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A Dynamic Network Model to Explain
the Development of Excellent Human
Performance
Ruud J. R. Den Hartigh*, Marijn W. G. Van Dijk, Henderien W. Steenbeek and

Paul L. C. Van Geert

Department of Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, Netherlands

Across different domains, from sports to science, some individuals accomplish excellent

levels of performance. For over 150 years, researchers have debated the roles of specific

nature and nurture components to develop excellence. In this article, we argue that

the key to excellence does not reside in specific underlying components, but rather in

the ongoing interactions among the components. We propose that excellence emerges

out of dynamic networks consisting of idiosyncratic mixtures of interacting components

such as genetic endowment, motivation, practice, and coaching. Using computer

simulations we demonstrate that the dynamic network model accurately predicts typical

properties of excellence reported in the literature, such as the idiosyncratic developmental

trajectories leading to excellence and the highly skewed distributions of productivity

present in virtually any achievement domain. Based on this novel theoretical perspective

on excellent human performance, this article concludes by suggesting policy implications

and directions for future research.

Keywords: complexity, simulationmodels, dynamic systems, expertise, giftedness, idiosyncratic patterns, skewed

distributions, talent development

INTRODUCTION

The topic of excellent human performance is of interest in a wide variety of domains, such
as sports, technological creativity, music, arts, and science. Excellence can be conceptualized as
domain-specific superior performance, and within the population there are very few individuals
reaching exceptional achievements, such as Mozart in the domain of music composition, Einstein
in science, and Roger Federer in sports (e.g., Simonton, 1999a, 2000; O’Boyle and Aguinis, 2012).
For over 150 years, researchers have attempted to untangle the origins of excellence, in terms of the
explanatory components, and the debate on the origins exists ever since (see below). In this article,
we propose a novel perspective on excellence and its development, which builds upon the traditions
of the dynamic systems approach to social and developmental psychology (e.g., Van Geert, 1991,
1994; Vallacher and Nowak, 1997; Nowak and Vallacher, 1998), in combination with more recent
applications of network approaches (e.g., Cramer et al., 2010; Borsboom et al., 2011;Wichers, 2014).
We will argue that the explanation for excellent performance does not reside in specific underlying
components, but rather in the ongoing interactions among the components. Accordingly, excellence
development is not “component driven”, but emerges out of idiosyncratic dynamic networks of
components (cf. interaction-dominant dynamics; Van Orden et al., 2003). This perspective has
consequences for the way in which excellence development should be approached in future research
and practice.
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Previous and Current Attempts to Capture
Excellence
Before elaborating on the dynamic network model, we shall first
give a brief overview of the existing literature on excellence,
and where necessary, touch upon the related topics of talent
and expertise (note that a discussion of the differences between
the nature of these concepts is not the aim of this article).
Already in 1869, sir Francis Galton published a book on
the heredity of genius. Galton (1869) studied the family-trees
of eminent scientists, poets, musicians, artists, and athletes,
and found that the relatives of these individuals often were
excellent performers as well. Therefore, in Galton’s (1875)
words “there is no escape from the conclusion that nature
prevails enormously over nurture” (p. 241). However, around
that same time, De Candolle (1873) wrote a book in which
he stated that environmental resources (e.g., family, education,
facilities), and hence nurture, is the primary explanation for the
development of excellence. De Candolle based this conclusion
on his observation that excellent scientists, including Galton,
were raised under beneficial environmental circumstances, such
as high-quality education. He therefore concluded that a
stimulating environment (i.e., nurture) is the key to excellence.
These early works on excellence gave rise to the famous nature-
nurture debate that has featured prominently in the domain of
psychology ever since. The identification of specific nature and
nurture components underlying excellent human performance
has remained a major challenge.

In line with the early ideas of Galton (1869), several
researchers hold the view that excellent performance primarily
develops out of a specific property in the person, in the
sense of some innate talent or a gift (e.g., Mayer, 2005). This
gift is often identified as domain-specific genetic endowment
(e.g., Bloom, 1982; Winner, 2000; Simonton, 2005). This
entails that individuals who have a domain-specific gift (e.g.,
in science, music, sports, etc.) have the potential to reach
excellent performance (e.g., Gagné, 2004, 2013). On the other
hand, in accordance with the early view of De Candolle
(1873), researchers have postulated that the environment plays
a major role. That is, an individual’s development of excellent
performance can be supported (or limited) by the home
environment or the support of a teacher or coach, for instance
(e.g., Sloane, 1985; Jussim and Eccles, 1992; Van Yperen, 1995,
1998; Howe et al., 1998; Côté, 1999; Barab and Plucker, 2002;
Bloom, 2002; Baker et al., 2003a; Van Bakermans-Kranenburg
et al., 2005). A third point of view is that a great amount of
effort, i.e., hard work and practice, is required to become an
excellent performer. That is, rather than genetic endowment
or the environment, many hours of deliberate and high-quality
practice are the primary explanation for excellent performance.
According to Ericsson and colleagues, becoming an expert often
requires more than 10 years of deliberate practice (e.g., Ericsson,
2004; Ericsson et al., 1993; see also Bloom, 1985; Johnson et al.,
2006; note that based on a recent meta-analysis, Macnamara et al.
(2014) concluded that deliberate practice is not as important as
has been argued).

Although the different theoretical propositions have not
discarded the role of either genetic endowment or environmental

factors and practice, they have—sometimes greatly—differed in
the emphasis they put on these factors (see Bloom, 1985; Howe,
1990; Howe et al., 1998; Winner, 2000; Ericsson et al., 2007;
Simonton, 2007; Colvin, 2008; Coyle, 2009). However, in general
researchers seem to have reached consensus that excellence is
multidimensional. In previous years, various models accounting
for the multidimensionality from which excellent performance
develops have been proposed, such as the Differentiated
Model of Giftedness and Talent (DMTG, Gagné, 2004), the
Actiotope model (Ziegler and Stoger, 2004; Ziegler, 2005), the
Munich Model of Giftedness (Heller, 2007), and Sternberg’s
WICS (Wisdom, Intelligence, and Creativity, Synthesized) model
(Sternberg, 2003). For example, the DMTG stipulates that
intrapersonal variables (e.g., physical characteristics, motivation,
persistence, adaptability), environmental variables (e.g., social
factors, parents, teacher, or coach), and practice all contribute to
the development of excellent performance.

In addition to acknowledging the multidimensionality of
excellence, some researchers have stipulated that it emerges
(and probably changes) across the life span. According to these
researchers, excellence should be considered as a property
that develops according to dynamic person-environment
interactions. This position entails that the emergence of
excellence cannot be explained by linear additions of various
personal and environmental components, but by (multiplicative)
interactions among these components over time (e.g., Walberg
et al., 1984; Simonton, 1999a, 2001, 2005; Dickens and Flynn,
2001; Papierno et al., 2005; Lykken, 2006; Davids and Baker,
2007; Phillips et al., 2010). As one example, a high genetic

endowment can lead to more successful learning in the domain
at issue, leading to active selection of environments that can
provide high-quality practice, resulting in even more efficient
use of the genetically based learning abilities, and so forth.

Taken together, various components may play a role
in the development of excellence. The history of research
on the explanatory components underlying excellent human
performance, and more specifically the ongoing discussions
on the statistical associations between the distributions of
particular explanatory components and the distribution of
excellence in a particular population, suggests that the search
for explanatory components will continue to exist (see O’Boyle
and Aguinis, 2012; Kaufman, 2013; Kell et al., 2013; Ericsson,
2014; Hambrick et al., 2014; Macnamara et al., 2014; Plomin
et al., 2014; Ackerman, 2014; Simonton, 2014). At the same

time, various researchers propose that excellence emerges out
of the multiplicative interactions among the components (e.g.,
Simonton, 1999a, 2001; Phillips et al., 2010). Therefore, in general
we argue that a formal model of excellent human performance
should consider that multiple components may play a role, but
also that multiplicative interactions may take place between the
components. The question is, however, how to interpret such
multiplicative interactions in the case of excellence development,
that is, what is the time-dependent form of these interactions that
ultimately result in excellent performance?

Regardless of the specific contributions of particular
components, which have been discussed extensively (see above),
we argue that a model of excellent human performance should
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first and foremost fit with properties that are universal across the
literature on domain-specific excellence. Indeed, in general, the
value of a theoretical model lies in its ability to explain empirical
observations that are observed across a wide variety of contexts
and situations (Pierce and Aguinis, 2013). In the next section,
we will therefore first elaborate on the characteristic properties
of excellence. Subsequently, in the following sections we will
propose a dynamic, generic model that is a plausible candidate to
explain the development of excellent human performance, given
these general characteristic properties. Briefly, the model we
shall propose is a dynamic network model of ability growth. This
means that the ability to develop excellent sport performance,
musical performance, scientific performance, and so forth,
is embedded in a network of mutually interacting dynamic
variables.

