such as
the auto complete feature in the Pharo Smalltalk code editor
rely on these hints to improve the developer experience. The
default algorithm used in Pharo to extract type information from
these hints succeeds in extracting a type in slightly over 36% of
method arguments taken from 114 Pharo projects. In this paper
we present the results of analyzing the failing method argument
names, and provide several simple heuristics that can increase
the rate of success to slightly over 50%. We also present a case
study on the relation between type hints and run-time types of
method arguments that shows that type hints, in a great majority
of cases, reflect run-time types.

I. INTRODUCTION

Programming languages are usually divided into two groups
based on their type system: statically typed languages and
dynamically typed languages. Dynamically typed languages
are usually considered to be more flexible and more productive
[1], but lack the explicit type declarations that typical statically
typed languages provide. These explicit type annotations are
helpful for program comprehension [2], but can also be used
by developer tools (e.g., code completion) to improve the
developer experience and productivity.

To partially compensate for the lack of explicit type an-
notations many Smalltalk developers [3] follow a convention
of naming method arguments in a way that hints at the
expected type of the method argument [4]. This means that
it is recommended to name method arguments by prefixing
the expected type with the indefinite article “a” or “an”.
We call this convention “type hints”. Listing 1 presents the
implementation of the indexOf: method in the String class
in Pharo Smalltalk [5]. The only argument of this method is
named aCharacter clearly hinting that the method expects to
be called with an object of type Character as the parameter.

This convention obviously helps to provide type information
about method arguments in a dynamically typed language, but,
as any convention not strictly enforced, is only as good as the
discipline of developers to follow it.

In this paper we present a case study of the extent of
usage of this convention. We gathered all method arguments
from 114 Pharo Smalltalk projects and applied Pharo’s built-in

system for extracting type information from argument names.
We found that this system was able to extract type information
from 36.21% of argument names.

1 String>>indexOf: aCharacter
2 aCharacter isCharacter ifFalse: [ˆ 0].
3 ˆ self class
4 indexOfAscii: aCharacter asciiValue
5 inString: self
6 startingAt: 1.

Listing 1. The implementation of the indexOf: method in the String
class in Pharo Smalltalk. Note that the argument of the method is named
aCharacter hinting that the expected type is Character.

Afterwords we analyzed the argument names that did not
yield any type information and, based on the data we observed,
developed a few simple heuristics that, when applied, can
increase the success rate to 50.69%.

We also note a pattern of expressing so called “Duck-
Typed” method arguments i.e., arguments that are expected
to be bound to parameters of multiple different types. Almost
1.5% of all method arguments are named in this manner, so
any tool attempting to extract type information from method
arguments should be aware of this pattern.

To explore whether type hints actually reflect run-time types
of arguments we conducted a small study by collecting run-
time type information for arguments of two projects and
comparing them to their type hints. We find that, on average
76% of type hints reflect run-time types. We discuss the
misleading arguments, most of which would be understood
by a developer with domain knowledge, and classify most of
them into several patterns.

This paper is organized as follows: section II describes the
process of gathering the argument names and Pharo’s built-in
system for extracting type information from argument names;
section III discusses the duck-typed method arguments and
explains that they are treated as a special case; section IV
discusses the proposed heuristics to improve the success rate;
section V gives a final overview of the data and conclusions
in the previous sections; The study of the correlation between
type hints are run-time types is shown in section VI; sec-
tion VII and section VIII discuss related and future work
respectively and finally section IX concludes.



II. DATA ACQUISITION

To evaluate the scope of usage of type hints we first gather
a large set of method arguments from open source Pharo
Smalltalk projects. For our data source we chose 114 projects
defined in the “Configuration Browser”. The configuration
browser is a tool to automatically load Smalltalk project
source code, similar to Maven1 for Java. At the time of data
acquisition2 the configuration browser defined 145 projects,
but 31 projects failed to load so they where removed from the
data set.

From these 114 projects we extracted a total of 146,297
arguments. We call this set of all arguments Arg. To proceed
further in our analysis we first need to understand how the
process of extracting type information from argument names
in Pharo works.

A. The Type Guesser Built into Pharo
The default tool used for extracting type information from

argument names in Pharo is part of the code completion tool.
The code completion tool is called “NEC” and is based on
the eCompletion3 package developed by Ruben Baker. The
process of extracting type information from argument names
is refereed to as “Type Guessing” and is encapsulated in the
class side method getClassFromTypeSuggestingName: of class
NECVarTypeGuesser4.

