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Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes, including mitochon-
drial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dy-
namic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor
1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses, respectively.
A decreased activity of the mitochondrial electron transport chain (ETC) (state 3) was observed in permeabilized
NRVCs stimulated with PE, whereas this was improved in IGF1 stimulated NRVCs. In contrast, in intact NRVCs,

ﬁiﬁgﬁ;ocyte mitochondrial oxygen consumption rate (OCR) was increased in PE stimulated NRVCs, but remained constant
Hypertrophy in IGF1 stimulated NRVCs. After stimulation with PE, mitochondria were localized to the periphery of the cell.
Mitochondria To study the differences in more detail, we performed gene array studies. IGF1 and PE stimulated NRVCs did
Kif5b not reveal major differences in gene expression of mitochondrial encoding proteins, but we identified a gene
Heart encoding a motor protein implicated in mitochondrial localization, kinesin family member 5b (Kif5b), which

was clearly elevated in PE stimulated NRVCs but not in IGF1 stimulated NRVCs. We confirmed that Kif5b gene
and protein expression were elevated in animal models with pathological cardiac hypertrophy. Silencing of
Kif5b reverted the peripheral mitochondrial localization in PE stimulated NRVCs and diminished PE induced
increases in mitochondrial OCR, indicating that KIF5B dependent localization affects cellular responses to PE
stimulated NRVCs.
These results indicate that KIF5B contributes to mitochondrial localization and function in cardiomyocytes and
may play a role in pathological hypertrophic responses in vivo.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cardiac hypertrophy is believed to be an adaptive response of the
heart aimed at reducing wall stress and maintaining cardiac function.
Cardiac hypertrophy can be broadly divided into pathological and phys-
iological hypertrophy. Both types of hypertrophy are associated with
growth and functional changes of cardiomyocytes, but pathological
hypertrophy may result in cardiac decompensation and heart failure
[1,2].

Physiological hypertrophy can be induced by growth factors, like
insulin-like growth factor (IGF1), whereas adrenergic signaling and
angiotensin Il can stimulate pathological hypertrophy. Although the
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common outcome of these hypertrophic signals is cardiomyocyte
growth (hypertrophy), these responses are associated with distinct in-
tracellular signaling pathways and different structural and functional
consequences [3]. Among different events, like fibrosis and microvascu-
lar abnormalities [3,4], energy metabolic reprogramming also appears
to be disparate between the two hypertrophic conditions [5]. This in-
cludes alterations in substrate usage and mitochondrial function [3].
The metabolic switch from fatty acids to glucose usage, which is
observed in pathological hypertrophy, has been investigated in great
detail [6-8]. The changes in mitochondrial dynamics and function on
the other hand are still vague. The general view is that physiological
factors stimulate mitochondrial biogenesis and hence mitochondrial
capacity [9], whereas pathological stimulation results in altered mito-
chondrial dynamics and activity [10]. These changes are still far from
understood and differences in etiology, hypertrophic state (compensat-
ed/decompensated) and methodology have probably contributed to
different results [11]. Moreover, the complexity of the cardiovascular
system in which (neuro)hormonal signals, biomechanical changes,

0022-2828/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hemodynamic effects and altered substrate availability all have an im-
pact on hypertrophy development and mitochondrial function most
likely hampers these studies.

In this study we aimed to investigate mitochondrial function in a
simplified system using cultured neonatal rat cardiomyocytes (NRVCs)
and mimicked physiological and pathological hypertrophy with IGF1
and phenylephrine (PE), respectively. We show that a pathological
stimulus (PE) can induce changes in mitochondrial function and dy-
namic localization within 24 h of stimulation. In contrast to IGF1 stimu-
lated NRVCs, in PE stimulated NRVCs the kinesin motor protein KIF5B
was upregulated. This results in abnormal and more peripheral localiza-
tion of the mitochondria. Depletion of KIF5B prevented this mitochon-
drial redistribution and also partially inhibits the mitochondrial
respiratory increase and hypertrophic response observed after stimula-
tion with PE. This indicates that KIF5B is involved in PE induced changes
in mitochondrial localization and function and suggests that KIF5B could
play a role in energetic changes in pathological hypertrophic responses.

2. Materials and methods
2.1. Ethics statement

All experiments were approved by the Committee on Animal
Experimentation of the University of Groningen and were conducted
under international guidelines on animal experimentation conforming
to the Guide for the Care and Use of Laboratory Animals published by
the Directive 2010/63/EU of the European Parliament.

2.2. Isolation and culturing of primary cardiomyocytes

Primary neonatal rat ventricular cardiomyocytes (NRVCs) were iso-
lated from Sprague Dawley neonatal rats of 1-3 days old, as previously
described [12,13]. NRVCs were grown in Dulbecco's Modified Eagle
Medium (DMEM) supplemented with 5% fetal calf serum (FCS) and
penicillin-streptomycin (100 U/ml-100 pg/ml). NRVCs were serum
starved in DMEM with penicillin-streptomycin (100 U/ml-100 pg/ml)
48 h after isolation. After 24 h of starvation NRVCs were stimulated
with 50 uM phenylephrine (PE) or 10 nM insulin-like growth factor 1
(IGF1) (Life Technologies) for 24 h. All media and supplements were
purchased from Sigma-Aldrich Chemie B.V., Zwijndrecht, The
Netherlands. After stimulation, NRVCs were washed twice with PBS
and used for further analysis.

