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a b s t r a c t

Algorithms based on Pythagorean hodographs (PH) in the Euclidean plane and in
Minkowski space share common goals, the main one being rationality of offsets of planar
domains. However, only separate interpolation techniques based on these curves can be
found in the literature. It was recently revealed that rational PH curves in the Euclidean
plane and in Minkowski space are very closely related. In this paper, we continue the
discussion of the interplay between spatial MPH curves and their associated planar PH
curves from the point of view of Hermite interpolation. On the basis of this approach we
design a new, simple interpolation algorithm. The main advantage of the unifying method
presented lies in the fact that it uses, after only some simple additional computations, an
arbitrary algorithm for interpolation using planar PH curves also for interpolation using
spatial MPH curves. We present the functionality of our method for G1 Hermite data;
however, one could also obtain higher order algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Curve and surface offsets are geometric objects that are frequently used in various technical applications, e.g. numerically
controlled machining and computer-aided manufacturing. Due to their wide applicability, studying classical (and also
general) offsets of hypersurfaces has recently become an active and popular research area. Many interesting problems
related to this topic have arisen, including those of the analysis of geometric and algebraic properties of offsets, determining
the number and type of offset components and constructing rational parametrisations of offsets; cf. [1–7].

Describing a tool path in NURBS form is currently a universal standard in technical applications. However, free-form
NURBS do not possess rational offsets in general and thus techniques of approximation for offsets must be used, especially
in connection with CAD/CAM systems. Since offset approximation and trimming is usually performed at the expense of
great computational effort, it is worthwhile to investigate suitable exact techniques and to study curves and surfaces with
exact rational offsets. This approach led to the definition of Pythagorean hodograph (PH) curves in [8]. These special curves
can be used for formulating efficient approximation and interpolation techniques for free-form shapes. Comparingmethods
based on PH curves to the classical approximation, not the offset but the base curve is approximated. This guarantees that
all corresponding offset curves are rational and mutually equidistant, and only one approximation step is required even if
more than one offset is needed.

Later, the concept of polynomial planar PH curveswas generalized to space PH curves [9–13], to rational PH curves [14,15]
and to the so called Pythagorean normal vector (PN) surfaces [14,1,16,17]. For a survey of shapes with Pythagorean normals
(i.e., possessing rational offsets), see [18]. However, even though these shapes admit rational offsets, the usually most
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demanding part of the construction process is trimming. In practice, not the whole offset but only some of its parts are
used.

As observed in [19], using themedial axis transform (MAT) representationmakes the trimming procedure of inner offsets
considerably simpler – only those parts of the MAT where the corresponding circle radius is less than the offset distance
have to be trimmed. This gives a strong justification for studying approximation and interpolation techniques based on the so
calledMinkowski Pythagorean hodograph (MPH) curves. Polynomial MPH curves were defined in [20] and later generalized
to rational MPH curves in [21]. Indeed, if a part of the medial axis transform of a planar domain is an MPH curve, then
the corresponding domain boundary segments and all their offsets possess rational parametrisations. Interpolation and
approximation methods based on MPH curves were thoroughly investigated in e.g. [22–27].

Although algorithms based on Pythagorean hodographs in the Euclidean plane and in Minkowski space share common
goals, the main one being rationality of offsets of planar domains, there exist many efficient but separate techniques for
Hermite interpolation based on PH and MPH curves. This shortcoming motivates the search for a unifying computational
approach. The main advantage of the method presented in this paper lies in the fact that it directly uses, after only some
simple completing operations, an arbitrary algorithm for interpolation using planar PH curves also for interpolation using
spatial MPH curves. All details of our approach are discussed in the following sections. At this point we only reveal that this
technique is based on the close interplay between spatial MPH curves and associated planar PH curves studied in [21].

The remainder of this paper is organized as follows. Section 2 recalls some basic facts concerning Euclidean and
Minkowski Pythagorean hodograph curves, medial axis transforms and envelopes of one-parameter families of circles.
Section 3 is devoted to a novel interpolation method with MPH curves based on planar PH splines. In this section, we
formulate and analyse an algorithm for G1 Hermite interpolation via MPH curves. The algorithm is then demonstrated on
several examples in Section 4. Finally, we conclude the paper in Section 5.

2. Preliminaries

Webriefly review fundamentals of rational curveswith Pythagoreanhodographs in the Euclideanplane and inMinkowski
space and recall their close interplay. The reader is referred to [18,21] for more details.

