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a b s t r a c t

Sparse features have been successfully used in shape retrieval, by encoding feature descriptors into
global shape signatures. We investigate how sparse features based on saliency models affect retrieval and
provide recommendations on good saliency models for shape retrieval. Our results show that randomly
selecting points on the surface produces better retrieval performance than using any of the evaluated
salient keypoint detection, including ground-truth. We discuss the reasons for and implications of this
unexpected result.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Large-scale shape retrieval typically consists of three steps:
detection of local features, encoding of these features into a global
descriptor, and comparison of shapes with a distance metric. This
paper evaluates the influence of the first step on shape retrieval
performance.

Shape saliency is a measure of perceived importance of points
on a 3D surface. There is recent interest in shape analysis for
computational models of saliency [2,3,6,7]. However, there is no
study on how features detected by these saliency models perform
on shape retrieval. This paper evaluates selected saliency models.
For each method, we compute surface feature points by extracting
local maxima from a saliency map. The global descriptor of a 3D
shape is then a distribution of quantised salient features. We
investigate how well features based on selected saliency models
perform on shape retrieval benchmarks. Our results show that
randomly selecting points on the surface produces better retrieval
performance than using any of the evaluated saliency-based fea-
tures. This surprising result also holds for ground-truth salient
points obtained in a previous user study [1] on the SHREC'07
Watertight Models Track (SHREC07) [8].
M. Spagnuolo.

j.kosinka@rug.nl (J. Kosinka),
We provide a fair comparison of salient features by fixing other
variables such as feature descriptors, descriptors distance metrics,
and encoding method. We evaluate retrieval performance on three
benchmarks: SHREC07 [8], SHREC'15 Non-Rigid Shape Retrieval
track [9], and SHREC'15 Range scan shape retrieval [10]. Fig. 1
illustrates how saliency, keypoint detection and retrieval perfor-
mance varies by saliency method on a “human” shape.

Our main contribution is the evaluation of six selected saliency
models for shape retrieval.
2. Related work

This section reviews state-of-the art in saliency detection,
salient keypoint extraction, and local feature encoding for shape
retrieval.

2.1. Saliency models

A wide range of 3D saliency models have been proposed in
recent years, often inspired by analogous techniques in 2D saliency
detection [2,5,6]. Several of these models compute a multi-scale
representation of a mesh and observe how a local vertex property
such as curvature changes at different scales [6]. Song et al. [2]
propose using spectral properties of the log-Laplacian spectrum of
a mesh at multiple scales. Both approaches require topological
information and thus cannot support other shape representations
such as point clouds. To address saliency detection on large point
sets, Shtrom et al. [3] combine point distinctiveness at two scales
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Fig. 1. Saliency maps and corresponding keypoints per saliency model on a shape in Dataset A (SHREC07). The retrieval performance of this shape is measured with Average
Precision (AP). Higher AP means better retrieval performance. AP takes values between 0 and 1.

F.P. Tasse et al. / Computers & Graphics 59 (2016) 57–6758
with point association, a function that assigns higher saliency to
regions near foci of attention. Point distinctiveness is computed by
comparing points using the χ2 distance between their Fast Point
Feature Histograms (FPFH) [11]. Tasse et al. [5] achieve better fine-
scale saliency detection and computation performance by seg-
menting point clouds into patches, and computing a patch saliency
based on its descriptor distinctiveness and spatial distribution.
FPFH have been successfully used in several saliency models [3,5].
Authors et al. [4] show that applying PCA to these descriptors
produces saliency maps that compare well with the state of
the art.

2.2. Salient keypoint detection

3D feature points can be detected by extracting local maxima of
a map over a 3D shape [5,12]. Dutagaci et al. [12] use this approach
to compute interest points based on mesh saliency [6]. They also
propose a benchmark that compares other feature detection
algorithms such as local maxima of the Heat Kernel Signature
(HKS) [13] to ground-truth interest points. Their benchmark shows
that HKS-based keypoint detection has a higher false negative
error rate and smaller false positive rate compared to all other
tested methods. Tasse et al. [5] show, on the same benchmark, that
using local maxima of their cluster-based point set saliency
achieves better balance between false positive and false negative
error rates. Chen et al. [1] extract consistent feature points on
meshes in SHREC07, by taking the local maxima of ground-truth
saliency aggregated from multiple participants. Based on this data,
they propose a probabilistic model for extracting feature points
from any mesh. Salti et al. [14] move away from saliency-based
approach and cast the keypoint detection as a binary classification
problem, to learn keypoints that are distinctive, according to a
specific descriptor.