2.3. Immunofluorescence microscopy

NRVCs were grown on coverslips coated with laminin (Millipore,
Amsterdam, The Netherlands) and treated as described above. NRVCs
were fixed for 10 min with 4% paraformaldehyde at 4 °C, followed by
permeabilization with 0.3% Triton X for 5 min. For cell size measure-
ments, NRVCs were incubated with monoclonal anti-alpha-actinin
antibody (Sigma-Aldrich Chemie B.V., Zwijndrecht, The Netherlands)
in 3% BSA, 2% normal goat serum, and 0.1% Tween in PBS for 1 h at RT.
NRVCs were washed with PBS and incubated for another hour with a
goat anti-mouse fluorescein isothiocyanate (FITC) secondary antibody
(Santa-Cruz Biotechnology, Heidelberg, Germany). Coverslips were
mounted with mounting medium containing 4’,6-diamidino-2-
phenylindole dihydrochloride (DAPI) (Vector Laboratories, Burlingame,
CA, USA) for counterstaining of the nuclei. Slides were imaged using a
Leica DMI6000B inverted immunofluorescence microscope and cell
size was determined using Image] analysis software. To determine
mitochondrial localization the same staining protocol was followed as
described above, but next to alpha-actinin staining, anti-TOM20
antibody staining was performed (Santa Cruz, Heidelberg, Germany).
To obtain a quantitative measure of mitochondrial distribution in the
cytosol, the intensity of TOM20 staining was determined in a circular
area at the nuclear periphery (perinuclear) and an identical sized area

at the cell membrane (cellular periphery) using Image] software.
These regions were never overlapping. The intensity ratio for
perinuclear versus peripheral TOM20 staining was determined and at
least 25 NRVCs/condition were analyzed in at least three independent
experiments. The percentage of NRVCs with a perinuclear to peripheral
ratio above 3.0 was determined. Detailed microscopy images were
generated using a Delta Vision Elite system using a 60 x objective at
the UMCG imaging center. Z-stacks were generated and images were
deconvolved by 5 iterations and subsequently a Z-projection was
generated.

2.4. [3H]-leucine incorporation

NRVCs were grown in 12-well plates and L-[4.5->H]leucine (1 uCi/
ml, PerkinElmer) was added to the medium right after stimulation
with PE or IGF1. NRVCs were cultured for an additional 24 h and
L-[4.5-*H]leucine incorporation was determined as previously
described [12].

2.5. Quantitative real time PCR

Total RNA was isolated using a nucleospin RNA II kit (Bioke, Leiden,
The Netherlands) and cDNA was synthesized using QuantiTect Reverse
Transcriptional kit (Qiagen, Venlo, The Netherlands) according to the
manufacturer's instructions. Relative gene expression was determined
by quantitative real time PCR (qRT-PCR) on the Bio-Rad CFX384 real
time system (Bio-Rad, Veenendaal, The Netherlands) using ABsolute
QPCR SYBR Green mix (Thermo Scientificc Landsmeer, The
Netherlands). Gene expressions were corrected for reference gene
values (Rplp0), and expressed relative to the control group. Primer
sequences used are depicted in Supplemental Table 1.

2.6. Western blot

Western blotting was performed as described previously [14]. In
brief, protein was isolated with radio-immunoprecipitation assay
(RIPA) buffer (50 mM Tris pH 8.0, 1% nonidet P40, 0.5% deoxycholate,
0.1% SDS, 150 mM NacCl) supplemented with 40 pl/ml phosphatase
inhibitor cocktail 1 (Sigma-Aldrich Chemie B.V., Zwijndrecht, The
Netherlands), 10 pl/ml protease inhibitor cocktail (Roche Diagnostics
Corp., Indianapolis, IN, USA) and 1 mM phenylmethylsulfonyl fluoride
(PMSF) (Roche Diagnostics Corp., Indianapolis, IN, USA). Protein con-
centrations were determined with a DC protein assay kit (Bio-Rad,
Veenendaal, The Netherlands). Equal amounts of proteins were separat-
ed by SDS-PAGE and proteins were transferred onto polyvinylidene
difluoride (PVDF) membranes. (The following antibodies were used:
anti-OXPHOS cocktail (MitoSciences, Eugene, Oregon, USA), anti-pAKT
(Cell Signaling Technology Danvers, MA, USA), anti-total AKT (Cell Sig-
naling Technology Danvers, MA, USA), anti-beta-actin (Sigma-Aldrich
Chemie B.V., Zwijndrecht, The Netherlands), anti-Kif5b anti-Mitofusin-
1 (Abcam Cambridge, UK), anti-Drp1 (Becton Dickinson, Breda, The
Netherlands) and anti-TOM20 (Santa Cruz, Heidelberg, Germany).
After incubation with HRP-conjugated secondary antibodies, signals
were visualized with ECL and analyzed with densitometry (ImageQuant
LAS4000, GE Healthcare Europe, Diegem, Belgium). Cardiac troponin T
(cTnT) was used as a loading control as described before [15].