2.1. Rational curves with rational offsets in the Euclidean plane

Consider a C1 parametric curve x(t) = (x1(t), x2(t))⊤. The δ-offset of x(t) is the set of all points in R2 that lie at a distance
δ from x(t). The two branches of the offset are given by

xδ(t) = x(t)± δn(t), n(t) =
x′(t)⊥

‖x′(t)‖
, (1)

where ‖ · ‖ denotes the usual Euclidean norm and x′(t)⊥ = (x′

2(t),−x′

1(t))
⊤ is the rotation of x′(t) about the origin by the

angle −
π
2 .

A study of offset rationality led to the class of planar Pythagorean hodograph (PH) curves (i.e., curves with rational offsets)
introduced in [8]. Rational PH curves are defined as rational curves x(t) = (x1(t), x2(t))⊤ fulfilling the (Euclidean) PH
condition

x′(t) · x′(t) = x′

1(t)
2
+ x′

2(t)
2

= σ(t)2, (2)
where σ(t) ∈ R(t) is a rational function and ‘·’ denotes the standard Euclidean inner product. In order to avoid working
with piecewise representations, we consider only curves for which σ(t) > 0 in the interval of interest for the remainder of
the paper. Then, σ(t)will be called the speed of x(t).

A parametric representation of all planar rational PH curves can be obtained from their dual representation

(2kl : k2 − l2 : −g) (3)
in the form (cf. [14,15])

x1 =
2(ll′ − kk′)g + (k2 − l2)g ′

2(k2 + l2)(kl′ − k′l)
, x2 =

(k′l + kl′)g − klg ′

(k2 + l2)(kl′ − k′l)
, (4)

where k(t), l(t) are relatively prime polynomials and g(t) = e(t)/f (t) is a rational function.
Pythagorean hodograph curves were originally introduced in [8] as planar polynomial curves. These can be readily

obtained from the general formula (4) by setting

e(t) = 2kl
∫
(k2 − l2)m dt − (k2 − l2)

∫
2klm dt, f (t) = constant, (5)

wherem(t) is an arbitrary polynomial; see [15]. Consequently, we arrive at

x′

1 = m(k2 − l2), x′

2 = 2mkl, σ = m(k2 + l2), (6)

which describes all polynomial solutions of (2), i.e., all polynomial PH curves in R2.
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Fig. 1. A domainΩ and its maximal inscribed discs, MA(Ω) and MAT(Ω).

2.2. Curves with Pythagorean hodographs in Minkowski space

Consider a planar domainΩ ⊂ R2 and the family of all inscribed discs inΩ partially ordered with respect to inclusion;
see Fig. 1. An inscribed disc is called maximal if it is not contained in any other inscribed disc. Then themedial axisMA(Ω) is
the locus of all centres (y1, y2)⊤ of maximal inscribed discs and themedial axis transformMAT(Ω) is obtained by appending
the corresponding disc radii y3 to the medial axis, i.e., MAT consists of points y = (y1, y2, y3)⊤. The projection

R2,1
→ R2

: y = (y1, y2, y3)⊤ →
▽
y = (y1, y2)⊤ (7)

naturally relates MA to MAT (read
▽
y as ‘y down’). The notion of MAT can also be extended to other shapes. For example for

two curve segments (see Fig. 1), we replace maximal discs with discs touching both segments. We will use the notions of
MA and MAT in this more general sense. Moreover, in order to avoid a discussion on topology, we consider only segments
of MAT whose points correspond to maximal circles having precisely two contact points. For a complete treatment of the
MAT topology the reader is referred to [28,19].

For a C1 segment y(t) = (y1(t), y2(t), y3(t))⊤ of MAT(Ω) we can compute the corresponding boundary of Ω from the
envelope formula (cf. [19,20]) in the form

x±(t) =


y1
y2


−

y3
y′

1
2
+ y′

2
2

[
y′

3


y′

1
y′

2


±


y′

1
2
+ y′

2
2
− y′

3
2


−y′

2
y′

1

]
. (8)

A study of rationality of envelopes (8) led to the class of Minkowski Pythagorean hodograph (MPH) curves introduced
in [20]. MPH curves are defined as rational curves y(t) = (y1(t), y2(t), y3(t))⊤ in three-dimensional space fulfilling the
condition

y′

1
2
(t)+ y′

2
2
(t)− y′

3
2
(t) = ϱ2(t), (9)

where ϱ(t) ∈ R(t). The PH condition (2) is now fulfilled with respect to the indefiniteMinkowski inner product

⟨u, v⟩ = u1v1 + u2v2 − u3v3, (10)

whichmakesMinkowski space R2,1 the natural ambient space forMPH curves. Again, as in the case of PH curves, we, without
loss of generality, restrict ourselves to ϱ(t) > 0 only. Then, ϱ(t)will be called theMinkowski speed of y(t).