The implementation of this method is quite simple and is
presented in graphical notation in Figure 1. The edge labels
represent the data flow for two example input strings (argu-
ment names) i.e., “aCharacter” and “anInteger”. This method
first removes the leading character of the input argument, and
attempts to find and return a class with that name in the system.
Failing that, the method removes all characters before the first
capital letter of the input arguments, and repeats the attempt.
Failing both times, the methods returns nil5.

B. Initial Results
Using the type guesser in Pharo we divided the Arg set into

two subsets: Succ (Successfully guessed) - those from which
a type was successfully extracted; and Fail (Guess failed) -
those that did not yield any type. The definition of these sets
is given in Figure 2. The function guessType is an abstraction
of the method getClassFromTypeSuggestingName, and returns
a set of possible types.

The results of applying NECVarTypeGuesser to our data set
are shown in Table I. We can see that NECVarTypeGuesser
guessed the types of fewer than 37% of all arguments. These
arguments contain clear type hints and thus are of no further
interest to us for further analysis. We continue only on the
63.79% of method arguments that failed to yield a type (the
Fail set), in an attempt to understand why this is and to
improve the success rate.

1http://maven.apache.org
2Date: 09.03.2015.
3http://uncomplex.net/ecompletion/
4This class is part of the base Pharo image which can be obtained at http:

//get.pharo.org
5nil is the Smalltalk equivalent of null in Java or nullptr in C++

Start

Get method argument

Remove first character

Does the 
class exist?

‘anInteger’          ‘aCharacter’

‘nInteger’      ‘Character’

Get method argument return the class

Stop

Character class                          

YesNo

Remove everything 
before first capital letter

‘anInteger’

Does the 
class exist?

Return nil Return the class

‘Integer’

Yes

Stop

Integer class

No

nil

Fig. 1. An activity diagram of the implementation of
NECVarTypeGuesser>>getClassFromTypeSuggestingName. Edge labels
represent data flow for example inputs ’aCharacter’ and ’anInteger’

guessType : Arg→ {Type} (1)

Succ = {a|a ∈ Arg, guessType(a) 6= ∅} (2)

Fail = {a|a ∈ Arg, guessType(a) = ∅} (3)

Fig. 2. The core sets. Arg = all arguments, Succ = type guessed, Fail = type
not guessed.

TABLE I
THE NUMBER AND PERCENTAGE OF METHOD ARGUMENTS WHICH DO

AND DO NOT PRODUCE A TYPE USING NECVarTypeGuesser.

# % of |Args|

|Arg| 146,297 100%
|Succ| 52,981 36.21%
|Fail| 93,316 63.79%

http://maven.apache.org
http://uncomplex.net/ecompletion/
http://get.pharo.org
http://get.pharo.org


III. DUCK-TYPED METHOD ARGUMENTS

After starting the manual inspection of the method argu-
ments for which NECVarTypeGuesser failed to guess a type,
we noticed that a substantial number of argument names refer
to more than one type. This kind of method arguments are
usually referred to as “Duck-Typed”6 [6]. The term comes
from the duck test, attributed to James Whitcomb Riley:
“When I see a bird that walks like a duck and swims like
a duck and quacks like a duck, I call that bird a duck”. In
the context of method arguments, this means that the method
does not expect a parameter of a particular type, but rather
of any type that follows a certain interface. For the sake of
simplicity, we consider any method argument that specifies
multiple possible types to be duck-typed.

We find that the pattern for expressing that an argument can
take on multiple potential types is to concatenate all possible
types with the word “Or”. For example, one of the most com-
mon argument names with this property is aStringOrByteArray
appearing 99 times in our corpus. To a developer this is a clear
message that this argument should be either of type String
or ByteArray, but the implementation of NECVarTypeGuesser
does not consider this pattern and unsuccessfully attempts to
find a class called StringOrByteArray.

A. Impact of Duck-Typed Arguments

To calculate the impact of duck-typed arguments, we ex-
tracted all argument names that match the following regular
expression.

. ∗Or[A− Z].∗ (4)

The word “Or” should be followed by a capital letter to
ensure that, due to Camel Notation [7], we only match that
word and not words like “Original”, “Ordered” etc. A total of
2139 method arguments matched this regular expression.

Manual inspection revealed that 36 occurrences of the
extracted arguments do not in fact refer to multiple types.
These are all occurrences of two different argument names:
aBlockWithZeroOrOneParameter and aZeroOrOneArgBlock.
It is obvious that these argument names refer to a varying
number of arguments of a BlockClosure i.e., Lambda expres-
sion, and not multiple possible types.