2.7. Seahorse mitochondrial flux analyses

To determine the mitochondrial oxygen consumption rate (OCR) a
Seahorse metabolic flux analyzer (Seahorse Biosciences, Massachusetts,
USA) was used. A standardized protocol [16] was used to determine
specific mitochondrial complex activities in permeabilized cells. To
measure complex I and complex Il mediated respiratory activities,
cardiomyocytes were permeabilized using recombinant perfringolysin
O (rPFO) (XF-plasma membrane permeabilizer (PMP) reagent)
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(Seahorse Biosciences, Massachusetts, USA). NRVCs were cultured as
described above. On the day of analysis, NRVCs were washed twice
with ASBSA (70 mM sucrose, 220 mM mannitol, 10 mM KH,PO,,
5 mM KOH, 0.4% BSA). The XFPMP reagent (1 nM) was added together
with the appropriate substrates and inhibitors and the assay was started
immediately. To measure complex [ activity, pyruvate (5 mM) and
malate (2.5 mM) were added to the MAS-BSA solution. For complex Il
mediated respiration rotenone (1 uM) and succinate (10 mM) were
used. The OCR was measured by adding subsequently ADP (1 mM),
oligomycin (1 pg/ul) and FCCP (1 uM). Non-mitochondrial OCR was
measured after the addition of antimycin/rotenone (1 uM/1 uM). This
non-mitochondrial respiration was subtracted from the total OCR
values resulting in ADP induced state 3 mitochondrial OCR, ATP-linked
state 4 mOCR and FCCP induced uncoupled mOCR (state 3u).

Determination of the OCR in intact cardiomyocytes with the
Seahorse metabolic flux analyzer was performed as previously
described [17]. Neonatal cardiomyocytes were seeded at a density of
100,000 NRVCs/well in special Seahorse 24-well plates. One hour before
initiation of measurements, medium was replaced with XF medium
supplemented with 10 mM glucose or 1 mM pyruvate and incubated
for 1 h in a CO, free 37 °C incubator. The basal respiration of the
NRVCs was measured, followed by injection of oligomycin (ATP
synthase inhibitor) (1 pM) to measure the ATP linked OCR. The
uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP) (0.5 uM) was used to determine maximal respiration. Finally,
rotenone (1 pM) and antimycin A (AR) (1 uM) were injected to
determine the non-mitochondrial respiration via inhibition of
complexes I and III, respectively. Mitochondrial specific OCR (mOCR)
was calculated by subtracting the non-mitochondrial respiration AR of
the total OCR values. ATP-linked OCR is the calculated difference
between basal mOCR and mOCR after the addition of oligomycin. In
each plate the same treatment was performed in triplicate or quadruple.
The OCR was corrected for the amount of total protein per well as
determined using the Biorad DC Protein Assay (Biorad).

2.8. mtDNA/nDNA ratio

Total DNA, including mitochondrial DNA (mtDNA), was extracted
from NRVCs using the DNA blood and tissue kit (Qiagen, Venlo, The
Netherlands). The isolated DNA showed high purity (A260/
A280 > 1.8), as determined by spectroscopic analysis. To determine
the ratio between mitochondrial and nuclear DNA, relative gene expres-
sion was determined by qRTPCR on a Bio-Rad CFX384 real time system
using SYBR Green dye. The expression of the mitochondrial gene
cytochrome b (CytB) was corrected for the expression of the nuclear
gene Trpm2. Primers and procedure have been described before [17].

2.9. Citrate synthase activity

Whole cell citrate synthase activity was measured using an enzyme
assay kit (Sigma-Aldrich Chemie B.V., Zwijndrecht, The Netherlands)
according to the manufacturer's instructions and as previously
described by us [17]. In short, cell lysates were prepared using the
CelLytic M Cell Lysis Reagent and protein concentrations were
measured. 3 pg of protein was combined with acetyl coenzyme A,
5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB) and assay buffer in a 96
well plate. The reaction was initiated by adding oxaloacetate into the
mixture and total activity was measured. Absorbance was measured at
412 nm using a spectrophotometer following a kinetic program.
Triplicate measurements were performed on each sample.

2.10. Gene array
RNA was isolated as described above and 4 independent biological

samples per condition were used for whole genome expression analysis.
Biotin-labeling, hybridization, washing and scanning of GeneChip Rat

Gene 1.1 ST arrays (Affymetrics) were performed in expert labs
(Nutrigenomics Consortium, Wageningen, The Netherlands) according
to Affymetrix's protocols. Processing of the data occurred using the
MADMAX pipeline [18]. Array data have been deposited at the Gene
Expression Omnibus (GEO) database (GSE73896). Differentially
expressed gene sets were identified with the IBMT regularized t-test
[19]. Corrections for multiple testing were done using the false
discovery rate method [20]. A false discovery rate (FDR) of <10% was
considered significantly changed. Genes related to the mitochondria
were selected from the gene list with significantly regulated genes
(FDR < 10%). These genes were annotated in biological processes using
Database for Annotation, Visualization and Integrated Discovery
(DAVID) software [21]. Biological processes shown are based on Gene
Ontology, GOTERM_BP4. Gene set enrichment analysis [22] was
performed to be able to detect significant pathway regulation of gene
sets, thereby not only focusing on significantly regulated genes, but tak-
ing into account all expressed genes. A heat map was generated using
statistical and graphical computer software “R”. For the heat map only
motor protein encoding genes were selected that we identified in the
FDR < 10% gene lists.

