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School timetables are one or multiple times per year generated to assign class-teacher combinations to
class rooms and timeslots. Post-publication disturbances such as absence of teachers typically pose a
need for schedulers to rapidly implement some minor changes to avoid empty periods in the timetable.
In this paper our aim is to define methods to efficiently solve the school timetabling problem under

disturbances. We present three types of solution methods, namely a simple rule-of-thumb, a heuristic
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and an optimization approach. Exhaustive numerical experiments have been performed with data from
five high schools in The Netherlands, each with their unique characteristics in number of classes, number
of teachers and number of daily meetings. For each of the three methods we show advantages and
disadvantages as well as the effects of resulting changes in the schedules.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Main decisions in school timetable problems are to make class-
teacher-room assignments and allocate meetings to empty slots in
a schedule. Schedulers need to take a variety of constraints into
account, such as teachers’ availability and preferences, room
capacity, lesson spread for classes and load balancing for teachers.
Observations in practice learn that the generation of timetables is a
time consuming process which is executed by software in combi-
nation with the manual interaction of a scheduler. The general
school timetabling problem is proven to be NP-complete (Even,
[tai, & Shamir, 1976). Post et al. (2012) concluded that the field
of educational timetabling is nowhere near solving all possible
instances of high-school timetabling. Initially, mathematical pro-
gramming approaches were used in deriving feasible timetables
(e.g., Papoutsis, Valouxis, & Housos, 2003; Tripathy, 1984). Later
mainly heuristics have been designed (e.g., Fonseca & Santos,
2014; Zhang, Liu, M’Hallah, & Leung, 2010). Typically those meth-
ods are intended to be used to design new school timetables from
scratch for a (part of) a year. However, timetable users must be
able to make minor changes rapidly and easily after publication
due to disturbances such as teachers’ illness or extracurricular
activities. In practice, this rescheduling process is mainly arranged
manually. There is a need for new methods to efficiently resched-
ule parts of school timetables that can be applied at different types
of schools (Pillay, 2014). Our aim is to present a model and a
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variety of solution approaches to define and solve the school time-
tabling problem under disturbances. Exhaustive experiments are
performed to show the outcomes of the different methods, and
the ability to generalize outcomes. To this end we use data of five
high schools in The Netherlands each with different characteristics
instead of as commonly seen in literature only of a single high
school (Pillay, 2014).

In the school timetabling problem under disturbances, typically
an initial timetable is rescheduled and the altered timetable is
compared to the initial timetable. Commonly, in The Netherlands,
meetings between absent teachers and their classes will be
removed from the schedule and will not be rescheduled in another
time period. Consequently, the number of empty periods for
classes in the timetable of that day increase. Empty periods are
perceived negatively and the overall aim is to keep the number
of empty periods as low as possible. Schedulers focus on reducing
those resulting additional periods by making short term changes in
the schedule. The reduction of empty periods is obtained by tem-
porarily shifting meetings of other teachers to other time periods
in the new timetable. However, the reduction of the number of
empty periods comes at a cost. Shifting meetings force classes
and teachers to adapt to sudden changes of the schedule, which
can be experienced as something negative. Therefore, the sched-
uler has to create a balance between reducing the number of
empty periods, keeping the schedule stable, i.e., not deviating too
much from the old timetable and being alert on the amount of
shifts on a specific day and over days. The latter kind of shifts is
typically less valued than shifts on a specific day. Consequently,
the quality of the new timetable is determined by its compactness
expressed by the number of empty periods, the stability of the
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schedule and the type of shifts. Typically in literature the quality of
the schedule is expressed in soft constraints (e.g., Pillay, 2014). In
our newly designed rescheduling policies we explicitly incorporate
those performance measures in the objective.

The problem of school timetabling under disturbances can be
classified in the field of school timetabling. The school timetabling
problem, also referred to as the class-teacher model, consists of
assigning meetings to periods for a specific class-teacher combina-
tion such that no teacher or class is involved in more than one
meeting at a time (e.g., Carter & Laporte, 1998; De Werra, 1985).
We can roughly divide literature on school timetabling into two
categories, namely (1) class-teacher assignment (Asratian & De
Werra, 2002; Azmi Al-Betar & Khader, 2012; De Werra, Asratian,
& Durand, 2002); and (2) class scheduling to assign meetings for
a specific subject for each class to timeslots and rooms (Burke,
Marecek, Parkes, & Rudova, 2012; Sampson, Freeland, & Weiss,
1995; Sampson & Weiss, 1995). Some papers (Al-Yakoob &
Sherali, 2007; Alvarez-Valdes, Martin, & Tamarit, 1996) address
those decision problems in a sequential way. To our knowledge
no methods are specifically designed to perform limited alterations
to already published school timetables.

The structure of this paper is as follows. We define the school
timetabling problem under disturbances in Section 2. Section 3
presents the different solution approaches, namely a simple rule-
of-thumb, an optimal approach and a heuristic. Section 4 shows
for a specific setting the outcomes of the different methods. Exper-
iments and data collection at 5 different schools are defined in Sec-
tion 5. Results and numerical insights are shown in Section 6.
Finally, we present conclusions in Section 7.

2. Problem definition

In this section, we formally define and formulate the school
timetabling problem under disturbances. Two types of school
timetabling problems can be considered, namely one where all
pupils in a class follow exactly the same meetings and one where
pupils in a class may attend different meetings (Post et al., 2012).
In the lower classes in the educational system in The Netherlands
all pupils in a class follow exactly the same meetings, which is also
the case for some other countries (e.g., the 11- to 14- year-olds in
English Secondary Schools). For an overview of the timetabling
problem in different countries we refer to Post et al. (2012). In this
paper, we focus on the lower classes of high schools where all
pupils in a class follow exactly the same meetings. Specifically
for those pupils it is the general understanding that the amount
of empty periods should be as low as possible.