The squared norm of a vector u ∈ R2,1, defined by ⟨u,u⟩, can be positive, negative or zero. Hence, we distinguish three
kinds of vectors: space-like if ⟨u,u⟩ > 0, time-like if ⟨u,u⟩ < 0, and light-like (or isotropic) if ⟨u,u⟩ = 0. Due to the form of
(9), the tangent vector y′(t) of an MPH curve can be space-like or light-like only.

As discussed in [19,20], if MAT(Ω) is an MPH curve y, then the boundary curves x± ofΩ associated with y and all offsets
of the boundary are (piecewise) rational; cf. (8). We rewrite (8) in the form

x± =
▽
y −y3n±, (11)

where

n± =
1

ϱ2 + y′2
3


y′

3y
′

1 ∓ ϱy′

2
y′

3y
′

2 ± ϱy′

1


=

1
ϱ2 + y′2

3
(y′

3

▽
y

′

∓ ϱ
▽
y

′⊥

). (12)

It can be shown by a direct computation that n± is a unit vector perpendicular to x±. Moreover, n± is rational if and only
if ϱ is rational. Hence, for any MPH curve y ⊂ R2,1, the associated curves x± ⊂ R2 possess a normal vector field rationally
parametrising the unit circle, i.e., x± are rational PH curves.

This observation is closely related to the result of [21], which states that any rational MPH curve y in R2,1 can be
constructed starting from an (associated) planar rational PH curve x in R2 and a rational function r in the form

y(t) = (x1 + rn1, x2 + rn2, r)⊤ =
△
x (t)+ r(t)ñ(t), (13)
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with
△
x= (x1, x2, 0)⊤ (read

△
x as ‘x up’) and ñ = (n1, n2, 1)⊤, where n = (n1, n2)

⊤
= x′⊥/σ . We remark that x will play the

role of x+ in what follows. Substituting (4) into (13), one can obtain an expression for all rational MPH curves; see formula
(30) in [21].

Analogously to the planar Euclidean case, polynomial MPH curves form a proper subset of the rational ones and are given
by

y′

1 = km − ln, y′

2 = −kn − lm, y′

3 = −kn + lm, ϱ = km + ln. (14)

This is an alternative to the original formula for polynomial MPH curves presented in [20].

2.3. Validity and a local canonical form of medial axis transforms

Whenworkingwith themedial axis transform as a shape representation, one has to guarantee that the associated domain
boundary obtained by the envelope formula (8) is a valid boundary. Consider a C1 curve y ∈ R2,1. This curve is the MAT of
some planar domain only if the following constraints are satisfied.

The boundary curves x± (cf. (8)) are real provided that

⟨y′, y′
⟩ ≥ 0, (15)

which becomes the first constraint on y. In other words, the tangent vector of y must not be time-like.
In order to eliminate singularities and also points with reversed boundary orientation, we require that

x′
·

▽
y

′

> 0. (16)

A direct computation shows that (16) is equivalent to

1 + y3κ > 0, (17)

where κ(t) = (x′

1x
′′

2 − x′′

1x
′

2)/σ
3 is the signed Euclidean curvature of x(t). This condition is automatically satisfied for points

with non-negative curvature. On the other hand, at points where κ < 0, (17) is equivalent to y3 < ρ, where ρ is the radius
of the osculating circle of x. This natural condition becomes the second validity constraint.

Consequently, a curve y ∈ R2,1 considered as an MAT will be called a validMAT provided that it satisfies constraints (15)
and (17). More details about the validity of MATs can be found e.g. in [29–31].Wewill use the above constraints in Section 3,
where an algorithm for Hermite interpolation with MPH curves using associated PH curves is designed and analysed.

For future use we recall some basic facts from differential geometry of curves in R2,1. Let y(s) = (y1(s), y2(s), y3(s))⊤ be
a sufficiently smooth space-like curve with no Minkowski inflections parametrised by the arc length and let T = y′(s) be
its unit (space-like) tangent vector, i.e., ⟨T, T⟩ = 1 and ⟨T′, T′

⟩ ≠ 0. The curve y(s) can be considered as a (valid) MAT of a
planar domain. Then the Frenet formulae take the form

T′
= ~N,

N′
= − ⟨N,N⟩ ~T + τB,

B′
= τN.

(18)

The vectors N and B are the unit normal and binormal vectors, respectively, and ~ > 0 and τ are the Minkowski curvature
and torsion of y(s). Using (18) allows us to compute the derivatives of y(s) at s = 0 as

y′(0) = T0,
y′′(0) = T′(0) = ~0N0,

y′′′(0)= ~1N0 + ~0N′(0) = ~1N0 ∓ (~2
0T0 + ~0τ0B0),

(19)

etc., where T0 = T(0),N0 = N(0), B0 = B(0), ~0 = ~(0), ~1 = ~ ′(0), τ0 = τ(0), etc. The choice of the sign in y′′′(0) (and
all further derivatives) depends on ⟨N0,N0⟩ (cf. (18)), i.e., the type of the normal vector N0. Finally, with the help of (19) we
generate the local canonical form of y(s)

y(s) = y(0)+ sy′(0)+
s2

2
y′′(0)+

s3

6
y′′′(0)+ · · · . (20)

More details, especially on Minkowski inflections, can be found in [24].