We will test the plausibility of the model in light of two
classes of properties that are inherent to the topic of excellence
(see next section): Its idiosyncratic development over time
(i.e., from beginner’s level to end-level) and the distribution of
excellent performance across domain-specific populations (e.g.,
sports, music, science). This means that, in this article, we
make a distinction between the intra-individual development of
excellence—performance potential in terms of the individual’s
ability level—and the inter-individual differences with regard
to the actual performance in terms of specific performance
operationalizations. We will demonstrate that simulations of
the dynamic network model accurately predict the characteristic
properties of excellence. Based on these results, we will discuss
the implications of the new conceptualization of excellent
human performance—emerging out of idiosyncratic network
structures—for future research and practice.

Developmental Properties of Excellence
across Domains
The development of excellence spans a time frame beginning
when a domain-specific ability starts to grow (i.e., beginner
level) up to the point that superior performance is (repeatedly)
demonstrated (e.g., Howe et al., 1998; Simonton, 2001; Abbott
and Collins, 2004; Phillips et al., 2010). The growth of abilities
ultimately leading to excellence is characterized by a number
of qualitative properties, which can be summarized based on
Simonton’s (2001) review on talent development. First, early
indicators of ultimate exceptional abilities are rare to inexistent,
and if there are any, they are not particularly reliable. Evidence
for this lack of early indicators is found in the fields of sports
(Abbott et al., 2005; Davids and Baker, 2007; Vaeyens et al., 2008;
Gulbin et al., 2013), music (Sosniak, 1985; Howe et al., 1998;
McPherson and Williamon, 2006), arts (Sloane and Sosniak,
1985), and mathematics (Gustin, 1985). However, as performers
grow or develop within their particular domain of performance,
later excellence becomes an increasingly predictable feature. For
instance, within the field of education, tests scores of 12–14 year
old students on mathematical abilities, verbal abilities, reasoning,
and spatial abilities were found to have predictive value for
later education-vocational achievements across a large group of
children (Shea et al., 2001).

A second property is that in different individuals a similar
ability level may emerge at different ages, and a related third
property is that the underlying constituents of a particular
ability can change during the person’s life span. Fourth, the
level of domain-specific ability is not necessarily monotonically
rising or stable: It can change or even disappear during a
person’s life span (see Simonton, 2001). In accordance with
the latter three properties, research suggests that individuals
may have diverse ways to achieve similar performance levels,
thereby emphasizing the idiosyncratic nature of the pathways
to excellence (e.g., Simonton, 2000; Abbott et al., 2005; Davids
and Baker, 2007; Dai and Renzulli, 2008; Vaeyens et al., 2008;
Phillips et al., 2010; Elferink-Gemser et al., 2011; Gulbin et al.,
2013). For instance, a Dutch longitudinal project followed the
development of (young) soccer players, field hockey players,
basketball players, artistic gymnasts, tennis players, and speed
skaters (see Elferink-Gemser et al., 2011). In this project, the
researchers primarily focused on differences between groups
of successful (professional) and less-successful athletes (those
children who did not reach the professional status) in terms
of average psychological, physiological, technical, and tactical
characteristics, at different ages. However, the authors recently
argued that the developmental patterns of the athletes involved in
the research project were quite idiosyncratic, that is, each athlete
seemed to have his or her own unique pathway (Elferink-Gemser
et al., 2011; see also the study of Simonton, 2000 on classical
music and the study of Gaschler et al., 2014 on performance
development in chess).

Excellent Performance Across
Domain-Specific Populations
At the level of the population (i.e., inter-individual differences
in performance), earlier literature has pointed out that one of
the most characteristic properties of excellence is its highly
skewed distribution (e.g., Simonton, 1999a, 2003). However,
because validated tests to determine domain-specific (excellent)
abilities hardly exist, we are confronted with the question of
how to quantify excellence. To begin with we propose the
following general definition of ability: A domain-specific ability is
a recurrent and specific pattern of coordination and deployment
of skills, psychological components, social components, etc.,
that are required to demonstrate a particular form and level of
performance. This entails that, first, a domain-specific ability
does not exist in isolation of other (potentially supporting)
components (e.g., Gould et al., 2002; Fischer and Bidell, 2006;
Cotton et al., 2011; Van Der Steen et al., 2012). Furthermore,
an ability is a latent variable, the nature of which can be
defined by the nature of the performance variable that serves
as its expression. The measurable level of performance is thus a
function of the level of the ability. Therefore, in this article we
proceed from the argument that excellent abilities are domain-
specific, and that they are manifested in, and measured by,
performance accomplishments (e.g., Simonton, 2003; O’Boyle
and Aguinis, 2012; Aguinis and O’Boyle, 2014).

In various domains (e.g., arts, science, sports, technology,
music, etc.), performance accomplishments can be
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operationalized by individuals’ productivity as defined by
consensual assessment (e.g., Amabile, 1982; Huber, 2000).
Consensual assessment implies that well-specified forms of
human performance can be judged by independent domain
experts (e.g., reviewers of a research article, coaches of sport
teams) and/or based on countable expressions of particular
excellent abilities, such as produced scientific articles, musical
compositions, or goals made during soccer matches (e.g.,
Simonton, 1984, 1997, 1999a, 2003, 2014; Walberg et al.,
1984; Huber, 2000; O’Boyle and Aguinis, 2012; Aguinis and
O’Boyle, 2014). Hence, we used the domain-specific products
generated by a particular individual and judged by domain-
specific consensual assessment, as an objective—but intrinsically
stochastic—and defining indicator of a particular level of
excellence in an achievement domain. In line with one of the
characteristic properties of excellence, in the next sub-sections
we will demonstrate that product distributions in populations of
performers are highly skewed to the right (and not bell-shaped)
across many achievement domains.

Product Distributions in Soccer
We will start with two illustrative examples of product
distribution in one particular domain, namely soccer. In soccer,
an incontestable (yet stochastic) indicator of excellence on which
data are collected, is a player’s total number of goals made in
between-country matches. Given that this indicator provides a
good reflection of excellence only for players whose task it is to
attack, and not for players whose task it is to defend, such as a
goalkeeper, we also retrieved data on another indicator, namely
the number of inter-country matches in which players have played.
This latter criterion is based on player selection of the coach of the
national team and his/her staff, which fits with the definition of
consensual assessment (Amabile, 1982). Hence, based on archival
data, we will first analyze the product distributions of the two
indicators of excellent soccer performance in the population of
(former and current) Dutch internationals.

Figure 1A displays the distribution of Dutch players who have
scored during an inter-country match (accessed on March, 2014,
from http://voetbalstats.nl/topscnedxi.php). Of the 272 players
who scored, 91 scored one goal, 45 scored two goals, and the
best two players scored 40 and 41 goals, respectively. The number
of goals scored is thus anything but symmetrically distributed
(the average number of goals is 5.53). Note that the tail has even
expanded toward 50 goals between March 2014 and October
2015, because the Dutch top scorer was still active. Furthermore,
as illustrated in Figure 1B, the total number of international
soccer matches played by Dutch internationals displays a
comparable highly skewed distribution (accessed at March, 2014,
from http://voetbalstats.nl/caps.php). A characteristic feature of
such asymmetrical and highly skewed distributions is that a
representation of the logarithm of the X- and Y-axes (a so-called
log-log plot) often approaches a straight line. For this reason,
these highly skewed distributions can often be fitted by means of
a simple power law equation, which was already discovered in the
1920s as a description of the frequency of the number of scientists
who published a particular number of articles (Lotka, 1926). The
power law model for the relationship between the number of

goals scored or matches played, and the corresponding number
of players, is expressed by the following equation:

f (n) =
c

np
, (1)

for f (n) the number of players who made n goals or played n
matches, c the number of players who made one goal or played
one match, n the number of goals or matches, and p a power
parameter. Based on the data of the number of goals, c can be
set at 91, and an estimation of the p parameter reveals a value of
1.18. Hence, if all frequencies are represented as proportions of
the number of players who made one goal (91), the distribution
model amounts to the simple function:

f (n) ≈
91

n1.18
(2)

However, various authors have claimed that the power lawmodel
does not always provide the best possible fit with the skewed
data distributions, and exponential and stretched exponential
equations have been suggested as alternative mathematical
descriptions of some of the data. These equations produce curved
log-log plots instead of the linear log-log plots of the power
law equation. The stretched exponential equation states that the
probability p(x) of observing x products is equal to

p (x) = Ae−xβ

+ B (3)

In both soccer data sets, the power- and the stretched exponential
equation provide particularly good fits to the data (see Figure 2).
Given that the stretched exponential contains more parameters,
it can also fit distributions that deviate from the linear log-log
distribution characteristic of the power law model. However,
regardless of the specific differences between the two equations,
they both signal a characteristic feature of the distribution of
performance products, namely that the x-axis (the number of
products, in this case the number of goals or matches) spans
various orders of magnitude on the natural logarithmic scale.
More specifically, with regard to the number of goals the great
majority of the (excellent) soccer players who ever scored made
only one goal, but a few players—the exceptional cases—have
made 30–41 times more goals (in fact, 50 at the moment we
submitted this manuscript).