So the very simple regular expression based heuristic we
used thus far can easily be integrated in any tool, and on our
data set has a false positive rate of only 1.68%. We consider
all arguments whose name match the regular expression from
Equation 4 but are not duck-typed to be false positives
i.e., 36 occurrences of aBlockWithZeroOrOneParameter and
aZeroOrOneArgBlock. A more complex heuristic based on
natural language processing could also be an option.

With this in mind, we define the set of duck-typed method
arguments (Duck) in Figure 3 as the set that matches our

6We acknowledge that all arguments in Smalltalk are potentially “Duck-
Typed”. We use this term to note the user-specified occurrence of an argument
being potentially bound to different types at run time.

regular expression from Equation 4 excluding aBlockWith-
ZeroOrOneParameter and aZeroOrOneArgBlock. The name
function extracts the name of the argument as a string.

Duck = {a|a ∈ Fail,

regexMatch(a, “. ∗Or. ∗ [A− Z]”),
name(a) 6= “aBlockWithZeroOrOneParameter”,
name(a) 6= “aZeroOrOneArgBlock”}

(5)

Fig. 3. The Duck set contains all arguments that hint at multiple types.

The Duck set contains a total of 2,103 method arguments or
1.44% of the Arg set. This is not an insignificant percentage
and any tool attempting to guess types should be aware of the
existence of this pattern.

B. Distribution of Number of Types in Duck-Typed Arguments

A followup question regarding duck-typed method argu-
ments is how many different types are hinted at in these
arguments. The distribution is presented in Table II. As
per intuition, the vast majority (94.82%) of duck-typed ar-
guments hint at two types (e.g., aStringOrByteArray, aUr-
lOrString, aStringOrText). Around 7% hint at three types (e.g.,
aStringOrCollectionOrBlock, aDateOrNumberOrString), and
less than half of a percent hint at more. The maximum
number of different hinted types is 5, with the argument name
aSelectorOrElementOrjQueryOrBooleanOrNumber [sic]. This
might be considered an unwieldy argument name, but on the
other hand, it completely defines the number of expected
types within the source code with no need for additional
documentation.

TABLE II
DISTRIBUTION OF THE NUMBER OF DIFFERENT TYPES IN DUCK-TYPED

METHOD ARGUMENTS.

Different
hinted types

Number of
occurrences

%
(of |Arg|)

%
(of |Duck|)

5 5 0.00% 0.24%
4 5 0.00% 0.24%
3 149 0.10% 7.09%
2 1994 1.36% 94.82%

IV. HEURISTICS FOR TYPE HINTS

We continue the manual inspection of arguments that failed
to yield a type is on the set Fnd defined in Figure 4. This is a
set of all arguments from the Fail set that are not duck-typed
(Fnd — failed, non duck-typed). It contains 91,213 arguments
which is 62.35% of the Arg set or 97.75% of the Fail set. The
aim of further inspection is to identify subsets of Fnd that
contain type hints, and identify heuristics for identifying the
types.



Fnd = Fail\Duck (6)

Fig. 4. The Fnd set contains all arguments from the Fail set that are not
duck-typed.

A. spec and html

In the Fnd set we find a frequent occurrence of the argu-
ments spec and html.

Inspection of the source code reveals that spec is the
standard name used for specifications of Metcello versions.
Metacello is a package management system for Monticello,
a distributed version control system for Smalltalk. The im-
plementation details are not important, but we can claim that
the arguments named spec are of type MetacelloAbstractVer-
sionConstructor, as it is the superclass for all classes used
to construct Metacello versions. So we define the Spec set
in Figure 5 Equation 7. This set contains 6,132 elements or
4.19% of the Arg set.

A similar situation exists with the arguments named html. A
common practice when writing applications using Seaside [8],
a web development framework for Smalltalk, is to pass the
object representation of the HTML element as an argument
to methods of objects that perform an action on it (usually
the object renders itself on the HTML element). All of these
arguments are instances of WAHtmlCanvas. As with the spec
argument name we define the Html set in Figure 5 Equation 8,
which contains 2,935 elements or 2.01% of the Arg set.