A specific set of disturbances can be represented by changes in
teachers’ availability. A published timetable is available showing
an assignment of teachers to classes and time periods. This assign-
ment will be input in the school timetabling problem. If a teacher is
unavailable, no other teacher will take over to teach this subject to
a class. Given that the related meeting is not scheduled at the start
or end of a day, we define the resulting time slot as an empty per-
iod. If the canceled meeting was scheduled at the start of the end of
the day, the students will start/end their day later/earlier. In a fea-
sible schedule sufficient room capacity is available to match meet-
ings to rooms. Given that, we do not consider subject-room
assignment decisions in the school timetabling problem under dis-
turbances. Consequently, the model aims to re-allocate meetings
for each teacher-class combination to a timeslot given the new
information on teachers’ availability. The goal is, as explained in
Section 1, to minimize a weighted sum of the number of empty
periods and the number of shifts made between the old and the
new schedule. As mentioned in the introduction, we make a

distinction between the number of shifts on a specific day and over
days.

In defining the parameters and variables we follow where appli-
cable the notation as presented by Santos, Uchoa, Ochi, and
Maculan, 2010. The following set of parameters is defined:

C: Set of classes;

T: Set of teachers;

D: Set of days;

P: Set of time periods on a day, where for each day the time
periods are numbered from 1 to |P|;

R: Requirement matrix, where 7. specifies the number of meet-
ings involving teacher t and class c, excluding the disturbed
meetings;
T: Availability matrix, where E[dp =1 if teacher t is available at
time period p of day d, t4, = O otherwise;

if teacher t and class ¢ meet at time period

p of day d in the old schedule

and teacher t is not disturbed at time period

pof day d
0 otherwise;
wy: Penalty for each empty period;
w,: Penalty for the shift of a meeting to another time period;
ws: Penalty for the shift of a meeting to another day;

)_(tcdp =

The decision variables and auxiliary variables are defined as
follows:

{ 1 if teacher t and class ¢ meet at time period p

Xeedp = of day d7

0 otherwise;

he € 7, : Number of empty periods for class c at day d;

de € Z,: Time period of the first meeting of class c at day d;
a. € Z,.: Time period of the last meeting of class c at day d;
Z.q € Z,: Number of meetings between teacher t and class ¢
shifted to day dfrom another day;

Stedp: Binary variable equal to one if a meeting between teacher ¢
and class c is shifted to time period p at day d.

3. Solution approaches

In this section we define three different solution approaches to
solve the timetabling problem under disturbances. First, we define
a simple rule-of-thumb that can be performed manually without
the need of a computer. Secondly, we construct an integer linear
programming model (ILP) that solves the problem to optimality.
Given the complexity of the problem, we finally define a heuristic
procedure that can generate results efficiently. In Section 6 we will
compare the different methods to analyze the changes in the
schedules obtained.

3.1. Simple rule-of-thumb

A simple rule-of-thumb to solve the timetabling problem under
disturbances can be described as follows: pick the first of the
empty periods caused by a disturbance and try to shift the last or
first meeting of the day to the empty period. Whenever this is
not possible, try to find another time period at this day whose
scheduled meeting can be shifted to the empty period and where
the last or first meeting of the day can be shifted to. Whenever this
is not possible either, check whether a meeting at the end or start
of another day can be shifted to the empty period. In Appendix A,
the pseudocode for this rule-of-thumb is given. The description of
the parameters and variables not described in the pseudocode, can
be found in Section 2.
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Note that if we run, for example, the heuristic on Monday and
there is an empty period at Thursday, the heuristic only considers
the meetings on Thursday and Friday to be shifted to the empty
period. However, it might be possible to shift a meeting from one
of the other days to the empty period of Thursday. Therefore, in
our experiments, we both run the heuristic described above, and
the heuristic with the slight alteration that the meetings of all
future days are allowed to be shifted. We report the results of
the best found schedule.

3.2. Integer linear programming model

We introduce an ILP model to solve the problem as presented in
Section 2. This model is partly based on the formulation for the
class-teacher timetabling problem with compactness constraints
of Santos et al. (2010). Specific to our problem are: (a) a class per-
spective instead of a teacher perspective; (b) the formulation of the
objective where we focus on minimizing penalties for shifts in the
schedule; (c) need for specific constraint (7) and (d) need for speci-
fic constraint (8).

minimize Y "> Wil + > Y > ) WaSegp + Y > Y Wiy

ceC deD teT ceC deD peP teT ceC deD
s.t.
sztcdp =f VteT, ceC (1)
deD peP
medpgl VceC, deD, peP (2)
teT
> Xeap <ty VteT, deD, peP 3)

ceC

g < (1P| +1) = (1P| +1-D)D Xcap

teT

YVceC, deD, peP

Qe > DY Xy VceC, deD, peP (5)
teT

hcd = Qg — acc'l + 1- sztcdp Ve e C» d eD (6)

teT peP

Xicdp — Xtcdp + Steap = 0 VteT, ceC, deD, peP (7)

St = Y (Rietp —Xuetp)  VEET, ceC, deD (8)
peP

hcd’ Oed,  Oeq € Zy Vce C, deD (9)

8 €L, vteT, ceC, deD (10)

Xeedp,  Stedp € {0,1} VteT, ceC, deD, peP (11)

The objective of the problem is to minimize a weighted sum of
the number of empty periods, the number of meetings shifted, and
the number of meetings shifted to another day. Constraints (1)
ensure that the number of meetings between a class and teacher
are as specified in the requirement matrix. Constraints (2) make
sure that each class can at most be assigned to one teacher at a
given time period. Due to constraints (3), at most one class meets
a teacher at a given time period. Moreover, a class only meets a
teacher whenever the teacher is available. Constraints (4) and (5)
define the time periods corresponding to the first and last meeting
for each class at each day, respectively. Constraints (6) define the
number of empty periods for each class and day. Constraints (7)

define the number of meetings shifted. Constraints (8) define the
number of meetings shifted to another day. Constraints (9)-(11)
define the nature and the domain of the decision variables.