Taken together, the products of excellent soccer performance
are highly asymmetrically distributed, according to power laws
and stretched exponential distributions. This entails that, among
the soccer players, the truly exceptional performers are in the
extreme right tail of the asymmetric distribution. Although
these illustrations come from one specific sport (soccer), similar
distributions apply to sports like American football, cricket,
baseball, and basketball (Huber, 2000; Petersen et al., 2008, 2011;
De Vany, 2011; O’Boyle and Aguinis, 2012). To demonstrate the
universality of these skewed product distributions with regard
to excellent human performance in general, we shall also briefly
discuss this property in other domains.
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FIGURE 1 | Distributions of the number of goals made during international matches of the Dutch soccer team against the number of players scoring

the corresponding number of goals (A), and the number of international matches a soccer player played in the Dutch national team (B).

FIGURE 2 | Log-log representation of the frequency and number of goals (A), and matches played in international matches for the Dutch national

soccer team (B), with fitted power law and the stretched exponential models. Number of goals: Power parameter p = 1.18; stretched exponential β = 0.6;

Number of matches: p = 1.05; β = 0.49.

Product Distributions across Domains
In the domain of science, when measuring scientific productivity
as the number of papers produced by a particular author,
highly right-skewed distributions are revealed in virtually any
scientific discipline (Petersen et al., 2010; see Figure 3 for an
example from economics). Researchers have discovered power
law functions in publication distributions in physics (e.g., Huber
and Wagner-Dobler, 2001; Gupta et al., 2005; Nazim and
Ahmad, 2008), population genetics (Gupta and Karisiddappa,
1997); mathematical logic (Huber and Wagner-Dobler, 2001),
economics (e.g., Cox and Chung, 1991; Sutter and Kocher, 2001;
Bino et al., 2002), finance and insurance sciences (e.g., Chung and
Cox, 1990; Chung et al., 1992), management science (MacDonald
and Kam, 2011), library and information science (Askew, 2008),
and psychology (Simonton, 2002; Baker et al., 2003b). Most of
the data sets were fitted by a power law distribution with powers
ranging from about 1 to more than 3.

Another domain in which performance products show highly
skewed distributions, is the number of patented inventions
made by individual inventors (e.g., Huber, 2000). In addition,
products of musical performance show a similar heavily skewed
distribution that can be fitted by power law or stretched
exponential equations. More specifically, data on classical
composers have been provided by, among others, Huber (2000)
and Simonton (1991). Furthermore, O’Boyle and Aguinis (2012)
provided evidence for highly skewed distributions of success

criteria such as awards and nominations in 17,750 entertainers.
The highly skewed distribution has also been found in the
field of literature, in which the power law was demonstrated
by means of the number of individual titles of monographs,
for instance (see Munch-Petersen, 1981). Lastly, O’Boyle and
Aguinis (2012) studied the performance of 42,745 candidate
politicians in democratic countries, which they defined as a
particular politician’s election to office. The data of these authors
confirm a power law distribution of the performance frequencies.

In addition to the ubiquitous finding that the output
of products is highly right-skewed in various domains,
researchers have shown that the impact of products often reveals
comparable—sometimes even more extreme—distributions. In
the domain of science, for instance, research has shown that the
distributions of citations and Hirsch indices of authors (Hirsch,
2005) can be fitted by power law and stretched exponential
distributions (e.g., Laherrere and Sornette, 1998; Redner, 1998,
2005; Davies, 2002; Petersen et al., 2010; Spearman et al.,
2010; Egghe and Rousseau, 2011; Quigley et al., 2012). Similar
distributions were demonstrated in the domain of popular music,
in which the researchers examined the (social) impact criterion
of number of weeks a record of a particular band remained in
the UK top 40 charts (Hamlen, 1991, 1994; Cox and Felton,
1995; Davies, 2002; Fox and Kochanowski, 2004; Spierdijk and
Voorneveld, 2009). Finally, literary fame has been found to
show extremely right-skewed distributions, using the number of
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FIGURE 3 | Product distributions of the number of scientific articles in

leading journals in economics vs. the number of authors who

published that number of articles, after Sutter and Kocher (2001).

books about poets as an indicator (Martindale, 1995). Although
the impact could be considered as an interesting measure
of the excellence of the work of a particular scientist, artist,
inventor, etc., impact-measures are more of a “sociological”
nature. In the current article we decided to focus on individual
ability-development, and how abilities lead to the generation (i.e.,
output) of products.

Conclusion Excellent Performance Across

Domain-Specific Populations
In summary, the empirical data collected from a wide variety
of fields, including science, sports, technological creativity,
literature, classical and popular music, the arts and politics, show
that if excellence is operationalized in countable productivity,
the distribution is strongly right-skewed, spanning various
orders of magnitude. Superior curve fitting is achieved by
power law equations and stretched exponential equations. Note,
however, that although it is a ubiquitous phenomenon with
regard to excellence across domain-specific populations, finding
a particular distribution of performance productivity does not
entail information about the underlying reasons leading to
such distributions. Therefore, a key question to be answered
is which kind of model principles (or mechanism) drives the
emergence of the highly skewed product distribution, as well as
the earlier discussed typical developmental properties, at the level
of excellent human performance.

TOWARD A GENERIC MODEL OF
EXCELLENT HUMAN PERFORMANCE

In this article we will demonstrate a generic model of
ability development that generates characteristic properties
of excellent human performance. More specifically, we will
discuss a model that underlies the emergence of the typical
idiosyncratic developmental properties, as well as the highly
skewed productivity distributions across the population, at the
level of human abilities and excellent performance.

Because excellence typically develops over time (often over
more than 10 years; Ericsson et al., 1993, 2007), we propose a

dynamic model of growth to account for a performer’s ability
development (cf. Van Geert, 1991, 1994). Although such models
have not yet been applied to excellence development, some
authors already hinted toward their value (e.g., Abbott and
Collins, 2004; Abbott et al., 2005; Davids and Baker, 2007;
Dai and Renzulli, 2008; Phillips et al., 2010; Aguinis and
O’Boyle, 2014). In line with the consensus among researchers
that excellence is influenced by various (possibly multiplicatively
interacting) personal and environmental variables, we will
demonstrate a dynamic network model, according to which
abilities leading to excellent performance emerge out of the
iterative interactions among multiple variables.

A Dynamic Network Model Representation
of Ability Development
The general idea of a dynamic networkmodel is that higher-order
properties are emergent phenomena, that is, patterns of order and
structure that emerge on the basis of the dynamic interactions
between lower-level components (e.g., Watts and Strogatz, 1998;
Strogatz, 2001; Newman, 2003; Barabási, 2009). Within the field
of psychology, the feasibility of network models has recently been
demonstrated by, among others, Borsboom and colleagues, in
their attempts to explain the development of mental disorders
(e.g., Cramer et al., 2010; Borsboom et al., 2011; Borsboom and
Cramer, 2013; Bringmann et al., 2013). These authors defined
the components of the networks on the level of symptoms, such
as sleep deprivation, irritability, concentration problems, and
so forth. They showed that the psychopathological conditions
(e.g., generalized anxiety disorder, depressive disorder) and
general properties such as comorbidity are emergent phenomena,
originating from the causal interactions on the symptom level
(see also Wichers, 2014). Furthermore, in the domain of
intelligence Van Der Maas et al. (2006) showed how the “g-
factor” in intelligence emerges as a consequence of dynamic
interactions between lower level components of intelligence,
such as perceptual, memory, decision, and reasoning processes.
In brief, what these previous network model applications
have demonstrated is that interesting theoretical and empirical
conclusions can be drawn, without having to specify neither
the exact nature of each of the components, nor the exact
nature of each of the relationships between the components.
Hence, when modeling dynamic networks, it is first and foremost
important to specify the general network properties, in particular
the principles of dynamic interactions between components (i.e.,
variables) over time, from which a variety of more specific
applications can be inferred.