2.4. Polynomial domain boundaries and the isotropic surface

Let us now study the relation between rational domain boundaries associated with an MPH curve describing the medial

axis transform of a planar domain. Since the points x+ and x− are symmetric along the tangent of the medial axis
▽
y (see

Fig. 3), we obtain that

x− = x+ − 2

▽
y

′⊥

· (x+−
▽
y)

y′

1
2
+ y′

2
2

▽
y

′⊥

. (21)
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Fig. 2. Isotropic surface Γ± ⊂ R2,1 corresponding to x± ⊂ R2 and y ⊂ R2,1 .

In particular, for a polynomial MPH curve given by (14) we arrive at the special envelope formula (cf. (8))

x+ =
▽
y +

y3
k2 + l2


2kl

k2 − l2


, x− =

▽
y −

y3
m2 + n2


2mn

m2
− n2


. (22)

Now, let y be polynomial. The above relations show that both x+ and x− are still rational. Also, if e.g. x+ is polynomial, then
x− is in general rational. Therefore, the most prominent role is played by polynomial MPH curves given by a polynomial
(associated) PH curve x(t) ⊂ R2 and a polynomial r(t). Recalling (6) and (13), the term σ(t) has to divide the polynomial
r(t) in this case, i.e., there exists a polynomial p(t) such that r(t) = p(t)σ (t). Summing up, we obtain

y(t) = (x1(t)+ p(t)x′

2(t), x2(t)− p(t)x′

1(t), p(t)σ (t))
⊤. (23)

Finally, let x(t) be a polynomial PH curve of degree d1 and r(t) be a polynomial of degree d2. Then the rational degree of y(t)
amounts to at most [d1 − 1 + max(d1, d2), d1 − 1]. In particular, for (23) we obtain

deg(y) = d1 + d3 − 1, (24)

where d3 is the degree of p(t).
For later usewe recall the notion of isotropic surfaces. Starting from a curve x(t) ⊂ R2, the corresponding isotropic surface

Γ ⊂ R2,1 [32–34] is given by the equation

Γ : y(t, s) =
△
x (t)+ sñ(t). (25)

It holds that

⟨y(t, s)−
△
x, y(t, s)−

△
x⟩ = s2⟨ñ, ñ⟩ = s2(‖n‖

2
− 1) = 0, (26)

and thus Γ is a ruled (and in fact developable) surface consisting of straight lines through x given by light-like vectors
y(t, s)−

△
x (t).

Next, if x(t) is a PH curve, Γ is a (piecewise) rational surface. Hence, all MPH curves y(t) given by (13) are rational curves
on the rational surface (25) obtained by setting s = r(t) ∈ R(t). Starting from PH curves x+(t) and x−(t), the corresponding
isotropic surfaces Γ+ and Γ− intersect in the associated MPH curve y(t); cf. Fig. 2. Clearly, planar sections of Γ± parallel to
R2 lead to δ-offsets of the associated domain boundaries.

3. Hermite interpolation using MPH curves using associated PH curves

The two-point geometric Hermite interpolation problem consists in finding a curve that passes through two given points
and matches (unit) tangent vectors at these points. Motivated by (23), we introduce a straightforward and very simple
algorithm for G1 Hermite MPH interpolation of given data D = {y0, y1; t0, t1}.

More precisely, a polynomial MPH curve y(t) is to interpolate the end points

y(i) = yi = (yi1, yi2, yi3)⊤, i ∈ {0, 1}, (27)

which satisfy that y1 − y0 is not time-like, and the end tangent vectors

y′(i) = λiti = λi(ti1, ti2, ti3)⊤, i ∈ {0, 1}. (28)

Using the results from Section 2.4, we need to find a polynomial PH curve x(t) and a polynomial p(t) such that (23) fulfils
the interpolation conditions, i.e., y(t) is required to match D = {y0, y1; t0, t1}. A detailed description of the particular steps
of our interpolation technique follows.
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Fig. 3. Spatial/planar G1 Hermite data for interpolation using MPH/PH curves (note that φ is a hyperbolic angle).

3.1. Step 1: Mapping given spatial data to the plane

The fundamental relation betweenΩ andMAT(Ω) consists in the fact that each contact disc ofΩ corresponds to a point
in R2,1. Nevertheless, we can easily obtain higher order relations.