2.3. Feature encoding

Encoding of local features is a popular technique borrowed
from image and video retrieval [15]. Local features, sparse or
dense, are extracted from the whole dataset and each feature is
represented by a multi-dimensional descriptor. Encoding local
features of an input shape typically consists of evaluating the
distribution of quantised features to form a global descriptor. Tabia
et al. [16] use Histogram Encoding [15], based on counting quan-
tised features, to encode their covariance descriptors. Bronstein
et al. [17] use a more descriptive method, Soft Quantisation [18],
that consists of summing softly quantised features to encode
sparse HKS-based features.
Fisher Vectors retain more information about shape features by
recording the statistics of differences between local features and
clusters of the descriptor space [19]. Savelonas et al. [20] present
shape retrieval based on Fisher encoding of novel local descriptors
derived from FPFH. We use Fisher Vectors to encode local features.

After encoding, global descriptors are typically compared using
their normalised scalar product (cosine of angle) [16].
3. Experimental setup

3.1. Datasets

We use three datasets to evaluate retrieval performance, each
targeting a different type of shape retrieval.

Dataset A: SHREC'07 watertight models [8]: The dataset consists
of 20 classes, each containing 20 different watertight 3D meshes.
Fig. 2 illustrates a few models in the dataset and their classes. It is
a generic dataset, due to the diverse number of classes and the
variety of objects within a class. We use this dataset, instead of
others such as the Princeton Shape Benchmark, because ground-
truth salient points are available for it. Chen et al. [1] present a
user study that asks users to select points, on shapes from this
dataset, that are likely to be selected by other users. From the
collected user input, they identify ground-truth keypoints. We use
these to evaluate shape retrieval based on human-perceived
saliency.

Dataset B: SHREC'15 non-rigid shape retrieval [9]. The bench-
mark objective is checking shape retrieval invariance to non-rigid
shape transformations. The dataset contains 1200 watertight tri-
angle meshes, obtained by deforming 60 models from 50 classes.
Examples of non-rigid models are shown in Fig. 3.

Dataset C: SHREC'15 range scans shape retrieval [10]: The aim of
this benchmark is testing shape retrieval robustness to partial
queries. The dataset is divided into two: target models and query
range scans. The target set contains 1200 complete 3D models
from 60 classes. The query set consists of 180 range images
acquired from 3 to 4 range scans of 60 models. Fig. 4 shows
examples of these 3D scans.

We now discuss other factors studied in our analysis such as
local descriptors and saliency models.

3.2. Local descriptors

Local descriptors help describe the local neighbourhood or
support area N of a point. N ðpÞ is the set of neighbours q of p with
Jp�qJor, where r is the radius of the neighbourhood often
referred to as support radius. To support any surface representation,



Fig. 2. Dataset A: examples of watertight models, divided into classes [8].

Fig. 3. Dataset B: examples of non-rigid models [9].
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we focus on point-based descriptors. Few previous works report
their choice of r for such descriptors. Rusu et al. [21] compute FPFH
using r¼ 0:5 cm on point sets with average radius R¼ 3 cm; thus
they set r¼ R=6. Shtrom et al. [3] use r¼ R=10 when computing
FPFH for the purpose of detecting high-level saliency. We also set
r¼ R=10, where R is the underlying shape radius.

We test four local descriptors: Point Feature Histogram (PFH)
[11], Fast Point Feature Histogram (FPFH) [11], Spin Images [22]
and SHOT [23]. We use a PCL implementation [24] of all four
descriptors.

PFH generalises the mean curvature around a point using a
multi-dimensional histogram of angular variations between all
pairs of oriented points in a local neighbourhood [11]. FPFH is a
faster version of PFH that averages histograms of angular varia-
tions between a point and its neighbourhood [11]. Spin Images bin
2D projections of nearby points in a cylindrical coordinate system



Fig. 4. Dataset C: example of range scans in the query set [10].
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are defined by the oriented point of interest [22]. SHOT uses a set
of local histograms over 3D volumes defined by a voxelization of
the support area [23].

Shape retrieval has better performance when PFH is used as the
local descriptor, compared to the alternatives as discussed in
Section 5.1. Thus, we use PFH in experiments where we need a
single robust local descriptor.

3.3. Saliency models

We test shape retrieval based on local features extracted with
keypoint detectors based on six selected saliency models. Four of
these saliency models were discussed in Section 2.1, and selected
based on availability of code and data.

They are:

1. Spectral mesh saliency (MK) [2].
2. Large point set saliency (LK) [3].
3. Cluster-based point set saliency (CK) [5].
4. PCA-based saliency (PK) [4].