3.3. Heuristic

The heuristic we implemented to solve this problem iteratively
optimizes the schedules of the different classes. The heuristic pro-
cedure starts with the initial schedule for all classes, i.e.,
Xicdp = Xieap, VE € T, ¢ € C, d € D, p € P. The heuristic iteratively opti-
mizes the schedule of each class, starting with the first class, i.e.,
¢ =1, and ending with the last class, i.e., € = |C|. The optimization
of each schedule requires three steps. The first step is to fix the
schedules of the other classes and to update the availability matrix
such that a teacher is available at the time slots it was scheduled to
teach class € in the initial schedule, i.e., if X,z4, = 1, then g, = 1,
VteT,deD, p € P. The second step is the actual optimization of
the schedule of class ¢, which is done by solving the ILP, as
described in Section 3.2, with C = {c}. The last step is to update
the availability matrix such that a teacher is not available at the
timeslots at which it is assigned to class € in the new schedule,
ie, if X,zqp =1, then ty, =0, Vt € T, d € D, p € P. The procedure
continues until each class is optimized exactly once. In Appendix
A, the pseudocode for this heuristic is given.

4. Example

We present a small example to study the differences in out-
comes obtained with the three methods presented in Section 3.
We assume that the cost for a shift at the same day is equal to 1,
and the cost for a shift to another is equal to 3. The cost for an
empty period is equal to 4. Table 1 (appendix B) shows the initial
schedule for five sequential days for class 1 and class 2. Assume
that it is currently day 1 and that due to disturbances class 1 has
two empty time periods at periods 3 and 5 of day 1. Class 2 has
a single empty period at period 4 of day 1. Table 2 (appendix B)
shows the availability of the teachers involved for classes 1 and 2.

Tables 3a-3c (see appendix B) presents the outcomes for the
different methods. In Table 3a we note that with the rule-of-
thumb, class 1 will be examined first. The first empty period is at
period 3 of day 1. The first possible change as found with the pro-
cedure as presented in Appendix will be to assign teacher 36 at
period 3 of day 1 instead of at period 1 of day 5. Other earlier
changes are not possible due to the availability of teachers as pre-
sented in Table 2. The next empty period is period 5 of day 1. This
empty period can be eliminated by shifting the meeting between
teacher 28 and class 1 from period 7 of day 1 to period 5 of that
same day. Class 2 has an empty period at period 4 of day 1. The
meeting between teacher 4 and class 2 can move from period 3
to period 4 of that day. As a result, three shifts have been made
of which one has been moved to another day. The value of the
objective equals 5 in this case.

Table 3b shows the results for applying the heuristic to the
example problem. Also the heuristic obtains a solution in a sequen-
tial way. First class 1 and then class 2 is considered. For each class
the problem is iteratively solved using a branch-and-bound algo-
rithm applied to the ILP model as shown in Section 3 where the
other class is fixed and no changes can be performed for that speci-
fic class. For class 1 we note the following changes to reduce the
number of empty periods: the meeting of teacher 4 at period 2
of day 1 moves to period 8 at day 1; the meeting of teacher 28
moves from period 7 at day 1 to period 5 at day 1; the meeting
of teacher 15 moves from period 4 at day 1 to period 7 at day 1.
For class 2 the meeting of teacher 4 moves from period 3 at day
1 to period 4 at day 1. The value of the objective equals 4 in this
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example. Compared to the rule-of-thumb all shifts can be per-
formed at the same day.

Table 3¢ shows the results obtained by the optimal approach for
class 1 and class 2. In this case, the schedules of both classes are
optimized simultaneously. For class 2, the meeting of teacher 4 is
moved from period 3 at day 1 to period 4 at the same day. For class
1, the meeting of teacher 4 is moved from period 2 of day 1 to per-
iod 3 at day 1. Next to that, the meeting of teacher 28 is moved
from period 7 to period 5 at day 1. Since the optimal approach con-
siders the schedules of both classes simultaneously, better results
are obtained by the optimal approach compared to the outcomes
obtained by the rule-of-thumb and the heuristic. By first solving
the problem for class 2, the availability of teacher 4 has changed,
which directly helps to eliminate one of the empty periods for class
1 with a shift at the same day. For this example the value of the
objective equals 3.

5. Experiments

Data was provided by five different high schools in The Nether-
lands. The schools feature different characteristics concerning for
example the number of teachers, the number of classes and the
number of time periods during a day. The characteristics of each
of the schools can be found in Table 4.

The data made available by the high schools consist of the initial
schedules for all lower classes (i.e., classes that each follow the
same meetings; refer to Section 1) and teachers and the availability
for each of the teachers. The data is slightly adapted to match the
characteristics of the problem as specified in Section 2. The average
number of meetings scheduled in a week for the lower classes of
each of the schools used in our experiments and the number of
time periods per day and the duration of a meeting can be found
in Table 4.

For each of the five schools, we created two sets of disturbances
of each 600 instances. In the first set (experiments 1-600), each
disturbance lasts for only one day namely the Monday. In the sec-
ond set (experiments 601-1200) the teachers are absent for the
whole week. The sets are each divided in 6 batches of 100 experi-
ments, where the number of absent teachers in a batch respec-
tively equals 2, 3, 4, 5, 6 and 10. Absent teachers are randomly
chosen in such a way that they have at least one meeting

Table 4
Characteristics of the different schools.

scheduled in the initial time table at one of the disturbed time peri-
ods. For all experiments, we have only taken into account the
classes for which the disturbances do lead to the removal of one
or multiple meetings. The average number of classes involved in
the experiments for the different schools are given in Table 5.

For the experiments the weights in the objective are set as fol-
lows: w; =4, w, =1, ws = 2. These values are chosen based on
insights of experts in the field. The penalty for an empty period
equals 4, the penalty of a shift is set to 1 and the penalty of a shift
to another day is set to 2. This means that if a meeting shifts to
another day, the total penalty equals w; +w; = 3. We use the
GUROBI 5.1 solver in AIMMS 3.13 to solve the model as presented
in Section 3. In solving the problem both empty periods resulting
from disturbances as well as empty periods already present in
the schedule are taken into account.

We provide insights on the differences in performance of the
different solution methods under different conditions. To this
end we use the following measure to show the gap between the
solutions derived by two different solution methods.

f($1)_f(52)'100%, (12)

f(s2)
where f(s;) is the objective value of the solution obtained by solu-
tion method i,i=1,2.