Spec = {a|a ∈ Fnd, name(a) = “spec”} (7)

Html = {a|a ∈ Fnd, name(a) = “html”} (8)

Fig. 5. The Spec and Html sets contain arguments from the Fnd set that are
named spec and html respectively

B. Blocks, Strings and Collections

Using block closures in Smalltalk is common practice. The
class BlockClosure offers the default implementation. Unfor-
tunately for the default type guessing algorithm, a majority of
method arguments that are expected to be an instance of Block-
Closure are not named aBlockClosure (only 47 occurrences
of arguments named aBlockClosure in Arg) but rather aBlock
(6,167 occurrences of arguments named aBlock in Arg) as
Figure 6 summarizes. Using aBlock rather than aBlockClosure
is even present in the book “Smalltalk Best Practice Patterns”
[4] by Kent Beck.

To give more context to arguments hinting at BlockClo-
sure, developers often add additional descriptors to the argu-
ment name. Examples of such argument names are toBlock,
fromBlock, anErrorBlock, aOneArgBlock, aFormatBlock etc.
Also, a substantial number of arguments are named simply
block, ignoring the article.

In order to group all these different ways of specifying
arguments of type BlockClosure we define a set called Block′

|{a|a ∈ Arg, name(a) = “aBlockClosure”}| = 47 (9)

Block = {a|a ∈ Arg, name(a) = “aBlock”} (10)

|Block| = 6, 167 (11)

Fig. 6. Many more arguments are named aBlock than aBlockClosure

as the set of all arguments whose name matches the regular
expression “. ∗ (B|b)lock.∗”. This is formally defined in
Figure 7 Equation 12.

Following the same logic we define two more sets. The first
attempts to group all arguments hinting at the Collection type
- Coll (Figure 6 Equation 13) and the second for arguments
ginting at the String type - String (Figure 6 Equation 14).

The number of elements in all of these sets can be found in
Table III. It is worth noting that the set Block′ contains over
a thousand more elements than set Block, showing that using
the simple heuristic can attach a type to a much larger set of
arguments.

TABLE III
THE CARDINALITY OF THE Block′ , Coll AND String SETS.

# % (|Arg|)

|Block′| 7,886 5.39%
|Coll| 559 0.38%
|String| 1,793 1.23%

C. Duplicate entries in sets Block′, Coll and String

The regular expression based definitions of sets Block′,
Coll and String are quite naive, and further inspection of the
elements of these sets reveals that certain arguments appear
in multiple sets as shown in Figure 7 Equation 17. The
problem arises in argument names that match multiple regular
expressions.

The number of such elements is fairly small. A total of
18 arguments appear in the String and Coll sets, and all are
named aCollectionOfStrings. Their name is a clearly hinting at
the type Collection rather than String. Similarly, 12 arguments
appear in the Block′ and String sets, and are all named
aBlockAnsweringAString, hinting at the type BlockClosure and
not String. No arguments are present in both Block′ and Coll
sets.

With this in mind we can conclude that, in the Fnd set, a
clear rule can be observed for dealing with these ambiguities.
We notice that all arguments that appear in these three sets can
be placed in the adequate set by following a strict hierarchy of
set priorities: blocks are higher priority than collections which
are higher priority than strings.

Namely, all duplicate arguments from the Coll set, are
properly placed, since the duplicates named aCollectionOf-
Strings are clearly collections, thus collections have a higher
priority than strings. Similarly, all duplicate arguments from



Block′ = {a|a ∈ Fnd,

regexMatch(a, “. ∗ (b|B)lock. ∗ ”)}
(12)

Coll = {a|a ∈ Fnd,

regexMatch(a, “. ∗ (c|C)ollection. ∗ ”)}
(13)

String = {a|a ∈ Fnd,

regexMatch(a, “. ∗ (s|S)tring. ∗ ”)}
(14)

Coll′ = {a|a ∈ Fnd,

regexMatch(a, “. ∗ (c|C)ollection. ∗ ”),
notRegexMatch(a, “. ∗ (b|B)lock. ∗ ”)}

(15)

String′ = {a|a ∈ Fnd,

regexMatch(a, “. ∗ (s|S)tring. ∗ ”),
notRegexMatch(a, “. ∗ (b|B)lock. ∗ ”),
notRegexMatch(a,

“. ∗ (c|C)ollection. ∗ ”)}

(16)

Block′ ∩ Coll = ∅
|Block′ ∩ String| = 12

|String ∩ Coll| = 18

(17)

Block′ ∩ Coll′ = ∅
Block′ ∩ String′ = ∅

String′ ∩ Coll = ∅
(18)

Fig. 7. Sets of arguments based on regular expressions

the Block′ set, are properly placed, since the duplicates named
aBlockAnsweringAString are clearly blocks. Thus blocks have
a higher priority than strings. We artificially introduce the
rule that blocks are higher priority than collections in order
to make our heuristic complete. This rule might cause false
positives in the cases such as the hypothetical argument name
aCollectionOfBlocks, placing such an argument in the set of
blocks rather than in the set of collections where it would
belong.