Themodel that we will discuss in this article can be considered
a dynamic network model of ability development. Here, an
individual’s ability network consists of one node (i.e., variable)
representing the domain-specific ability, and other nodes that
positively or negatively affect the ability (and each other). In
line with the existing models in the domain of excellence and
talent development (e.g., the Differentiated Model of Giftedness
and Talent; Gagné, 2004), the nodes might be of an internal
or of an external nature, such as domain-specific interest and
family support, respectively. Furthermore, connections between
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the variables can be supportive or competitive, symmetric
or asymmetric. For example, if domain-specific persistence
positively affects the domain-specific ability and the ability
positively affects the persistence, the connection is symmetric and
supportive. Connections may also be either direct or indirect.
Consider the example of a good math teacher who positively
affects a student’s math knowledge, which in turn positively
affects the student’s learning of physics. In this case the relation
between the support of the math teacher and the student’s physics
understanding is indirect. Any variable in the network is directly
connected with a relatively small number of other variables and
indirectly connected with a considerably greater number of other
variables (cf. Watts and Strogatz, 1998).

The network is dynamic in the sense that the values of the
nodes (the levels) change, among others as a consequence of
the interactions with other nodes, and nodes may appear or
disappear over developmental time (cf. Barabási, 2009). The
nature and strength of the relationships between the ability
component and other supportive or competitive components in
the network are assumed to be idiosyncratic and characteristic
of a particular person’s dynamic network profile (specificity of
ability profile and individual differences are characteristic of
excellent performance in general, e.g., Achter et al., 1996; Vaeyens
et al., 2008; Phillips et al., 2010; Robertson et al., 2010; for a
general discussion of the importance of idiosyncratic models, see
Molenaar, 2004; Molenaar and Campbell, 2009). Accordingly,
the relationships between components in the network can take
various forms (cf. Van Geert, 1991, 1994, 2014). This entails that
a component, which exerts a negative influence on a particular
ability in one person might have a zero-effect or even a positive
effect in another person. For instance, having parents that
encourage a child to develop a career in sports may negatively
affect the person’s academic career, because the parents may not
challenge the child sufficiently in solving scientific problems and
may let the child devote more time to practicing sports. However,
in another child’s ability network, the investment in doing sports
may improve the child’s self-regulation skills, which might have a
supportive effect on scientific achievements (Jonker et al., 2011).
Related to this, there may be many different developmental
trajectories that lead to similar ability levels (Simonton, 1999a,
2000, 2001; Abbott and Collins, 2004; Abbott et al., 2005; Davids
and Baker, 2007; Vaeyens et al., 2008; Phillips et al., 2010;
Elferink-Gemser et al., 2011; Gulbin et al., 2013).

To provide a simple example of an individual’s ability network
dynamics, imagine that a particular child has a keen interest
in elementary science (e.g., studying insects with a magnifying
glass, building marble tracks, etc.). The parents recognize the
child’s science reasoning ability and stimulate this. To the
extent that their child’s ability improves, the parents will tend
to buy more children’s books about science, take the child to
museums, and so forth. In addition, the child in this example
is strongly intrinsically motivated to work on science and
physics problems by means of scientific reasoning. Furthermore,
the child also experiences considerable pleasure with solving
science problems. This pleasure increases as the knowledge
and insights in science increase. In turn, the pleasure further
increases the child’s motivation for working on science problems

and exploration. Then, at secondary school the child meets
new friends who like to hang out after school. After having
joined the friends for the first time, the child obtains more
support from the friends, for example in the form of increasing
popularity in the group. In this particular network, hanging out
with friends competes with scientific ability development, for
instance through a competition for available time (after school)
or through a competition between motivation for hanging out
with friends and motivation for science learning. If we now
take a look at this individual’s scientific ability network, the
interconnected variables can be displayed in the form of a
directed graph consisting of nodes and arrows (Figure 4). Each
node corresponds with one component in the child’s ability
network, and the color of the arrow represents a level of support
(green) or competition (red) between two components.

Having explained how dynamic networks of ability
development—which take different forms for different
individuals—can be visualized, we shall briefly elaborate on
the general mathematical principles underlying the dynamic
network model, which form the basis for the simulations that we
will run to provide a test of the validity of the model.

Mathematical Principles of the Dynamic
Network Model
The various nodes and their connections are expressed in the
form of equations. All nodes—including the domain-specific
ability node—are specified in terms of a growth equation,
defining that growth of the variable in question depends on:
(1) the level (L) already attained, (2) available resources that
remain relatively constant during development (K) such as
genetic endowment (Van Der Maas et al., 2006; Van Geert, 2014),
(3) resources that vary on the time scale of ability development
(V), examples of which could be parental, teaching or coaching
support, practice, and tenacity, (4) the degree in which a
variable profits from the constant resources (r), (5) the positive,
negative, or zero weights of the connections (s) with the variable

FIGURE 4 | Graphical representation of an ability network. Green arrows

represent uni- or bidirectional positive influences from one node on another,

red arrows represent negative influences.
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resources, and (6) a general limiting factor (C) (Van Geert, 1991,
1994). The C-parameter is the ultimate carrying capacity, which
specifies the ultimate or physical limits of growth of a particular
variable. Within the ability network, the variable resources (V)
are potentially co-dependent on any arbitrary subset of other
network variables (including the domain specific ability variable
influenced by these variable resources).

The model can be said to implicitly follow a gene ×

environment approach, that is, the model specifies a
multiplicative relationship between the ability-specific K-
parameter (genetic endowment), and the influence of the
support-competition factors in terms of the variable resources
(v). In light of existing models, the ability-specific K-parameter
may thus be considered as a kind of “giftedness” parameter.
This parameter dynamically moderates the effects of the variable
resources, the multiplicative dynamics of which may ultimately
lead to expressions of excellent performance (cf. Simonton,
1999a; Gagné, 2004). Note, however, that a portion of the genetic
factors may also be present in the variable resources if one
proceeds from an epigenetic model in which gen-expressions
are influenced by experiences and development (e.g., Simonton,
1999a; Moore, 2015), but this discussion is beyond the scope of
the current article.

Furthermore, the network model is a so-called neutral
generative model, which means that the weights of the
connections s are variable and randomly distributed, with an
average of zero. Here, we base our reasoning on a simple
network model, which does not make specific assumptions about
the nature of the connections. The reason for this is that,
from a model building perspective, it is important to study the
simplest model possible that can generate typical properties of
the phenomenon of interest (i.e., excellent human performance).
Altogether, the dynamic network model can be mathematically
defined as a set of (sparsely coupled) logistic growth equations,
each of which represents the growth of a single variable (A, B, C,
and so forth), and one of which is the domain-specific ability. The
number of variables to which a particular variable is connected,
is represented by i, j, etc:
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Taking the illustration of the child in the previous section, each
(changing) node corresponds with one equation, representing
that variable’s growth. All arrows represent the strength and
direction (positive or negative) of an influence from one
particular variable onto another one. In order to use the network
model to simulate lifespan trajectories of ability development, we
need to constrain the values of the parameters in the equations
describing the changeable values of the network components,
which we shall do in the next sub-section.

Default Model Parameter Settings
For simplicity, the initial parameter values that we will use for our
first simulations are drawn from symmetric distributions. The
actual parameter values have no intrinsic or absolute meaning,
but are chosen in such a way that the total set of parameters
allows us to run feasible simulations of ability development, given
the chosen number of simulation steps (e.g., Van Geert, 1994,
2003; Van Der Maas et al., 2006). This means that the values
of the parameters have their meaning in relation to each other,
rather than some absolute standard (Van Geert, 2014). Recall
that, in this article, our aim is to propose general, underlying
model principles from which excellence emerges, which means
that we are not (yet) focusing on the more or less exact values of
the components as they may exist in domain-specific populations
of excellent performers.

Table 1 displays the default distributions from which the
parameter values were drawn for each variable in the network,
embedded in Equation (4). The standard size that we shall explore
in this article consists of 10 nodes. In this network, the number
of ability affecting changeable variables thus ranges between 0
(highly improbable) and 10 (also highly improbable). Obviously,
in practice many more components may affect the ability, but in
terms of the number of components that exert a more or less
lasting and significant contribution, 10 seems like a reasonable,
defendable maximum that covers virtually all possible cases of
excellence development. The in-degree of the nodes, that is to say
the number of nodes or variables connecting to any particular
variable, is random. With a probability that any two nodes are
actually connected set to 0.25 (see Table 1), a 10-node network
corresponds with an average in-degree of 2.25 with a standard
deviation of 1.3. That is, on average every performance variable
is dynamically related to 2–3 variables, but this number may
vary between zero and five. The probability value of 0.25 was
chosen based on the idea that this value is sufficient to cover all
realistic cases of influences on the ability. Note, in addition, that
the number of indirect links between variables in the network can
be exponentially great (cf. Watts and Strogatz, 1998).