Note that it is not our aim to compare different schools on their
performance or to test the performance of specific schedulers. The
data of the schools are used to compare the outcomes of the three
methods as presented in this paper. We aim to derive insights for
schedulers to help in their decision making process what types of
disturbances to handle in what way, with what method and to
get a feeling for the effects and impact of the decisions made.

Gap =

6. Results

In this section we present the results of the experiments as
described in Section 5. First, we discuss the outcomes for the var-
ious schools if a small disturbance (set 1) occurs. For each of those
experiments the model as introduced in Section 3 could be solved
to optimality within reasonable time, i.e., between a few seconds
and a couple of hours per instance. For the heuristic and the rule
of thumb, the computation time for each instance was within a

School # Classes # Teachers # Time periods per day Duration meeting (in min) # Meetings scheduled in week
School 1 17 52 8 50 32-34

School 2 10 52 9 50 32-37

School 3 14 52 5 90 19-21

School 4 10 55 9 50 34-36

School 5 28 78 9 45 32-41

Table 5
Average number of classes impacted by a disturbance in the experiments.

Experiments # Teachers absent Period of absence School 1 School 2 School 3 School 4 School 5
1-100 2 Monday 3.7 4.2 4.0 53 5.6
101-200 3 Monday 5.4 5.7 5.7 7.2 7.8
201-300 4 Monday 6.9 6.9 71 8.1 104
301-400 5 Monday 7.9 7.6 8.3 8.5 119
401-500 6 Monday . 8.6 9.3 9.1 13.7
501-600 10 Monday 125 9.4 121 9.9 18.9
601-700 2 Full week 5.8 6.5 7.4 6.1 9.8
701-800 3 Full week X 7.8 9.5 8.1 13.7
801-900 4 Full week 9.9 8.8 10.8 8.9 16.8
901-1000 5 Full week 9.4 12.2 9.4 19.4
1001-1100 6 Full week 12.7 9.7 12.8 9.7 21.3
1101-1200 10 Full week 14.8 10.0 13.8 10.0 25.1
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Table 6
Small disturbances (experiments 1-600): comparison between optimal solution, heuristic and rule-of-thumb.
Overall School 1 School 2 School 3 School 4 School 5

% Optimal - rule-of-thumb 13.1 20.7 14.7 22.2 5.8 2.3

% Optimal - heuristic 50.2 58.2 50.3 66.8 25.5 50.1

% Rule-of-thumb outperforms heuristic 0.5 1.2 0.3 0.2 1.0 0.0

% Heuristic outperforms rule-of-thumb 82.5 73.2 80.0 75.8 86.5 97.2

Table 7

Small disturbances: Gap between rule-of-thumb and heuristic, and optimal solution.

Experiments

Gap between rule-of-thumb and
optimal solution (%)

Gap between heuristic and

optimal solution (%)

Gap between rule-of-thumb

and heuristic (%)

Batch 1 (1-100) 36.2 4.9 303
Batch 2 (101-200) 49.9 9.0 38.7
Batch 3 (201-300) 57.5 9.5 44.7
Batch 4 (301-400) 65.1 11.2 48.6
Batch 5 (401-500) 79.0 14.2 57.1
Batch 6 (501-600) 125.0 17.6 92.1
Average 68.8 111 51.9
Table 8a

Small disturbances: number of eliminated empty periods, % eliminated number of empty periods, number of shifts needed and number of shifts over a day in

an optimal solution.

Experiments

Optimal

# Empty periods eliminated % Eliminated # Shifts # Shifts over a day
Batch 1 (1-100) 4.0 97.3 4.7 0.6
Batch 2 (101-200) 5.7 98.3 6.6 0.7
Batch 3 (201-300) 7.5 98.5 8.5 0.9
Batch 4 (301-400) 8.5 97.6 9.4 0.9
Batch 5 (401-500) 10.1 98.6 11.0 0.9
Batch 6 (501-600) 14.3 99.2 13.6 1.0
Average 8.4 98.3 9.0 0.8
Table 8b

Small disturbances: % eliminated number of empty periods, number of shifts needed and number of shifts over a day for the heuristic.

Experiments

Heuristic

Small disturbances: % eliminated number of empty periods, number of shifts needed and number of shifts over a day for the rule-of-thumb.

# Empty periods eliminated % Eliminated # Shifts # Shifts over a day
Batch 1 (1-100) 3.9 95.1 4.3 0.8
Batch 2 (101-200) 5.5 95.7 6.0 1.1
Batch 3 (201-300) 7.3 95.7 7.6 1.4
Batch 4 (301-400) 8.2 94.4 8.6 1.5
Batch 5 (401-500) 9.9 95.6 10.0 1.7
Batch 6 (501-600) 14.0 96.6 12.7 2.1
Average 8.2 95.5 8.2 14
Table 8c

Experiments Rule-of-thumb
# Empty periods eliminated % Eliminated # Shifts # Shifts over a day

Batch 1 (1-100) 35 86.9 4.1 1.1
Batch 2 (101-200) 4.9 83.8 5.6 1.6
Batch 3 (201-300) 6.3 81.4 7.2 2.0
Batch 4 (301-400) 7.0 79.6 8.0 22
Batch 5 (401-500) 8.3 79.4 9.2 2.8
Batch 6 (501-600) 10.8 71.6 11.6 35
Average 6.8 80.5 7.6 22
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few seconds. A comparison between the optimal results, the results
of the heuristic and the results of the rule-of-thumb will be shown.
Secondly, we present the outcomes if large disturbances (set 2)
occur. For those instances, 12 h of computation time was not suffi-
cient to provide optimal solutions for some instances. Conse-
quently, we compare the outcomes of the heuristic with the
outcomes obtained with the rule-of-thumb. Those solution meth-
ods provided a solution to each instance within a few seconds. In
Section 6.4 we show insights for implementation of the methods
in practice.