We include in our evaluation 2 baseline models:

5. Random keypoints (RK): We are also interested in how points
sampled uniformly at random on a shape affect retrieval per-
formance. Some retrieval systems use dense random points
rather than sparse features [25,16] for shape representation, at
the expense of a higher computational cost. We want to know
how this approach compares with using salient features. We
define a random scalar field on the shape, referred to as
Random Saliency. We detect keypoints based on local maxima
of the random saliency map, as previously discussed. The
number of points detected depends on the shape sampling.
An alternative to this is extracting a fixed number of random
surface points per shape. This alternative random keypoint
detector is explored in Section 5.3.

6. Ground-truth keypoints (GK): To see how these keypoint
detectors compare to ground-truth when used for shape retrie-
val, we also evaluate retrieval performance based on ground-
truth points collected on Dataset A [1].

Local keypoints are each represented by a descriptor. We then use
Fisher Vectors (FV), previously mentioned in Section 2.3, to encode
local descriptors on a given shape into a global descriptor. FV encode
means and variances between a set of local descriptors and clusters
of the space containing all local shape descriptors [19].

3.4. Evaluation metrics

Given a set of 3D models assigned to classes, a shape retrieved
based on a query is relevant if both target and query belong to the
same class. This interpretation of relevance is standard in shape
retrieval benchmarks [8–10]. These benchmarks also use the fol-
lowing standard metrics to evaluate retrieval performance: Pre-
cision–Recall (PR) curve, Average precision (AP), First Tier (FT),
Second Tier (ST), and Discounted Cumulative Gain (DCG).

To compute the performance of retrieval on a dataset, we
proceed as follows: for each shape in the query set (or the dataset
if there is no query set), we generate a list of all models in the
target set, ranked from the most similar to the least similar. The
ranked lists are used to compute the above metrics for each query.
Each metric is then averaged over all queries to produce overall
scores. Finally, we use the Wilcoxon rank-sum test [26], a non-
parametric alternative to the two-samples t-test, at a 0.05 sig-
nificance level to report statistically significant differences
between AP performances of competing methods.

A performance metric that is often used in benchmarks is
Nearest Neighbour. We did not observe any statistically significant
difference in Nearest Neighbour performance across the evaluated
methods, contrary to the other five metrics described above. Thus,
we do not report its performance results.
4. Evaluation of salient keypoints

We present PR curves of retrieval systems based on 6 salient
keypoint detectors in Fig. 5. Note that we use PFH as local
descriptors and cluster size K¼100 to partition the set of all
descriptors. We use FV as the encoding method, and compare the
generated global shape descriptors with the cosine angle. We do
not include GK in our evaluation on Datasets B and C, because
these datasets do not have ground-truth saliency data.

4.1. Comparison of selected saliency-based keypoint detectors

Dataset A: Table 1 presents more details on retrieval perfor-
mance by keypoint detector on Dataset A. RK is significantly better
than all other methods on each performance metric. There is no
statistically significant difference between GK and LK, implying
that on this dataset, LK is as good as ground-truth when used for
shape retrieval. There is also no significant difference between the
worst-performing models PK, MK and CK. The top performance of
RK is not surprising since it generates on average 250 points per
shape, while GK only produces an average of 33 points per shape.
A large number of random surface points provide more coverage
of the surface and thus capture more information about shape.
Surprisingly we see in Fig. 7 (bottom) that even when we choose
only n¼30 random points per shape, we still get better average
performance than using GK. The difference however is not statis-
tically significant. Choosing n¼50 random points per shape pro-
duces a significantly better retrieval performance, meaning that
we are getting better results with 50 randomly selected points



Fig. 5. Precision Recall curves for retrieval performance based on selected keypoint
detectors.

Table 1
Dataset A: performance per keypoint detector. Parameters: descriptor¼PFH,
r¼ 0:1R, K¼100.

Method FT ST DCG AP

RK 0.6370.03 0.7370.03 0.8470.02 0.7070.03
MeshDOG 0.5870.03 0.7070.03 0.8270.02 0.6570.03
ISS 0.5870.03 0.6970.03 0.8270.02 0.6570.03
GK 0.5570.03 0.6870.03 0.8070.02 0.6270.03
LK 0.5370.03 0.6670.03 0.8070.02 0.6170.03
PK 0.5070.03 0.6270.03 0.7770.02 0.5770.03
MK 0.4870.03 0.6270.03 0.7670.02 0.5570.03
CK 0.4770.03 0.5970.03 0.7570.02 0.5470.03

Table 2
Dataset B: performance per keypoint detector. Parameters: descriptor¼PFH,
r¼ 0:1R, K¼100.