Each iteration or step of the model corresponds with a certain
time step or a certain amount of time. Since every model
simulation consists of 500 steps, the duration corresponding with
a step length of a week is a bit less than 10 years, whereas a
step length of about 5 weeks corresponds with a duration of

TABLE 1 | Default parameter values used for the dynamic model

simulations.

Parameter Average Standard deviation

r (resource consumption rate) 0.05 0.01

Connection strength with other variables 0 0.02

K (stable resources) 1.00 0.15

Connection probability with other variables 0.25 –

Minimum Maximum

L (initial level) 0 0.05

Time of initial emergence of a variable 1.00 350.00

C (carrying capacity) 10.00 25.00
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50 years. A step length of 5 weeks can, for instance, be chosen
for the domain of arts or science, in which ability growth and
maintenance may cover around 50 years.

Finally, in line with the definition of ability that we
provided earlier—focusing on the coordination of different
components that are required to demonstrate a particular level
of performance—, we identified one node (node 3) as the target
variable whose change reflects the ability-development over time.
A first step in the validation of the network model, which we
shall conduct in this article, is to determine whether the patterns
of ability growth that are generated by the model are indeed
corroborated by the literature.

SIMULATIONS OF DEVELOPMENTAL
PROPERTIES

In order to check the validity of the dynamic network model, in
this section we will examine themodel predictions with respect to
the development of excellence. More specifically, we will retrieve
the properties of (individual) ability development according to
earlier literature, and show that all these properties emerge from
the dynamic network model simulations.

Ability Development Simulations
The first property concerns the lack of early indicators or
predictors of later excellence (e.g., Howe et al., 1998; Simonton,
1999a, 2001; Abbott and Collins, 2004; Abbott et al., 2005;
Davids and Baker, 2007; Vaeyens et al., 2008; Phillips et al.,
2010). After simulating 1000 individual cases, we calculated the
correlation coefficients (Pearson r) between the end-level of the
ability-node and the level of this node at earlier simulation steps
(see Figure 5). The simulation results show that the correlation
with the final level is virtually zero at the beginning, which
supports the observation that early indicators of later excellence
are often lacking (e.g., Howe et al., 1998; Simonton, 1999a, 2001;
Abbott and Collins, 2004; Phillips et al., 2010). Moreover, the
correlation reaches a value near 0.5 at the simulated age of 12
years. Qualitatively speaking, this increasing correlation is in
line with many studies that show at least moderate to good
predictability of later performance around adolescence (Schofield
and Hotulainen, 2004; Howard, 2008; Goldstein and Winner,
2009; and in particular studies by Lubinski and colleagues:
Lubinski et al., 1996, 2001, 2006; Shea et al., 2001;Wai et al., 2005;
Park et al., 2007).

Figure 6 provides an illustration of how the model is able
to simulate the second and third property of excellent ability
development, namely that the same type of ability can emerge at
different ages in different persons, and that the same ability can be
the product of very different underlying factors. The two graphs
represent two individuals that, according to the simulation, reach
a high ability level (2.85 and 3.46 standard deviations above the
mean simulated population ability-level of 1.26, respectively; see
Section Simulation Results). However, Person A displays a clear
increase early in development, which stabilizes around step 320,
whereas the ability of Person B shows a steep increase in ability-
level around step 320. Moreover, the genetic component played a

FIGURE 5 | Correlations between the final ability level and earlier levels

based on a set of 1000 simulated life spans. For simplicity, the simulation

steps are expressed in terms of age.

relatively larger role in Person B than in Person A (K = 1.17 and
1.15, respectively), whereas the supportive factors played a more
prominent role in Person A than in Person B (V = 0.07 and 0.04,
respectively).

The fourth property is that the level of ability is not necessarily
monotonically rising or stable: It can change or even disappear
during a person’s life span. These properties can also be found
in Figure 6. For both person A and B there is an overall increase
from the start till the end of the ability development. However,
in both cases the increase cannot be characterized as a linear
growth curve. In addition, the simulations revealed that new
variables can emerge at various moments during development
(see for instance variable 10 in Person A, which emerges relatively
late). These new variables may establish a variety of connections
with the already existing variables (cf. the discussion of early vs.
late bloomers, e.g., Simonton, 1999a, 2001; Vaeyens et al., 2008).
Therefore, the emergence of a new variable may sometimes have
a cascading effect on the network, which can lead to relatively
sudden changes. An example could be the abrupt increase in
ability of Person A when variable 10 emerged. The emergence
of a new variable may correspond to, for example, a coach who
enters the individual’s life, and greatly supports the individual’s
commitment and ability while working on a sports career. In case
a positive feedback loop already existed between commitment
and ability, the effect of the new variable (e.g., coaching support)
can be greatly amplified.

However, note that the emergence of a new variable may also
lead to a decline of an individual’s ability, if the new variable
exerts a negative influence on the ability variable or on one of
its connected variables. An example of such a phenomenon is
the emergence of romantic or sexual interests in peers during
adolescence, whichmay negatively affect the high athletic abilities
the adolescent had developed (cf. Csikszentmihalyi et al., 1993).
The negative effect of the newly introduced variable need not
be direct, since any effects on an important supportive variable
will diffuse through the system of network connections, and as a
result of this become amplified or eventually damped. Figure 7
illustrates how a difference in the sign (from positive to negative)
of one connection—not necessarily that with the greatest strength
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FIGURE 6 | Simulations of two idiosyncratic networks of individuals who reach high ability levels. The black solid line represents the ability, whereas the

other variables represent the dynamic network components that have supportive, competitive, or neutral relationships with the ability component. For individual (A) the

initial ability L is 0.028; the maximum value of L (Max L) = 3.91; the resource consumption rate r is 0.04; the genetic factor K is 1.15; and the total support is 0.07. For

individual (B) the initial ability L is 0.02; the maximum value of L (Max L) is 4.48; the resource consumption rate r is 0.03; the genetic factor K is 1.17; and the total

support is 0.04.

and not involving the ability variable—changes the pattern of
ability development. However, the majority of variables in this
specific network (e.g., variables 6 and 7) are relatively insensitive
to differences in a single relationship between the nodes of the
network, that is, the developments of these variables are not
affected.

Predictions Regarding Genetic Influences
on Excellence
As noted previously, the dynamic network model implicitly
follows a gene × environment approach, by specifying a
multiplicative relationship in the extended logistic growth
equation between the ability-specific genetic endowment (K),
and the influence of the support-competition factors in terms
of the variable resources (V). Given its prominent place
in the literature on excellence, we consider the relationship
between genetic endowment and ability as one of the qualitative
aspects of ability development that the model should be able
to shed light on. To test the relationship between genetic
constraints and ability, we determined the correlation (Pearson
r) between the (genetic) K-parameter of the ability-component

and the actual ability-level during development. Simulating
1000 individual ability networks, the model predicts that the
correlation between the genetic constraint (K) and the levels of
the ability variable generally increases with age (see Figure 8),
a prediction corroborated by previous research (e.g., Bergen
et al., 2007; Davis et al., 2009; Haworth et al., 2010). More
specifically, in our simulation the correlation first increases to
about 0.5, and then falls back to stabilize around 0.4. This
specific model prediction is, at least qualitatively, in line with
empirical findings on heritability. For instance, a recent extensive
twin study on science performance found a drop in heritability
from 64% heritability around the age of 9 to 47% around the
age of 12 (Haworth et al., 2009). According to these authors,
the drop is caused by the increase in environmental effects on
science performance after the age of 9. This finding and the
suggested explanation are consistent with the network model,
in which potentially competitive or supportive variables are
stochastically added to the network as age increases—the time
of initial emergence of a variable varies between 1 and 350, see
Table 1—, thus reducing the relative importance of the genetic
component. More generally, while the genetic contribution to
developing excellence is currently under debate (e.g., Ericsson,
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FIGURE 7 | Two lifespan trajectories. The difference between the trajectories in Graphs (A,B) is caused by the sign (positive or negative, respectively) of the

relationship between variable 7 and variable 10 (black arrow in C). The parameter values corresponding to the simulations are: Initial ability L = 0.041; Max L = 2.30

(A) and 1.80 (B); Rate r = 0.04 (A) and 0.01 (B); Genetic factor K = 0.99; and total support = 0.03.