Another approach to removing duplicate entries requires
a more thorough analysis of these cases, either by natural
language processing techniques or by focusing on splitting
the argument name by “Of” and determining the priorities by
the order. We feel this would introduce a lot of complexity for
not much gain and leave out such attempts.

We apply these hierarchy rules in defining the sets Coll′

(Figure 7 Equation 15) and String′ (Figure 7 Equation 16), and
ensure that there is no overlap between these sets (Figure 7
Equation 18). The function notRegexMatch is, as the name

TABLE IV
THE CARDINALITY OF THE DuckS AND DuckF SETS.

# % (|Arg|)

|DuckS| 1,905 1.30%
|DuckF| 198 0.14%

DuckF = Duck\DuckS (19)

Fig. 8. The DuckF set contains all duck-typed arguments whose type could
not be guessed.

hints, a negation of the regexMatch function.

D. Guessing types of duck-typed arguments

All the sets defined in this section thus far are subsets of
Fnd, meaning that the arguments we defined as duck-typed are
not included in any of the sets. To determine the set of duck-
typed arguments whose type can be guessed (DuckS ⊂ Duck)
we follow a simple algorithm:

1) Split the name of the argument a ∈ Duck by the
keyword Or

2) Treat each of the sub-names as a valid name of a
hypothetical argument b

3) If guessType(b) 6= ∅ than we guessed the type of a, and
a ∈ DuckS.

4) If not, assume that b ∈ Fnd
5) If it holds that

b ∈ Spec∨b ∈ Html∨b ∈ Block′∨b ∈ Coll′∨b ∈ String′

then we guessed the type of a, and a ∈ DuckS.
6) If not, a /∈ DuckS
Essentially, if we can guess one of the types that the

argument name hints at, we declare the argument type guessed.
So the set DuckS holds all arguments from the set Duck
whose type can be guessed. The remaining arguments make
up the DuckF set defined in Figure 8. The cardinality of these
sets is given in Table IV.

V. FINAL RESULTS

With all the heuristic based sets defined in section IV we
have exhausted the ways in which we can guess types in
the Arg set. The potential for other heuristics still exists, i.e.,
arguments named index can be considered to be integers, plural
nouns can be considered collections etc. but without additional
studies dedicated to these situations we cannot claim that these
potential heuristics are well-reasoned.

The set H , defined in Figure 9 Equation 20, is the union of
all sets defined by heuristics and accounts for 13.18% of all
arguments. Now, we can finally define a set of all arguments
whose type can be guessed from the name. We call this set
Succ′ and define it in Figure 9 Equation 21. Also, in Figure 9
Equation 23, we define the set Fail′, as the set of all arguments
whose types can not be guessed from the name. It is defined
as the union of all duck-typed arguments whose type is not



TABLE V
THE TOP TEN MOST FREQUENT ARGUMENT NAMES IN THE F SET.

Argument name # % (|Arg|)

n 1511 1.03%
aName 1440 0.98%
a 1118 0.76%
lda 1092 0.75%
nodes 868 0.59%
aBrick 825 0.56%
work 816 0.56%
aValue 786 0.54%
info 753 0.51%
evt 670 0.46%

TABLE VI
THE CARDINALITY OF ALL DEFINED SETS. HIERARCHY REPRESENTS

SUBSET RELATION.

# %
|Args|

|Arg| 146,297 100%
|−→ |Succ′| 74,161 50.69%
| |−→ |Succ| 52,981 36.21%
| |−→ |DuckS| 1,905 1.30%
| |−→ |H| 19,275 13.18%
| |−→ |Block′| 7,886 5.39%
| |−→ |String′| 1,793 1.92%
| |−→ |Coll′| 559 0.38%
| |−→ |Spec| 6,132 4.19%
| |−→ |Html| 2,935 2.01%
|−→ |Fail′| 71938 49.31%

|−→ |DuckF| 198 0.14%
|−→ |F | 71,938 49.17%

guessable (DuckF) and all non-duck-typed arguments whose
type is not guessable (F ).