Method FT ST DCG AP

RK 0.8670.01 0.9170.01 0.9670.00 0.9070.01
MeshDOG 0.8470.01 0.9170.01 0.9670.00 0.8970.01
ISS 0.8470.01 0.9070.01 0.9670.00 0.8870.01
MK 0.8370.01 0.9070.01 0.9570.00 0.8870.01
LK 0.8070.01 0.8670.01 0.9470.01 0.8570.01
PK 0.7870.01 0.8570.01 0.9470.01 0.8370.01
CK 0.6970.01 0.7870.01 0.9170.01 0.7570.01

Table 3
Dataset C: performance per keypoint detector. Parameters: descriptor¼PFH,
r¼ 0:1R, K¼100.

Method FT ST DCG AP

RK 0.0570.01 0.1070.03 0.3570.02 0.0670.01
MeshDOG 0.0470.02 0.0770.02 0.3470.02 0.0570.02
CK 0.0470.01 0.0870.02 0.3470.01 0.0570.01
ISS 0.0470.01 0.0870.02 0.3470.01 0.0570.01
LK 0.0370.01 0.0670.01 0.3470.01 0.0570.01
MK 0.0370.01 0.0770.02 0.3370.01 0.0470.01
PK 0.0270.01 0.0670.02 0.3270.01 0.0470.01
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than with 33 carefully selected salient points. An in-depth analysis
of the effect of saliency and random sampling size is presented in
Section 5.3. RK has comparable performance to the state-of-the-
art in shape retrieval [16], which is based on dense random
features represented by covariance descriptors, with performance
metrics FT ¼0.623, ST ¼0.737 and DCG ¼0.864.

Dataset B: Table 2 shows retrieval performance on Dataset B. All
pair-wise differences between keypoint detectors are significant,
with the exception of LK and PK. RK remains the top-performing
saliency model for retrieval. MK now has second place. This is
explained by the fact that MK saliency model is based on spectral
properties, which makes it more robust to non-rigid transformations,
compared to other methods. CK is the worst performing method,
since its saliency model relies on spatial distribution of FPFH and
thus is not robust to large deformations. Lian et al. [9] evaluate recent
retrieval systems on Dataset B. RK is outperformed by methods,
featured in their benchmark, that are based on isometry-invariant
descriptors, or volumetric feature representations.

Dataset C: Table 3 shows performance per keypoint detectors.
Performance metrics on this dataset are low, and there are no
statistically significant pair-wise differences between keypoint
detectors. The low performance suggests that encoding 3D local
features is not an adequate method for describing range scans.
This is supported by an evaluation of recent retrieval methods on
Dataset C, which shows similar poor performance for methods
using 3D features, and significantly better results for methods
based on 2D rendered views [10].

Summary: RK provides the best retrieval performance, out of
the evaluated keypoint detectors, on datasets of whole models. It
outperforms ground-truth salient points (GK). Furthermore, using



Fig. 6. Keypoints on a shape in Dataset A, based on ISS and MeshDOG detectors.
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a small number of random keypoints (as small as n¼30) still
outperforms salient features on a generic dataset. This shows that
sparse salient features are not appropriate for shape representa-
tion. Rather than using RK, which generates a large number of
random keypoints and is thus expensive (see Section 6), we
recommend using a small random sampling size, such as n¼50,
per shape.

4.2. Comparison against other state-of-the-art keypoint detectors

Thus far, we have focused on keypoint detectors that are based
on local maxima of saliency algorithms. There is a large body of
work on interest point detection beyond the ones we have eval-
uated above. Tombari et al. [27] present a qualitative evaluation of
major keypoint detectors in the literature, in terms of repeatability,
distinctiveness and computational efficiency. Repeatability is the
ability to find the same keypoints on different instances of a given
shape. Their evaluation reports that Intrinsic Shape Signatures
detector (ISS) [28] is highly efficient and provides a good trade-off
between absolute and relative repeatability, making it a good
choice for shape retrieval. Note that ISS is fixed-scale, and thus
detects keypoints at a specific scale, provided via a support radius
parameter. The authors then show that for object recognition, the
adaptive-scale detector MeshDOG [29] produces the best results.
In this section, we compare ISS and MeshDOG against GK and RK.

ISS [28] computes saliency of a point based on the eigenvalues
of the scatter matrix of points within a support radius. Saliency is
the magnitude of the smallest eigenvalue. Keypoint detection is
based on this saliency value (to include points with large varia-
tions against each direction), and the ratio between the second
and third eigenvalues (to avoid points with a similar spread along
principal directions). On the other hand, MeshDOG is based on a
scale-space representation of a mesh, built by applying the
Difference-of-Gaussians (DoG) operator on a scalar function
defined over the mesh. Points are ranked by their saliency values,
thresholded to keep the number of detected points below a fixed
percentage of the number of vertices in the shape, and retained
only if they exhibit corner characteristics.