2013, 2014; Gagné, 2013; Ackerman, 2014; Hambrick et al., 2014;
Plomin et al., 2014) our simulation results provide an interesting
dynamic perspective on this issue.

Conclusion Simulations of Developmental
Properties
A relatively simple dynamic network, consisting of 10 sparsely
connected nodes, generates patterns of ability development that

are in accordance with the proposed developmental properties
of excellent performance development: (a) Early indicators
of ultimate excellent abilities are often lacking, (b) similar

ability levels can develop at different ages, (c) the underlying

constituents of the ability can change during the individual’s
life span, and (d) the ability-development can take a variety of
forms (e.g., gradual, S-shaped, stepwise, abrupt, e.g., Simonton,
1999a, 2000, 2001; Abbott and Collins, 2004; Abbott et al., 2005;
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FIGURE 8 | Correlations between the K-parameter and the ability level

at different simulated age-steps.

Vaeyens et al., 2008; Phillips et al., 2010; Gulbin et al., 2013).
In addition, the network model generates plausible simulation
results with regard to the role of genetic endowment. Taken
together, these results provide support for the claim that the
development of abilities that ultimately lead to excellence is based
on a dynamic network model, which is typically interaction-
dominant (as opposed to the majority of existing, typical
component-dominant models). However, the model should be
further validated based on quantitative data. Therefore, in the
next section we shall test whether the dynamic network model
can predict the extremely right-skewed distribution of products
among domain-specific populations, which seems a robust
and characteristic property of excellent human performance
(e.g., Lotka, 1926; Huber, 2000; Huber and Wagner-Dobler,
2001; Sutter and Kocher, 2001; O’Boyle and Aguinis, 2012;
Aguinis and O’Boyle, 2014). We shall also test whether the
dynamic network model predictions come closer to the empirical
product distributions than do alternative null hypothesis model
predictions.

SIMULATIONS OF THE DISTRIBUTIONS OF
EXCELLENT PERFORMANCE

The second step in the validation of the dynamic network model,
is to examine whether the predictions of the distributions of
products across domain specific populations correspond to the
empirical data (see Sections Product Distributions in Soccer
and Product Distributions across Domains). The productivity of
actual performers does not only depend on their abilities, but also
on a myriad of accidental factors that occur with highly variable
probabilities (e.g., Simonton, 2003; Gladwell, 2008; Elferink-
Gemser et al., 2011). For instance, in the domain of science,
having a paper published in a high-impact journal may depend
on the unexpectedly striking results the researcher found or on
getting just the “right” reviewers (Simonton, 2003). In order to
predict the productivity of an individual, and the productivity
distribution across a population of excellent performers, we
therefore not only need a model of the underlying abilities, but
we also need a model of how abilities lead to the products,

thereby taking into account the inherently stochastic nature of
performance productivity.

Earlier literature has already suggested several product models
that aim to predict the generation of domain-specific products.
These product models link a product probability to a particular
ability level during some time interval t. They are, however, not
linked to a model of ability growth, like the one we discussed
in preceding sections. In other words, existing product models
predict product generation, but do not tell where the abilities
to generate products come from. To further test the validity of
the dynamic network model, we will combine the growth of the
ability variable with existing product models. Before discussing
the model simulations of productivity, we will first give a short
overview of existing product models that have been supported by
empirical data in previous literature.

Existing Models to Predict the Generation
of Products
The product model discussed most in the literature is the Poisson
model, which may occur in various forms. The simplest Poisson
model, in particular introduced by Huber (e.g., Huber, 2000;
Huber and Wagner-Dobler, 2001), states that the probability (p)
that a particular product such as a goal in a soccer match or a
scientific paper will occur during a fixed time interval t, is the
mathematical product of a domain-specific Poisson parameter ϕ

and the individual’s current level of the underlying ability, L:

p(Pt) = ϕLt . (5)

For different performance domains, ϕ is typically a very
small value, which is in accordance with the Poisson nature
of the process. The model has also been presented as the
blind-variation-and-selective-retention model (BVSR model,
Campbell, 1960; Simonton, 1999b), or as Simonton’s equal
odds baseline, which explains exceptional performance as a
constant probability of success depending on the level of
the underlying ability. The simple Poisson model has been
empirically corroborated in a variety of fields, in particular
scientific and musical creativity (e.g., Dennis, 1954, 1956;
Simonton, 1984, 1991, 1997, 2003).

A second product model is based on the assumption that total
productivity is a function of an ability component (L), and a
tenacity (domain-specific persistence, commitment) component
M (see Huber, 2000, for career longevity in sports, science and
technological creativity; Petersen et al., 2008, 2011, in the field
of sports). Hence, the probability that a product is generated
depends on the Poisson parameter and the product of the ability-
and tenacity-level.

p(Pt) = ϕLM (6)

Another productmodel is Simonton’s model of creative potential,
which applies to creative talents such as the arts, sciences or
technological inventions (Simonton, 1984, 1997). The model
states that a particular creative ability corresponds to a creative
potential, that is, the potential to generate n products. Given a
particular ideation rate (rate of idea production), the number of
products generated per unit time is a function of the potential (L)
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and of a depletion factor, namely the number of products already
actualized (L′t). Simonton’s original model of three coupled
differential equations can be simplified as follows:

p(Pt) = ϕL(1−
L′t

L
) (7)

The final product model, the so-called Matthew model, is
based on the success-breeds-success principle. In the educational
sciences, the Matthew effect may refer to situations where a child
with an observable talent for math or arithmetic, for instance,
is likely to attract the interest of parents or teachers who tend
to invest special effort helping the child develop this talent
(Bloom, 1985). In sociology, the model has been applied to
exceptional scientific productivity (e.g., Merton, 1968; DiPrete
and Eirich, 2006). Merton (1968), for instance, proposed that the
scientific community favors those scientists who have been most
successful in the past by providing themwith additional resources
and attention, thereby further stimulating their productivity
(for recent quantitative evidence for the Matthew effect in
scientific careers, see Petersen et al., 2010). Accordingly, typical
of the Matthew model is that the probability of a particular
output increases as a function of the number of outputs already
produced. Hence, if St is the number of products already
produced at time t, the Matthew product model becomes equal
to

p(Pt) = ϕ(1+ γ St)Lt (8)

(the γ parameter is a scaling factor, moderating the effect of the
number of products).

Predictions Regarding Product
Distributions
To predict the number of domain-specific products that is
released over an individual’s career, we can embed the product
models in the dynamic network model, by coupling a particular
product model per unit time to the long term change in the ability
variable. By doing so we can simulate not only the temporal
trajectory of the ability, but also the temporal trajectory of the
productivity based on that ability, including the total life time
productivity of a simulated individual.

In order to test the validity of the predictions that the network
model will make about the distribution of the number of products
of a certain kind, we need to compare the network model with
a null hypothesis model. The null hypothesis model is based
on the standard statistical assumption that abilities are normally
distributed across the population, and result from additive effects
of major performance-related components, such as motivation,
coaching, and practice. Therefore, we reduced the connection
strength with other variables to 0, and treated the K-parameter
of the ability variable as the parameter including all resources to
develop excellence:

1L

1t
= rL(1−

L

K
). (9)

Model Settings
In line with our minimalistic approach—to check whether a
network model with the simplest, least specific assumptions—
already has sufficient explanatory power, in this section we shall
confine ourselves to adding the simplest possible productivity
model [the simple Poisson model, see Equation (5)] to the
network model. We will test whether this model suffices
to predict the major properties of excellent productivity, in
particular the strongly right-skewed distribution. Because, in
accordance with the empirical distributions, the majority of
(excellent) performers in a specific domain has one product (e.g.,
Lotka, 1926; Huber, 2000; Sutter and Kocher, 2001; O’Boyle
and Aguinis, 2012), the probability that a product is released
during each time step is chosen in such a way that the mode
of productivity during an entire life span is 1. The Poisson
parameter that corresponds with this lifetime average is 0.002,
since the simulation length was set at 500 steps. Each simulation
round of the model represents a life cycle of an individual,
randomly drawn from the possible population of individuals who
have the ability to produce at least one product of interest (e.g., a
scientific article, a patented invention, a goal in an international
soccer match). Thus, the model simulates a population in
which a particular domain-specific ability—playing soccer, doing
research, playing violin, etc.—actually develops.