The cardinality of these sets, as well as all their subsets
is presented in Table VI. We can see that the default type
guessing implementation can be substantially improved by
incorporating the proposed heuristics. The total number of
arguments whose type can be guessed is 74,161 or 50.69% of
all arguments. This set is by no means complete. If we look
at just the top ten most frequent names of arguments from
the F set show in Table V, we can see that there are still
argument names that contain hints i.e., aName, aBrick and
aValue. These hints are more delicate and might carry a lot
more meaning for a developer with domain knowledge, but
providing tool support for such cases is a more challenging
task. With all this in mind, we can thus conclude that type
hints are a commonly used way to name method arguments
in Smalltalk projects, and that even fairly simple tool support
can work about 50% of the time.

VI. QUALITY OF TYPE HINTS

So far we have focused on the quantity of type hints in a
large number of Smalltalk projects. In this section we conduct
a separate analysis on the quality of type hints in two Smalltalk
projects: Glamour [9] , a framework for describing navigation
flow of GUI data browsers; and Roassal [10], a visualization

H = Spec ∪ Html ∪ Block′ ∪ Coll′ ∪ String′ (20)

Succ′ = Succ ∪H ∪ DuckS (21)

F = Fnd\H (22)

Fail′ = F ∪ DuckF (23)

Fig. 9. The H set contains all arguments all sets defined by heuristics in
section IV, the Succ’set contains all arguments whose type is guessable and
Fail′ contains all arguments whose type is not guessable.

engine for Smalltalk. The reason we chose these two projects
for our analysis is their rich example library which enables us
to easily run a dynamic analysis similar to real-world usage
of these projects. The end goal of this analysis is to verify
whether types extracted from type hints match run-time types
of arguments.

A. Acquisition of run-time types

In order to collect run-time types of method arguments
in our case projects we instrumented the source code of
these projects using a slightly modified version of a tool
called “Variable Tracker”7 used for gathering run-time type
information from Smalltalk projects. The modification was to
limit the tool to method arguments only.

After instrumenting the source code, we executed the exam-
ples for each project. Glamour defines 68 examples of which
one failed to execute. Roassal defines 63 examples of which
four failed to execute. This is by no means an exhaustive
dynamic analysis, but it does provide a usage similar to real
world applications of these frameworks.

The result of this is presented in the “Total arguments” entry
of Table VII. As the table shows, we collected run-time type
information on 251 and 559 arguments from Glamour and
Roassal respectively.

During normal execution some of these arguments might
get multiple different types due to Smalltalks dynamic type
system. We did not encounter such situations during our
dynamic analysis. A more thorough dynamic analysis might
yield such cases.

TABLE VII
A SUMMARY OF THE DYNAMIC ANALYSIS RESULTS.

Glamour Roassal

Total arguments 251 559
Contain type hint 141 159
Good type hints 126 103
Misleading type hints 15 56

B. Type hints and run-time types

To assess the quality of type hints we first extract the
arguments that contain type hints. We include all arguments
that contain type hints according to the type guesser described

7http://smalltalkhub.com/#!/∼rostebler/VariableTracker

http://smalltalkhub.com/#!/~rostebler/VariableTracker


in subsection II-A as well as all those that match the heuristics
described in section IV. The result is presented in the “Contain
type hint” entry in Table VII. A total of 141 and 160 arguments
contain type hints in Glamour and Roassal.

Finally, we separate the arguments whose names contain
type hints that match the run-time type or one of its su-
perclasses. We include the superclasses of the run-time type
in order to include occurrences of subtype polymorphism
[11]. A typical toy example would be an argument named
anAbstractShape getting the type “Circle” (a subclass of
AbstractShape) at run time. The results of this separation is
shown in the “Good type hints” entries in Table VII. We can
see that in Glamour 89.36% of type hints are good, meaning
the guessed type or one of its subtypes is used at run time. In
Roassal this number is much lower at 64.77% and the average
across both applications is 76%.

C. Misleading type hints

The last entry in Table VII (“Misleading type hints”) shows
the number of arguments whose type hint did not match the
run-time type. There is a total of 71 such arguments, 15 from
Glamour and 57 from Roassal. Many of these arguments are
misleading to our tools, but might not be to a developer with
more context and domain knowledge. An overview of all these
arguments is presented in Table VIII.

We can notice a few distinct patterns in this data, and their
description follows. All but 11 arguments (15.49%) fall into
one of these patterns.