Consider a point y on a curve in R2,1 with the associated space-like unit tangent vector (with respect to the Minkowski
metric)

t = (cosψ coshφ, sinψ coshφ, sinhφ)⊤, whereφ ∈ R, ψ ∈ [0, 2π). (29)

We take the corresponding contact disc centred at
▽
y(t) = (y1, y2)⊤ ∈ R2 with radius y3 and the associated contact points

x+ and x−. The orthogonal projection
▽
t = (cosψ coshφ, sinψ coshφ)⊤ of the tangent vector t bisects the angle ̸ (x−

▽
y x+)

in the direction of the domain. We denote the half-angle obtained by θ ∈ (0, π); see Fig. 3.
It can be checked that − cos θ is the rate at which the radius increases and thus the curve representing an MAT in R2,1

has the slope

tanhφ = − cos θ (30)

at the point y; cf. [28,19] for more details. Next, defining

α+ = ψ + θ, α− = ψ − θ (31)

we arrive at the expressions for contact points

x+ =
▽
y + y3(cosα+, sinα+)

⊤, x− =
▽
y + y3(cosα−, sinα−)

⊤
; (32)

cf. (11) for general MATs and (22) for polynomial MPH curves. The associated unit tangent vectors of the boundary ofΩ at
the contact points x+, x− are

τ+ = (sinα+,− cosα+)
⊤, τ− = (− sinα−, cosα−)

⊤. (33)

To sum up, formulae (32) and (33) show how to obtain the G1 planar data D = {x0, x1; τ0, τ1} from D for polynomial PH
interpolation.

Since not all curves describe a feasible MAT (see Section 2.3), we have to study the validity condition (16) with respect
to the given and transformed data D and D . For τ+ (which plays the role of τ in what follows) we arrive at

τ+·
▽
t = coshφ sin θ = coshφ


1 − tanh2 φ = coshφ

1
coshφ

= 1 > 0, (34)

i.e., the condition is generally satisfied for all situations considered.
Finally, we summarize some important expressions relating the above introduced quantities. It holds that

⟨ñ, ñ⟩ = 0, ⟨ñ, t⟩ = 0, ⟨ñ,
△
τ⟩ = 0, (35)

where ñ = (n1, n2, 1)⊤ is the direction vector of an isotropic line on the surfaceΓ (t, s). These relations can be easily derived
from the properties of the isotropic surface Γ (t, s); cf. Section 2.4. The vector ñ can be identified with (normalized) y−

△
x

provided that it does not vanish.



J. Kosinka, M. Lávička / Journal of Computational and Applied Mathematics 235 (2011) 3413–3424 3419

3.2. Step 2: Hermite interpolation using a planar PH curve

Without loss of generality we may choose only one branch of the envelope corresponding to the MPH curve y(t). We
consider x(t) = x+(t) as mentioned earlier. Following Step 1, x(t), a planar polynomial PH curve, is to interpolate D .

Our algorithm is independent from a particular procedure for Hermite interpolation using planar PH curves. Obviously,
this step can be easily replaced by a better or new technique. Nevertheless, we need some well-known testing procedure to
present the functionality of our method.

For the sake of illustration, we have chosen a variant [35] of the algorithm introduced in [36], which uses simple (i.e.,
not self-intersecting) arcs of the Tschirnhausen cubic as interpolants. The Tschirnhausen cubic is the simplest non-trivial
example of a planar polynomial PH curve with the standard parametrisation x(t) = (t3/3 − t, t2)⊤ obtained by setting
k = t, l = 1,m = 1 in (6). The reader interested in interpolation techniques using the Tschirnhausen cubic can find more
details in [24,37,38]. The advantage is the low degree of the interpolating PH curve and hence also of the correspondingMPH
interpolant.

We also remark that if the cubic PH interpolant for D does not exist, we have two options. First, we can subdivide the
spatial curve that the data D were originally sampled from. The results of Section 4 then guarantee that after a few steps
of subdivision we can always match a cubic PH arc to the associated planar data. Second, we match the data D with a PH
quintic. Even though this raises the degree of the resulting MPH interpolant, it also shows the flexibility of our method.