We use the same parameters for both detectors as Tombari
et al. [27], including the selection of mean curvature as the scalar
function in MeshDOG. They evaluate ISS at scales
6m;10m;12m;18mf g, where m is the mesh resolution computed
by taking the average edge length. However, we noticed that on
our datasets, ISS at scale m generates more keypoints than
detection at higher scales, including 6m, and achieves better per-
formance. This is illustrated in Fig. 6. Thus, in the results reported
below, ISS is computed at scale m.

Table 1 shows retrieval performance on Dataset A, when using
ISS or MeshDOG keypoint detectors against RK and GK. For more
details on the number of keypoints detected per method, we refer
the reader to Appendix C. The results show that the adaptive-scale
MeshDOG not only produces more keypoints than ISS and GK, but
it also produces significantly better retrieval performance. How-
ever, RK outperforms MeshDOG. This supports the argument that
more keypoints provide more coverage of the surface, which leads
to better retrieval.
5. Evaluation of parameter choices

We investigate the impact of various design choices on shape
retrieval performance. We do this analysis on Datasets A, B and C
unless specified otherwise. We pay closer attention to our results
on Dataset A since it is the most diverse collection out of the three
datasets, in terms of number of classes and variability within
classes. The default design choices are RK as the keypoint detector,
PFH as local descriptors, and cluster size K¼100. Changes in these
default design choices are specified explicitly in each section.

5.1. Choice of local descriptors

In addition to PFH we evaluate 3 other feature descriptors:
FPFH [11], SHOT [23] and Spin Images [22]. Results are sum-
marised in Fig. 7 (top) and Table 4. PFH is significantly better than
other descriptors. It is more robust to sampling compared to SHOT
and Spin Images, and captures more information than FPFH as it is
4 times larger. These results are based on the RK feature detector.
Further experiments in Appendix A use alternative detectors and
support the claim that PFH is a better descriptor.

Table 4 also includes performance when using a global
descriptor, as opposed to a Bag of features approach, with no
dependency on keypoint detection. We obtain such global
descriptor by computing a single PFH descriptor with an infinite
support radius, which means that all points are included in the
histogram of angular variations. We denote the global descriptor
by GPFH. Results show that the global descriptor is outperformed
by encoding local descriptors. This indicates that local information
is important for retrieval.

5.2. Number of clusters

By default we set the cluster size K¼100, after exploring a
range of values for K. Fig. 7 (middle) shows retrieval performance
for different K. There is no statistically significant difference in
performance for various values of K. Cluster size has little effect on
FV, since the encoding retains some information about the original
shape feature descriptors.

5.3. Number of random points

Section 4 shows that RK keypoint detector produces better
retrieval. RK selects random points on the surface by extracting
keypoints from a random saliency map. The number of random
points depends on the shape sampling. We investigate the effect of
choosing a specific number of random points per shape. We
denote this number by n. Local features are n surface points ran-
domly selected with uniform distribution, and shifted using Lloyds
relaxation [30] to provide a better coverage of the whole surface.
Fig. 7 (bottom) shows retrieval performance for varying n. There is
no statistically significant difference between using jRKj or
choosing n random points per shape, for nZ50. This implies that
selecting a small fixed number of points at random is good



Fig. 7. Performance on Dataset A for various design choices. The PR curves show
that PFH is a better feature descriptor (top), cluster size does not have an impact on
retrieval (middle), and retrieval performance increases with larger number of
random features (bottom). n¼ jGKj is the number of ground-truth salient points.
We also investigate the effect of only choosing non-salient random points.
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enough. To assess whether ground-truth salient points have any
useful effect we tried restricting the random point selection to
areas that are not close to a ground-truth salient point. This does
reduce average retrieval performance, but not significantly. This
suggests that the distribution of non-salient features on the sur-
face is important for shape retrieval. We discuss this in more depth
in Section 7.
5.4. Support radius r

The support radius is used to indicate the scale of local
neighbourhood, and it is a key parameter in computing local
descriptor. The above experiments use a fixed r¼ 0:1R. In this
section, we investigate the influence of r on retrieval, by looking at
values ranging from 0:05R to 0:5R. Tables 5 and 6 show retrieval
results for different values of r combined with RK30 (random
keypoint detector with n¼30). We do not report results on Dataset
C since they were not statistically significant. Results show that for
Dataset A there is no performance improvement for rZ0:2. As for
Dataset B, performance increases with the support radius, until
r¼0.2 and decreases for larger r. This shows that support radius
does indeed affect retrieval, and when chosen too small or too
large, it can decrease retrieval performance.
Table 4
Dataset A: effect of local feature descriptors and PFH-based global descriptor GPFH
on retrieval. Parameters: detector¼RK, r ¼ 0:1R, K¼100.