1) Class clash: This situation emerges when the guessed
type exists, but the run-time type has a similar name and no
hierarchical connection. Examples of this are
• Arguments that hint at the type Browser (a class present

in the default Pharo image) but at run time receive
GMLBrowser (GLM stands for Glamour)

• Arguments that hint at the type Shape or Canvas (both
classes present in the default Pharo image) but at run
time receive some subclass of TRShape or TRCanvas (TR
stands for Trachel, a module used in Roassal) etc.

This pattern accounts for 36.62% (26 out of 71) arguments
with misleading type hints.

2) Any Object data model: Roassal is a very flexible
visualization engine and can visualize any set of objects and
their connections. To make this possible, it relies on using
any object as a data model for generating the visualization,
and specifying through dynamic features of Smalltalk i.e.,
metaprogramming, how to interact with the model. That is
why it is common to find arguments named aModel that get
bound to many different types at run time. The problem comes
due to the fact that Model is a class in the default Pharo image.
In our set of misleading type hints this pattern accounts for
8.45% (6 out of 71) arguments.

3) Block or Value: In 18.3% (13 out of 71) cases of mis-
leading types we notice a duck-typed argument that starts with
aValue and also hints at expecting a BlockClosure. A “Value”
in this case can be any object, and in case a BlockClosure
is provided, it is assumed that evaluating it will produce the

expected value. A more exhaustive dynamic analysis might
produce cases where this argument is bound to an instance
of BlockClosure. This pattern is very similar to “any object
as a data model” but we separate them because Model is a
class in the Pharo image, and Value is not. The type hint in
this pattern comes from the hinted option of using instances
of BlockClosure.

The reason why Roassal can expect any object as a value
is that it extends the class Object8 with the method rtValue:
which is the only method invoked on arguments from this
pattern. The default implementation of this method just returns
the receiver object, but it is overridden in the BlockClosure
class to evaluate the closure with the method arguments.

4) Block or Symbol: A common idiom in Smalltalk source
code is that methods that expect an instance of BlockClosure
can also accept an instance of Symbol [5].

This is illustrated well by the filtering method select: of
the collections package in Smalltalk. This method expects
an instance of BlockClosure that describes the criteria for
selection of elements of the collection. If this criteria is to
only invoke a single method with no arguments (for example,
the isZero method of class Number), than we can provide just
the selector (method name) as an instance of Symbol. The
result is smaller code that is more readable. This idiom exploits
duck-typing by implementing the value: method — normally
associated with block closures — for the Symbol class in the
obvious way.

This pattern accounts for 18.3% (13 out of 71) of the
misleading type hints. As with the “Value or Block” pattern,
a more thorough dynamic analysis would most likely find
cases where these arguments would be bound to instances of
BlockClosure.

5) Convertible: We found only two occurrences of this
pattern, but it is a situation that can theoretically happen much
more often. Essentially, the argument was hinting at expecting
an instance of the class Float, but received an instance of
the class SmallInteger at run time. The SmallInteger class is
not a specialization of the Float class, but implicitly, because
N ⊂ R, any integer is also a float.

The usage of this argument is restricted to arithmetic
operations making the instance of SmallInteger completely
indistinguishable from an instance of Float. This is because
all the arithmetic operations in Pharo are developed in a way
that provides implicit conversion to the appropriate type when
necessary i.e., before invoking the VM primitive that performs
the calculation.

VII. RELATED WORK

To the best of our knowledge this is the only conducted
study of type hints. The closest body of related work consists
of type inference approaches for dynamically typed languages.
Such type inference is similar to type guessing as both aim
to increase program comprehension and tool support. This

8Just like in Java, all classes in Smalltalk eventually inherit from the Object
class



TABLE VIII
OVERVIEW OF ALL ARGUMENT NAMES THAT HAVE MISLEADING TYPE HINTS.

Project Argument name Run time class Pattern #

Glamour aBrowser GMLBrowser Class clash 12
anAnnouncement Announcement class - 2
aSymbolOrABlock ByteString - 1

Roassal aModel ByteString, Association, SmallInteger, etc. Any object data model 6
toBlock, fromBlock, followBlock ByteSymbol Block or symbol 13
aValueOrOneArgBlock Color, SmallInteger, ByteSymbol, etc. Block or value 11
aValueOrASymbolOrOneArgBlock SmallInteger Block or value 2
trachelShape, anotherShape, aShape some subclass of TRShape Class clash 11
trachelCanvas TRCanvas Class clash 2
aBehaviour TRNoBehaviour Class clash 1
aFloat SmallInteger Convertable 2
aKey ByteSymbol - 2
aBlock SmallInteger - 1
aLineShapeOrBlock TRLine class - 1
aTRLine TRBezierLine - 1
aTRShape TRLine class - 1
depClass String class - 1
listOfElementsOrOneArgBlock TRGroup - 1

is known to be used for better comprehension of COBOL
programs [12], [13], [14], [15]. The main insight in such work
is that comparing variables using relational operators shows
that their types must be compatible, and that if an expression
is assigned to a variable, the type of the expression must be a
subtype of that variable.