3.3. Step 3: From a PH to an MPH interpolant

Now, having the polynomial PH curve x(t) interpolating D at hand (e.g. an arc of the Tschirnhausen cubic), we turn our
attention to finding a suitable polynomial p(t) such that y(t) interpolates the given spatial data. Recalling (23), we obtain

y(t) = (x1 + px′

2, x2 − px′

1, pσ)
⊤, (36)

y′(t) = (x′

1 + p′x′

2 + px′′

2, x
′

2 − p′x′

1 − px′′

1, p
′σ + pσ ′)⊤. (37)

From (36), we immediately get

pi = p(i) =
yi3
σ(i)

, i ∈ {0, 1}. (38)

Defining p′

i = p′(i), (37) gives the following interpolation conditions:

x′

1(i)+ p′

ix
′

2(i)+ pix′′

2(i)= λiti1,
x′

2(i)− p′

ix
′

1(i)− pix′′

1(i)= λiti2,
p′

iσ(i)+ piσ ′(i)= λiti3.
(39)

We have a system of three linear equations for two unknowns p′

i and λi. However, considering ⟨ñ, t⟩ = 0 (cf. (35)), we arrive
at the following dependency condition:

n1(x′

1 + p′x′

2 + px′′

2)+ n2(x′

2 − p′x′

1 − px′′

1)− (p′σ + pσ ′) = 0, (40)

i.e., it is enough to consider only two equations in (39). For the sake of symmetry, we take the first two. This system of two
linear equations for λi and p′

i can be solved using Cramer’s rule. For λi we obtain

λi = σ(i)(1 + yi3)κ(i), (41)

since the determinant of the system is

σ(i)(τ i·
▽
t (i)) = σ(i); (42)

cf. (34). Now, taking into account the validity constraint (17) (cf. Section 2.3), we have guaranteed λi > 0 and thus the
orientation of D is preserved. It only remains to compute

p′

i =
▽
t (i) · (pix′′(i)− x′⊥(i)). (43)

Finally the polynomial p(t) is determined by p0, p1, p′

0, p
′

1 and thus we can take p(t) e.g. as the Ferguson cubic in the
form

p(t) = (2t3 − 3t2 + 1)p0 + (−2t3 + 3t2)p1 + (t3 − 2t2 + t)p′

0 + (t3 − t2)p′

1. (44)

For a Tschirnhausen cubic interpolant and p(t) being of degree 3, the resulting interpolating MPH curve y(t) is a quintic;
see (24).
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3.4. Summary

In this subsection,we summarize themain steps of the algorithm for computing anMPHcurvematching givenG1 Hermite
data D:

Algorithm 1 Compute an MPH interpolant for the given G1 Hermite data
INPUT: Spatial G1 Hermite data D = {y0, y1; t0, t1}.

1. Compute the G1 planar data D = {x0, x1; τ0, τ1} corresponding to D by using formulae (32) and (33).
2. Interpolate among D with a planar polynomial PH curve x(t) of degree d1 using a suitable interpolation algorithm; see

e.g. the references in Section 3.2.
3. Find a polynomial p(t) of degree d3 such that y(t) given by (23) interpolates among D (e.g. using (44)).

OUTPUT: A polynomial MPH curve y(t) of degree d1 + d3 − 1 matching the given data D .

The main advantage of the algorithm presented, compared to other methods [24–26], is its simplicity and flexibility. An
arbitrary technique for interpolation using planar PH curves can be usedwith only a few additional simple computations also
for interpolation using spatial MPH curves. Ourmethod is also suitable for computing approximations of domain boundaries
and their trimmed offsets. This fact is shown in Section 5. Furthermore, our algorithm has another useful advantage—not
only the MAT but also one of the boundary curves can be constructed as a polynomial curve.

All basic ideas of the algorithm are applicable also for interpolation using spatial rational MPH curves based on
interpolation techniques using planar rational PH curves. On the other hand, rational PH techniques have not been
sufficiently developed yet and one can find only a few G1 Hermite interpolation algorithms based on rational PH curves;
see e.g. [39–42]. Nonetheless, when a new efficient rational PH interpolation method is developed, the steps of Algorithm 1
can be simply adapted to accommodate the rational case as well.

4. Asymptotic analysis

In this section we study the asymptotic behaviour of the algorithm designed above. We apply, with slight modifications,
the approach used in [24], where the existence and behaviour of interpolants for given regular and singular asymptotic data
(i.e., when N0 is light-like) were thoroughly analysed. For the sake of brevity, we provide asymptotic analysis and results
for regular data only and omit most of its technical parts. The interested reader is referred to the results in Section 5 of [24],
which can be easily adapted to our method.

We start by recalling the local canonical form of y(s) (cf. (20)):

y(s) = y(0)+ sy′(0)+
s2

2
y′′(0)+

s3

6
y′′′(0)+ · · · . (45)

Now, for a given step size h, we generate G1 Hermite data sampled at s0 = 0 and s1 = h and apply our interpolation
algorithm (see Section 3) to the pairs of adjacent points and tangents. We analyse the existence and behaviour of the MPH
interpolant for decreasing step size h → 0. Without loss of generality, we choose y(0) = (0, 0, z)⊤, T0 = (1, 0, 0)⊤, and
{N0, B0} = {(0, 1, 0)⊤, (0, 0, 1)⊤}, depending on the type of N0; cf. (18). Moreover, we assume that y(s) represents a valid
MAT (see Section 2.3).