2.11. Animal experiments

Expression of Kif5b was analyzed in multiple hypertrophy animal
models. In all animal experiments, animals were kept on a 12 h
light:12 h dark cycle with ad libitum access to food and water. Pressure
overload in male C57BL/6] mice (Harlan, The Netherlands) was induced
at the age of 8-10 weeks by transverse aortic constriction (TAC). Mice
were terminated at 4 or 8 weeks post-TAC and sham operated animals
were used as controls, as described previously [23]. Homozygous trans-
genic TGR (mREN2)27 rats overexpress mouse renin resulting in hyper-
tension and consequently develop cardiac hypertrophy were used as
described before [13,14,24]. Age- and gender-matched Sprague Dawley
(SD) animals (genetic background strain) served as controls. For induc-
tion of physiological hypertrophy, male C57BL/6] mice were allowed
voluntary wheel running for 10 weeks. Sedentary animals were used
as controls.

2.12. Gene silencing

Silencing of gene expression was performed with oligofectamine
(Dharmacon) according to the manufacturer's instruction. Silencing
was performed with AccuTarget predesigned siRNA 1,664,194 and
1,664,195 from Bioneer targeting rat Kif5b. Control Accutarget siRNA
sequences were also from Bioneer and have been described before [17].

2.13. Statistical analysis

All values are presented as means + standard deviation (SD).
Comparison of two groups was done using a two-tailed Student's
t-test. One-way ANOVA with posthoc Bonferroni correction was used
to compare the difference between multiple groups. When data were
not normally distributed, a Kruskal Wallis test was performed, followed
by a Mann-Whitney U test for individual comparison of means. SPSS
software (PASW Statistics 22) was used for the statistical analyses.
P < 0.05 was considered to be significant.

3. Results

3.1. PE and IGF1 induce different pathways, resulting in similar hypertro-
phic responses in NRVCs

Stimulation of NRVCs with IGF1 and PE resulted in a similar increase
in cell size as is shown in Fig. 1A and B. Also protein synthesis was
significantly increased upon stimulation with PE and IGF1, albeit
somewhat stronger with IGF1 (Fig. 1C). The pathological stress markers
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Fig. 1. Stimulation of NRVCs with PE or IGF1 induced hypertrophy. NRVCs were stimulated with PE or IGF1 for 24 h and hypertrophic responses were measured. Cell size was determined
by staining with the sarcomeric cardiomyocyte specific marker a-actinin (green) and nuclei were counterstained with DAPI (blue). Representative images are shown (A). Quantification of
cell surface area of PE or IGF1 stimulated NRVCs relative to control NRVCs (N = 3) (B). Protein synthesis was determined using *H-leucine incorporation (N = 11) (C). mRNA expression
levels of the hypertrophic markers Nppa, Nppb, Rcan1 and Actal were determined using qRT-PCR (N = 6-8) (D). Protein expression levels of phosphorylated Akt and total Akt were
determined by Western blot (N = 7) (E). Representative Western blot images are shown (F). All graphs depict means and SD, *P < 0.05 compared to control; *P < 0.05 compared to
PE stimulated NRVCs. Nppa, atrial natriuretic peptide; Nppb, brain natriuretic peptide; Rcan1, regulator of calcineurin; Actal, actin alphal skeletal muscle.

Nppa (Anp) and Nppb (Bnp) were significantly up-regulated in PE hypertrophic stimulation (Fig. 1D). Whereas IGF1 strongly stimulated
stimulated NRVCs (Fig. 1D), but expression did not change upon IGF1 AKT phosphorylation (Fig. 1E and F), PE stimulated Rcan1 expression,
treatment. Actal was up-regulated upon stimulation with both stimuli a marker for calcineurin activation. These results demonstrate that
and probably indicates a general response of the cardiomyocytes to NRVCs show similar growth response upon PE and IGF1 stimulation,
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Fig. 2. Complex Il dependent OCR is decreased after PE stimulation whereas IGF1 stimulation increased complex I dependent OCR. Total mitochondrial complex specific OCR was analyzed
by permeabilizing NRVCs before measuring the OCR using a Seahorse XF24 Extracellular Flux Analyzer. Substrates were included in the buffer and basal respiration was measured.
Sequential addition of ADP, oligomycin, FCCP and antimycin/rotenone (AR) is indicated in the graph. Parameters of complex specific mitochondrial respiration were calculated, after
the subtraction of OCR measured after A/R resulting in mitochondrial specific OCR. State 3 is the OCR after the addition of ADP indicating the maximal coupled respiration. State 4 is
the OCR after the addition of oligomycin, indicating the ATP-independent respiration. State 4u is induced after the addition of FCCP. Complex I dependent OCR was measured using
pyruvate and malate as substrates (N = 6) (A)-(B). Complex Il dependent OCR was measured using succinate as substrates and rotenone to inhibit complex I (N = 6) (C)-(D). All
graphs depict means and SD, *P < 0.05 compared to control; P < 0.05 compared to PE stimulated NRVCs.
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but that the underlying hypertrophic pathways are not identical,
reflecting the in vivo pathological and physiological differences.