FT ST DCG AP

PFH 0.6370.03 0.7370.03 0.8470.02 0.7070.03
GPFH 0.5870.03 0.7170.03 0.8470.02 0.6670.03
FPFH 0.5770.03 0.6870.03 0.8170.02 0.6470.03
SHOT 0.5470.03 0.6870.03 0.8070.02 0.6270.03
SPIN 0.5370.03 0.6570.03 0.7870.02 0.6070.03

Table 5
Dataset A: performance based on support radius r¼tR. Parameters: detec-
tor¼RK30, descriptor¼PFH, K¼100.

t FT ST DCG AP

t¼0.05 0.4170.03 0.5770.03 0.7170.02 0.4870.03
t¼0.1 0.5770.03 0.7270.03 0.8370.02 0.6570.03
t¼0.2 0.6270.03 0.7570.03 0.8570.02 0.7070.03
t¼0.3 0.6470.03 0.7770.03 0.8670.02 0.7170.03
t¼0.4 0.6270.03 0.7770.03 0.8670.02 0.7170.03
t¼0.5 0.6170.03 0.7570.03 0.8570.02 0.6970.03

Table 6
Dataset B: performance based on support radius r¼tR. Parameters: detec-
tor¼RK30, descriptor¼PFH, K¼100.

t FT ST DCG AP

t¼0.05 0.5270.01 0.6470.01 0.8170.01 0.5770.02
t¼0.1 0.7870.01 0.8870.01 0.9570.00 0.8470.01
t¼0.2 0.7970.01 0.8870.01 0.9570.00 0.8570.01
t¼0.3 0.7270.01 0.8270.01 0.9270.01 0.7870.01
t¼0.4 0.6670.01 0.7670.01 0.8970.01 0.7270.01
t¼0.5 0.6170.01 0.7270.01 0.8770.01 0.6770.01



Table 7
Dataset A: AP per shape class, using n¼1000 random points, n¼1000 random points in non-salient regions, and ground-truth
keypoints GK. Parameters: descriptor¼PFH, r ¼ 0:1R, K¼100.

Classes n¼1000 n¼1000 (non-salient) GK

armadillo 1.0070.00 1.0070.00 1.0070.00
plier 1.0070.01 1.0070.00 0.8770.08
ant 0.9970.00 0.9970.00 0.9870.01
teddy 0.9970.01 0.9870.02 0.9570.04
fish 0.9570.03 0.9570.03 0.6470.05
glasses 0.9370.03 0.8970.05 0.9170.06
mechanic 0.9170.09 0.9070.09 0.7770.12
buste 0.8970.05 0.8070.06 0.8070.06
airplane 0.8770.04 0.8470.05 0.8470.03
hand 0.8670.07 0.7970.07 0.6870.07
human 0.8270.08 0.8070.09 0.5570.05
four leg 0.7070.08 0.7070.07 0.4170.05
chair 0.6870.07 0.6270.08 0.5770.07
table 0.5370.11 0.5270.11 0.5170.10
cup 0.5370.08 0.5370.08 0.4470.08
bird 0.4770.05 0.4670.05 0.3270.05
octopus 0.4670.04 0.4470.05 0.4970.05
vase 0.3470.05 0.3570.04 0.2670.03
bearing 0.2770.03 0.2770.04 0.2570.03
spring 0.2270.06 0.2170.06 0.2470.07

Average 0.7270.03 0.7070.03 0.6270.03

Table 8
Dataset A: computational cost. These include computation of local descriptors,
clustering, encoding and retrieval. RK50 refers to choosing n¼50 random points
per shape.

Method Timing (s) AvgNumKeypoints

RK 306 248711
MeshDOG 302 236712
ISS 178 10677
LK 167 6974
CK 152 5674
PK 148 5373
RK50 145 5070
GK 121 3271
MK 127 2972
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5.5. Performance per shape class

Finally, we study how retrieval performance varies with the
shape class. Table 7 shows AP for each of the 20 classes in Dataset
A, and for three keypoint selection methods: n¼1000 random
points, n¼1000 non-salient random points, and ground-truth
salient features. “Armadillo” and “plier” have perfect retrieval
performance, while other classes such as “spring” and “bearing”
have poor performance (below 30%). Note that classes with poor
AP typically consist of tube-like features. We argue that local
features on such shape classes do not contain enough information
to differentiate them from one another, which leads to poor
retrieval performance.
6. Computational cost

Table 8 shows computation time spent on training a retrieval
system (computing descriptors and encodings) and testing it
(computing similarities between pairs of shapes in the database).
We record computation times for retrieval based on every key-
point detector. Results show that although RK produces similar or
better retrieval performance than other evaluated methods,
retrieval computation is at least 2 times more costly than the
alternatives. On the other hand, choosing n¼50 random points
produces similar retrieval performance, with half the computa-
tional cost of RK.
7. Discussion

Our most surprising result is that random points outperform
real salient points for shape retrieval on a generic dataset (Sections
4 and 5.3). Even when the random points are restricted to non-
salient regions they still outperform salient points (Section 5.3),
implying that the distribution of non-salient features is important
in recognising 3D shapes. We provide possible explanations for
these results.