Simulation Results
To start with, simulating the productivity over the lifespans
of single individuals reveals nonlinear, often quite variable
trajectories (see Figure 9A for an illustrative example). Although
reports on productivity over the lifespan are scarce, data on
the lifespan productivity of two prolific songwriters, Irving
Berlin and Cole Porter, provide qualitative support—also
demonstrating peaks and valleys across the life-span—for the
predictions of the networkmodel (Hass andWeisberg, 2009; Hass
et al., 2010; see Figure 9B).

However, the primary goal of the productivity simulations is
to check if the predicted number of products across a simulated
population—based on the simplest productionmodel—resembles
the highly skewed distributions according to the large body
of empirical data discussed earlier. Furthermore, we shall test
whether the predictions of the network model are more accurate
than those of the null hypothesis model. More specifically, we
will examine whether the network model predicts a right-skewed
distribution with the correct empirical properties, namely a
distribution described by a stretched exponential or power law,
and that the null-hypothesis model does not do so. To provide a
reliable comparison between the network model results and the
null-hypothesis results, we first augmented the average level of
the K component of the null-hypothesis model from 1 to 1.26,
which is equal to the average ability level resulting from 100,000
simulations of the network model with the default parameter
settings.

Results of the simulation show that, first, both the network
and the null hypothesis model generate right-skewed product
distributions (Figure 10). However, consistent with the data
described earlier, the right tail of the product distribution
generated by the network model is considerably longer than that
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FIGURE 9 | Illustration of a single individual’s simulated productivity

across the life span (A) and the life span productivity of the

songwriters Irving Berlin and Cole Porter (B). In Graph (A) the time axis

corresponds to time blocks, i.e., 24 periods of 20 time steps.

of the null hypothesis model. In the simulation this amounts
to a maximum of 25 in the network model vs. a maximum of
8 products in the null hypothesis model (see Figure 10A). The
right part of the distribution based on the network model thus
shows the characteristic right tail corresponding to the truly
exceptional cases, as revealed by the empirical data described
earlier. Furthermore, the log-log distribution of the products
and frequency as generated by the network model is similar
to a stretched exponential distribution, which is not the case
for the null-hypothesis model (Figure 10B). The distribution as
generated by the network model is typical of virtually all the
data on product distributions discussed previously (see Sections
Product Distributions in Soccer and Product Distributions across
Domains).

Testing the Null Hypothesis
Before we can reject the null-hypothesis model in favor of
the network model, however, we must ask if it is possible to
alter the parameter values in such a way that also the null
hypothesis model can produce the empirically expected product
distributions (a possibility that would greatly reduce the validity
of the network model). The first important parameter we should
consider is the K-parameter. As noted earlier, the K-parameter
in the null-hypothesis model represents the sum of genetic
resources and other (environmental) resources. Can its standard
deviation be increased in such a way that also the null hypothesis
model generates the product distributions in accordance with
the empirical data? Another important parameter is the Poisson
parameter, which determines the probability of generating a
product per unit time. In order for the null hypothesis model to
generate a maximum number of products comparable to that of

the network model, we had to set a seven-times bigger Poisson
parameter, but also an average value of the K-parameter that
is 25% higher, and a standard deviation of the K-parameter
that is twice as big. However, with such parameter values,
the average number of products in the population is about
10 times bigger than generated by the network model, with a
distribution that is almost symmetrical. Such characteristics are
in complete contradiction with the properties of the empirical
skewed distributions of performance products (e.g., Lotka, 1926;
Huber, 2000; Huber and Wagner-Dobler, 2001; Sutter and
Kocher, 2001; O’Boyle and Aguinis, 2012; Aguinis and O’Boyle,
2014).

In sum, our proposed network model succeeds in producing
the major properties of the available productivity data, namely
that they are highly right skewed and that the distribution can
be described by a stretched exponential- or power law. The
null hypothesis model also produces a skewed distribution of
the products, but fails to produce the orders of magnitude that
are so characteristic of the empirical distributions. Apart from
these valid general predictions, as a final step in this article it
is useful to examine how the network model may fit within
specific performance domains. To obtain a domain-specific fit,
the settings of the standard parameters of the network model,
as well as of the product model, can be varied as we will briefly
demonstrate in the next section.

Different Parameter Settings to Predict
Product Distributions in Specific Domains
Figure 11 demonstrates that the model-parameter settings
can also be fine-tuned to fit with the domain of scientific
performance, based on the empirical data of Sutter and Kocher
(2001). More specifically, the model accurately predicts the
productivity distribution of economics scientists if the default
parameter settings (Table 1) are adapted in such a way that
the variable support contribution is augmented relative to
the (genetic) K-parameter, which, in all likelihood, is quite
characteristic for the domain of science (e.g., Krebs, 1961;
Berry, 1981; Beaver, 2001). We simulated the distribution of
productivity (number of articles) of randomly selected patches
of 3637 cases (the total number of authors in the study of Sutter
and Kocher, 2001), taken from a universe of 10,000 simulated
cases. The K-parameter in the network model was reduced
from 1.00 to to 0.30 (SD = 0.10), whereas the range of the
variable support contribution was extended (SD = 0.10 rather
than 0.02). The product model we used is based on the simple
Poisson model (Poisson parameter is a random number between
0.0015 and 0.0025). In addition to the comparable distributional
properties, the average and maximal number of publications
based on simulation (1.62 and 20, respectively) were close to the
average and maximum based on the empirical data (1.44 and
18.00, respectively).

When fine-tuning the network parameters and/or product
model to other domains, we also found simulation results
in line with the literature, which we shall briefly mention.
First, according to the second product model, domain-specific
productivity is a function of the domain-specific ability (L) and
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FIGURE 10 | Simulated product distributions of the network model and the null-hypothesis model. Graph (A) displays the raw frequencies. In Graph (B) the

data are plotted according to the natural logarithmic scales.

FIGURE 11 | Log-log plot of the number of articles published in high

ranked economics journals against proportional number of authors.

a tenacity factor (M) (Huber, 2000; Huber and Wagner-Dobler,
2001). The tenacity factor is represented by an arbitrarily chosen
variable in the network model, in this case the fourth variable.
A domain in which tenacity is considered a major determinant
of success, is sports (e.g., Abbott and Collins, 2004; Abbott
et al., 2005; Van Yperen, 2009). Based on the ability × tenacity
product model (Equation 6), and with network parameter
settings adapted to the sports domain, accurate predictions of
productivity distributions in tennis and soccer are generated
(Den Hartigh, 2015).

Simulations based on Simonton’s creative potential model
(Equation 7) predict a domain-specific peak in productivity,
which is corroborated by empirical data (e.g., Simonton, 1984,
1997). In the network model the place of the peak is determined
by the ability level and by two parameters, the creative potential
constant (which is multiplied by the ability level), and the
depletion constant (which is multiplied by the current number of
products already generated). The number of products generated
under this model spans various orders of magnitude, which is
consistent with the Simonton’s empirical data (e.g., Simonton,
1999a, 2003).

Finally, an example of a product model that, connected to the
networkmodel, generates an extremely right-skewed distribution
is the Matthew product model (Equation 8). When running
simulations based on this product model—for convenience we

used the network parameters displayed in Table 1—the number
of products is highly stretched (that is, the maximum number of
products is many times higher than the maximum number of
products without it). Such distributions are, however, relatively
more often found with respect to the impact of products (which
is not the primary focus of the current article), as examined in
the study of literary fame, for instance (e.g., Martindale, 1995).
These extreme distributions could be explained by the success-
breeds-success principle, more specifically that the attention that
a writer gets from literary critics is primarily determined by how
much (positive) attention he or she has already received from
other critics (Verdaasdonk, 1983).

Conclusion Simulations of the
Distributions of Excellent Performance
The network model of excellent human performance predicts
the highly right-skewed product distributions as observed within
various domains, if one of the existing product models is
coupled with the network model of ability development (e.g.,
Huber, 2000; Huber andWagner-Dobler, 2001; Simonton, 2003).
Furthermore, it does so with an evidently higher accuracy
than the null hypothesis model we have tested. In addition
to this general validation, we have shown that domain-specific
product distributions can be predicted with high accuracy when
adapting the parameter-values and/or product model according
to the domain of interest. We may therefore conclude that the
validation of the model based on the properties of ability growth
we discussed earlier, and on the existing quantitative data of
excellent performance in the form of product distributions, was
successful.