3.2. PE stimulation decreased complex Il activity, whereas IGF1 increased
complex I activity

The general perception is that mitochondrial function declines in
pathological cardiac hypertrophy, whereas it improves in physiological
hypertrophy [10,11,25,26]. To investigate whether this could also be ob-
served in NRVCs in vitro, the mitochondrial complex [ and Il dependent
respiration in permeabilized NRVCs was determined using the Seahorse
flux analyzer. Either malate/pyruvate was used as a substrate for com-
plex I or succinate/rotenone for complex II. As shown in Fig. 2A and B,
an increase in complex I dependent oxygen consumption rate (OCR)
was observed after stimulation with IGF1, although only state 3 was
significantly increased. No increase in complex [ dependent OCR was
observed after PE stimulation, rather a trend of lower complex I depen-
dent OCR was shown. No differences in complex Il dependent OCR were
observed after stimulation with IGF1. Stimulation with PE resulted,
however, in a significant diminishment of state 3 activity. Also state 4
and state 3u activities appeared lower after PE stimulation, albeit not
significant (Fig. 2C and D). Thus, a specific pathological or physiological
stimulus can, respectively, decrease and enhance specific mitochondrial
complex activities in vitro.

3.3. NRVCs stimulated with PE, but not IGF1, have increased cellular
mitochondrial respiration

The Seahorse flux analyzer provides the unique opportunity to
measure mitochondrial OCR also in intact NRVCs. Fig. 3A and B shows
the cellular OCR in control, PE and IGF1 stimulated NRVCs as
determined in intact NRVCs using glucose as a substrate. Interestingly,
cellular OCR was significantly higher in PE stimulated NRVCs, as
compared to control and IGF1 stimulated NRVCs (Fig. 3A). Also after
correction for non-mitochondrial OCR (total cellular OCR — A/R insensi-
tive OCR), the mitochondrial specific OCR after stimulation with PE
showed a significant increase of 2 fold as compared with control
NRVCs (Fig. 3B). Addition of the ATP synthase inhibitor oligomycin
revealed that the ATP-linked (oligomycin dependent) OCR was 3.5
fold higher in PE stimulated NRVCs. Maximal respiration induced by
the addition of the uncoupler FCCP was also clearly increased and this
trend was observed in all our experiments (Figs. 3, 8, Supplemental
Figs. 1, 5), albeit not always significant. The latter is probably a power
issue. No differences in mitochondrial respiration were observed in
IGF1 stimulated NRVCs, indicating that increased OCR is not a
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prerequisite for hypertrophy development (Fig. 3B). Similar results
were obtained using pyruvate as a substrate, indicating that these
findings are not a result of changes in glycolysis (Supplemental Fig. 1).
These data show that changes in complex activities do not necessarily
reflect the mitochondrial fluxes in intact NRVCs.

3.4. Changes in mitochondrial respiration are not due to mitochondrial
biogenesis

Altered mitochondrial biogenesis could explain the observed differ-
ences in the cellular mitochondrial respiration. To exclude mitochondri-
al biogenesis as a causal factor underlying these observed mitochondrial
effects several parameters were investigated. Protein expression of the
different complexes of the ETC was not altered in PE and IGF1 stimulat-
ed NRVCs, as shown with an OXPHOS Western blot (Fig. 4A and B). Also
the ratio between mtDNA and nDNA, an established measurement of
mitochondrial biogenesis, was similar between control, PE and IGF1
stimulated NRVCs (Fig. 4C). In addition, citrate synthase activity as an
independent measurement of mitochondrial biogenesis was unaltered
(Fig. 4D). This indicates that the observed changes in mitochondrial
respiration were not mediated by increased mitochondrial biogenesis
or increased levels of ETC proteins.

