

 University of Groningen

Softwarenaut
Lungu, Mircea; Lanza, Michele

Published in:
Proceedings of Softvis 2006 (3rd International ACM Symposium on Software Visualization)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lungu, M., & Lanza, M. (2006). Softwarenaut: Cutting Edge Visualization. In Proceedings of Softvis 2006
(3rd International ACM Symposium on Software Visualization) (pp. 179-180). ACM Press.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-01-2023

https://research.rug.nl/en/publications/b3b4ecc5-8526-46f8-a9ef-faeaadab652f

Softwarenaut: Cutting Edge Visualization in Software
Mircea Lungu and Michele Lanza

Faculty of Informatics, University of Lugano, Switzerland

Based on a hierarchical clustering
algorithm we reorder the columns in
order to group similar ones
A dependency incidence matrix is a binary matrix that has
client classes as columns and provider methods as rows and
has a 1 at the intersection of a method and a class if the class
invokes that method at least once. For each class a
dependency signature is a column in the matrix.

Based on the distances between the signatures, the classes
are clustered using a hierarchical clustering algorithm and
then the columns of the matrix are reordered. The new order is
the result of traversing the resulting dendrogram in preorder.
This determines classes with similar invocation patterns to
be disposed in spatial proximity on the X-axis.

As a side effect of the X-axis ordering, the classes with
stronger coupling are positioned towards the right side of
the matrix. It is among these classes that we usually find the
most important classes in the client module.

After reordering the classes, we
can visually check for interesting
dependency patterns in the data

Client Classes

Pr
ov

id
er

 M
et

ho
ds

(G

ro
up

ed
 b

y
Cl

as
s)

Enriching the view with structural and semantic
information

Using color and shape we can provide more information about the elements in the
view. For example, we can add information about the number of invocations to a
given method as well as the method type (see the legend below):

Softwarenaut is a tool aimed at supporting the
interactive exploration of software systems [1]

Client
Module

Provider
Module

Client Classes

Pr
ov

id
er

 M
et

ho
ds

(G
ro

up
ed

 b
y

Cl
as

s)

(a)

(b)

(b)

(d)

(e)

Benefit #1: Spotting Dependency Patterns

Many classes interact with the two methods above in the very same manner. Each time
one is called the other is also called. It turns out that they are a pair of methods that
have to be always called together. If we would see an incomplete pattern (i.e. a class
which does not call both the methods, we could suspect a defect)

azureus: com->org.gudy.azureus.core3

References
[1] Mircea Lungu and Michele Lanza. - "Softwarenaut: Exploring hierarchical system
decompositions". In Proceedings 10th European Conference on Software Maintenance
and Reengineering (CSMR 2006), IEEE Computer Society Press,

?How can we devise a visual
representation to help the user see

what hides behind the edge?

- blue - low number of invocations from the class to the method
- red - high number of invocations from the class to the method
- empty geometrical shape - accessor method (get*,set*)
- filled geometrical shape - other methods

Benefit #3: Interactivity
In the context of Softwarenaut, the matrix is a starting point for further exploration and
manipulation of the represented entities (e.g. filtering, detailing). The view is not
standalone but is closely integrated with the Softwarenaut environment. Requesting
detail about a given entity or a group of entities is one click away. The code of the
classes and methods is also reachable from each entitty.

Drawbacks
The data is usually noisy and patterns are not always easy to detect. There matrix
presents also a scalability problem: the screen can not always contain the whole
matrix.

One possible representation
for a dependency edge is an
Incidence Matrix

Client Classes

Pr
ov

id
er

 M
et

ho
ds

(G

ro
up

ed
 b

y
Cl

as
s)

A dependency
signature

M
irc

ea
 L

un
gu

, 2
00

6.

Benefit #2: Characterizing (some) dependencies at a glance
Some special types of dependency patterns
are easy to detect visually but hard to detect
automatically. The dependency from right
would not be detected as a data dependency
(the client requests data from the provider as
there are many accessor methods). Because
not all the methods are accessors this would be
hard to automatically detect.

For more information see: http://www.inf.unisi.ch/phd/lungu/softwarenaut

Legend