6.1. Small disturbances

As explained in Section 5, in set 1 we distinguish six batches of
experiments with respectively 2, 3, 4, 5, 6, or 10 teachers being
absent. The meetings of those teachers on Monday are removed
from the schedules, and the availability of those teachers is set to
zero for all time periods on Monday. The heuristic approach is able
to find an optimal schedule for 50.2% of the instances. For the rule-
of-thumb, an optimal schedule is found for only 13.1% of the
instances. For 82.5% of the instances the heuristic outperforms
the rule-of-thumb, whereas for 0.5% of the instances this is the
other way round. These results and a subdivision of the results
for the different schools can be found in Table 6. A more detailed
comparison of the different schools is given in Section 6.3. As indi-
cated our goal is to present three methods to eliminate distur-
bances from schedules and show their mutual relations.
Therefore, we present in Table 7 for each set of experiments the
relative differences between the various methods. On average the
gap between the rule of thumb and the optimal solution is 68.8%,
between the rule of thumb and the heuristic 51.9% and the heuris-
tic and the optimal solution is 11.1%.

To find an explanation for those relative differences, we now take
a closer look into the solutions obtained. We will elaborate on the
empty periods eliminated and the shifts made in order to reduce
the number of empty periods (refer to Tables 8a-8c). We note that
the number of empty periods eliminated by the rule-of-thumb is
6.8 on average overall (i.e., over all schools and all experiments),
which is 80.5% of the number of empty periods present before start-
ing the procedure. This is an average gap of 1.6 empty periods with
the optimal solution. The difference in the number of empty periods
solved between the optimal and heuristic procedure overall is only
0.2. The average number of empty periods eliminated grows over
the batches, since the number of absent teachers also increases over
the batches. For the rule-of-thumb, the overall performance mea-
sured in the proportion of empty periods solved decreases from
86.9% to 71.6% for set 6. Contrary to the rule-of-thumb, we note that
both the optimal procedure and the heuristic procedure show a
stable performance over the various batches of experiments with
respect to the percentage of eliminated empty periods. The absolute
number of total shifts needed increases over the batches for all three
solution methods. If we look at the relation between the total num-
ber of shifts and empty periods solved, we note that on average, the
rule-of-thumb, the heuristic, and the optimal procedure need,
respectively, 1.1, 1.0, and 1.1 shifts to solve 1 empty period in the
schedule. On average 28.9% of the shifts made by the rule-of-
thumb concerns a shift to another day. For the optimal and heuristic
procedure this is on average 8.9% and 17.1%, respectively. As a result,
the structure of the optimal procedure and the heuristic enable bet-
ter use of the shifts on a given day avoiding more expensive shifts to
another day.

6.2. Large disturbances

Large disturbances are defined by the absence of a specified
number of teachers for a whole week. If a teacher is absent, all

the meetings corresponding to this teacher are removed from the
schedules of all classes involved. We compare the schedules found
by the rule-of-thumb and the heuristic in Table 9. On average, for
93.4% of the instances the heuristic outperforms the rule-of-
thumb. Only for 3.7% of the instances this is the other way round.
From the results it can be noted that for Schools 2-5, the heuristic
outperforms the rule-of-thumb in almost all instances. However, in
the experiments of School 1, for 18.0% of the instances the schedule
obtained by the rule-of-thumb is better than the one generated by
the heuristic. In Section 6.3 we will present a more detailed analy-
sis on this and the other schools.

Tables 10a and 10b show the number of empty periods elimi-
nated and the number of shifts needed to do so, for both the
rule-of-thumb and the heuristic. If we compare the results in
Tables 10a and 10b to the results in Tables 8a-8c we note that
the number of empty periods in the schedules of the disturbed
classes is larger resulting from the fact that teachers are not pre-
sent for 5 days instead of one single day. Consequently, more shifts
are needed to eliminate the empty periods in the schedule. The
heuristic eliminates on average 97.2% of the empty periods
compared to 77.6% with the rule-of-thumb. This gap is even bigger
than we noticed in the situation with the small disturbances. The
performance of the heuristic is quite stable over the various exper-
iments. Contrary to that, the performance measured for the rule-
of-thumb varies between 79.7% and 75.6%, and decreases if the
number of absent teachers increases. On average 5.4 more empty
periods can be solved with the heuristic by applying only on aver-
age 0.9 shifts more. The rule-of-thumb needs on average 1.1 shifts
to solve an empty period. The heuristic on average needs 0.9 shifts
for each empty period. For the large disturbances, the amount of
shifts over a day is quite comparable for both procedures and
equals on average around 26% of the total number of shifts needed.

6.3. General applicability of solution method: comparing different
schools

In this section we discuss the relations and differences in out-
comes for the different schools. As mentioned in Section 1, most
papers available show the applicability of the method designed
in the context of a single school. In this paper, we test the method
over a variety of schools by taking the data of five different high
schools in The Netherlands (refer to Table 4). We follow the same
order with first discussing the insights obtained from the experi-
ments with the small disturbances and secondly with the large
disturbances.

Tables 6, 11 and 12a-12c show detailed results for schools for
the experiments with small disturbances. In Table 6 the objective
values of the schedules generated by the rule-of-thumb and the
heuristic are compared for different schools. In Table 11 we show
similar to Table 7 the relative differences between the various
methods. Similar patterns can be noted as in Table 7 for each of
the schools. This demonstrates that a somewhat more complex
method enables better solutions. In Table 6 it can be noted that
the heuristic outperforms the rule-of-thumb most of the times.
There are no large differences between the different schools. More
specifically, the results in Table 6 demonstrate that the methods
can be used for different schools with their own characteristics.
Similar conclusions as already discussed in Section 6.1 can be pre-
sented for each of the individual schools. For school 5 the heuristic
in almost all cases outperforms the rule-of-thumb. School 3 only
allows scheduling of 5 meetings on a daily base. Consequently, less
options are available for alterations in the schedule enabling
heuristics to find optimal solutions earlier. For school 4 the results
show that only in 5.8% of the cases the rule-of-thumb is optimal.
The gap between optimal and the rule of thumb is the highest
for this school, namely 105.8%. For this school the relative
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Table 9 Table 12a
Large disturbances (experiments 601-1200): comparison between heuristic and rule- Small disturbances: per school number of eliminated empty periods, % eliminated
of-thumb. number of empty periods, number of shifts needed and number of shifts over a day in
an optimal solution.
Overall School School School School School
1 2 3 4 5 Experiments Optimal
% Rule-of-thumb 3.7 180 0.5 0.0 0.0 0.0 # Empty periods % # # Shifts over
outperforms heuristic eliminated Eliminated Shifts a day
% l-lrilllen_ztfl_ct}?::gsrforms 934 768 98.0 93.7 987 100.0 School 1 55 95.2 57 06
School 2 7.0 99.8 7.3 0.3
School 3 9.4 99.1 9.5 0.5
School 4 154 98.8 17.6 1.5
School 5 8.4 98.3 9.0 0.8
Table 10a
Large disturbances: % eliminated number of empty periods, number of shifts needed Table 12b