3.5. Changed mitochondrial localization in PE treated NRVCs

Although mitochondrial activity has been the main focus in cardiac
energetics for many years, also mitochondrial dynamics and localization
have increasingly gained interest in the cardiac field. Abnormalities
have been described to affect mitochondrial function [27,28]. We
stained NRVCs with an antibody against the mitochondrial outer
membrane protein TOM20 [29]. Microscopic inspection revealed a
strong perinuclear staining in control and IGF1 stimulated NRVCs,
whereas PE stimulated NRVCs showed a more dispersed and cytoplas-
mic mitochondrial staining (Fig. 5A). This effect in PE treated cells was
not simply a reflection of increased cell size, since both PE and IGF1
stimulated cells increased equally in size. Quantification of the ratio of
perinuclear versus peripheral staining intensity confirmed a high
intensity around the nucleus in control and even more in IGF1
stimulated NRVCs. This ratio was significantly lower in PE stimulated
cells (Fig. 5B). Furthermore, counting the number of NRVCs with a low
perinuclear/peripheral staining ratio (<3.0) confirmed this peripheral
localization in PE stimulated NRVCs (Fig. 5C). Thus, PE, but not IGF1,
stimulates peripheral mitochondrial localization in NRVCs.
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Fig. 3. Mitochondrial respiration in intact NRVCs is increased after stimulation with PE. Total cellular OCR was measured using a Seahorse XF24 Extracellular Flux Analyzer, with sequential
addition of the ATP synthase inhibitor oligomycin, the uncoupling agent FCCP and mitochondrial respiration inhibitors antimycin A/rotenone (AR) as depicted in the graph (A).
Mitochondrial specific OCR values were obtained by subtracting OCR values after the addition of AR from total OCR resulting in mitochondrial respiration, maximal and ATP-linked
OCR. Corrected oxygen consumption data of the first 3 measurements were averaged to yield the mitochondrial respiration. The ATP-linked OCR, defined as oligomycin-sensitive OCR,
was calculated. Maximal respiration was induced by FCCP (N = 5) (B). All graphs depict means and SD, *P < 0.05 compared to control.
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3.6. Gene array analysis reveals upregulation of Kif5b in PE treated NRVCs

Gene expression changes could potentially reveal targets that
explain the observed differences. A gene array analysis was therefore
performed with RNA from control, PE and IGF1 stimulated NRVCs.
Using a FDR of 10%, we identified >300 genes that were differentially
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expressed in PE stimulated NRVCs, compared to almost 1200 genes in
IGF1 stimulated NRVCs. Of these genes at least 4.9% of both the PE and
IGF1 group translated into proteins that are localized to the mitochon-
dria, based on available proteomic data (Fig. 6A) [30]. This mitochondri-
al set was further explored using DAVID to categorize genes into
biological processes (Fig. 6B). No specific functionally related groups
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Fig. 5. Mitochondria in PE stimulated NRVCs are dispersed throughout the cytosol. Mitochondrial localization was visualized by staining NRVCs with anti-TOM20 antibody (green). NRVCs

were stained with specific sarcomeric ai-actinin (red) and nuclei were counterstained

with DAPI (blue). Representative pictures are shown (A). Quantification of the intensity of

perinuclear localized mitochondrial staining as compared to peripheral cytoplasmic mitochondrial staining (N = 6) (B). Quantification of the percentage of NRVCs with a perinuclear

versus peripheral mitochondrial fluorescence intensity ratio lower than 3 (N = 6) (C).
stimulated NRVCs.

All graphs depict means and SD, *P < 0.05 compared to control. *P < 0.05 compared to IGF1
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of genes were found in the PE stimulated NRVCs (Fig. 6B) but within the
9 specific PE controlled genes, we identified upregulation of Bcl2 (anti-
apoptotic) and downregulation of Htra2 (apoptotic), which is in line
with a previously described link between PE and protection against
cardiomyocyte apoptosis [31,32]. Only 6 genes were shared between
PE and IGF1 stimulated NRVCs, identifying enriched biological pathways
in isoprenoid, sterol and cholesterol biosynthetic and metabolic pro-
cesses (Fig. 6B). In IGF1 stimulated NRVCs more mitochondrial related

genes were differentially expressed. For the IGF1 gene set functional
annotation revealed enrichment in several metabolic and biosynthetic
processes including oxoacid, coenzyme, cofactor, organic acid, heterocy-
cle, nucleotide and fatty acid metabolic and biosynthetic processes. No
major changes in specific ETC related gene expression were observed
(Fig. 6B and Supplemental data set).

Whole gene set enrichment analysis, which allows detection of
changes in gene sets not depending on significant changed expression
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of individual genes, did however, show significant differences. A sche-
matic and simplified overview of gene sets related to metabolism is
shown in Fig. 6C. A number of changes related to metabolism in IGF1
stimulated NRVCs were observed, including the TCA cycle, the ETC
and the OXPHOS pathways. In PE stimulated NRVCs less changes in
specific gene sets were found, including fatty acid metabolism (Fig.
6C). Thus, changes in the expression of genes encoding mitochondrial
localized proteins are small in these 24 h PE and IGF1 stimulated NRVCs.

3.7. The kinesin motor protein KIF5B is specifically upregulated in PE treated
cells

Based on our localization data, we also investigated genes potential-
ly involved in mitochondrial dynamics and localization. We did not

A

observe gene expression differences in genes involved in mitochondrial
fission/fusion and also protein levels and dynamic localization of two of
these proteins, dynamin-like protein (Drp1) and mitofusin (Mfn1/2)
were not altered (Supplemental Fig. 2). We did, however, identify
several kinesin and dynein motor proteins in our gene array that were
differentially expressed between the different conditions (Fig. 7A).
Most interestingly, Kif5b showed the highest expression and was
upregulated under PE stimulatory conditions only (1.6 fold increase).
Moreover, we could confirm that KIF5B protein levels were similarly in-
creased in PE stimulated cells only (Fig. 7B). KIF5B has previously been
shown to affect localization of the mitochondria in tumor cell lines [33].
Also in in vivo hypertrophic conditions disturbed morphology and
mitochondrial localization have been reported [28,34-38]. We therefore
analyzed whether Kif5b gene expression was altered in mice with
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cardiac hypertrophy generated by transverse aortic constriction (TAC)
and in hypertensive transgenic Ren2 rats. Kif5b gene expression was in-
deed elevated in the animal models with pathological hypertrophy (Fig.
7C and D). Also in this case KIF5B protein levels paralleled the gene ex-
pression increases (Fig. 7C and D). We also like to note that we did not
observe an increase in Kif5b gene expression in a physiological mouse
hypertrophy model (Supplemental Fig. 3). Together these data suggests
that KIF5B could control mitochondrial dynamic localization in cardiac
tissue in response to pathological hypertrophic stimuli.