The Bag of features approach loses spatial information. The
approach encodes the distribution of local features, but does not
include where these features are spatially located. This may be
desirable for deformation invariance. However, there are several
methods for dealing with this, using for instance diffusion dis-
tances [17]. Adding spatial information in the encoding may better
differentiate between shapes with similar local features but dif-
ferent relative positions of these features. Further work should
investigate how a spatially sensitive approach will affect retrieval
performance given salient points.

Salient points are often symmetric, in other words they are
symmetric to another keypoint with an identical local neigh-
bourhood. Examples of symmetric keypoints are human eyes,
airplane wings, and table legs. Chen et al. [1] show that salient
point sets selected by people are highly symmetric (76% of all
selected points). Thus, GK contains less information than we think,
since it generates lists of duplicate features that may be redundant.
Random points, on the other hand, are not symmetric and thus
capture more useful information for retrieval.

Moreover, although salient features may contain some class-
differentiating information, the global shape plays a more impor-
tant role in 3D recognition than a few interesting points. However,
we see in Section 5.1 that a global descriptor that looks at the
shape as whole with no focus on local regions underperforms
compared to local features encoding. This indicates that encoding
local surface patches provides a better global description of a
shape. Salient features may be more useful for specific tasks such
as shape correspondence [31], where two shapes typically have a
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common class, and the problem is matching corresponding local
neighbourhoods.

Saliency computes the relative importance of points in a shape.
Thus saliency-based keypoints are not inherently class-specific.
Our series of experiments examine how much salient points are
representative of shape classes. Our results show that random
points outperform keypoints, suggesting that the latter are not
important in discriminating between shapes from different clas-
ses. Rather it may be more effective to compute class-specific
features, and given a shape encode how it matches these repre-
sentative features. This shape representation could not only tell us
how similar two shapes are, but also help us better understand the
similarity. This may be possible by extracting meaningful combi-
nations of common features between the two shapes and match-
ing these combinations to known classes. An investigation of such
class-specific features for retrieval is an interesting direction for
future work.
Table B1
Dataset A: effect of random sampling size on retrieval. Parameters: descrip-
tor¼PFH, r ¼ 0:1R, K¼100.

Method FT ST DCG AP

GK 0.5570.03 0.6870.03 0.8070.02 0.6270.03
RK 0.6370.03 0.7370.03 0.8470.02 0.7070.03
n¼20 0.5170.03 0.6670.03 0.7970.02 0.5870.03
8. Conclusion

We evaluated keypoint detectors on their performance in
shape retrieval based on selected saliency models. Using a random
saliency model, RK, leads to better retrieval performance com-
pared to other saliency models including ground-truth, although
more computationally expensive. For a low computational cost,
with similarly good retrieval performance, we recommend
selecting a small fixed number of random points per shape.
n¼30 0.5770.03 0.7270.03 0.8370.02 0.6570.03
n¼50 0.6270.03 0.7670.03 0.8570.02 0.7070.03
n¼100 0.6470.03 0.7770.03 0.8670.02 0.7270.03
n¼300 0.6470.03 0.7670.03 0.8670.02 0.7270.03
n¼500 0.6470.03 0.7670.03 0.8570.02 0.7270.03

Table B2
Dataset B: effect of random sampling size on retrieval. Parameters: descrip-
tor¼PFH, r ¼ 0:1R, K¼100.
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Method FT ST DCG AP

RK 0.8670.01 0.9170.01 0.9670.00 0.9070.01
n¼20 0.6670.01 0.7870.01 0.9070.01 0.7370.01
n¼30 0.7870.01 0.8870.01 0.9570.00 0.8470.01
n¼50 0.8570.01 0.9270.01 0.9770.00 0.9070.01
n¼100 0.8870.01 0.9370.01 0.9770.00 0.9270.01
n¼300 0.8770.01 0.9270.01 0.9670.00 0.9170.01
n¼500 0.8770.01 0.9270.01 0.9670.00 0.9170.01
Appendix A. Local feature descriptors

We show in Section 5.1 that combining RK feature detector
with the PFH local descriptor produces better results than alter-
native descriptors. To show that PFH is indeed the better
descriptor, we carry out a similar experiment using other keypoint
Table A1
Dataset A: effect of GK-based local descriptors on retrieval. Parameters: detector ¼GK,