Small disturbances: per school % eliminated number of empty periods, number of
shifts needed and number of shifts over a day for the heuristic.

and number of shifts over a day for the heuristic.

Experiments Heuristic
# Empty periods % Eliminated # Shifts # Shifts over Experiments  Heuristic
eliminated a day # Empty periods % # # Shifts over a
Batch 7 121 96.7 12.4 33 eliminated Eliminated Shifts day
(601-700) School 1 5.2 91.2 5.0 0.9
Batch 8 17.5 97.1 17.8 4.7 School 2 6.9 98.2 6.7 0.9
(701-800) School 3 9.0 94.1 8.4 13
Batch 9 235 97.1 23.2 6.2 School 4 15.2 97.8 16.7 2.2
(801-900) School 5 8.2 95.5 8.2 14
Batch 10 28.8 97.0 27.3 7.3
(901-1000)
Batch 11 33.8 97.4 313 8.4
(1001-1100)
Batch 12 50.7 97.9 42.7 114
(1101-1200) Table 12¢
Small disturbances: per school % eliminated number of empty periods, number of
Average 27.7 97.2 25.8 6.9 shifts needed and number of shifts over a day for the rule-of-thumb.
Experiments Rule-of-thumb
# Empty periods % # # Shifts over a
eliminated Eliminated Shifts day
Table 10b
Large disturbances: % eliminated number of empty periods, number of shifts needed School 1 44 78.6 46 15
and number of shifts over a day for the rule-of-thumb. School 2 >8 858 6.0 1.9
School 3 7.1 77.2 8.0 24
Experiments Rule-of-thumb School 4 13.7 88.0 16.3 3.6
X T - - School 5 6.8 80.5 7.6 2.2
# Empty periods % Eliminated # Shifts # Shifts over
eliminated a day
Batch 7 10.0 78.2 11.6 2.8
(601-700)
Batch 8 14.5 79.7 16.8 4.1 Table 13a
(701-800) Large disturbances: per school % eliminated number of empty periods, number of
Batch 9 19.1 78.0 22.1 5.4 shifts needed and number of shifts over a day for the heuristic.
(801-900)
Batch 10 232 77.1 263 6.7 Experiments Heuristic
(901-1000) # Empty periods % # # Shifts over a
Batch 11 27.0 76.8 303 7.8 eliminated Eliminated Shifts day
(1001-1100)
Batch 12 39.7 75.6 426 118 School 1 20.7 95.7 224 66
(1101-1200) School2 268 99.2 233 55
School 3 125 94.5 11.8 53
Average 223 71.6 249 6.4 School 4 30.7 98.0 253 83
School 5 48.0 98.6 46.1 8.6
Table 11 Table 13b

Large disturbances: per school % eliminated number of empty periods, number of

Small disturbances: Gap between rule-of-thumb and heuristic, and optimal solution
shifts needed and number of shifts over a day for the rule-of-thumb.

over all schools.

Experiments Rule-of-thumb

Experiments Gap between rule-  Gap between Gap between
of-thumb and heuristic and rule-of-thumb # Empty periods % # # Shifts over a
optimal solution (%) optimal solution (%) and heuristic (%) eliminated Eliminated Shifts day

School 1 65.9 108 51.2 School 1 165 77.7 179 45

School 2 78.6 12.4 58.9 School 2 225 83.8 250 57

School 3 49.6 7.1 39.7 School 3 9.0 69.3 9.7 33

School 4 105.8 19.8 73.0 School 4 229 73.2 240 95

School 5 43.9 52 36.8 School 5 40.5 83.8 481 9.1
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difference between the heuristic and optimal is also higher than for
the other schools. However, the results in Table 12 show that the
heuristic eliminates 97.8% of the empty periods. A specific charac-
teristic of this school is that the number of affected classes (see
Table 5) in relation to the number of classes (Table 4) is much
higher than the other schools. For this school rescheduling is more
complex, demonstrating the need for a more advanced method
which results in 25.5% of the cases in an optimal answer.

In Tables 12a-12c we examine the schedules resulting from the
optimal method, the heuristic and the rule-of-thumb compared to
the initial schedules of each school in more detail.

For each of the schools similar analyses can be presented as
described in Section 6.1. Here we discuss the differences we note
between the various schools. School 1 relatively has the lowest
score on the percentage of empty periods that can be eliminated
for the heuristic and optimal method. As shown in Table 4 school
1 distinguishes itself from the other schools with a similar amount
of teachers for more classes and 8 instead of 9 meetings per day.
Table 5 shows that at school 1 on average the lowest number of
classes is affected by the disturbances, resulting together with less
hours per day in fewer options for changes in the schedule. The
new schedules obtained for school 4 show that a large number of
empty periods can be eliminated compared to the initial schedule
resulting in a relatively large number of moves.

Tables 9, 13a and 13b show the results for each school in the
experiments with large disturbances. From the results in Table 9
we conclude that for schools 2-5 the heuristic outperforms the
rule-of-thumb with at least 93.7% of all cases with large distur-
bances. In case of school 1, the rule-of-thumb outperforms the
heuristic in 18% of the cases. To find an explanation for this differ-
ence we study the changes performed to the initial schedule in
more detail in Tables 13a and 13b. The results in those tables show
that for schools 1 and 3 the heuristic makes on average more shifts
over a day compared to the rule-of-thumb. However, the total
number of empty periods eliminated is on average respectively
4.2 and 3.5 higher for the heuristic than for the rule of thumb.
The overall performance will depend on the setting of the weights
for shifts over days in the objective as set by a school. Overall we
conclude that the heuristic also in the case of large disturbances
is able to solve for any school at least 94.5% of the empty periods.
For the rule-of-thumb the minimum obtained is 69.3%. For both
policies the lowest performance is obtained for school 3. School 3
only has 5 meetings per day resulting in fewer options for shifting
scheduled meetings.