>

5
2 304
[
L]
S5
X =
o 3 204
52
O
]
85 10
X e
29 IJ*__I
e
[} 0.0 T T
2 c siKifsb  PE  siKif5b+PE

(@)

siKif5b+PE

3.8. Depletion of KIF5B prevented mitochondrial dispersion and limited the
respiratory increase

Silencing of Kif5b was performed to investigate whether KIF5B could
be responsible for the changed mitochondrial localization in PE treated
NRVCs. Transfection of specific siRNA's targeting Kif5b resulted
approximately in a 75% decrease in Kif5h mRNA levels (Fig. 8A) and
around 70% decrease in KIF5B protein levels (Fig. 8B). Interestingly,
this fully prevented PE induced dispersion of the mitochondria as is
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shown by the intensity of TOM20 staining (Fig. 8C and D). Thus, also in
cardiomyocytes, Kif5b is involved in mitochondrial transport. We also
investigated whether this changed localization would affect cellular
respiration and hypertrophy. Silencing of Kif5b attenuated PE induced
3H-leucine incorporation, but did not prevent it (Fig. 9A) and a similar
effect was observed on cell size (1.34 4 0.15 versus 1.21 + 0.12 fold
increase for PE and siKif5B + PE, respectively). Pathological gene
expression was, however, not attenuated by KIF5B silencing (Fig. 9B
and Supplemental Fig. 4). Also respiration was investigated, and, since
it has been reported that the scaffold protein Daxx together with
KIF5B controls insulin mediated translocation of the glucose transporter
Glut4 in adipose cells [39], we performed these experiments with pyru-
vate as a carbon source. In control cells Kif5b silencing did not show a
significant effect on respiration, but in PE treated NRVCs silencing of
Kif5b showed a partial diminishment (Fig. 9C and D). Similar results
were observed when glucose was used as a substrate instead of pyru-
vate, indicating that the observed effects were carbon source and
hence transporter independent (Supplemental Fig. 5). Thus, mitochon-
drial relocalization by KIF5B affects mitochondrial dependent cellular
respiration and attenuates phenylephrine induced hypertrophy.

4. Discussion

Hypertrophic stimuli induce cardiomyocyte growth, but the
biochemical and molecular alterations are clearly different between
various hypertrophic stimuli. Here we show that this is also true for
mitochondrial localization and function in vitro. Using neonatal cardio-
myocyte cultures, we were able to determine the effects of specific

hypertrophic stimuli on mitochondrial localization. Interestingly, stimu-
lation of NRVCs with PE resulted in an altered mitochondrial OCR and
mitochondrial localization within 24 h. Kif5b was identified as a patho-
logical hypertrophy specific gene and was responsible for the changes in
mitochondrial localization. Altered mitochondrial morphology and dis-
tribution are hallmarks of heart failure [37,38] and we could show that
also in pathological hypertrophy animal models, KIF5B expression was
upregulated.

Hypertrophic stimulation with PE or IGF1 resulted in the activation
of different signal transduction pathways. Moreover, in agreement
with others, only PE stimulation resulted in the expression of the fetal
gene program, a pathological hypertrophy characteristic. Here we
showed that these different stimuli also have direct, but distinct effects
on mitochondrial function and localization. Measurements of the
activities of mitochondrial complexes I and II revealed the opposite
effect in PE and IGF1 stimulated NRVCs. Whereas complex Il and to a
lesser extend complex I dependent activity (state 3) were declined in
PE stimulated NRVCs, complex I dependent activity (state 3) was
increased in IGF1 treated NRVCs. Also in hypertrophic HF samples a de-
cline in activities of different complexes has been observed, but there is
limited consensus which complex activities are altered [40-42]. This is
probably related to the differences in the etiology and severity of disease
and it has been proven difficult to uncover the processes that underlie
these changed activities. To our knowledge, we now show for the first
time that complex I and Il dependent activities can be modulated by
specific hypertrophic stimuli in vitro and this may provide an opportu-
nity to study these processes in more detail in an isolated cellular
system. This also suggests that changes in mitochondrial function can
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already arise early during hypertrophy development and are not neces-
sarily a late stage HF phenomenon, which is in agreement with others
[43].