If N0 is space-like, then this remains valid for s ∈ [0, h], provided that h is sufficiently small. We remark that N0 being
time-like leads to very similar results with only a few sign changes and that inflections (i.e., the case when N0 is light-like)
have been excluded.

The Taylor expansion of y(s) is

y(s) =


s −

1
6
~2
0 s

3
−

1
8
~0~1s4 + · · ·

1
2
~0s2 +

1
6
~1s3 +

1
24
(~2 + ~0(τ

2
0 − ~2

0 ))s
4
+ · · ·

z +
1
6
~0τ0s3 +

1
24
(2~1τ0 + ~0τ0)s4 + · · ·

 . (46)

Using a suitable computer algebra tool we generate Taylor expansions with respect to h of all quantities occurring in our
algorithm. Due to space limitations and the complexity of the expressions, we present only the leading terms of several
crucial quantities.

Following the three steps of our algorithm, we start by sampling the data D , i.e., positions and Minkowski unit tangents
of y(s) for s0 = 0 and s1 = h. In Step 1 we find the expansions of the planar data D for PH interpolation; see Section 3.1.
This yields that the MAT validity condition (16) reads

Q = z~0 − 1 < 0. (47)
Therefore, from now on we assume that Q < 0.
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Table 1
Numerical results obtained by uniform subdivision in Example 1.

Segments Error Ratio Segments Error Ratio Segments Error Ratio

1 9.435 · 10−2 – 8 8.937 · 10−5 13.08 64 2.715 · 10−8 15.45
2 1.301 · 10−2 7.25 16 6.286 · 10−6 14.22 128 1.727 · 10−9 15.72
4 1.169 · 10−3 11.13 32 4.195 · 10−7 14.98 256 1.089 · 10−10 15.86

In Step 2 we follow the approach of [35], first discussed in [36], and check that for D there exists a unique simple
interpolating PH cubic. Indeed, one can verify that the existence conditions are equivalent to Q < 0 provided that h is
sufficiently small. For the sake of brevity we omit the details of this purely technical step.

Moving on to Step 3, we verify that the MPH interpolant exists as well. To this end we compute the expansions of the
quantities σi (see (42)) and λi:

σ0 = −Qh + · · · , σ1 = −Qh + · · · , λ0 = h + · · · , λ1 = h + · · · . (48)

Thus, under our assumptions, the MPH interpolant exists and preserves the orientation of the end tangent vectors of D for
sufficiently small h.

Finally, in order to determine the approximation order of our construction we employ the reparametrisation

s(u) = u +
hu(u − 1)

4~0Q

[
(~0u0 + ~1)(1 + 2Q )+

h(L0 + L1u)
24~0Q

]
, (49)

where L0 and L1 are polynomials in ~0, ~1, τ0 and Q of degree 7 with 15 and 11 terms, respectively. We compare the
expansions of the reparametrisedMPH interpolant and the given curve y. Since the expansions match up to h3, we conclude
that the (geometric) approximation order of our algorithm is equal to 4.

Wepoint out that the approximation order of ourmethod is the same as for the standard interpolation techniques studied
in [23,25]. Compared to the G1 scheme, our new algorithm has a very simple existence analysis; cf. Step 3. In fact, an MPH
interpolant for D exists whenever the associated planar PH interpolant for D exists and planar scenarios are always much
easier to analyse and understand than their spatial analogues. Moreover, our numerous numerical experiments suggest that
the approximation order stays 4 at Minkowski inflections and does not drop to 2 as is the case in [23].

Even though we achieve only G1 interpolation compared to the C1 scheme designed in [25] (with MPH curves of degree
5 as well), our new approach is very simple (it does not require the Clifford algebra formalism) and flexible (as discussed in
Step 2), and has other advantages aswell. Indeed, not only theMAT but also one of the boundary curves can be constructed as
polynomial curves. Finally, ourmethod can be easily adapted to rational PH/MPH curves andhas potential for generalizations
to higher order interpolation schemes.

5. Examples

In this section we present numerical results and examples obtained by applying our MPH interpolation scheme.

5.1. Example 1

The interpolation algorithm allows us to approximate any space-like analytic curve c(t) by a quintic MPH spline. Let
the parameter domain of c(t) be [0, 1]. Using binary subdivision, we split the interval into 2n segments. For each segment
we construct the MPH interpolant. If the error is not sufficiently small, then we continue subdividing. Using an adaptive
subdivision could reduce the number of interpolants. Our asymptotic analysis (see Section 4) shows that the error converges
to 0 as O(16−n).