Guo et al. developed an analysis for x86 compiled binaries
and Java bytecode that infers abstract types, and conducted
a user study showing that having type information can help
with reverse engineering problems. Their main insight was,
similarly to the COBOL community, to track interactions
between variables and infer abstract types. Their approach is
based on run-time information. A similar goal was achieved
using static analysis by Robert OCallahan and Daniel Jackson
with their Lackwit tool [16] for C.

In our previous work we used heuristics based on ecosys-
tem data to improve an existing type inference engine for
Smalltalk [17]. By observing the method–type relations in the
ecosystem and extending an existing type inference engine
with this knowledge we achieved a 100% improvement on
our evaluation.

A different motivation for type inference techniques in
statically typed languages like Scala [18], or ML [19] is to
free the developer from having to specify types that can be
inferred, or identifying run-time types at compile type in the
presents of subtype polymorphism [20].

Many different type inference techniques are developed with
the aim to impose a more strictly controlled type system, and
enable certain type checks at compile time. This is a different
goal compared to type hints, which are intended primarily for
program comprehension. Many such attempts for Smalltalk
[21], [22], [23] and other dynamically typed languages such
as Python [24] and Ruby [25] have been made.

VIII. FUTURE WORK

We envision three directions of future work: continuously
monitoring the way arguments in given projects change over
time (subsection VIII-A); attempting to integrate dynamic
analysis to infer patterns between argument names and their
run-time types (subsection VIII-B); and performing a compar-
ison to type inference engines (subsection VIII-C).

A. Continuous monitoring

Code evolves, and with time new patterns in type hints
might appear. A heuristic based type guessing tool would be
only as good as its heuristics, so continuously monitoring argu-
ment names from projects of interest could identify emerging
trends in argument names, and notify the tool developer of the
new patterns. This would prompt the developer to investigate
the new patterns, develop an appropriate heuristic and integrate
it in the tool.

B. Dynamic analysis

An alternative to observing static changes in source code
could be observing a system in question at run time, and
attempting to find patterns of mappings between argument
names and run-time types. This could be done automatically
through machine learning techniques, and could be tailored to
the project domain helping with some of the bad type hints
from section VI i.e., an argument named aShape can hint at
the Shape class or TRShape class, and run-time information
can distinguish which.

C. Comparison with type inference engines

The standard approach for statically obtaining type infor-
mation in dynamically typed languages is to perform type
inference. Many different type inference approaches exist
[26], [27] and some approaches have existing implementations
in Pharo [17], [28]. The question is whether type hints or
type inference can provide more type information for method



arguments in Smalltalk, or whether their combination is worth
the effort.

IX. CONCLUSION

In this paper we present two case studies, one on how
frequently type hints are used in method argument names in
Smalltalk and one on the quality of those type hints in relation
to run-time types.

In the first study we analyze a total of 146,297 arguments
taken from 114 Pharo Smalltalk projects, and conclude that
the existing tool for type guessing has a 36.21% success rate.
We manually analyze the arguments that failed to yield a type,
and propose several heuristics that improve the percentage of
guessed types to 50.69%. This percentage is not final, as many
other heuristics potentially exist, but further inquiry and more
domain knowledge is required to formulate them. So the main
conclusion of the study is that at least one in two method
arguments in Smalltalk projects contains a useful type hint.
Another conclusion drawn from this case study is that 1.44%
of method arguments hint at multiple types We present a very
simple heuristic for identifying such method arguments with
a false positive rate of only 1.68% in our data set.

In the second study we collected run-time types of method
arguments from two projects with a rich set of examples
used as input, and compared the run-time types to the types
extracted from type hints. We find that in 76% of cases the
type hint matches the run-time type when controlling for
subtype polymorphism. We also present an analysis of the
misleading type hints, and identify several patterns that better
our understanding of why the type hints are misleading.

We propose several directions of future work, most on
improving Smalltalk tools for type guessing using the infor-
mation from the conducted studies. Beside that, replicating
these studies with different languages would help broaden and
generalize the understanding of type hints.
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