The different outcomes show that, the optimal approach and
heuristic generate robust high quality results in an efficient way
independent of school characteristics as the number of classes,
number of teachers and number of meetings per day.

6.4. Insights for implementation

The results discussed in the previous sections demonstrate the
applicability of the heuristic and rule-of-thumb designed in vary-
ing practical contexts. Below we show the main insights derived
that can help schools in their decision making process of method
selection and method implementation. With regard to method
selection we have derived the following insights as based on the
differences in performances of the various methods:

e outcomes illustrate that the heuristic outperforms on average
the rule-of-thumb in most experiments. Still we recommend
schools to have a test phase to allow thorough testing of both
methods in the specific context of that school, before selecting
one of the two methods.

e Schools that aim for a simple rule that can be easily imple-
mented can safely select the rule-of-thumb to get satisfactory
results. A more complex method however results in better
outcomes.

e Schools searching for a more robust approach that generates
good results independent of the conditions might prefer the
heuristic method which shows a more stable performance over
the different instances.

e Schools that typically have a large number of classes affected by
a disturbance, resulting in more complex rescheduling, should
opt for a more complex and advanced method, such as the
heuristic.

Summarizing, the newly designed heuristic methods generate
efficiently effective results for adjusting schedules due to distur-
bances. The methods can be implemented, by using the pseu-
docodes in Appendix A, and run independently of the
scheduling software used. The penalties for empty periods and
shifts can be freely selected by school management. To this
end, we suggest school management to follow the next steps
in setting weights.

1. Obtain expert estimates on penalties from stakeholders in the
school.

2. Define several test instances based on disturbances that took
place in the past weeks and perform a sensitivity analysis with
the different weights obtained from step 1.

3. Have a discussion session to analyze and evaluate effects of
the weights and derive one conclusion that shows the
weights that reflect the opinion on the quality of schedules
as expressed by the mutual relation of penalties on shifts
and empty periods.

7. Conclusions

In this paper we have presented three different solution
approaches (rule-of-thumb, heuristic and optimal approach) to
allow users of already published school timetables to rapidly
make minor changes to respond to disturbances. Disturbances
are described in terms of teachers’ absence due to, for example,
illness or extra-curricular activities. Meetings of absent teachers
need to be removed from the initial schedule and result in
empty periods for classes. The main goal of rescheduling activi-
ties is to decrease the number of empty periods in the schedule
with a limited number of shifts. We derive a new optimal model,
a rule-of-thumb and a heuristic approach to avoid using complex
mathematical approaches for designing schedules from scratch
each time a disturbance occurs. Data collection has been per-
formed at five different high schools in The Netherlands enabling
testing of the methods designed over various schools with each
their own characteristics. The schools are categorized in terms of
number of classes, number of teachers and number of meetings
per day. Overall, it can be concluded that the heuristic elimi-
nates for respectively small and large disturbances 95.5% and
97.2% of the empty periods. The rule-of-thumb only eliminates
respectively 80.5% and 77.6% of the empty periods. The average
number of shifts required to eliminate a single empty period is
quite comparable with respectively 1.1 and 1.0 for the rule-of-
thumb and the heuristic. For small disturbances the heuristic
generates optimal solutions for 50% of the instances and on aver-
age solves 0.2 empty periods less than in the optimal situation.
Experiments with both small and large disturbances show that
the method designed generates robust solutions of high quality
for each type of school.
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Appendix A

Algorithm 1. Pseudocode for the simple rule-of-thumb

S: Initial schedule (after the removal of disturbed meetings), where S(c,d, p)
equals the teacher of the meeting of class c at period p of day d, and 0 if there
is no meeting;

E = {eq,...,es}: List of empty time periods, ordered by ascending time, where
Ve € E,c(e),p(e) and d(e) are the corresponding class, time period and day,
respectively;
fori=1to s do
found = 0; class = c(e;); period = p(e;); day = d(e;);
firstteacher = S(class, day, Gejqss qay); lastteacher = S(class, day, Aeiass day )
f found = 0 then
if flastteacher.day.period =1 then
S(class, day, period) = lastteacher; found = 1; update a,a, T;
end
end
f found = 0 then
if iﬁrst[eacher.day.period =1 then
| S(class, day, period) = firstteacher; found = 1; update a, @, T;
end
end
forj = adaxs day +1to Qelass day — 1do
teacher = S(class, day,j);
if found = 0 & teacher # 0 then
if Elast[eacheriday.j =1& Zteacher.dtu/.pen‘od =1 then
S(class, day, period) = teacher;S(class, day,j) = lastteacher;
found = 1; update a.a, T;
end
end
end
fOl‘j = Edasx.day +1to Aelass,day — 1do
teacher = S(class, day,j);
if found = 0 & teacher # 0 then
if Eﬁrsttm'mher.day‘j =1& Eteacher.duy.period =1 then
S(class, day, period) = teacher; S(class, day, j) = firstteacher;
found = 1; update a,a, T;
end
end
end
for j =day + 1 to |D| do
day, = j; teacher = S(class, day,, Aciass day, )
if found = 0 then
if Eteacher,daypen'ad =1 then
S(class, day, period) = teacher; found = 1; update a,a, T:
end
end
teacher = S(class, day,, Qcjass day, )
if found = 0 then
if fteacher.day,perind =1 then
S(class, day, period) = teacher; found = 1; update a,a, T;
end

