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Softwarenaut: Cutting Edge Visualization in Software
Mircea Lungu and Michele Lanza

Faculty of Informatics, University of Lugano, Switzerland

Based on a hierarchical clustering 
algorithm we reorder the columns in 
order to group similar ones
A dependency incidence matrix is a binary matrix that has 
client classes as columns and provider methods as rows and 
has a 1 at the intersection of a method and a class if the class 
invokes that method at least once. For each class a 
dependency signature is a column in the matrix.

Based on the distances between the signatures, the classes 
are clustered using a hierarchical clustering algorithm and 
then the columns of the matrix are reordered. The new order is 
the result of traversing the resulting dendrogram in preorder. 
This determines classes with similar invocation patterns to 
be disposed in spatial proximity on the X-axis.

As a side effect of the X-axis ordering, the classes with  
stronger coupling are positioned towards the right side of 
the matrix. It is among these classes that we usually find the 
most important classes in the client module.

After reordering the classes, we 
can visually check for interesting 
dependency patterns in the data
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Enriching the view with structural and semantic 
information

Using color and shape we can provide more information about the elements in the 
view. For example, we can add information about the number of invocations to a 
given method as well as the method type (see the legend below):

Softwarenaut is a tool aimed at supporting the 
interactive exploration of software systems [1]
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Benefit #1: Spotting Dependency Patterns

Many classes interact with the two methods above in the very same manner. Each time 
one is called the other is also called. It turns out that they are a pair of methods that 
have to be always called together. If we would see an incomplete pattern (i.e. a class 
which does not call both the methods, we could suspect a defect)

azureus: com->org.gudy.azureus.core3
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?How can we devise a visual 
representation to help the user see 

what hides behind the edge?

- blue - low number of invocations from the class to the method
- red - high number of invocations from the class to the method 
- empty geometrical shape - accessor method (get*,set*)
- filled geometrical shape - other methods

Benefit #3: Interactivity 
In the context of Softwarenaut, the matrix is a starting point for further exploration and 
manipulation of the represented entities (e.g. filtering, detailing). The view is not 
standalone but is closely integrated with the Softwarenaut environment. Requesting 
detail about a given entity or a group of entities is one click away. The code of the 
classes and methods is also reachable from each entitty.

Drawbacks
The data is usually noisy and patterns are not always easy to detect. There matrix 
presents also a scalability problem: the screen can not always contain the whole 
matrix.

One possible representation 
for a dependency edge is an 
Incidence Matrix
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Benefit #2: Characterizing (some) dependencies at a glance
Some special types of dependency patterns 
are easy to detect visually but hard to detect 
automatically. The dependency from right 
would not be detected as a data dependency  
(the client requests data from the provider as 
there are many accessor methods).  Because 
not all the methods are accessors this would be 
hard to automatically detect.

For more  information see: http://www.inf.unisi.ch/phd/lungu/softwarenaut
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