DISCUSSION AND CONCLUSION

In this article we endorsed the theoretical view that excellence
can be considered as multidimensional, and developing from
idiosyncratic, dynamic relationships among several variables,
forming a network. We also worked from the view that
excellent performance can be measured in terms of productivity,
especially if this productivity is based on consensual expert
assessment, as in science, technology, arts and sports (e.g.,
Simonton, 2003; O’Boyle and Aguinis, 2012). We proposed

Frontiers in Psychology | www.frontiersin.org 15 April 2016 | Volume 7 | Article 532

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Den Hartigh et al. Dynamic Network Perspective on Excellence

a generic dynamic model of ability growth, consisting of
connected internal and external variables. The relationships
between these nodes were defined as dynamic, competitive
or supportive relationships, which are randomly and sparsely
assigned. Any specific combination of positively or negatively
weighted relationships between the performance variables, rates
of resource consumption, carrying capacities, and initial levels
in principle represents a possible person in the (simulated)
population.

In order to check the validity of our proposed dynamic
network model, we started with predictions of the properties
regarding the development of (excellent) abilities that are
generalizable across a wide variety of achievement domains.
We showed that the developmental properties of excellence are
revealed by simulations of our dynamic model. These properties
are: (a) Early indicators of ultimate excellent abilities are often
lacking, (b) similar ability levels can develop at different ages, (c)
the underlying constituents of the ability can change during the
individual’s life span, and (d) the ability-development can take a
variety of idiosyncratic forms (e.g., Howe et al., 1998; Simonton,
1999a, 2001; Abbott and Collins, 2004; Abbott et al., 2005; Phillips
et al., 2010).

Within themodel, ability support is not amatter of an addition
of supporting variables, but a dynamic process of mutually
supporting and competing variables. The effect of such variables
is dynamically moderated by stable resources such as the person’s
genetic endowment for a particular ability. As to the influence
of genetic factors, the model predicts an increase in heritability
that is followed by a slight decrease, which has been found
within domains such as science performance (Haworth et al.,
2009). Hence, it also provides a dynamic perspective on the
role of genetic endowment in the development of excellence,
a topic that is still hotly debated (e.g., Ericsson, 2013, 2014;
Gagné, 2013; Ackerman, 2014; Hambrick et al., 2014; Plomin
et al., 2014). As our model predictions suggest, heritability—
like other ability-related variables—should not be considered
as a separate mechanism to explain excellence, but as a factor
whose functional role is dynamically embedded in a network
consisting of multiple ability-related variables (cf. the discussion
on component vs. interaction-dominant dynamics; Van Orden
et al., 2003).

To provide further validation for the dynamic network model,
based on distributions of excellent performance data as found in
the domain of soccer and as revealed in many earlier studies (e.g.,
Lotka, 1926; Huber, 2000; Sutter and Kocher, 2001; O’Boyle and
Aguinis, 2012), we combined the model with one of the existing
product models. Products were generated as stochastic outcomes,
at each time step, of the ability level and a Poisson productivity
parameter. The product distributions as generated by our model
resembled the strongly skewed empirical product distributions
very well, which clearly contrasted with the null hypothesis
model-predictions. Hence, based on the simulation results of
both the developmental properties leading to excellence, and the
product distributions across populations of excellent performers,
it seems highly likely that excellent performance emerges from
idiosyncratic, interaction-dominant dynamic network structures.

Implications of the Model
A major strength of the dynamic network model is that it
predicts a considerable number of properties typical of excellent
human performance in many achievement domains, such as the
idiosyncratic ability trajectories and the strongly skewed product
distributions across the population. It does so on the basis of
a very general model of ability growth that makes only limited
assumptions and that is basically neutral in its parameters. On
the other hand, one could also argue that the model’s major
weakness is that the structure of connections that may occur
in networks is so rich that virtually any kind of structure may
emerge. Therefore, the complexity of the possible relationships
make any such network hard to explain, if by explanation we
mean determining the exact contribution of separate components
on the level of individuals. However, recent work in statistical
modeling of idiosyncratic developmental patterns has made
considerable advances (e.g., Molenaar and Nesselroade, 2012). Of
particular relevance in this regard is the work on reconstructing
idiosyncratic networks of interactions between components, in
the form of mental states characteristic of psychopathology such
as depression (see Borsboom andCramer, 2013). Such techniques
can be applied to any type of network.

Moreover, it is important to note that the explanatory
complexity of idiosyncratic individual networks cannot be
reduced by replacing the explanandum (the individual system)
by a statistical ensemble consisting of a collection of many
such individual systems, characterized by statistical relationships
between the distribution of properties across this collection (see
Molenaar, 2004; Molenaar and Campbell, 2009). Explaining the
time-based evolution of such individual systems must begin
with attempts toward understanding the general properties
of the underlying dynamics as they apply to the individual,
idiosyncratic processes. The dynamic network model attempts to
do so, and provides insights into population characteristics, such
as the distribution of products, by generating many individual
trajectories covering a particular population of individual
performers. This way, the dynamic network model aims to
make a significant theoretical contribution, keeping in mind the
argument that the value of a theoretical model lies in its ability
to account for empirical observations across a wide variety of
contexts and situations (Pierce and Aguinis, 2013). Accordingly,
as an interesting future avenue the model simulations can be
expanded to predict empirical distributions of fame, impact, or
popularity with respect to excellent performance in a particular
domain. More specifically, the dynamic network model could be
used to model the number of public performances of artists, but
also tokens of impact or fame of a person, such as the number
of citations of a scientist, books or articles about a particular
writer, etc.

A relevant question from both a theoretical and applied point
of view, is whether the (potential) ability to reach excellent
performance is “in the individual” and therefore must be
discovered at an early age, whether it should be elicited by
accumulating much practice, or whether it can also be elicited
in other ways. The first possibility is still widely embraced and
has dominated the “talent detection” programs in research and
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practice around the world (Ericsson et al., 1993; Howe et al., 1998;
Abbott and Collins, 2004; Abbott et al., 2005; Vaeyens et al., 2008;
Phillips et al., 2010). On the other hand, the two latter possibilities
are in accordance with the view that excellence develops mainly
through (variable) factors that support or stimulate the ability
(e.g., Ericsson et al., 1993; for popular accounts of this point of
view, see Colvin, 2008; Coyle, 2009). However, the predictions
of the network model do not correspond to the idea that one
specific factor, such as deliberate practice, should be primarily
focused on in order to develop excellence (Ericsson et al., 1993).
That is, our network model predicts that there are many possible
multiplicative relationships between dynamic variables leading
to excellent performance. Taken together, while excellence can
be elicited and nurtured, the ability growth and final level
depends on genetic endowment factors (the K parameter in the
mathematical model) and on the many possible combinations of
variables that support the ability at issue (for a comparable stance,
see Simonton, 2014).

Because the network model assumes that excellence can
be “fed” by multiplicative relationships between a variety of
components that are individual-specific, we may cast doubt on
a policy that emphasizes just one or very few links, and/or
that applies a “one-size-fits-all approach” [e.g., when children
are exposed to a tough sports practice regimen in a (relatively
isolated) gymnastics institute to improve their athletic abilities;
see also Van Rens et al., 2015, on the lack of effectiveness of
schools focusing on sports talents]. However, future empirical
studies and simulation studies should be conducted to explicitly
test the consequences of different kinds of network structures
with regard to the development of excellence. One concrete
possibility is a longitudinal study in which a diary is filled out
by children themselves and by the parents at regular occasions,
in order to reconstruct the dynamic network of components
and relationships typical of a particular child from the group of
excellent performers (relative to peers).

In relation to this, the practical implications of the dynamic
network model primarily relate to the structure of the individual
ability networks, more so than the exact nature of the
components that generally relate to excellence across the

population. The challenge from an applied perspective is to
establish positive links between ability-related components in
individual, idiosyncratic trajectories that potentially lead to
excellence. That is, the (possible) interactions between the
components should be a primary focus of attention, which
means that the probability of establishing positive feedback-
loops between various ability-supporting components should
be enhanced. Accordingly, instead of focusing on isolated and
common components such as hours of practice or intrinsic
motivation, a coach, or teacher should be sensitive to the child
and its environment (e.g., the enthusiasm, engagement in school)
that signal supportive or competing influences for excellence
to develop. In other words, the coach or teacher should be
adaptive, because he or she is situated in an idiosyncratic and
changing network that is typical for a particular athlete, artist,
or scientist, and which involves mutual interactions between
components.

To conclude, there are many possible ways to kindle a fire,
and many kinds of fuel to keep it burning. In this article
we considered excellence as a developmental and emergent
property, and proposed that excellence should be approached
from a dynamic network perspective. Population-based studies
and theoretical models of associations between predictor
variables and excellent performance variables provide important
information, but cannot be used as a substitute for time-
serial, individual-based studies and process models of excellence
emergence and development. Our dynamic network model
provides a framework for studying such individual trajectories,
but it also provides an explanation for the population-
distributions of excellent performance in science, sports, arts, and
beyond.
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