Method FT ST

PFH 0.5570.03 0.6870.0
FPFH 0.5170.03 0.6370.0
SHOT 0.4470.03 0.5870.0
SPIN 0.4470.03 0.5670.0

Table A2
Dataset A: effect of LK-based local descriptors on retrieval. Parameters: detector¼LK, r

Method FT ST

PFH 0.5370.03 0.6670.0
FPFH 0.5170.03 0.6370.0
SHOT 0.4670.03 0.6070.0
SPIN 0.4570.03 0.5770.0
detectors. We focus on LK and GK. Tables A1 and A2 both show
that PFH performs better than other descriptors (FPFH, SHOT and
SPIN) with different detectors. This supports our choice of PFH as
the default local descriptor.
Appendix B. Number of random points

Section 5.3 discusses the influence of the number of random
points on shape retrieval, using results on Dataset A as a test case.
It shows that using as few as n¼50 random points per shape
outperforms human-selected keypoints (GK) on this dataset.
Although there is no ground-truth keypoint data available for
Datasets B and C, we can still analyse the effect of keypoint sam-
pling size on these datasets. Tables B1 and B2 show retrieval
performance for various sampling sizes, on Datasets A and B.
Results show that for these 2 datasets consisting of whole models,
retrieval performance increases with the random sampling size,
up to n¼50 where performance stops improving significantly.
r¼ 0:1R, K¼100.

DCG AP

3 0.8070.02 0.6270.03
3 0.7770.02 0.5770.03
3 0.7270.02 0.5170.03
3 0.7270.02 0.5070.03

¼ 0:1R, K¼100.

DCG AP

3 0.8070.02 0.6170.03
3 0.7870.02 0.5770.03
3 0.7570.02 0.5370.03
3 0.7370.02 0.5270.03
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There is no significant difference in performance on Dataset C (not
reported), due to the poor performance of Bag of features for
partial shape retrieval.
Table C3
Dataset C: performance and average number of detected points per keypoint detector. P
the dataset uses similarity metric learning to generate rankings of 3D models for the g

Method DCG AP

Best: [10] 0.64 0.78
RK 0.3570.02 0.067
MeshDOG 0.3470.02 0.057
ISS 0.3470.01 0.057
LK 0.3470.01 0.057
CK 0.3470.01 0.057
PK 0.3270.01 0.047
MK 0.3270.01 0.047

Table C1
Dataset A: performance and average number of detected points per keypoint detector. Pa
the dataset is based on covariance descriptors for local features [16].

Method DCG

Best: [16] 0.86
RK 0.8470.02
MeshDOG 0.8270.02
ISS 0.8270.02
LK 0.8070.02
CK 0.7570.02
PK 0.7770.02
GK 0.8070.02
MK 0.7670.02

Table C2
Dataset B: performance and average number of detected points per keypoint detector. P
the dataset is based on an encoding of Localised Statistical Feature vectors [9].

Method DCG

Best: [9] 0.99
RK 0.9670.00
MeshDOG 0.9670.00
ISS 0.9670.00
LK 0.9470.01
CK 0.9170.01
PK 0.9470.01
MK 0.9570.00
Appendix C. Number of salient points

Finally we report the number of salient points generated by the
evaluated saliency-based keypoint detection algorithms, ISS and
MeshDOG. For each dataset, we also include the retrieval system
that performs best on it thus far, according to the literature
[16,9,10]. Tables C1–C3 present this data along with DCG and AP
performance. These results support the argument that for the
arameters: descriptor¼PFH, r¼ 0:1R, K¼100. The reported best retrieval system on
iven range scan queries.

n nscans

N/A N/A
0.01 13478 136710
0.02 9079 652774
0.01 2873 395742
0.01 9776 5474
0.01 7875 4774
0.01 145713 155724
0.01 224723 334748

rameters: descriptor¼ PFH, r ¼ 0:1R, K¼100. The reported best retrieval system on

AP n

N/A 600 (random)
0.7070.03 248711
0.6570.03 236712
0.6570.03 10677
0.6170.03 6974
0.5470.03 5674
0.5770.03 5373
0.6270.03 3271
0.5570.03 2972

arameters: descriptor¼PFH, r¼ 0:1R, K¼100. The reported best retrieval system on

AP n

N/A 5K (random)
0.9070.01 31278
0.8970.01 15071
0.8870.01 9471
0.8570.01 17675
0.7570.01 14575
0.8370.01 17475
0.8870.01 14274
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detectors evaluated in this paper, a large number of local features
and better coverage of the surface lead to better retrieval
performance.
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