Despite decreased complex activities, mitochondrial respiration was
strongly increased in PE stimulated NRVCs. In contrast no changes in
mitochondrial respiration were observed in IGF1 stimulated NRVCs.
Thus, changes in mitochondrial complex activities do not necessarily re-
flect mitochondrial fluxes in intact NRVCs and caution is required when
results from isolated mitochondria are extrapolated to the whole cell or
organ. It has been proposed that in the compensated stage of hypertro-
phy, respiratory flux may first increase resulting in a gradual decline at
later stages [11]. Our increase in flux in PE stimulated NRVCs may sup-
port this idea and suggest that the PE condition with increased OCR is
more comparable to early stages of cardiac pathological hypertrophy.
These results show that no simple relation exists between mitochondri-
al function and hypertrophy development.

Within the investigated time frame (24 h) no significant changes in
mitochondrial biogenesis or levels of OXPHOS proteins were observed
with the two different hypertrophic stimuli. Also no significant changes
in the expression of genes of the ETC and OXPHOS were identified. How-
ever, we do like to note that when whole gene set analysis was per-
formed, ETC complex expression was significantly upregulated in IGF1
stimulated NRVCs. These minor differences could, however, not be iden-
tified at the protein level, and probably the 24 h stimulation is too short
to induce IGF1 mediated mitochondrial biogenesis in NRVCs. The chang-
es in complex activities are therefore likely mediated by posttransla-
tional processes, like phosphorylation, succinylation and acetylation
[44,45] and complex or supercomplex assembly [46]. In contrast to
our in vitro data, a number of studies have shown that mitochondrial
gene expression is altered in cardiac HF samples. These studies have,
however, predominantly been performed on end-stage HF cardiac tis-
sue [47,48]. A recent study, with a focus on earlier stages of HF, with
less severe cardiac remodeling showed the absence of transcriptional
changes in OXPHOS and ETC genes [5], which is in line with our
in vitro data.

IGF1 signaling is essential for mitochondrial biogenesis during phys-
iological hypertrophy stimulation in mice [49]. In a transgenic IGF1
overexpressing mouse model PGC-1 alpha expression and mitochondri-
al protein levels were, however, not increased, but high fat diet induced
repression of mitochondrial biogenesis was prevented [50]. Thus, IGF1
alone appears not sufficient for induction of mitochondrial biogenesis.
Also in this study no mitochondrial biogenesis was observed upon
IGF1 stimulation and gene expression of mitochondrial gene sets was
only slightly elevated. Mitochondrial biogenesis is thus not required
for the development of physiological hypertrophy.

Mitochondria in PE treated NRVCs showed a different localization
pattern and we identified KIF5B, a motor protein of the kinesin family
reported to control mitochondrial localization and function, to be up-
regulated under pathological hypertrophy. Moreover, depletion of
KIF5B confirmed that this protein is required for the changed localiza-
tion in PE treated NRVCs. Depletion of KIF5B also resulted in diminished
hypertrophy development after PE stimulation, but could not prevent
pathological gene expression. Thus, KIF5B contributes to pathological
growth, but is not essential for the pathological response. Although we
focused here on dynamic mitochondrial localization, also effects on
other mitochondrial dynamics, namely fission and fusion have been re-
ported. Whereas Javadov et al. [51] reported altered expression of
dynamin-like protein (Drp1) and mitofusin (Mfn1/2), Pennanen et al.
[35] did not observe differences in the expression of these proteins
after hypertrophic stimulation of neonatal cardiomyocytes. Neverthe-
less they reported that norepinephrine (NE) can stimulate mitochondri-
al fission by increasing the localization of Drp1 to the mitochondria [35].
In our PE stimulation we did not observe changes in Drp1 and Mfn1
gene and protein expression in agreement with Pennanen et al. [35],
but did not also observe mitochondrial redistribution of Drp1 or Mfn1.
The use of PE instead of NE could potentially explain this difference,

and we do not like to exclude potential alterations in mitochondrial
morphology, but the altered localization makes this difficult to analyze.
Together these results show that pathological conditions can alter mito-
chondrial localization and potentially morphology and thereby affecting
mitochondrial function. Also in heart failure patients and in animal
heart failure models changed morphology and localization of the mito-
chondria have been reported [28,37,38] and with the identification of a
potential molecular mechanism this now warrants further investiga-
tions. In the adult cardiomyocyte the situation is, however, more com-
plex with two different types of the mitochondria, subsarcolemmal
(SS) and intermyofibrillar (IFM) [52]. It is likely that other factors next
to KIF5B play a role in the proper localization of these distinct mitochon-
drial populations.

Some study limitations have to be taken into account. Although neo-
natal rat cardiomyocytes are an established in vitro hypertrophy model,
these results cannot be directly translated to the adult heart. The model
has, however, a major advantage in that it allows to investigate single
stimuli independent of other contributing factors and that it is feasible
to perform mitochondrial OCR measurements in intact NRVCs. Although
we have investigated the levels of some mitochondrial complex pro-
teins, to exclude changes in biogenesis, we have not investigated com-
plex formation or post-translational modifications. Considering our
results elaborate mass spectrometry analysis might be an interesting
next step.

In conclusion, we provide for the first time an in vitro model of mi-
tochondrial dysfunction and changed dynamic localization in patholog-
ical and physiological cardiac hypertrophy. We identify KIF5B as a gene
that is upregulated exclusively in pathological hypertrophy with a role
in mitochondrial localization and function.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.yjmcc.2016.04.005.
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