We demonstrate the order of convergence with the following example; see Fig. 4. Consider the segment of the C∞ curve

c(t) = (0.7e0.8t , 1.2 − 0.3 cos t, 0.1 + 0.25t2)⊤; t ∈ [0, 1]. (50)

We remark that c(t) satisfies the validity constraints discussed in Section 2.3.
The approximation error (sample-based estimation after the reparametrisation (49)) and its improvement on the first

interval span in each step of subdivision are reported in Table 1. The ratios of adjacent errors tend to 16, as predicted from
the approximation order.

5.2. Example 2

In this example we apply the G1 MPH approximation algorithm to the medial axis transform approximation of a planar
region bounded by two curve segments; see Fig. 5. These segments are polynomial quartic arcs q(t), r(t) given by their
Bézier control points

Q0 = (−1.7, 0.8)⊤, Q1 = (−1, 0)⊤, Q2 = (−0.2,−0.5)⊤, Q3 = (0, 0.3)⊤, Q4 = (0, 1)⊤,

R0 = (−2, 0.4)⊤, R1 = (−1.7,−0.5)⊤, R2 = (0,−0.8)⊤, R3 = (1, 0)⊤, R4 = (1.1, 1)⊤.
(51)
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Fig. 4. Conversion of an analytic curve (black) into anMPH spline in Example 1. TheMPH interpolants are depicted in red, the associated PH spline in blue.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Three steps of subdivision applied to domain boundary approximation in Example 2. Associated domain boundary approximations are depicted in
red. Notice that the original boundary (black) is almost indistinguishable from its approximation after only two subdivision steps. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

First, we sample points on q(t). Then we compute the corresponding points on r(t) and MAT using a suitable algorithm
(e.g. [43]) for finding maximal inscribed discs. These provide us with G1 data which we use in turn for constructing the PH
andMPH spline approximation of the original domain’s boundary curve q(t) andMAT, respectively. Finally, using (21) or the
envelope formula (8), we compute a rational PH spline approximation of the domain boundary curve r(t). Also, we can start
with sampling points on r(t). The method then gives almost indistinguishable results after only one step of subdivision.

We remark that this scheme has approximation order 4 as well. This fact follows from the asymptotic analysis presented
in Section 4 and the result (47) of Kosinka and Jüttler [24].

5.3. Example 3

In this example we demonstrate the advantage of the MAT representation of a planar domain Ω on the trimming
process of the inner offsets of Ω . Consider again the domain in Example 2 enclosed by two quartic arcs q(t), r(t). Several
(untrimmed) inner offsets of this domain are depicted in Fig. 6, left. Oncewehave a suitable approximation of theMATofΩ at
hand (cf. Example 2), we simply remove the parts of theMAT (and the associated offset curves) for which the corresponding
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Fig. 6. Untrimmed inner offsets (left) and inner offsets after trimming (right). The MA and MAT approximations are depicted in grey. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

MAT radius is less than the offset distance; see Fig. 6, right. For this particular example, three subdivision steps were used
(i.e., one more than in Example 2, Fig. 5).

6. Conclusion

In the present paper we continued the discussion of the interplay between spatial MPH curves and associated planar
PH curves started in [21] from the point of view of Hermite interpolation schemes. We introduced a novel approach for
interpolating a spatial space-like curve considered as the medial axis transform of a planar domain. In addition, the MAT
validity conditions with respect to given interpolation data were thoroughly studied.

The main advantage of the scheme presented is its simplicity. An arbitrary (and at any time replaceable) algorithm for
interpolation using planar PH curves is used after some simple additional computations also for interpolation using spatial
MPH curves. The scheme presented provides a nice geometric insight, and unlike available MPH schemes (e.g. C1) does
not require the complicated Clifford algebra machinery and uses already well-known and established results for planar
PH curves. The approximation order of the algorithm designed is 4, including inflection points. This is an improvement
compared to other known G1 techniques working directly in the Minkowski space, where the approximation order drops to
2 at inflections. The technique presented can be used ‘as is’ also for computing polynomial/rational approximations of real-
domain boundaries and all their (trimmed) offsets. Furthermore, this algorithm has another useful advantage—not only the
MAT but also one of the boundary curves can be constructed as a polynomial curve.

In our future work, we would like to focus on higher order relations. Promising results on connections between the
Minkowski curvature of an MPH curve and the curvatures of its associated planar PH curves (cf. [21]) give a good chance to
design an analogous (and also simple) G2 Hermite interpolation scheme. Finally, it is certainly a challenge to generalize this
scheme to MOS surfaces constructed from associated PN surfaces in the spirit of [44].
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