end
end

end
Output: S

Algorithm 2. Pseudocode for the heuristic

183

fortcT,ceC,deD,pecPdo
Xiedp = thclp;
end
fori=1to |C| do
c=cj;
forteT,deD,pecPdo
if X,z4, =1 then
Etdp =1;
end
end
Solve ILP with C = {¢} and updated availability matrix T;
Output: X,z4,Vt € T,d €D, p € P;
forteT,deD,pecPdo
if X, z4, =1 then
f[dp = O,
end
end

end
Output: X
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Appendix B
Table 1
Initial schedule for two classes with each empty slots (in italic) at day 1.
Class 1
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 4 0 15 0 28 28 0
Day 2 0 43 20 44 21 9 0 0
Day 3 3 3 36 36 21 39 44 44
Day 4 20 20 39 20 44 44 21 0
Day 5 36 36 20 4 21 15 20 0
Class 2
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 0 4 0 4 36 36 0
Day 2 9 44 42 20 36 36 0 0
Day 3 29 29 21 42 44 21 39 9
Day 4 42 42 4 4 21 39 36 36
Day 5 4 15 4 42 15 21 0 0

Table 2
Availability of teachers (T = teacher is occupied/teaching a class not considered in this example; A = teacher is available to teach class 1 or 2; class 1 or class 2: teacher is assigned
to the classes under study in the example in the old schedule).

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Availability teacher 3
Day 1 A A T T T A T T
Day 2 T T T T A A T T
Day 3 Class 1 Class 1 T T A T T A
Day 4 A A A A A T T T
Day 5 T T T T T T T T
Availability teacher 4
Day 1 T Class 1 Class 2 A Class 2 T T A
Day 2 A T A T A A T T
Day 3 A A A T T T T A
Day 4 T T Class 2 Class 2 T T T T
Day 5 Class 2 T Class 2 Class 1 T T A A
Avadilability teacher 9
Day 1 T T T T T T T T
Day 2 Class 2 T A T T Class 1 T T
Day 3 T T T T T T T Class 2
Day 4 T T T T T T T T
Day 5 T T T T T T T T
Availability teacher 15
Day 1 T T T Class 1 T T A A
Day 2 T T A T T A T T
Day 3 T T T T T T T T
Day 4 T T T T T T T T
Day 5 T Class 2 T T Class 2 Class 1 T T
Availability teacher 22
Day 1 T T T T T T T T
Day 2 T A Class 1 Class 2 A T T T
Day 3 A A T T T T T T
Day 4 Class 1 Class A A Class 1 T T T T
Day 5 T T Class 1 T T T Class 1 A
Availability teacher 21
Day 1 T T T T T T T T
Day 2 T T T A Class 1 A T T
Day 3 T A Class 2 A Class 1 Class 2 T A
Day 4 T T A T Class 2 A Class 1 T
Day 5 T T T T Class 1 Class 2 T A
Availability teacher 28
Day 1 T T T A A Class 1 Class 1 A
Day 2 T T A T T T T T
Day 3 A T T A T T T A
Day 4 A A T T T T T T
Day 5 T T T T T T T A
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Table 2 (continued)
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Availability teacher 29
Day 1 T T T T T A A A
Day 2 T T A A T T T T
Day 3 Class 2 Class 2 A T T T T A
Day 4 T T T T T T T T
Day 5 T T T T T A A A
Availability teacher 36
Day 1 A A A T T Class 2 Class 2 A
Day 2 T A T T Class 2 Class 2 T T
Day 3 A A Class 1 Class 1 T T T A
Day 4 T T A A T T Class 2 Class 2
Day 5 Class 1 Class 1 T T T A A A
Availability teacher 39
Day 1 T T T T T T T T
Day 2 T T T T A T T T
Day 3 T T A T T Class 1 Class 2 T
Day 4 A T Class 1 A T Class 2 T A
Day 5 T T T T T T T T
Availability teacher 42
Day 1 A T T T A A A A
Day 2 A T Class 2 T A A T T
Day 3 A A A Class 2 T T T T
Day 4 Class 2 Class 2 T A A A T A
Day 5 A T A Class 2 T T T A
Availability teacher 43
Day 1 T T T T T T T T
Day 2 A Class 1 T T T T T T
Day 3 T T T T T T T T
Day 4 T T T T T T T T
Day 5 T T T T T T T T
Availability teacher 44
Day 1 T T T T T T T T
Day 2 T Class 2 A Class 1 A T T T
Day 3 A A T A Class 2 A Class 1 Class 1
Day 4 T T T T Class 1 Class 1 A A
Day 5 T T T T T T T T
Table 3a
Solutions for rule of thumb.
Class 1
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 4 36 15 28 28 0 0
Day 2 0 43 20 44 21 9 0 0
Day 3 3 3 36 36 21 39 44 44
Day 4 20 20 39 20 44 44 21 0
Day 5 0 36 20 4 21 15 20 0
Class 2
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 0 0 4 4 36 36 0
Day 2 9 44 42 20 36 36 0 0
Day 3 29 29 21 42 44 21 39 9
Day 4 42 42 4 4 21 39 36 36
Day 5 4 15 4 42 15 21 0 0
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Table 3b
Solutions for heuristic.
Class 1
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 0 0 0 28 28 15 4
Day 2 0 43 20 44 21 9 0 0
Day 3 3 3 36 36 21 39 44 44
Day 4 20 20 39 20 44 44 21 0
Day 5 36 36 20 4 21 15 20 0
Class 2
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 0 0 4 4 36 36 0
Day 2 9 44 42 20 36 36 0 0
Day 3 29 29 21 42 44 21 39 9
Day 4 42 42 4 4 21 39 36 36
Day 5 4 15 4 42 15 21 0 0
Table 3¢
Solutions for optimal procedure.
Class 1
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 0 4 15 28 28 0 0
Day 2 0 43 20 44 21 9 0 0
Day 3 3 3 36 36 21 39 44 44
Day 4 20 20 39 20 44 44 21 0
Day 5 36 36 20 4 21 15 20 0
Class 2
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Day 1 0 0 0 4 4 36 36 0
Day 2 9 44 42 20 36 36 0 0
Day 3 29 29 21 42 44 21 39 9
Day 4 42 42 4 4 21 39 36 36
Day 5 4 15 4 42 15 21 0 0
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